JPH11339821A - Hybrid fuel cell system - Google Patents

Hybrid fuel cell system

Info

Publication number
JPH11339821A
JPH11339821A JP10161329A JP16132998A JPH11339821A JP H11339821 A JPH11339821 A JP H11339821A JP 10161329 A JP10161329 A JP 10161329A JP 16132998 A JP16132998 A JP 16132998A JP H11339821 A JPH11339821 A JP H11339821A
Authority
JP
Japan
Prior art keywords
hydrogen
fuel cell
phosphoric acid
supplied
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10161329A
Other languages
Japanese (ja)
Inventor
Shinji Otsuka
真志 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP10161329A priority Critical patent/JPH11339821A/en
Publication of JPH11339821A publication Critical patent/JPH11339821A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To utilize the merits of both fuel cells and complement the demerits on characteristics and operation by using a phosphoric acid fuel cell as a battery and a hydrogen refining device, and using the phosphoric acid fuel cell and a solid polymer fuel cell for a hydrogen feeding device and a hydrogen storage alloy filling container in common. SOLUTION: A phosphoric acid fuel cell(PAFC) is connected to a hydrogen feeding device at the time of a low power load such as at night, and a polymer electrolyte fuel cell(PEFC) is operated by the high-purity hydrogen obtained here by refining to obtain electric power. When a voltage is applied to the PAFC to give electric power E, the hydrogen-rich gas from the hydrogen feeding device is refined, and the obtained high-purity hydrogen is fed to the PEFC and a hydrogen storage alloy tower (tower filled with a hydrogen storage alloy). Only the required electric power is generated by the PEFC, the extra hydrogen is fed to the hydrogen storage alloy tower and stored, and the hydrogen storage quantity is adjusted according to the load of the PEFC.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リン酸型燃料電池
と固体高分子型燃料電池とを炭化水素系の原料ガス改質
器等の水素供給装置及び水素吸蔵合金充填容器と組み合
わせてなるハイブリッド型燃料電池システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hybrid in which a phosphoric acid fuel cell and a polymer electrolyte fuel cell are combined with a hydrogen supply device such as a hydrocarbon-based raw material gas reformer and a hydrogen storage alloy filled container. Fuel cell system.

【0002】[0002]

【従来の技術】燃料電池はイオン伝導体すなわち電解質
に利用される物質の違いによりリン酸型、固体高分子
型、溶融炭酸塩型、固体電解質型などに分類されるが、
これら燃料電池はそれぞれ独自のシステムとして構成さ
れ発電される。このうちリン酸型燃料電池(PAFC)
は電解質がリン酸である点に特徴を有するもので、電解
質は例えば多孔質基材に濃厚リン酸水溶液を含浸させて
構成される。濃厚リン酸水溶液を含浸させた多孔質基材
を挟んで負極(アノード=燃料極)及び正極(カソード
=酸素極又は空気極)の両電極を配置し、負極側に燃料
としての水素ガスを供給し、正極側に酸素又は空気を供
給して電気化学反応を起こさせることにより電力を取り
出すことができる。
2. Description of the Related Art Fuel cells are classified into a phosphoric acid type, a polymer electrolyte type, a molten carbonate type, a solid electrolyte type, and the like, depending on a difference in a substance used as an ion conductor, that is, an electrolyte.
Each of these fuel cells is configured as a unique system and generates power. Among them, phosphoric acid fuel cell (PAFC)
Is characterized in that the electrolyte is phosphoric acid. The electrolyte is formed by impregnating a porous base material with a concentrated phosphoric acid aqueous solution, for example. A negative electrode (anode = fuel electrode) and a positive electrode (cathode = oxygen electrode or air electrode) are arranged with a porous substrate impregnated with a concentrated phosphoric acid aqueous solution interposed therebetween, and hydrogen gas as fuel is supplied to the negative electrode side Then, power can be taken out by supplying oxygen or air to the positive electrode side to cause an electrochemical reaction.

