JPH11340143A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH11340143A
JPH11340143A JP14079998A JP14079998A JPH11340143A JP H11340143 A JPH11340143 A JP H11340143A JP 14079998 A JP14079998 A JP 14079998A JP 14079998 A JP14079998 A JP 14079998A JP H11340143 A JPH11340143 A JP H11340143A
Authority
JP
Japan
Prior art keywords
film
jig
semiconductor device
irregularities
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14079998A
Other languages
Japanese (ja)
Inventor
Takashi Nakajima
中島  隆
Hideo Miura
英生 三浦
Akira Yajima
明 矢島
Hide Kobayashi
秀 小林
Shinji Nishihara
晋治 西原
Junichi Uchida
淳一 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14079998A priority Critical patent/JPH11340143A/en
Publication of JPH11340143A publication Critical patent/JPH11340143A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To make the occurrence of produced foreign matters stably controllable over a long period by forming irregularities having specific heights on the surface of a deposition preventing jig, and protrusions having specific heights on the surfaces of the irregularities. SOLUTION: Large irregularities 20 having the maximum height of 30-500 μm are formed on the surface of a film 11 coating the surface of an adhesion preventing jig 4. In addition, small protrusions 21 having heights of 1-30 μm are formed on the surfaces of the irregularities 20. When plasma 12 is generated by film formation, a film 13 deposits on the surface of the jig 4 and covers the small protrusions 21 formed on the surfaces of the irregularities 20. In this film forming method, a stress dispersing effect can be expected even when only a thin film of <=30 μm in thickness deposits on the surface of the jig 4, because the small protrusions having heights of 1-30 μm are formed on the surfaces of the large irregularities 20. Therefore, such film formation that the occurrence of foreign matters is suppressed to an extremely small number over a long period immediately after the jig 4 is exchanged with another one can be realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置の製造方
法に係り、特に、半導体基板上への成膜中に発塵を防止
する半導体装置の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device for preventing dust generation during film formation on a semiconductor substrate.

【0002】[0002]

【従来の技術】現在、半導体デバイス高集積化のトレン
ドが進み、最小加工寸法0.2〜0.35ミクロンの微細加
工が可能になってきている。このような半導体デバイス
を生産する上でもっとも重大な課題は、生産工程中にウ
エハに付着するパーティクル(以下、異物)を如何に低
減させるかということである。異物がウエハに付着する
と、付着部において成膜不良を起こしたり、異物が起点
となって膜にクラックが入る原因となりやすい。このよ
うな異物に起因した不良は、デバイス不良の50%以上
を占めると推定されている。
2. Description of the Related Art At present, the trend of high integration of semiconductor devices is progressing, and fine processing with a minimum processing size of 0.2 to 0.35 micron has become possible. The most important issue in producing such a semiconductor device is how to reduce particles (hereinafter, foreign matters) attached to a wafer during a production process. When foreign matter adheres to the wafer, it is likely to cause film formation failure at the adhered portion or cause cracks in the film due to the foreign matter as a starting point. It is estimated that such defects caused by foreign matter account for 50% or more of device defects.

【0003】異物は、成膜やエッチングを行う装置内の
ウエハ以外の場所に付着した膜が割れたり、はがれ落ち
ることにより発生する。それは、付着膜が残留応力を持
つことから、その膜厚が厚くなるほど膜と付着部との界
面に生じるせん断力が大きくなり、ある膜厚に達すると
膜が自己崩壊を起こすためである。
[0003] Foreign matter is generated when a film adhered to a place other than a wafer in a device for performing film formation or etching is broken or peeled off. This is because, since the deposited film has a residual stress, the greater the thickness of the film, the greater the shear force generated at the interface between the film and the adhered portion, and when the film reaches a certain film thickness, the film self-collapses.

【0004】成膜室などのウエハ処理室内壁に不要な膜
が付着し、膜厚が増加してはく離し、最終的に異物が発
生するというこの現象は、スパッタ装置,化学気相蒸着
(CVD)装置などの成膜を行う半導体デバイス製造装
置に共通して生じている現象であり、異物防止は半導体
デバイスを製造する上で最も重要な課題である。また、
磁気ディスク,光ディスク,薄膜磁気ヘッド,液晶パネ
ルなどのように複数の膜を堆積することで製造される製
品にとっても解決すべき問題となっている。
[0004] This phenomenon in which an unnecessary film adheres to the inner wall of a wafer processing chamber such as a film forming chamber, the film thickness increases and peels off, and finally foreign matters are generated, is caused by a sputtering apparatus, a chemical vapor deposition (CVD) method. This is a phenomenon that occurs commonly in semiconductor device manufacturing apparatuses that perform film formation such as an apparatus, and foreign matter prevention is the most important issue in manufacturing semiconductor devices. Also,
This is also a problem to be solved for products manufactured by depositing a plurality of films, such as magnetic disks, optical disks, thin-film magnetic heads, and liquid crystal panels.

【0005】通常、プロセス処理中に異物が発生するこ
とを避けるため、装置内の成膜室内壁を覆う防着治具と
呼ばれるものを設置して成膜室内壁への膜の付着を防止
している。更に、この防着治具に付着した膜がはがれて
異物になることを防止するために、所定の厚さに達する
前に新しい防着治具に交換することが行われている。
Usually, in order to avoid the generation of foreign matter during the process, a so-called anti-adhesion jig for covering the inner wall of the film forming chamber in the apparatus is installed to prevent the film from adhering to the inner wall of the film forming chamber. ing. Further, in order to prevent the film adhering to this jig from peeling off and becoming a foreign substance, the jig is replaced with a new one before reaching a predetermined thickness.

【0006】しかし、この防着治具の交換作業では、成
膜室の大気開放,防着治具の交換,成膜室内の真空引
き,成膜室内ベークによる残留ガスの除去などを行う必
要があり、再び成膜可能な真空状態になるまでには長時
間を要すことが多い。したがって、生産効率を向上させ
るためには、この防着治具の交換頻度を出来る限り少な
くすることが望まれていた。
However, in the replacement work of the deposition preventing jig, it is necessary to open the film formation chamber to the atmosphere, replace the deposition prevention jig, evacuate the film formation chamber, and remove the residual gas by baking the film formation chamber. In many cases, it takes a long time before a vacuum state is reached in which a film can be formed again. Therefore, in order to improve the production efficiency, it has been desired to reduce the frequency of replacing the anti-stick jig as much as possible.

【0007】この交換頻度を低減させるための異物防止
技術としては、付着膜の密着強度を強くする方法があ
る。膜密着強度の向上を目指した従来技術としては、防
着治具の膜付着部に対してサンドブラストで直接治具表
面を荒らす、あるいはアルミニウム(以下Al)などの
溶射を行い、膜付着部の表面粗さを溶射膜で粗くしたこ
とによる投錨効果によって膜の密着力向上を図ってい
た。これらの技術は例えば特開昭62−142758号公報,特
開昭60−120515号公報等に開示されている。
As a foreign matter prevention technique for reducing the frequency of replacement, there is a method of increasing the adhesion strength of an adhered film. Conventional techniques aimed at improving the film adhesion strength include directly sandblasting the surface of the film attachment portion of the deposition-preventing jig, or performing thermal spraying of aluminum (hereinafter referred to as Al) to obtain the surface of the film attachment portion. The adhesion of the film was improved by the anchoring effect by roughening the roughness with the sprayed film. These techniques are disclosed in, for example, JP-A-62-142758 and JP-A-60-120515.

【0008】[0008]

【発明が解決しようとする課題】ここで発明者らは、防
着治具に上記ブラストやAl溶射を行った場合の異物発
生に対する効果を明確にするため、真空装置でよく使用
される材料SUS304にて製作した防着治具の表面に
ブラストやAl溶射などの表面処理を施してスパッタリ
ング装置成膜室に設置し、窒化チタン(以下TiN)を
連続成膜しながら異物数の推移を測定し、比較検討し
た。SUS304材には次のような表面処理を施した。
なお各処理を行った場合の表面粗さとしてJIS記載の
最大高さRyを測定したので、併記する。
Here, in order to clarify the effect on the generation of foreign matter when the blast or Al spraying is performed on the anti-adhesion jig, the present inventors have made a material SUS304 which is often used in a vacuum apparatus. A surface treatment such as blasting or Al spraying is performed on the surface of the anti-adhesion jig manufactured in the above step, and the surface is installed in a film forming chamber of a sputtering apparatus, and a transition of the number of foreign particles is measured while continuously forming titanium nitride (hereinafter, TiN). And compared. The following surface treatment was applied to the SUS304 material.
In addition, since the maximum height Ry described in JIS was measured as the surface roughness when each treatment was performed, it is also described.