【0003】図1はリン酸型燃料電池の一態様例を原理
的に説明する図である。リン酸を含浸させた電解質を挟
んで燃料極及び空気極(酸化剤として酸素が用いられる
場合は酸素極)が配置され、これらを挟んでセパレータ
が配置される。電池としての作動時に熱を発生するが、
電池を約190〜210℃というような一定作動温度に
保持するために冷却管が配置される。電解質が1個の場
合(単電池)の電圧は例えば0.65〜0.75V程度
と云うように低いため、通常、単電池を直列に複数層積
層して構成される。
[0003] FIG. 1 is a diagram for explaining in principle one embodiment of a phosphoric acid type fuel cell. A fuel electrode and an air electrode (an oxygen electrode when oxygen is used as an oxidizing agent) are arranged with an electrolyte impregnated with phosphoric acid therebetween, and a separator is arranged with these being sandwiched. Generates heat when operating as a battery,
Cooling tubes are provided to maintain the battery at a constant operating temperature, such as about 190-210 ° C. Since the voltage of a single electrolyte (single cell) is as low as, for example, about 0.65 to 0.75 V, it is usually configured by stacking a plurality of single cells in series.

【0004】これらの点は、電解質の種類が違う点を除
けば、原理的には固体高分子型燃料電池の場合も同様で
ある。図2は従来における固体高分子型燃料電池システ
ムの概略を示す図である。都市ガス等の炭化水素系の原
料ガスが水蒸気改質器で水素を主成分とする改質ガスへ
分解される。改質ガス中のCO(一酸化炭素)濃度は1
vol%以下ではあるが、固体高分子型燃料電池のCO
許容値は100ppm以下であるため、COを100p
pm以下にした後、固体高分子型燃料電池へ供給され
る。固体高分子型燃料電池の動作温度は約50〜100
℃であるので、冷却水によりその温度範囲内となるよう
に操作される。
[0004] These points are the same in principle for the polymer electrolyte fuel cell, except that the type of electrolyte is different. FIG. 2 is a diagram schematically showing a conventional polymer electrolyte fuel cell system. A hydrocarbon source gas such as city gas is decomposed into a reformed gas containing hydrogen as a main component in a steam reformer. The CO (carbon monoxide) concentration in the reformed gas is 1
vol% or less, the CO of the polymer electrolyte fuel cell
Since the allowable value is 100 ppm or less, CO
pm or less, and then supplied to the polymer electrolyte fuel cell. The operating temperature of the polymer electrolyte fuel cell is about 50 to 100
° C, so that the temperature is controlled within the temperature range by cooling water.

【0005】リン酸型燃料電池(PAFC)と固体高分
子型燃料電池(PEFC)は、その特性上、それぞれ長
所、短所を有しており、両者を対比して要点部分を述べ
ると以下(1)〜(3)のとおりである。 (1)PAFCの場合、電池に供給する燃料水素ガス中
のCO許容濃度は1vol%である。これに対して、P
EFCの場合はCOを100ppm以下とする必要があ
る。このためPEFCの場合はPAFCへの水素供給装
置(水素供給プロセス)より複雑となり、PAFCの水
素供給装置に加えて、例えば3塔以上(複数塔)のPS
A塔(Pressure Swing Adsorpt
ionTower)を連結してCOを除去した精製水素
が供給される。
[0005] The phosphoric acid fuel cell (PAFC) and the polymer electrolyte fuel cell (PEFC) each have advantages and disadvantages in terms of their properties. ) To (3). (1) In the case of PAFC, the allowable CO concentration in the fuel hydrogen gas supplied to the battery is 1 vol%. In contrast, P
In the case of EFC, CO needs to be 100 ppm or less. For this reason, PEFC is more complicated than a hydrogen supply device for PAFC (hydrogen supply process). In addition to the hydrogen supply device for PAFC, for example, three or more (multiple) columns of PS
Tower A (Pressure Swing Advisor)
ionTowner) to supply purified hydrogen from which CO has been removed.

【0006】(2)PAFCの場合は、電池の動作温度
が高いので起動・停止には時間がかかるが、PEFCの
場合は、動作温度が低いので起動・停止が容易にでき
る。また、両方とも水素供給プロセスの起動・停止には
時間がかかる。 (3)PAFCの場合は、電池の動作温度は約190〜
210℃であるので、比較的高温の排熱を回収でき、例
えば水蒸気としても回収できる。一方PEFCの場合
は、電池の動作温度が約50〜100℃であるので回収
される排熱の温度レベルは低く、例えば温水でしか回収
できない。
(2) In the case of PAFC, it takes a long time to start and stop because the operating temperature of the battery is high, but in the case of PEFC, it can be easily started and stopped because the operating temperature is low. In both cases, it takes time to start and stop the hydrogen supply process. (3) In the case of PAFC, the operating temperature of the battery is about 190 to
Since the temperature is 210 ° C., relatively high-temperature exhaust heat can be recovered, for example, steam can be recovered. On the other hand, in the case of PEFC, since the operating temperature of the battery is about 50 to 100 ° C., the temperature level of the recovered exhaust heat is low, and it can be recovered only with hot water, for example.

【0007】[0007]

【発明が解決しようとする課題】本発明は、リン酸型燃
料電池と固体高分子型燃料電池とを水素供給装置及び水
素吸蔵合金充填容器とに共有化させるとともに、リン酸
型燃料電池の水素精製機能を利用することにより、両燃
料電池の長所を生かすとともに、リン酸型燃料電池と固
体高分子型燃料電池における特性及び操作上の短所を相
補うように組み合わせてなるハイブリッド型燃料電池シ
ステムを提供することを目的とする。
According to the present invention, a phosphoric acid fuel cell and a polymer electrolyte fuel cell are shared by a hydrogen supply device and a hydrogen storage alloy filled container, By utilizing the refining function, a hybrid fuel cell system that combines the advantages of both fuel cells and complements the characteristics and operational disadvantages of a phosphoric acid fuel cell and a polymer electrolyte fuel cell to complement each other. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】本発明は、(1)水素供
給装置にリン酸型燃料電池と固体高分子型燃料電池とを
併置し、電力低負荷運転時に水素供給装置からの水素リ
ッチガスを該リン酸型燃料電池に供給して精製し、得ら
れた高純度水素を該固体高分子型燃料電池に供給して発
電するとともに、水素吸蔵合金充填容器に供給して貯蔵
するようにしてなることを特徴とするハイブリッド型燃
料電池システムを提供する。
According to the present invention, (1) a phosphoric acid type fuel cell and a polymer electrolyte fuel cell are juxtaposed in a hydrogen supply device, and the hydrogen-rich gas from the hydrogen supply device is supplied during low power operation. It is supplied to the phosphoric acid type fuel cell for purification, and the obtained high-purity hydrogen is supplied to the polymer electrolyte fuel cell to generate power, and supplied to a hydrogen storage alloy filled container for storage. A hybrid fuel cell system is provided.

【0009】また本発明は、(2)水素供給装置にリン
酸型燃料電池と固体高分子型燃料電池とを併置し、電力
低負荷運転時に水素供給装置からの水素リッチガスを該
リン酸型燃料電池に供給して精製し、得られた高純度水
素を該固体高分子型燃料電池に供給して発電するととも
に、水素吸蔵合金充填容器に供給して貯蔵するように
し、且つ、リン酸型燃料電池の電池冷却系の2次冷却系
を固体高分子型燃料電池の電池冷却系としてなることを
特徴とするハイブリッド型燃料電池システムを提供す
る。
Further, the present invention provides (2) a phosphoric acid type fuel cell and a solid polymer type fuel cell provided side by side in a hydrogen supply device, and the hydrogen rich gas from the hydrogen supply device is supplied to the phosphoric acid type fuel during a low power load operation. Supplying the purified high-purity hydrogen to the battery, supplying the obtained high-purity hydrogen to the polymer electrolyte fuel cell to generate electric power, and supplying and storing the high-purity hydrogen to a hydrogen storage alloy filled container; Provided is a hybrid fuel cell system, wherein a secondary cooling system of a battery cooling system of a battery is used as a battery cooling system of a polymer electrolyte fuel cell.