【0009】 (処理1)処理無し(表面は母材に光沢がある状態) Ry<1μm (処理2)#100程度のアルミナパウダーを用いたブ
ラスト(ブラスト処理A) Ry=約10μm (処理3)#30程度のアルミナパウダーを用いたブラ
スト(ブラスト処理B) Ry=約30μm (処理4)純アルミニウム溶射(溶射パウダーの粒径は
およそ30〜120μm) Ry=約100μm まず処理1〜処理4を行った防着治具の表面状態を光学
顕微鏡を用いて観察した。処理1を行ったものは肉眼で
は鏡面状であるが、ミクロ的には直線状の切削痕が残っ
ており、切削によって形成される鋭利な直線状の角部が
表面に並んだ状態になっていた。
(Treatment 1) No treatment (the surface is glossy on the base material) Ry <1 μm (Treatment 2) Blasting using alumina powder of about # 100 (blast treatment A) Ry = about 10 μm (Treatment 3) Blasting using about # 30 alumina powder (blasting treatment B) Ry = about 30 μm (Treatment 4) Pure aluminum thermal spraying (particle diameter of thermal spraying powder is about 30 to 120 μm) Ry = about 100 μm First, treatments 1 to 4 are performed. The surface condition of the anti-adhesion jig was observed using an optical microscope. The one after the treatment 1 is mirror-like to the naked eye, but has microscopically linear cutting marks, and sharp linear corners formed by cutting are arranged on the surface. Was.

【0010】処理2,処理3を行ったものは、表面にラ
ンダムに大きな凹凸上に小さな凹凸が形成されていた。
ブラストでは鋭利な形状をもつアルミナパウダーで防着
治具表面を研削することから、その各々の凹凸の角部は
鋭い形状になっていた。大きな凹凸の大きさは、ブラス
トに用いたアルミナパウダーの大きさを反映し、大きな
ブラストパウダーでブラストした処理3の方が凹凸は大
きくなる。
In the case of the treatments 2 and 3, small irregularities were randomly formed on the large irregularities on the surface.
In the blasting, the surface of the jig is ground with an alumina powder having a sharp shape, so that the corners of each of the irregularities are sharp. The size of the large unevenness reflects the size of the alumina powder used for blasting, and the unevenness is larger in the process 3 blasted with the large blast powder.

【0011】処理4を行ったものは大きな凹凸が多い
が、処理2,処理3を行ったものと比較すると小さな凹
凸は少ない。また凹凸の形状自体は、鋭利な形状は全く
なく、すべて丸みを帯びた形状になっていた。溶融状態
のアルミニウムパウダーが被着するためと考えられる。
[0011] The one subjected to the process 4 has many large irregularities, but the small irregularities are less than those subjected to the processes 2 and 3. In addition, the shape of the unevenness itself did not have any sharp shape at all, and was all rounded. It is considered that aluminum powder in a molten state is deposited.

【0012】処理1〜処理4を施した治具を使用して成
膜した場合の異物数の推移を図7に示す。横軸がウエハ
処理枚数であり、縦軸が8インチウエハあたりの異物の
数である。1回のウエハ処理でウエハ上に0.1μm 膜
を堆積させた。また異物数としては100(個/ウエ
ハ)以下になっていることが望ましい。
FIG. 7 shows the transition of the number of foreign particles when a film is formed by using the jig subjected to the processes 1 to 4. The horizontal axis is the number of processed wafers, and the vertical axis is the number of foreign substances per 8 inch wafer. In a single wafer process, a 0.1 μm film was deposited on the wafer. Further, it is desirable that the number of foreign substances is 100 (pieces / wafer) or less.

【0013】何も処理を行わない場合は、成膜枚数50
枚程度から異物が100(個/ウエハ)以上発生してお
り、成膜枚数増加に伴い、更に異物数は増加している。
ブラスト処理を行った仕様では異物数は始め50(個/
ウエハ)程度であるが、成膜枚数増加に伴い異物数は増
加している。特にブラスト処理Aを行った方が成膜枚数
150枚くらいから100(個/ウエハ)以上に増加し
たのに対し、ブラスト処理Bを行ったものでは350枚
くらいから100(個/ウエハ)以上になった。純アル
ミニウム溶射を行った場合の異物数は成膜1000枚を
越えてもほぼ100(個/ウエハ)以下となっている
が、成膜し始め100枚以下のときはあまり安定せず、
一部100(個/ウエハ)以上の場合も認められる。
If no processing is performed, the number of films
100 or more foreign substances are generated from about one wafer (pieces / wafer), and the number of foreign substances further increases with an increase in the number of deposited films.
In the blasted specification, the number of foreign substances is initially 50 (pieces /
Wafer), but the number of foreign particles increases with the increase in the number of deposited films. In particular, the blasting treatment A increased the film formation number from about 150 to 100 (pieces / wafer), while the blasting treatment B increased from about 350 to 100 (pieces / wafer). became. The number of foreign particles in the case of performing pure aluminum spraying is almost 100 (pieces / wafer) or less even when the film formation exceeds 1000 sheets, but is not so stable when the film formation is 100 sheets or less.
A case of more than 100 (pieces / wafer) is also recognized.

【0014】以上の結果から、従来技術では成膜初期か
ら処理枚数1000枚を超えるような長期間にわたっ
て、異物発生数を安定に100(個/ウエハ)以下に制
御することが困難であることが分かる。
From the above results, it is difficult in the prior art to stably control the number of generated foreign substances to 100 (pieces / wafer) or less over a long period of time, exceeding the number of processed sheets of 1,000 from the initial stage of film formation. I understand.

【0015】そこで、本発明の目的は、成膜初期から処
理枚数1000枚を超えるような長期間にわたって、異
物発生数を安定に100(個/ウエハ)以下に制御する
半導体装置の製造方法を提供することにある。
Accordingly, an object of the present invention is to provide a method of manufacturing a semiconductor device in which the number of foreign particles generated is stably controlled to 100 (pieces / wafer) or less for a long period of time such as exceeding 1000 sheets from the initial stage of film formation. Is to do.

【0016】[0016]

【課題を解決するための手段】膜付着後、各処理を行っ
た防着治具の表面状態を再度顕微鏡を用いて観察した結
果を説明する。処理1を行ったものは直線状の切削痕に
沿って膜が堆積しており、付着した膜は切削痕に沿って
板状にはがれていた。切削痕に沿ってクラックが入り、
はく離したと考えられる。処理2,処理3を行ったもの
は膜が凹凸に沿って膜が付着しているが、一部100μ
m角程度の片となってはがれていた。処理4のものは大
きな凹凸に沿って膜が付着しており、特にはがれている
箇所は認められなかった。
Means for Solving the Problems The results of the observation of the surface condition of the anti-adhesion jig which has been subjected to each treatment after the film is adhered by using a microscope again will be described. In the case of the treatment 1, the film was deposited along the linear cutting marks, and the adhered film was peeled off in a plate shape along the cutting marks. Cracks occur along the cutting marks,
It is considered that it was released. In the case of the treatment 2 and the treatment 3, the film adheres along the unevenness.
The piece was about m square and peeled off. In the case of the treatment 4, the film adhered along the large unevenness, and no peeled portion was observed.

【0017】これらの結果は以下のように考えられる。These results are considered as follows.

【0018】無処理のものは、(1)表面が鏡面状で凹
凸に乏しく、投錨効果が小さいこと、(2)ミクロ的に
は切削痕が直線的な鋭利部となっており、そこに膜が堆
積すると膜応力が集中してクラックが生じ易いなどの理
由により、付着膜がはがれやすい状態になっていると考
えられる。
Untreated ones have (1) a mirror-like surface with few irregularities and a small anchoring effect, and (2) microscopically, cutting marks are linear sharp parts, and there is a film there. It is considered that the deposited film is easily peeled off due to the concentration of the film stress and the occurrence of cracks.

【0019】ブラストを行ったものは、表面に形成され
ている大きな凹凸と細かな凹凸によって付着膜の応力が
分散され、膜厚が10〜30μm程度になるまで付着膜
ははがれずに安定しているが、更に膜厚が厚くなり凹凸
全体を覆うようになると、応力分散効果が薄れるととも
に凹凸部の鋭利な角部によって膜応力が集中して付着膜
が割れ、はがれたと考えられる。
In the case of blasting, the stress of the adhered film is dispersed by the large irregularities and fine irregularities formed on the surface, and the adhered film is stable without peeling until the film thickness becomes about 10 to 30 μm. However, when the film thickness is further increased to cover the entire unevenness, it is considered that the stress dispersion effect is reduced and the film stress is concentrated by the sharp corners of the unevenness, so that the adhered film is cracked and peeled off.

【0020】アルミニウム溶射を行ったものは、大きな
凹凸により付着膜厚が厚くなっても凹凸を覆うような膜
厚に達するまでは相対的に応力分散効果が持続し、更に
は表面の凹凸形状に鋭利な角部を持たないため付着膜応
力が集中しにくく、成膜枚数が1000枚程度になって
も異物数が安定していたと考えられる。成膜枚数100枚
以下のときに異物数が不安定であったが、この理由とし
ては細かな凹凸がブラスト処理を行ったものに比べて少
ないためであると推定される。
In the case of aluminum spraying, even if the thickness of the deposited film becomes large due to the large irregularities, the stress dispersion effect is relatively maintained until the film reaches the film thickness that covers the irregularities. It is considered that since no sharp corners are formed, the stress of the adhered film hardly concentrates, and the number of foreign substances was stable even when the number of formed films reached about 1,000. The number of foreign particles was unstable when the number of deposited films was 100 or less, which is presumably because the number of fine irregularities was smaller than that obtained by blasting.