【0010】また本発明は、(3)水素供給装置にリン
酸型燃料電池と固体高分子型燃料電池とを併置し、電力
低負荷運転時に水素供給装置からの水素リッチガスを該
リン酸型燃料電池に供給して精製し、得られた高純度水
素を該固体高分子型燃料電池に供給して発電するととも
に、水素吸蔵合金充填容器に供給して貯蔵し、且つ、電
力高負荷運転時に水素吸蔵合金充填容器から高純度水素
を放出させて固体高分子型燃料電池に供給するようにし
てなることを特徴とするハイブリッド型燃料電池システ
ムを提供する。
Further, according to the present invention, (3) a phosphoric acid type fuel cell and a polymer electrolyte fuel cell are juxtaposed in a hydrogen supply device, and the hydrogen-rich gas from the hydrogen supply device is supplied to the phosphoric acid type fuel during a low power load operation. The high-purity hydrogen obtained is supplied to the battery and purified, and the obtained high-purity hydrogen is supplied to the polymer electrolyte fuel cell to generate power, and is also supplied to and stored in the hydrogen storage alloy-filled container. A hybrid fuel cell system characterized in that high-purity hydrogen is released from a storage alloy filled container and supplied to a polymer electrolyte fuel cell.

【0011】さらに本発明は(4)水素供給装置にリン
酸型燃料電池と固体高分子型燃料電池とを併置し、電力
低負荷運転時に水素供給装置からの水素リッチガスを該
リン酸型燃料電池に供給して精製し、得られた高純度水
素を該固体高分子型燃料電池に供給して発電するととも
に、水素吸蔵合金充填容器に供給して貯蔵し、且つ、電
力高負荷運転時に水素吸蔵合金充填容器から高純度水素
を放出させて固体高分子型燃料電池に供給するように
し、さらにリン酸型燃料電池の電池冷却系の2次冷却系
を固体高分子型燃料電池の電池冷却系としてなることを
特徴とするハイブリッド型燃料電池システムを提供す
る。
Further, the present invention provides (4) a phosphoric acid type fuel cell and a solid polymer type fuel cell provided side by side in a hydrogen supply device, and the hydrogen-rich gas from the hydrogen supply device is supplied to the phosphoric acid type fuel cell during a low power operation. And purified, and the resulting high-purity hydrogen is supplied to the polymer electrolyte fuel cell to generate power, and is also supplied and stored in a hydrogen storage alloy-filled container, and hydrogen is stored during high-load power operation. High-purity hydrogen is released from the alloy-filled container and supplied to the polymer electrolyte fuel cell, and the secondary cooling system of the cell cooling system of the phosphoric acid fuel cell is used as the cell cooling system of the polymer electrolyte fuel cell A hybrid fuel cell system is provided.

【0012】[0012]

【発明の実施の形態】本発明の基本的な特長は、リン酸
型燃料電池を電池として使用するとともに、水素精製装
置として使用するという2通りで使用することにある。
また、リン酸型燃料電池及び水素供給装置は起動及び停
止に不向きであり、このためリン酸型燃料電池ではDS
S運転(=Daily Start Stop)の形態
をとることが困難であったが、本発明においては、これ
を発電高負荷時の昼間は電池として利用し、発電低負荷
時の夜間は水素精製装置として利用することにより、リ
ン酸型燃料電池においてDSS運転形態がとれるように
したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A basic feature of the present invention resides in that a phosphoric acid type fuel cell is used as a cell and also used as a hydrogen purifier.
Further, the phosphoric acid type fuel cell and the hydrogen supply device are not suitable for starting and stopping, and therefore, the
Although it was difficult to take the form of S operation (= Daily Start Stop), in the present invention, this is used as a battery during the day when the load of power generation is high, and as a hydrogen purification device at night when the load of power generation is low. By using the phosphoric acid type fuel cell, the DSS operation mode can be adopted.

【0013】本発明においては、リン酸型燃料電池(P
AFC)と固体高分子型燃料電池(PEFC)とを用
い、これらが水素供給装置を介して併置される。水素ガ
スは各種の方法で得られるが、本発明の水素としては何
れの方法で得られた水素も使用される。そのうち、メタ
ンを主成分とする天然ガスや都市ガス等を原料とする水
蒸気改質法は、比較的豊富でクリーンなガスを原料とす
るため本発明において特に好ましく適用される。
In the present invention, the phosphoric acid fuel cell (P
(AFC) and a polymer electrolyte fuel cell (PEFC), which are juxtaposed via a hydrogen supply device. Hydrogen gas can be obtained by various methods. As the hydrogen of the present invention, hydrogen obtained by any method is used. Among them, the steam reforming method using natural gas or city gas containing methane as a main component is particularly preferably applied in the present invention because a relatively abundant and clean gas is used as a raw material.

【0014】原料ガスがメルカプタンその他の形で硫黄
(S)分を含む都市ガス等の場合には、原料ガスは脱硫
器へ導入され、該原料ガス中に含まれる硫黄分を除去す
る。原料ガスが硫黄分を含まないか、既に除去されてい
るガスの場合には脱硫器は必要としない。原料ガスは、
水蒸気発生器からの水蒸気を添加、混合して改質器へ導
入され、水素リッチガス(水素を主成分とするガス)へ
改質される。
When the raw material gas is a city gas or the like containing sulfur (S) in mercaptan or other forms, the raw material gas is introduced into a desulfurizer to remove the sulfur contained in the raw material gas. If the source gas contains no sulfur or has already been removed, no desulfurizer is required. The source gas is
The steam from the steam generator is added, mixed and introduced into the reformer, where it is reformed into a hydrogen-rich gas (gas containing hydrogen as a main component).

【0015】図3は改質器を模式的に示した図で、基本
的には燃焼部と改質部とから構成される。図3中、Fは
燃料供給管、Kは空気供給管である。改質部ではNi
系、Ru系等の適当な触媒が使用され、原料ガスは燃焼
部からの熱ΔH及び水蒸気により水素を主成分とする改
質ガスに変換される。改質ガス中には未反応水蒸気、未
反応原料ガス、CO2 のほかに幾分のCOガスが副生、
随伴して含まれており、この副生COガスをCO2 へ変
えて除去するために必要に応じてCO変成器にかけられ
る。
FIG. 3 is a view schematically showing a reformer, which basically comprises a combustion section and a reforming section. In FIG. 3, F is a fuel supply pipe, and K is an air supply pipe. Ni in the reforming section
A suitable catalyst such as a system or Ru system is used, and the raw material gas is converted into a reformed gas containing hydrogen as a main component by heat ΔH and steam from the combustion unit. In the reformed gas, unreacted steam, unreacted raw material gas, and some CO gas besides CO 2 are produced as by-products.
Included with it and is optionally passed through a CO converter to convert this by-product CO gas to CO 2 for removal.

【0016】変成器中での反応は下記(1)式で示され
る。この反応におけるH2O としては改質器において未
反応の残留水蒸気が利用される。CO変成器から出るガ
スは余剰水蒸気を除けば、水素(H2)と炭酸ガス(C
2)と未反応原料ガスとからなっており、CO量は1
vol%以下とされる。本発明においてはCO量1vo
l%以下の生成改質ガスをPAFCの燃料極(水素極)
に供給する。
The reaction in the shift converter is represented by the following formula (1). As the H 2 O in this reaction, unreacted residual steam in the reformer is used. The gas exiting the CO converter is hydrogen (H 2 ) and carbon dioxide (C
O 2 ) and unreacted raw material gas.
vol% or less. In the present invention, the CO content is 1 vo
1% or less of reformed gas produced is used as fuel electrode (hydrogen electrode) for PAFC
To supply.