【0021】これらのことから防着治具として好ましい
表面形状としては、(1)高さ数百μm〜数十μmの大
きな凹凸上に細かな凸部が形成されたフラクタル的な形
状を有しており、かつ(2)各々の凸部にはミクロ的に
も鋭利な角部を持たないことであると考えられる。
From these facts, the preferable surface shape of the jig is as follows: (1) It has a fractal shape in which fine projections are formed on large irregularities having a height of several hundred μm to several tens μm. And (2) it is considered that each projection does not have a sharp corner even microscopically.

【0022】具体的には、半導体製造装置の成膜室内に
設置する防着治具の表面に対して、高さ数百μm〜数十
μmの大きな凹凸形状の上に数十μm以下の丸みを帯び
た形状の凸部を形成させることで、半導体基板への成膜
中に防着治具から付着膜がはく離することを抑制でき
る。
Specifically, with respect to the surface of an anti-adhesion jig installed in a film forming chamber of a semiconductor manufacturing apparatus, a large unevenness having a height of several hundred μm to several tens μm and a roundness of several tens μm or less are formed. By forming the protruding portion having the shape having the shape, it is possible to suppress the adhesion film from peeling off from the adhesion preventing jig during the film formation on the semiconductor substrate.

【0023】半導体基板へ成膜を行う半導体装置の製造
方法において、成膜室内部に設置した防着治具からのは
く離を抑制しながら薄膜を堆積させる半導体装置の製造
方法を提供するため、本発明は以下の特徴を備える。
In order to provide a method of manufacturing a semiconductor device for forming a film on a semiconductor substrate, a method of manufacturing a semiconductor device in which a thin film is deposited while suppressing peeling from a deposition preventing jig installed inside a film forming chamber is provided. The invention has the following features.

【0024】本発明の半導体装置の製造方法は、成膜装
置の成膜室内に設置した防着治具に付着した膜のはく離
を防止し、成膜中の異物発生を抑制する成膜する方法で
あって、防着治具表面の少なくとも一部が溶射によって
アルミニウム膜でコーティングされており、該アルミニ
ウム膜表面に高さ数百μm〜数十μmの大きな凹凸上に
高さ数十〜1μm程度の小さな凸部が形成された防着治
具を設置した状態で成膜して、半導体装置を製造するこ
とを特徴とする。
According to the method of manufacturing a semiconductor device of the present invention, there is provided a method of forming a film by preventing peeling of a film adhered to an anti-adhesion jig installed in a film forming chamber of a film forming apparatus and suppressing generation of foreign matter during film formation. Wherein at least a part of the surface of the deposition-preventing jig is coated with an aluminum film by thermal spraying, and the surface of the aluminum film has a height of about several tens to about 1 μm on large irregularities of several hundred μm to several tens μm in height A semiconductor device is manufactured by forming a film in a state where an anti-adhesion jig having a small projection is formed.

【0025】本発明の半導体装置の製造方法を行うため
に成膜室に設置する防着治具は、溶射装置を用いて、ま
ず第1のアルミニウムパウダーが溶射される第1溶射工
程を行い、この第1溶射工程に連続して第1のアルミニ
ウムパウダーよりも平均粒径が小さな第2のアルミニウ
ムパウダーが溶射される第2溶射工程を行うことによっ
て製作する。ここで第1のアルミニウムパウダーの平均
粒径は例えば30〜200μm程度に、第2のアルミニ
ウムパウダーの平均粒径は1〜30μm以下にし、必ず
第1のアルミニウムパウダーの平均粒径よりも第2のア
ルミニウムパウダーの平均粒径の方が小さくなるように
する。第2のアルミニウムパウダーの平均粒径は、溶射
が可能な範囲で小さいほど良い。このコーティング処理
によって、該アルミニウム溶射膜表面に高さ数百μm〜
数十μmの大きな凹凸上に高さ数十〜1μm程度の小さ
な凸部が形成されている防着治具を得ることが出来る。
An anti-adhesion jig installed in a film forming chamber for performing the method of manufacturing a semiconductor device of the present invention first performs a first spraying step in which a first aluminum powder is sprayed by using a spraying apparatus. It is manufactured by performing a second spraying step in which a second aluminum powder having an average particle diameter smaller than that of the first aluminum powder is sprayed continuously to the first spraying step. Here, the average particle size of the first aluminum powder is, for example, about 30 to 200 μm, and the average particle size of the second aluminum powder is 1 to 30 μm or less. The average particle size of the aluminum powder is made smaller. The average particle size of the second aluminum powder is preferably as small as possible within the range where thermal spraying is possible. Due to this coating treatment, the surface of the aluminum sprayed film has a height of several hundred μm to
An anti-adhesion jig can be obtained in which small projections having a height of about several tens to 1 μm are formed on large projections and depressions of several tens of μm.

【0026】なお、防着治具表面に対しては、ブラスト
処理などによってコーティング膜と防着治具との密着強
度を向上させることが望ましい。また、防着治具母材を
コーティングする材料としてはアルミニウムに限るもの
ではなく、成膜中に付着する膜の応力を緩和するような
他の材料、例えば、アルミニウム合金,チタン,チタン
合金,銅,銅合金から選択される一つであってもさしつ
かえない。銅を15%以上含むアルミニウム合金、マグ
ネシウムを5%以上含むアルミニウム合金、シリコンを
10%以上含むアルミニウム合金、アルミニウムを30
%以上含むマグネシウム合金、アルミニウムを4%以上
含むチタン合金、アルミニウムを8%以上含む銅合金な
どのような最大伸びを100%以上もつような材料であ
れば、より好ましい。
It is desirable that the adhesion strength between the coating film and the jig is improved by blasting or the like on the surface of the jig. Further, the material for coating the base material of the deposition-preventing jig is not limited to aluminum, but may be any other material that relieves the stress of the film adhered during film formation, for example, aluminum alloy, titanium, titanium alloy, copper However, even one selected from copper alloys may be used. Aluminum alloy containing 15% or more of copper, aluminum alloy containing 5% or more of magnesium, aluminum alloy containing 10% or more of silicon, and 30% of aluminum
%, More preferably a material having a maximum elongation of 100% or more, such as a magnesium alloy containing 4% or more of aluminum, a titanium alloy containing 4% or more of aluminum, and a copper alloy containing 8% or more of aluminum.

【0027】本発明の半導体装置は、異物発生が抑制さ
れた成膜方法を用いて製造する半導体装置であって、防
着治具表面の少なくとも一部が溶射によってアルミニウ
ム膜でコーティングされており、該アルミニウム膜表面
に高さ数百μm〜数十μmの大きな凹凸上に高さ数十〜
1μm程度の小さな凸部が形成された防着治具を、成膜
時に成膜室内に設置した状態で成膜して製造されている
ことを特徴とする。
The semiconductor device of the present invention is a semiconductor device manufactured by using a film forming method in which generation of foreign matter is suppressed, wherein at least a part of the surface of the deposition preventing jig is coated with an aluminum film by thermal spraying. The aluminum film surface has a height of several hundred μm to several tens μm.
It is characterized in that an anti-adhesion jig having a small projection of about 1 μm is formed by forming a film in a state of being installed in a film forming chamber at the time of film formation.

【0028】即ち、本発明を用いれば、成膜初期から処
理枚数1000枚を超えるような長期間にわたって、異
物の発生が抑制された状態で安定に成膜することが可能
となる。このことによって、防着治具の交換頻度を出来
る限り少なくすることができ、生産効率を向上できるこ
とでコスト削減が可能となる。したがって成膜中の異物
発生が低減するため、安定して半導体装置を製造するこ
とが可能となる。また半導体装置の不良率が下がるた
め、高い信頼性をもち且つ低コストである半導体装置を
提供することが可能となる。
That is, according to the present invention, it is possible to stably form a film in a state in which the generation of foreign substances is suppressed for a long period of time such as exceeding 1000 sheets to be processed from the initial stage of the film formation. This makes it possible to reduce the frequency of replacement of the attachment jig as much as possible, and to improve production efficiency, thereby enabling cost reduction. Therefore, the generation of foreign substances during film formation is reduced, so that a semiconductor device can be stably manufactured. Further, since the defect rate of the semiconductor device is reduced, a semiconductor device having high reliability and low cost can be provided.

【0029】なお、本発明を活用することが有効である
分野は、半導体装置の製造に関するものだけではなく、
磁気ディスク,光ディスク,薄膜磁気ヘッド,液晶パネ
ルなどの薄膜を堆積して製造を行っているもの全般にお
いて有効である。
The fields in which the present invention is useful are not only related to the manufacture of semiconductor devices, but also
The present invention is effective for all types of thin disks such as magnetic disks, optical disks, thin film magnetic heads, and liquid crystal panels that are manufactured by depositing thin films.

【0030】[0030]

【発明の実施の形態】以下本発明の実施例について、図
面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0031】(実施例1)本発明に基づく半導体装置を
製造方法に関する一実施例を、スパッタリング装置にて
薄膜を成膜し、半導体装置を製造する場合を例に説明す
る。
(Embodiment 1) An embodiment of a method of manufacturing a semiconductor device according to the present invention will be described with reference to a case where a semiconductor device is manufactured by forming a thin film by a sputtering apparatus.

【0032】本発明の実施例に基づく半導体装置の製造
方法を行うための装置構成を図1に示す。
FIG. 1 shows an apparatus configuration for performing a method of manufacturing a semiconductor device according to an embodiment of the present invention.

【0033】スパッタリング装置の成膜室用真空チャン
バ3内には電極絶縁物2を介してターゲット1が設置さ
れ、ターゲット1に対向する位置にはウエハステージ5
が設置されている。半導体基板6はウエハステージ上に
搬送される。成膜時に真空チャンバ3内にプラズマ生成
用ガスを導入しながらスパッタリングするための適当な
内部圧力に保つため、排気口8は真空ポンプやバルブな
どを含む適当な排気設備に接続され、ガス導入口7は真
空チャンバ3内をスパッタリング時の圧力を維持しなが
らプラズマ生成用ガスを導入するガス流量計やバルブな
どのガス導入設備が接続されている。半導体基板6とタ
ーゲット1の間にスパッタリング用の直流あるいは交流
電力を付加するため、配線9を介して電源10が接続さ
れている。
A target 1 is installed in a vacuum chamber 3 for a film forming chamber of a sputtering apparatus with an electrode insulator 2 interposed therebetween.
Is installed. The semiconductor substrate 6 is carried on a wafer stage. In order to maintain an appropriate internal pressure for sputtering while introducing a plasma generating gas into the vacuum chamber 3 during film formation, the exhaust port 8 is connected to an appropriate exhaust facility including a vacuum pump and a valve. Reference numeral 7 is connected to gas introduction equipment such as a gas flow meter and a valve for introducing a gas for plasma generation while maintaining the pressure during sputtering in the vacuum chamber 3. A power supply 10 is connected via a wiring 9 to apply DC or AC power for sputtering between the semiconductor substrate 6 and the target 1.

【0034】なお、成膜によって真空チャンバ3内では
半導体基板以外の場所にも膜13が付着するが、真空チ
ャンバ3内壁などへの膜13の付着を防止するために防
着治具4が真空チャンバ3の内壁を覆うように取り付け
られている。この防着治具4表面は、付着した膜がはく
離しないようにコーティング膜11で覆われている。
Although the film 13 adheres to places other than the semiconductor substrate in the vacuum chamber 3 due to the film formation, in order to prevent the film 13 from adhering to the inner wall of the vacuum chamber 3 and the like, the anti-adhesion jig 4 is evacuated. It is attached so as to cover the inner wall of the chamber 3. The surface of the deposition preventing jig 4 is covered with a coating film 11 so that the adhered film is not peeled off.

【0035】この防着治具4の構造を示すため、14で
示した○内を拡大したものが図(b)である。本発明では
防着治具交換直後から長期間にわたって異物が発生しな
い成膜を行うため、この防着治具4の表面を覆っている
コーティング膜11には、表面に高さ500μm〜30
μmの大きな凹凸20が形成され、更にその凹凸20上
に高さ30μm〜1μmの小さな凸部21が形成された
構造になっている。
In order to show the structure of the deposition preventing jig 4, FIG. In the present invention, since a film is formed in which no foreign matter is generated for a long time immediately after the replacement of the jig, the coating film 11 covering the surface of the jig 4 has a height of 500 μm to 30 μm.
The structure is such that a large unevenness 20 of μm is formed, and a small convex portion 21 having a height of 30 μm to 1 μm is formed on the unevenness 20.

【0036】成膜手順について説明する。The film forming procedure will be described.

【0037】真空チャンバ内に図1(a),(b)にて説
明した構造の防着治具を設置する。真空チャンバ3内は
排気口8を通して排気設備により排気を行う。内部の真
空度が高いほど成膜中に酸化などの影響を受けないた
め、高真空である方が良い。所定の高真空に達してから
ウエハステージ5上に半導体基板6を搬送し、ガス導入
口7からプラズマ生成用のガスを導入する。導入するガ
スには、アルゴンガスやクリプトンガス、あるいはキセ
ノンガスが用いられるが、反応性スパッタリングを行う
ために窒素ガスなどを混合してもよい。真空チャンバ3
内のガス圧がスパッタリングを行うための所定のガス圧
に達した後、ターゲット1と半導体基板6との間に、配
線9を介して電源10により直流あるいは交流電力を負
荷してプラズマ12を発生させ、ターゲット材料の薄膜
を半導体基板6上に成膜する。
A deposition jig having the structure described with reference to FIGS. 1A and 1B is set in a vacuum chamber. The inside of the vacuum chamber 3 is evacuated through an exhaust port 8 by exhaust equipment. The higher the degree of vacuum inside, the less the influence of oxidation or the like during the film formation. After reaching a predetermined high vacuum, the semiconductor substrate 6 is transferred onto the wafer stage 5, and a gas for plasma generation is introduced from the gas inlet 7. As a gas to be introduced, an argon gas, a krypton gas, or a xenon gas is used, but a nitrogen gas or the like may be mixed for performing reactive sputtering. Vacuum chamber 3
After the internal gas pressure reaches a predetermined gas pressure for performing sputtering, a DC or AC power is applied between the target 1 and the semiconductor substrate 6 by a power supply 10 via a wiring 9 to generate a plasma 12. Then, a thin film of the target material is formed on the semiconductor substrate 6.

【0038】成膜によってプラズマ12が形成される
と、防着治具4の表面にも膜13は付着する。膜13
は、図1(b)のように防着治具4表面の、大きな凹凸
20上の小さな凸部21を覆うように付着する。通常の
溶射だけでコーティングした防着治具4を用いた場合、
大きな凹凸は形成されているが小さな凸部はほとんど形
成されていないため、薄い付着膜に対しては応力分散効
果がほとんど期待できない。
When the plasma 12 is formed by film formation, the film 13 also adheres to the surface of the jig 4. Membrane 13
Is attached so as to cover the small projections 21 on the large irregularities 20 on the surface of the anti-adhesion jig 4 as shown in FIG. When using the anti-adhesion jig 4 coated only by normal thermal spraying,
Although large irregularities are formed but small convexities are scarcely formed, a stress dispersion effect can hardly be expected for a thin adhered film.

【0039】しかし本発明の成膜方法では、大きな凹凸
上に更に高さ30μm〜1μm程度の小さな凸部が形成
されているため、防着治具4表面に30μm以下の薄い
膜しか付着していない場合においても応力分散効果があ
り、防着治具交換直後から長期間にわたって異物の発生
が極めて少ない成膜が可能である。また、防着治具4表
面に付着する膜が30μm以上に成長した場合において
も、防着治具上に高さ500μm〜30μmの大きな凹
凸20が形成されているため応力分散効果が持続し、付
着した膜がはく離して異物となりにくい。
However, according to the film forming method of the present invention, since a small protrusion having a height of about 30 μm to 1 μm is further formed on the large unevenness, only a thin film of 30 μm or less adheres to the surface of the jig 4. Even in the case where no jig is present, there is an effect of dispersing the stress, and it is possible to form a film in which generation of foreign matter is extremely small for a long period immediately after the replacement of the jig. Further, even when the film attached to the surface of the anti-adhesion jig 4 has grown to 30 μm or more, the large unevenness 20 having a height of 500 μm to 30 μm is formed on the anti-adhesion jig, so that the stress dispersion effect is maintained, The adhered film is less likely to peel off and become foreign matter.

【0040】なお本発明は、ここで述べた半導体装置の
製造方法に関してのみ有効である訳ではなく、磁気ディ
スク,光ディスク,薄膜磁気ヘッド,液晶パネルなどの
スパッタリング法やCVD法などの成膜方法を利用して
製造を行っているもの全般に有効である。
The present invention is not only effective with respect to the method of manufacturing a semiconductor device described above, but also employs a film forming method such as a sputtering method or a CVD method for a magnetic disk, an optical disk, a thin film magnetic head, a liquid crystal panel, and the like. It is effective for all products manufactured using it.

【0041】図1において用いた防着治具4の表面をコ
ーティングする方法を図2を用いて説明する。
A method of coating the surface of the deposition preventing jig 4 used in FIG. 1 will be described with reference to FIG.