【化 1】 CO + H2O = CO2 + H2 (1)Embedded image CO + H 2 O = CO 2 + H 2 (1)

【0017】ところで、PAFCは水素ガスを燃料とし
て電力を得るためのものであるが、図4はその機構を模
式的に示す図である。例えば都市ガスや天然ガス等を改
質して水素をつくり、一方の電極に供給すると、リン酸
電解液の中で、水素分子は電子を遊離して水素イオンと
なり、電子は外へ出てくる。そこで両電極間間に負荷を
かけることで電力が得られる。水溶液中に残った水素イ
オンはもう一方の電極に送られた酸素及び電子と反応し
て水を生成する。
By the way, PAFC is for obtaining electric power using hydrogen gas as fuel, and FIG. 4 is a view schematically showing the mechanism. For example, when hydrogen is produced by reforming city gas or natural gas and supplied to one electrode, in the phosphoric acid electrolyte, hydrogen molecules release electrons and become hydrogen ions, and the electrons come out. . Therefore, electric power can be obtained by applying a load between the two electrodes. The hydrogen ions remaining in the aqueous solution react with oxygen and electrons sent to the other electrode to generate water.

【0018】上記のように、PAFCは水素ガスを燃料
として電力を得るためのものであるが、その機能を逆に
作用させれば水素の精製に利用することができる。図5
はPAFCによる水素の精製機構を模式的に示す図であ
る。都市ガスや天然ガスを改質して水素をつくり、PA
FCの燃料極に供給するとともに、両電極間に図示のよ
う電圧をかけると水素が選択的に空気極に透過する。す
なわちリン酸電解液の中で水素分子は電子を遊離して水
素イオンとなる。遊離水素イオンは空気極に移動し、電
子と反応して水素となる。この時H2O、CO、CO2
CH4 等は透過しないので、オフガスとして排出され
る。
As described above, PAFC is for obtaining electric power using hydrogen gas as fuel, but can be used for purifying hydrogen if its function is reversed. FIG.
FIG. 2 is a view schematically showing a hydrogen purification mechanism by PAFC. Reforming city gas and natural gas to produce hydrogen, PA
When hydrogen is supplied to the fuel electrode of the FC and a voltage is applied between the two electrodes as shown in the figure, hydrogen is selectively transmitted to the air electrode. That is, in the phosphoric acid electrolyte, the hydrogen molecules release electrons and become hydrogen ions. Free hydrogen ions move to the air electrode and react with electrons to become hydrogen. At this time, H 2 O, CO, CO 2 ,
Since CH 4 and the like do not pass through, they are discharged as off-gas.

【0019】また水素吸蔵合金は水素を選択的に吸蔵す
るので、本発明においては上記精製水素を貯蔵するため
に水素吸蔵合金を利用し、貯蔵された水素は日中等の高
負荷時に加熱することにより放出され使用される。水素
吸蔵合金としてはその特性を有するものであれば特に限
定はなく、その例としてはTiFe0.9Mn0.1、Mg2
Ni、CaNiS、LaNi5、LaNi4.7Al0.3
MmNi4.5Al0.5(Mm=ミッシュメタル)、MmN
4.15Fe0.85(Mm=ミッシュメタル)等を挙げるこ
とができる。
Further, since the hydrogen storage alloy selectively stores hydrogen, in the present invention, the hydrogen storage alloy is used to store the purified hydrogen, and the stored hydrogen is heated at a high load such as during the day. Released and used by The hydrogen storage alloy is not particularly limited as long as it has the characteristics. Examples thereof include TiFe 0.9 Mn 0.1 and Mg 2
Ni, CaNiS, LaNi 5 , LaNi 4.7 Al 0.3 ,
MmNi 4.5 Al 0.5 (Mm = Misch metal), MmN
i 4.15 Fe 0.85 (Mm = misch metal).

【0020】[0020]

【実施例】以下、実施例に基づき本発明をさらに詳しく
説明するが、本発明がこれら実施例に限定されないこと
はもちろんである。なお、以下で関連する図において、
各流体の配管には適宜切換弁が配置されるが、図中記載
は省略している。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but it goes without saying that the present invention is not limited to these Examples. In the following related figures,
A switching valve is appropriately arranged in each fluid pipe, but is not shown in the drawings.