【0042】(第1工程)まず、防着治具母材4aの表
面をアルミナパウダー31などを用いてブラストし、表
面を荒らす。その表面粗さは、Ryが100〜5μm程
度になるようにする。最大高さの制御は防着治具母材4
a材質に応じて適当なアルミナパウダーの粒径を選択す
ることで可能である。例えば、防着治具母材4aにSU
S304材を用いた場合、#100程度のアルミナパウ
ダーを選択すると表面粗さはRyは10μm程度にな
り、#30程度のアルミナパウダーを選択するとRyは
30μm程度となる。ブラストした後は、防着治具母材
4aの表面に残留しているアルミナパウダーを、超音波
洗浄などで洗い流す。
(First Step) First, the surface of the deposition-preventing jig base material 4a is blasted using alumina powder 31 or the like to roughen the surface. The surface roughness is set so that Ry is about 100 to 5 μm. The maximum height is controlled by the jig base material 4
It is possible by selecting an appropriate particle size of the alumina powder according to the material a. For example, SU is attached to the attachment-preventing jig base material 4a.
When the S304 material is used, the surface roughness Ry becomes about 10 μm when alumina powder of about # 100 is selected, and Ry becomes about 30 μm when alumina powder of about # 30 is selected. After the blasting, the alumina powder remaining on the surface of the adhesion preventing jig base material 4a is washed away by ultrasonic cleaning or the like.

【0043】(第2工程)ブラストされた防着治具母材
4bに、第1の溶射装置を用いて、第1アルミニウムパ
ウダー32aを溶射し、第1アルミニウム溶射膜32b
を形成する。
(Second Step) A first aluminum powder 32a is sprayed on the blast-proof jig base material 4b by using a first spraying device to form a first aluminum sprayed film 32b.
To form

【0044】第1アルミニウムパウダー32aの平均粒
径は、30μm以下である場合、第1溶射膜の表面凹凸
はあまり大きくならず、200μm以上である場合、治
具母材の表面凹凸に溶射パウダーがあまり食い込まずに
治具母材と第1溶射膜の界面にすが生じてしまい、密着
性が低下してしまう。したがって第1アルミニウムパウ
ダー32aの平均粒径は30〜200μm程度であるこ
とが望ましい。
When the average particle size of the first aluminum powder 32a is 30 μm or less, the surface irregularities of the first sprayed film are not so large, and when the average particle size is 200 μm or more, the sprayed powder is formed on the surface irregularities of the jig base material. Soaking does not occur much, so that the interface between the jig base material and the first sprayed film is soaked, and the adhesion is reduced. Therefore, the average particle size of the first aluminum powder 32a is desirably about 30 to 200 μm.

【0045】また第1アルミニウム溶射膜厚は防着治具
母材4bが露出しない程度とする。溶射膜の母材界面か
ら膜表面凸部の頂部までを溶射膜厚と定義すると、一般
にこの溶射膜厚が溶射パウダーの平均粒径の2倍以上に
なると、ほぼ母材4bが溶射膜で覆われる。母材4bが
露出すると、スパッタ膜の付着時に溶射膜端部で応力が
集中して膜はがれが起きやすいため、好ましくない。溶
射する第1アルミニウムパウダー32aの平均粒径が大
きいほど溶射膜の表面が粗くなるため、スパッタ成膜に
よる付着膜が厚くなった場合にも応力分散効果が発揮さ
れやすい。
The first aluminum sprayed film thickness is set to such an extent that the base material 4b of the deposition preventing jig is not exposed. When the thickness from the interface of the base material of the sprayed film to the top of the convex portion of the film surface is defined as the sprayed film thickness, generally, when the sprayed film thickness is twice or more the average particle size of the sprayed powder, the base material 4b is almost covered with the sprayed film. Will be When the base material 4b is exposed, stress is concentrated at the end of the sprayed film when the sputtered film is adhered, and the film tends to peel off, which is not preferable. The larger the average particle size of the sprayed first aluminum powder 32a is, the rougher the surface of the sprayed film is, so that even when the deposited film formed by sputtering is thick, the stress dispersion effect is easily exerted.

【0046】(第3工程)第2工程に連続してあるいは
第2工程の途中から、第1アルミニウム溶射膜32b上
に、第2溶射設備を用いて第2アルミニウムパウダー3
3aを溶射し、第2アルミニウム溶射膜(33bまたは
33c)を形成する。第2アルミニウムパウダー33a
の平均粒径は第1アルミニウムパウダー32aの平均粒
径よりも小さくし、例えば1〜30μmとする。
(Third Step) Continuing from the second step or from the middle of the second step, the second aluminum powder 3 is formed on the first aluminum sprayed film 32b by using the second spraying equipment.
3a is sprayed to form a second aluminum sprayed film (33b or 33c). Second aluminum powder 33a
Is smaller than the average particle size of the first aluminum powder 32a, for example, 1 to 30 μm.

【0047】第3工程の溶射のタイミングは第2工程の
溶射に連続して、あるいは第2工程途中から行うのが良
い。それは、第2工程で形成される第1溶射膜32bが
冷却により熱収縮したり、表面の酸化が進んだりした後
に第2溶射膜(33bまたは33c)を被着させると、
第1溶射膜と第2溶射膜の間で熱応力が発生したり、表
面の酸化で第1溶射膜/第2溶射膜間の密着力が低下す
ることにより、溶射膜自体がはく離しやすくなるからで
ある。
The timing of the thermal spraying in the third step is preferably continuous with the thermal spraying in the second step or from the middle of the second step. That is, when the first sprayed film 32b formed in the second step is thermally contracted by cooling or the surface is oxidized, and then the second sprayed film (33b or 33c) is deposited,
Thermal stress is generated between the first sprayed film and the second sprayed film, and the adhesion between the first sprayed film and the second sprayed film is reduced by oxidation of the surface, so that the sprayed film itself is easily peeled. Because.

【0048】図2のコーティングする方法を実現するた
めの、溶射装置の構成と溶射手順を図3を用いて説明す
る。
The configuration of the thermal spraying apparatus and the thermal spraying procedure for realizing the coating method of FIG. 2 will be described with reference to FIG.

【0049】(第1の装置構成と溶射手順)溶射設備を
2セット用いてコーティングする方法を図3(1)にて
説明する。装置の構成は、単一種類の溶射パウダーをプ
ラズマ溶射する第1,第2の溶射装置40,50を用い
る。溶射装置にはそれぞれ溶射ガン41,51が備えら
れており、溶射ガンへのパウダー供給とプラズマ発生の
ためのガスや電力の供給を行うためのホースやコード類
42,52が、パウダー供給とプラズマ発生のためのガ
スや電力の供給を制御する溶射制御部43,53に接続
されている。溶射装置にはそれぞれ平均粒径30〜20
0μm,1〜30μmの溶射パウダー44,54を投入
する。
(First Apparatus Configuration and Thermal Spraying Procedure) A method of coating using two sets of thermal spray equipment will be described with reference to FIG. The configuration of the apparatus uses first and second thermal spraying apparatuses 40 and 50 for plasma spraying a single type of thermal spraying powder. The thermal spraying apparatus is provided with thermal spray guns 41 and 51, respectively, and hoses and cords 42 and 52 for supplying powder to the thermal spray gun and for supplying gas and electric power for generating plasma include powder supply and plasma. It is connected to thermal spray controllers 43 and 53 for controlling the supply of gas and power for generation. Each spraying device has an average particle size of 30-20.
The thermal spray powders 44 and 54 of 0 μm and 1 to 30 μm are charged.

【0050】まず、第1溶射装置40を用いて平均粒径
30〜200μmの第1溶射パウダー44を溶射ガン4
1から溶射流45にして噴出させ、表面が粗面化された
防着治具母材4bの表面に溶射膜11を被着させ、図2
で説明した大きな凹凸32bを形成する。この工程に連
続して、第2溶射装置50を用いて第1溶射パウダー4
4よりも平均粒径が小さい第2溶射パウダー54を溶射
ガン51から溶射流55として噴出させ、大きな凹凸3
2b表面に図2で説明した小さい凸形状33bあるいは凸
形状を有する膜33cを形成する。
First, a first spraying powder 44 having an average particle diameter of 30 to 200 μm is sprayed using the first spraying device 40.
The sprayed film 11 is sprayed from 1 to spray the sprayed film 45, and the sprayed film 11 is applied to the surface of the roughened surface of the jig base material 4b, and FIG.
The large irregularities 32b described in the above are formed. Continuing with this process, the first thermal spray powder 4 is
The second spray powder 54 having an average particle diameter smaller than that of the fourth spray 4 is ejected from the spray gun 51 as the spray flow 55,
The small convex shape 33b or the film 33c having the convex shape described in FIG. 2 is formed on the surface 2b.

【0051】第1溶射パウダー44と第2溶射パウダー
54の溶射のタイミングを図4の2つのグラフを用いて
説明する。グラフの横軸は時間であり、縦軸は単位時間
当たりに溶射した溶射パウダーの重量である。第2溶射
パウダー54を溶射し始めるタイミングは、第1溶射パ
ウダー44を溶射し終わる前とし、第1,第2の溶射パ
ウダーを同時に溶射する時間(図中のΔt)が所定の時
間以上になるようにする。このように第1溶射パウダー
44の溶射と第2溶射パウダー54の溶射を時間的に重
なるように設定し、大きな凹凸32b形成工程と小さい
凸部33b(あるいは33c)形成工程を連続して行う
と、大きな凹凸32bの表面が酸化する前に第2溶射パ
ウダー54を溶射できるため、酸化による小さい凸部3
3b(あるいは33c)の大きな凹凸32bへの密着強
度低下を防止することが可能である。逆に、第1溶射パ
ウダーを溶射した後に時間が経過すると溶射膜が熱収縮
したり、表面の酸化が進むため、第1溶射膜/第2溶射
膜間への熱応力発生や表面酸化によって密着力が低下
し、溶射膜自体がはく離しやすくなるため、好ましくな
い。
The timing of spraying the first spray powder 44 and the second spray powder 54 will be described with reference to two graphs in FIG. The horizontal axis of the graph is time, and the vertical axis is the weight of the sprayed powder per unit time. The timing of starting the thermal spraying of the second thermal spraying powder 54 is before the thermal spraying of the first thermal spraying powder 44 is completed, and the time (Δt in the figure) for simultaneously thermal spraying the first and second thermal spraying powders is equal to or longer than a predetermined time. To do. As described above, the thermal spraying of the first thermal spraying powder 44 and the thermal spraying of the second thermal spraying powder 54 are set so as to be temporally overlapped, and the process of forming the large irregularities 32b and the process of forming the small convexities 33b (or 33c) are continuously performed. Since the second spray powder 54 can be sprayed before the surface of the large unevenness 32b is oxidized, the small projections 3 due to oxidation can be sprayed.
It is possible to prevent a decrease in adhesion strength to the large unevenness 32b of 3b (or 33c). Conversely, if time elapses after spraying the first sprayed powder, the sprayed film thermally contracts and the surface is oxidized, so that thermal stress is generated between the first sprayed film and the second sprayed film and the surface is oxidized to adhere. This is not preferable because the force is reduced and the sprayed film itself is easily peeled off.

【0052】(第2の装置構成と使用方法)一度に2種
類以上の溶射パウダーを溶射できる装置を用いる場合の
装置構成とその使用方法を図3(2)にて説明する。装
置の構成は、複数の溶射パウダーを投入して溶射を行う
第3の溶射装置60を用いる。溶射装置60には溶射ガ
ン61が備えられており、溶射ガンへのパウダー供給と
プラズマ用ガスや電力の供給を行うためのホースやコー
ド類62,63が、パウダー供給とプラズマ発生のため
のガスや電力の供給を制御する溶射制御部64に接続さ
れている。溶射装置にはそれぞれ平均粒径30〜200
μm,1〜30μmの溶射パウダー44,54を投入す
る。平均粒径は溶射パウダー44よりも溶射パウダー5
4の方が小さいものを使用する。
(Second Apparatus Configuration and Method of Use) An apparatus configuration and a method of using an apparatus capable of spraying two or more types of thermal spray powder at a time will be described with reference to FIG. The configuration of the apparatus uses a third thermal spraying apparatus 60 that performs thermal spraying by charging a plurality of thermal spraying powders. The thermal spraying device 60 is provided with a thermal spray gun 61, and hoses and cords 62 and 63 for supplying powder to the thermal spray gun and for supplying plasma gas and electric power include gas for supplying powder and generating plasma. And a thermal spray control unit 64 for controlling the supply of electric power. Each spraying device has an average particle size of 30 to 200.
The thermal spraying powders 44 and 54 of 1 μm and 1 to 30 μm are charged. Average particle size is smaller than spray powder 44 than spray powder 5
Use the smaller one of the four.

【0053】まず、第3溶射装置40を用いて平均粒径
30〜200μmの第1溶射パウダー44を溶射ガン6
1から溶射流65として噴出させ、表面が粗面化された
防着治具母材4bの表面に溶射膜11を被着させ、図2
で説明した大きな凹凸32bを形成する。次に平均粒径
が小さい第2溶射パウダー54を溶射ガン61に供給
し、第1溶射パウダー44と第2溶射パウダー54の溶
射を同時に行う。第1溶射パウダー44の供給を止め、
第2溶射パウダー54のみの溶射を行う。これらの工程
によって、大きな凹凸32b表面に図2で説明した小さ
い凸部33bあるいは33cが形成される。第1溶射パ
ウダー44と第2溶射パウダー54の溶射のタイミング
については、図4のグラフで説明したように、図中のΔ
tがを所定の時間以上になるようにする。
First, the first spraying powder 44 having an average particle diameter of 30 to 200 μm is sprayed using the third spraying device 40 into the spraying gun 6.
1 is sprayed as a thermal spray flow 65, and the thermal spray film 11 is applied to the surface of the roughened jig base material 4b whose surface is roughened.
The large irregularities 32b described in the above are formed. Next, the second spray powder 54 having a small average particle diameter is supplied to the spray gun 61, and the first spray powder 44 and the second spray powder 54 are simultaneously sprayed. Stop supplying the first thermal spray powder 44,
The thermal spraying of only the second thermal spraying powder 54 is performed. Through these steps, the small projections 33b or 33c described with reference to FIG. 2 are formed on the surface of the large unevenness 32b. Regarding the timing of the thermal spraying of the first thermal spraying powder 44 and the second thermal spraying powder 54, as described in the graph of FIG.
t is set to be equal to or longer than a predetermined time.

【0054】以上の技術を利用した成膜方法により半導
体装置を製造する方法について図5を用い、図1中の1
5で示した○内を拡大した半導体装置断面を用いて説明
する。
A method of manufacturing a semiconductor device by a film forming method utilizing the above-described technique will be described with reference to FIG.
The description will be made using the cross section of the semiconductor device in which the inside of the circle shown by 5 is enlarged.

【0055】(第1工程)半導体基板6上にゲート酸化
膜100およびゲート電極101の形成、絶縁膜102
aの堆積、絶縁膜102bの堆積、コンタクトホール1
03の形成までを行ったときの半導体装置断面である。
ここまでの製造方法については、従来から知られている
技術を用いればよい。
(First Step) Formation of Gate Oxide Film 100 and Gate Electrode 101 on Semiconductor Substrate 6, Insulation Film 102
a, insulating film 102b, contact hole 1
12 is a cross-sectional view of the semiconductor device when the process up to the formation of No. 03 is performed.
For the manufacturing method up to this point, a conventionally known technique may be used.

【0056】(第2工程)次に本発明のスパッタ成膜方
法を用いた導電性膜104の成膜を行う。導電性膜10
4は後の工程でエッチングによって配線となるのだが、
導電性膜104の成膜時に、本発明のような異物発生を
抑制する成膜方法を用いなければ、成膜中に異物が発生
してウエハに付着し、形成する配線が断線したり、隣接
する配線と短絡する可能性が高くなる。しかし本発明の
成膜方法を用いると、防着治具交換直後から長期間にわ
たって、堆積された配線104aが異物による断線やエ
ッチング不良による短絡を起こすことがほとんど無くな
る。
(Second Step) Next, a conductive film 104 is formed using the sputtering film forming method of the present invention. Conductive film 10
4 becomes wiring by etching in a later process,
Unless the film formation method for suppressing the generation of foreign matter as in the present invention is used during the formation of the conductive film 104, foreign matter is generated during the film formation and adheres to the wafer, and the wiring to be formed is disconnected or an adjacent wiring is formed. The possibility of a short circuit with the wiring to be formed increases. However, when the film forming method of the present invention is used, the deposited wiring 104a hardly causes disconnection due to foreign matter or short-circuit due to poor etching for a long period immediately after the replacement of the deposition preventing jig.

【0057】したがって、本発明のような成膜方法を用
いることで、防着治具交換直後から処理枚数1000枚
を超えるような長期間にわたって、異物の発生が抑制さ
れた状態で安定して成膜することが可能となる。このこ
とによって、高い信頼性をもつ半導体装置を提供するこ
とが可能となる。
Therefore, by using the film forming method according to the present invention, it is possible to stably form in a state in which the generation of foreign substances is suppressed for a long period of time after the replacement of the deposition-inhibiting jig, for more than 1,000 sheets. It becomes possible to film. This makes it possible to provide a semiconductor device having high reliability.

【0058】導電性膜104のエッチングを行うことに
より、配線104aを形成する。
The wiring 104a is formed by etching the conductive film 104.

【0059】(第3工程)続いて絶縁膜102cの堆
積、スルーホール105の形成を行った後、第1工程と
同様に導電性膜の堆積,エッチングを行い、配線104
bを形成する。配線104bの形成に関しては、前記第
2工程にて説明したのと同様、本発明のスパッタ成膜方
法を用いると、異物の発生が抑えられ、製品の信頼性が
高くなる。この後、絶縁膜102dの堆積、半導体チッ
プを樹脂でパッケージするときにワイヤ配線を接続する
パットの形成などがあるが、これらの工程に関しては従
来の技術を用いればよい。
(Third Step) Subsequently, after depositing an insulating film 102c and forming a through hole 105, a conductive film is deposited and etched in the same manner as in the first step.
b is formed. Regarding the formation of the wiring 104b, as described in the second step, when the sputtering film forming method of the present invention is used, the generation of foreign matter is suppressed, and the reliability of the product is improved. After that, there are deposition of the insulating film 102d, formation of pads for connecting wire wiring when the semiconductor chip is packaged with resin, and the like, but a conventional technique may be used for these steps.