【0021】図6は、夜間等の電力低負荷時において、
水素供給装置にPAFCを連結し、ここで精製して得ら
れる高純度水素によりPEFCを作動させて電力を得る
例である。PAFCに電圧をかけて電力Eを付与すると
水素供給装置からの水素リッチガスが図5に示すような
機構で精製される。得られた高純度水素はPEFCと水
素吸蔵合金塔(水素吸蔵合金を充填した塔)に供給され
る。
FIG. 6 shows the state when the power is low, such as at night.
This is an example in which a PAFC is connected to a hydrogen supply device, and a PEFC is operated with high-purity hydrogen obtained by purification to obtain electric power. When a voltage is applied to the PAFC to apply the electric power E, the hydrogen-rich gas from the hydrogen supply device is purified by a mechanism as shown in FIG. The obtained high-purity hydrogen is supplied to a PEFC and a hydrogen storage alloy tower (a tower filled with a hydrogen storage alloy).

【0022】PEFCでは必要分だけ発電され、余分の
水素は水素吸蔵合金塔へ供給して貯蔵する(水素吸蔵量
はPEFCの負荷に応じて調整される)。なお、PAF
CにおいてはH2O、CO、CO2、CH4 及び燃料極で
発電に与らなかった水素から成るオフガスが発生する
が、これは水素供給装置における改質器の燃料導管又は
空気導管へ送られて利用される。
In the PEFC, a necessary amount of power is generated, and excess hydrogen is supplied to the hydrogen storage alloy tower and stored (the hydrogen storage amount is adjusted according to the load of the PEFC). In addition, PAF
In C, an off-gas consisting of H 2 O, CO, CO 2 , CH 4 and hydrogen which did not contribute to power generation at the anode is generated, and is sent to the fuel or air conduit of the reformer in the hydrogen supply system. Used.

【0023】ところで、PAFCの作動温度は約190
〜210℃と高温であるのに対し、PEFCの作動温度
は約50〜100℃である。本発明においては、PAF
Cの電池冷却系の冷却用にPAFCの電池冷却系の循環
冷却水を熱交換器Aを介して利用する。図6中、熱交換
器BはPEFCの電池冷却系の温度制御用の熱交換器で
ある。熱交換器Bにおいて、PEFCの電池冷却系用に
は冷水等の水が供給されるが、温水又は高温水として取
り出され、給湯その他の温水として利用することができ
る。
The operating temperature of the PAFC is about 190
The operating temperature of PEFC is about 50-100 ° C, while it is as high as ~ 210 ° C. In the present invention, PAF
The circulating cooling water of the PAFC battery cooling system is used via the heat exchanger A for cooling the battery cooling system of C. In FIG. 6, a heat exchanger B is a heat exchanger for controlling the temperature of the battery cooling system of the PEFC. In the heat exchanger B, water such as cold water is supplied to the battery cooling system of the PEFC. However, the water is taken out as hot water or high-temperature water and can be used as hot water or other hot water.

【0024】図7(a)〜(b)は、日中等の電力高負
荷時において、PAFCとPEFCを同時に作動させて
所要電力を得る例である。各装置の配置は図6に示すと
おりであり、弁操作等により切り換えられる。ここでP
AFCはCO濃度1vol%以下で作動するので、改質
器からの改質ガスがそのまま使用できる。なお、改質器
の性能如何によりCO濃度が1vol%を上回る場合に
はCO変成器等を付設してCO濃度をそれ以下に下げる
ようにしてもよい。
FIGS. 7 (a) and 7 (b) show an example in which the PAFC and the PEFC are simultaneously operated to obtain the required power during a high power load such as during the day. The arrangement of each device is as shown in FIG. 6, and is switched by operating a valve or the like. Where P
Since the AFC operates at a CO concentration of 1 vol% or less, the reformed gas from the reformer can be used as it is. If the CO concentration exceeds 1 vol% depending on the performance of the reformer, a CO converter may be provided to lower the CO concentration to less than 1 vol%.