【0060】以上、本発明を用いることによって、防着
治具交換直後から処理枚数1000枚を超えるような長
期間にわたって、異物の発生が抑制された状態で安定し
て成膜することが可能となる。このことによって、異物
に起因したデバイス不良を低減することが可能になると
ともに、防着治具の交換頻度を出来る限り少なくして生
産効率を向上させることが可能になる。以上のことか
ら、高い信頼性をもち、且つ低コストであるような半導
体装置を提供することが可能となる。
As described above, by using the present invention, it is possible to stably form a film in a state in which the generation of foreign substances is suppressed for a long period of time after the replacement of the deposition-preventing jig, that is, when the number of processed sheets exceeds 1,000. Become. This makes it possible to reduce device defects caused by foreign matters, and to improve the production efficiency by minimizing the frequency of replacement of the deposition preventing jig as much as possible. From the above, it is possible to provide a semiconductor device having high reliability and low cost.

【0061】[0061]

【発明の効果】以上説明したように、本発明に基づく成
膜方法を用いることによって異物発生を低減することが
でき、良好に成膜できるようになる。この成膜方法を用
いることによってスパッタ装置を安定稼動させ、安定し
た成膜によって信頼性が高い半導体装置の製造が可能と
なる。
As described above, by using the film forming method according to the present invention, the generation of foreign matters can be reduced, and a good film can be formed. By using this film forming method, a sputtering device can be operated stably, and a highly reliable semiconductor device can be manufactured by stable film formation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)及び(b)は、本発明に基づく実施例1
に係る半導体装置の製造方法を実施する場合の成膜装置
の装置構成図及び同(a)の○印拡大断面図である。
1 (a) and 1 (b) show a first embodiment according to the present invention.
FIGS. 1A and 1B are an apparatus configuration diagram of a film forming apparatus when the method of manufacturing a semiconductor device according to the first embodiment is performed and an enlarged cross-sectional view of a circle in FIG.

【図2】本発明に基づく実施例1に係る半導体装置の製
造方法を実施する場合に使用する防着治具の作製方法の
工程順を示す断面図である。
FIG. 2 is a cross-sectional view showing a process order of a method of manufacturing a deposition-preventing jig used when performing a method of manufacturing a semiconductor device according to a first embodiment of the present invention.

【図3】本発明に基づく実施例1に係る半導体装置の製
造方法を実施する場合に使用する防着治具へ表面処理す
るためのコーティング設備構成図である。
FIG. 3 is a configuration diagram of a coating facility for performing a surface treatment on an anti-adhesion jig used when the method of manufacturing a semiconductor device according to the first embodiment of the present invention is performed.

【図4】図3にて説明したコーティング設備により防着
治具へコーティングする場合の、コーティング方法の説
明する溶射特性図である。
FIG. 4 is a spraying characteristic diagram for explaining a coating method when coating is performed on an anti-adhesion jig by the coating equipment described in FIG. 3;

【図5】本発明に基づく実施例1に係る半導体装置の製
造方法の工程順を示す断面図である。
FIG. 5 is a cross-sectional view showing the order of steps of the method for manufacturing the semiconductor device according to the first embodiment of the present invention.

【図6】防着治具への従来の表面処理の違いによる異物
の発生状況の説明する異物発生特性図である。
FIG. 6 is a foreign matter generation characteristic diagram for explaining the state of generation of foreign matter due to a difference in the conventional surface treatment of the deposition preventing jig.

【符号の説明】[Explanation of symbols]

1…ターゲット、2…電極絶縁物、3…成膜室用真空チ
ャンバ、4…防着治具、5…ウエハステージ、6…半導
体基板、7…導入口、8…排気口、9…配線、10…電
源、11…コーティング膜、12…プラズマ、13…成
膜室内スパッタ付着膜、14…防着治具断面の拡大部
分、15…半導体基板断面の拡大部分、20…凹凸、2
1…凸部、31…ブラスト用アルミナパウダー、4a…
ブラスト処理前の防着治具母材、4b…ブラスト処理後
の防着治具母材、32a…第1アルミニウムパウダー、
32b…第1アルミニウム溶射膜、33a…第2アルミ
ニウムパウダー、33bまたは33c…第2アルミニウ
ム溶射膜、40…第1の溶射装置、50…第2の溶射装
置、41…第1の溶射装置の溶射ガン、51…第2の溶
射装置の溶射ガン、42…第1の溶射装置のホースやコ
ード類、52…第2の溶射装置のホースやコード類、4
3…第1の溶射装置の制御部、53…第2の溶射装置の
制御部、44…平均粒径30〜200μmの第1の溶射
パウダー、54…平均粒径1〜30μmの第2の溶射パ
ウダー、45…第1溶射パウダーによる溶射流、55…
第2溶射パウダーによる溶射流、60…第3の溶射装
置、61…溶射ガン、62,63…ホースやコード類、
64…第3の溶射制御部、65…第1,第2の溶射パウ
ダーによる溶射流、100…ゲート酸化膜、101…ゲ
ート電極、102a,102b,102c,102d…
絶縁膜、104a,104b…配線用導電性薄膜、10
3…コンタクトホール、105…スルーホール。
DESCRIPTION OF SYMBOLS 1 ... Target, 2 ... Electrode insulator, 3 ... Vacuum chamber for film-forming room, 4 ... Deposition-proof jig, 5 ... Wafer stage, 6 ... Semiconductor substrate, 7 ... Inlet, 8 ... Exhaust port, 9 ... Wiring, DESCRIPTION OF SYMBOLS 10 ... Power supply, 11 ... Coating film, 12 ... Plasma, 13 ... Sputter adhesion film in a film-forming chamber, 14 ... Enlarged part of the cross-section of a deposition-proof jig, 15 ... Enlarged part of the cross-section of a semiconductor substrate, 20 ... Unevenness, 2
DESCRIPTION OF SYMBOLS 1 ... Convex part, 31 ... Alumina powder for blast, 4a ...
Prevention jig base material before blast treatment, 4b: Prevention jig base material after blast treatment, 32a: First aluminum powder,
32b: first aluminum sprayed film, 33a: second aluminum powder, 33b or 33c: second aluminum sprayed film, 40: first spraying device, 50: second spraying device, 41: spraying of first spraying device Gun, 51: Thermal spray gun of the second thermal spraying device, 42: Hose and cords of the first thermal spraying device, 52: Hose and cords of the second thermal spraying device, 4
3 ... Control part of the first thermal spraying device, 53 ... Control part of the second thermal spraying device, 44 ... First thermal spraying powder having an average particle diameter of 30 to 200 m, 54 ... Second thermal spraying having an average particle diameter of 1 to 30 m Powder, 45 ... Thermal spray flow by the first thermal spray powder, 55 ...
Thermal spray flow by the second thermal spray powder, 60: third thermal spraying device, 61: thermal spray gun, 62, 63 ... hoses and cords,
64: third spraying controller, 65: spraying flow by the first and second spraying powders, 100: gate oxide film, 101: gate electrode, 102a, 102b, 102c, 102d ...
Insulating films, 104a, 104b: conductive thin films for wiring, 10
3 ... contact hole, 105 ... through hole.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 秀 東京都小平市上水本町五丁目20番1号 株 式会社日立製作所半導体事業部内 (72)発明者 西原 晋治 東京都小平市上水本町五丁目20番1号 株 式会社日立製作所半導体事業部内 (72)発明者 内田 淳一 東京都青梅市藤橋三丁目3番2号 株式会 社日立東京エレクトロニクス内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hide Kobayashi 5--20-1, Josuihonmachi, Kodaira-shi, Tokyo Inside Semiconductor Division, Hitachi, Ltd. In the Semiconductor Division, Hitachi Ltd. (72) Inventor Junichi Uchida 3-2-2 Fujibashi, Ome-shi, Tokyo Inside Hitachi Tokyo Electronics Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に薄膜を形成する場合に成膜
装置の成膜室に防着治具を設置し、成膜中の異物発生を
抑制させた半導体装置の製造方法において、成膜装置の
成膜室に設置する該防着治具の表面が最大高さ30〜5
00ミクロンの凹凸を有し、さらに該凹凸の表面に高さ
1〜30ミクロンの凸部が形成されていることを特徴と
する半導体装置の製造方法。
In a method of manufacturing a semiconductor device in which a deposition prevention jig is installed in a film forming chamber of a film forming apparatus when a thin film is formed on a semiconductor substrate, generation of foreign matter during film formation is suppressed. The surface of the deposition preventing jig installed in the film forming chamber of the apparatus has a maximum height of 30 to 5
A method for manufacturing a semiconductor device, comprising: irregularities of 00 microns; and convexities having a height of 1 to 30 microns are formed on the surface of the irregularities.
【請求項2】スパッタ装置にて導電性薄膜から成る配線
あるいはコンデンサ電極を形成する場合に成膜装置の成
膜室に防着治具を設置し、成膜中の異物発生を抑制する
半導体装置の製造方法において、該スパッタ装置の成膜
室内部に設置する該防着治具の表面の少なくとも一部が
溶射によって導電性膜でコーティングされており、該導
電性膜の表面には高さ500μm〜30μmの大きな凹
凸上に更に高さ30〜1μm程度の小さな凸部が形成さ
れた防着治具を設置した状態で成膜して、半導体装置を
製造することを特徴とする半導体装置の製造方法。
2. A semiconductor device in which when a wiring or a capacitor electrode made of a conductive thin film is formed by a sputtering apparatus, a deposition preventing jig is installed in a film forming chamber of the film forming apparatus to suppress generation of foreign matter during film formation. In the manufacturing method, at least a part of the surface of the anti-adhesion jig installed inside the film forming chamber of the sputtering apparatus is coated with a conductive film by thermal spraying, and the surface of the conductive film has a height of 500 μm. A semiconductor device is manufactured by forming a film in a state where an anti-adhesion jig in which a small protrusion having a height of about 30 to 1 μm is further formed on large unevenness of about 30 μm is provided, thereby manufacturing a semiconductor device. Method.
【請求項3】スパッタ装置にて導電性薄膜から成る配線
あるいはコンデンサを形成する場合に成膜装置の成膜室
に防着治具を設置し、成膜中の異物発生を抑制する半導
体装置の製造方法において、該スパッタ装置の成膜室内
部に設置する該防着治具の表面の少なくとも一部に平均
粒径200μm〜30μmの溶射パウダーと平均粒径3
0〜1μmの溶射パウダーが溶射されている防着治具を
設置した状態で成膜して、半導体装置を製造することを
特徴とする半導体装置の製造方法。
3. A semiconductor device which suppresses generation of foreign matter during film formation by installing an anti-adhesion jig in a film forming chamber of a film forming device when forming a wiring or a capacitor made of a conductive thin film by a sputtering device. In the manufacturing method, a sprayed powder having an average particle diameter of 200 μm to 30 μm and an average particle diameter of 3 μm are formed on at least a part of the surface of the deposition preventing jig installed inside the film forming chamber of the sputtering apparatus.
A method of manufacturing a semiconductor device, comprising: forming a film in a state where an anti-adhesion jig on which a thermal spray powder of 0 to 1 μm is sprayed is installed; and manufacturing a semiconductor device.
JP14079998A 1998-05-22 1998-05-22 Manufacture of semiconductor device Pending JPH11340143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14079998A JPH11340143A (en) 1998-05-22 1998-05-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14079998A JPH11340143A (en) 1998-05-22 1998-05-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH11340143A true JPH11340143A (en) 1999-12-10

Family

ID=15277020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14079998A Pending JPH11340143A (en) 1998-05-22 1998-05-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH11340143A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363728A (en) * 2001-06-06 2002-12-18 Toshiba Corp Parts for vacuum film deposition apparatus and vacuum film deposition apparatus using the parts
JP2005350715A (en) * 2004-06-09 2005-12-22 Nec Yamaguchi Ltd Component for thin film deposition system and its production method
JP2006057172A (en) * 2004-08-24 2006-03-02 Neos Co Ltd Thin film production apparatus and production method therefor
WO2007032166A1 (en) * 2005-09-16 2007-03-22 Asahi Glass Company, Limited Deposition preventing plate for film forming apparatus, and film forming apparatus
US7338699B2 (en) 2002-10-31 2008-03-04 Tosoh Corporation Island projection-modified part, method for producing the same, and apparatus comprising the same
JP2012072503A (en) * 2011-12-27 2012-04-12 Toshiba Corp Method of manufacturing parts for vacuum film deposition apparatus
WO2013140668A1 (en) * 2012-03-22 2013-09-26 トーカロ株式会社 Method for forming fluoride spray coating, and member coated with fluoride spray coating
JP2013194302A (en) * 2012-03-22 2013-09-30 Tocalo Co Ltd Method for forming fluoride sprayed coating and member coated with fluoride sprayed coating
WO2014065125A1 (en) * 2012-10-26 2014-05-01 富士フイルム株式会社 Anti-adhesive plate for vacuum film deposition apparatus, method of manufacturing anti-adhesive plate for vacuum film deposition apparatus, vacuum film deposition apparatus, and vacuum film deposition method
WO2014097540A1 (en) * 2012-12-20 2014-06-26 キヤノンアネルバ株式会社 Sputtering method and functional device manufacturing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363728A (en) * 2001-06-06 2002-12-18 Toshiba Corp Parts for vacuum film deposition apparatus and vacuum film deposition apparatus using the parts
US7338699B2 (en) 2002-10-31 2008-03-04 Tosoh Corporation Island projection-modified part, method for producing the same, and apparatus comprising the same
JP2005350715A (en) * 2004-06-09 2005-12-22 Nec Yamaguchi Ltd Component for thin film deposition system and its production method
JP4647249B2 (en) * 2004-06-09 2011-03-09 ルネサスエレクトロニクス株式会社 Thin film forming apparatus component and method of manufacturing the same
JP2006057172A (en) * 2004-08-24 2006-03-02 Neos Co Ltd Thin film production apparatus and production method therefor
WO2007032166A1 (en) * 2005-09-16 2007-03-22 Asahi Glass Company, Limited Deposition preventing plate for film forming apparatus, and film forming apparatus
JP2012072503A (en) * 2011-12-27 2012-04-12 Toshiba Corp Method of manufacturing parts for vacuum film deposition apparatus
WO2013140668A1 (en) * 2012-03-22 2013-09-26 トーカロ株式会社 Method for forming fluoride spray coating, and member coated with fluoride spray coating
JP2013194302A (en) * 2012-03-22 2013-09-30 Tocalo Co Ltd Method for forming fluoride sprayed coating and member coated with fluoride sprayed coating
WO2014065125A1 (en) * 2012-10-26 2014-05-01 富士フイルム株式会社 Anti-adhesive plate for vacuum film deposition apparatus, method of manufacturing anti-adhesive plate for vacuum film deposition apparatus, vacuum film deposition apparatus, and vacuum film deposition method
WO2014097540A1 (en) * 2012-12-20 2014-06-26 キヤノンアネルバ株式会社 Sputtering method and functional device manufacturing method
JP5956611B2 (en) * 2012-12-20 2016-07-27 キヤノンアネルバ株式会社 Sputtering method and functional element manufacturing method

Similar Documents

Publication Publication Date Title
US8206829B2 (en) Plasma resistant coatings for plasma chamber components
JP4890734B2 (en) Low-contamination plasma chamber components and manufacturing method thereof
KR102245044B1 (en) Dense oxide coated component of a plasma processing chamber and method of manufacture thereof
KR100631275B1 (en) Sputtering target producing few particles or backing plate and sputtering method producing few particles
JP4623055B2 (en) Metal film peeling prevention structure in metal film forming apparatus and semiconductor device manufacturing method using the structure
US6855236B2 (en) Components for vacuum deposition apparatus and vacuum deposition apparatus therewith, and target apparatus
KR101261706B1 (en) Substrate mounting table and method for manufacturing the same, and substrate processing apparatus
KR101406524B1 (en) Electrode for generating plasma and plasma processing apparatus
JP4963842B2 (en) Substrate processing chamber cleaning method, storage medium, and substrate processing apparatus
JP2006351949A (en) Substrate mounting base, method for manufacturing the same and substrate processing apparatus
JPH11340143A (en) Manufacture of semiconductor device
CN112553592A (en) Method for processing electrostatic chuck by using ALD (atomic layer deposition) process
WO2002072911A1 (en) Sputtering target producing very few particles, backing plate or apparatus within sputtering device and roughening method by electric discharge machining
JPH11340144A (en) Manufacture of semiconductor device
JPH10321559A (en) Manufacture of semiconductor device
JP7361497B2 (en) Film forming equipment
JP4647249B2 (en) Thin film forming apparatus component and method of manufacturing the same
JPH11100665A (en) Sputtering device
JP4464188B2 (en) Method of manufacturing an adhesion prevention jig for semiconductor manufacturing equipment
JP2000204469A (en) Member for film forming device, film forming device, film formation and film-formed substrate for magnetic head
JP2005311120A (en) Inductively-coupled plasma generator and dry etching system using it
TW202344316A (en) Plasma resistant arc preventative coatings for manufacturing equipment components
TW202231896A (en) Methods and apparatus for prevention of component cracking using stress relief layer
JP2004296753A (en) Plasma exposure component and its surface treatment method as well as plasma processing device
WO2021154816A1 (en) Methods and apparatus for plasma spraying silicon carbide coatings for semiconductor chamber applications