【0025】PEFCの作動には水素吸蔵合金塔に貯蔵
された高純度水素が供給される。水素吸蔵合金は熱発生
を伴って水素を吸蔵し、加熱することにより水素を放出
するので、水素吸蔵合金塔にはそのための構成が必要で
ある。図7(c)はその1例を示す図である。水素を吸
蔵する時には導入管3から冷却用熱媒体(例えば冷却
水)を導入して水素吸蔵時の発生熱を除去し、水素吸蔵
に最適な温度に保ちながら導出管4から排出される。
For the operation of the PEFC, high-purity hydrogen stored in the hydrogen storage alloy tower is supplied. Since the hydrogen storage alloy absorbs hydrogen with heat generation and releases hydrogen by heating, the hydrogen storage alloy tower needs a configuration for that. FIG. 7C is a diagram showing one example. When storing hydrogen, a heat medium for cooling (for example, cooling water) is introduced from the introduction pipe 3 to remove heat generated at the time of hydrogen storage, and the hydrogen is discharged from the discharge pipe 4 while maintaining the temperature optimal for hydrogen storage.

【0026】吸蔵された高純度水素の放出時には、導入
管3から加熱用熱媒体(例えば温水又は高温水)を導入
して、水素放出に最適な温度に保ちながら導出管4から
排出される。なお、図7(c)中、1はPAFCからの
高純度水素の導入管、2はOEFCへの高純度水素導出
管である。
When releasing the stored high-purity hydrogen, a heating heat medium (for example, hot water or high-temperature water) is introduced from the introduction pipe 3 and discharged from the discharge pipe 4 while maintaining the temperature at an optimum temperature for releasing hydrogen. In FIG. 7C, reference numeral 1 denotes a high-purity hydrogen introduction pipe from the PAFC, and 2 denotes a high-purity hydrogen discharge pipe to the OEFC.

【0027】電池設置サイトの使用電力量が小さい夜間
は、燃料電池は停止させることが望ましいが、従来、P
AFCでは連続的な起動・停止(DSS運転=Dail
yStart Stop)が困難なために、発電効率が
低いにも関わらず、低負荷運転を行っていた。本発明に
よれば、夜間には、PAFCを水素精製装置として使用
することにより、低負荷運転をする必要がなくなり、発
電効率の低い運転状態を回避することができる。
It is desirable to stop the fuel cell at night when the amount of power used at the battery installation site is small.
In AFC, continuous start / stop (DSS operation = Day)
(y Start Stop) is difficult, so that low-load operation was performed despite low power generation efficiency. According to the present invention, by using PAFC as a hydrogen purifier at night, it is not necessary to perform low-load operation, and an operation state with low power generation efficiency can be avoided.

【0028】[0028]

【発明の効果】本発明によれば、PAFCを電池として
使用し、且つ、水素精製装置として使用するという2通
りで使用するとともに、PAFCとPEFCを水素供給
装置に共有化させることにより、両燃料電池の長所を生
かし、PAFCとPEFCにおける特性及び操作上の短
所を相補うことができる。
According to the present invention, both fuels are used by using PAFC as a battery and as a hydrogen purifier, and by sharing PAFC and PEFC with a hydrogen supply device. The advantages of batteries can be used to complement the characteristics and operational disadvantages of PAFC and PEFC.

【0029】また本発明によれば、PAFCの電池冷却
系とPEFCの電池冷却系を同一ループとすることによ
り電池システムを単純化でき、イニシャルコストが削減
できる。これにより補機動力を低下させ、ランニングコ
ストを下げることができる。さらに本発明によれば、P
AFCをベースロード(最低負荷)発電用とし、PEF
CをDDS発電用として、これら各電池の負荷を電池設
置サイトの電力負荷パターンに合うように選定すること
により、常に高効率で負荷変動可能な発電システムとす
ることができる。
According to the present invention, the battery system can be simplified by setting the battery cooling system of the PAFC and the battery cooling system of the PEFC in the same loop, and the initial cost can be reduced. As a result, it is possible to reduce the power of the auxiliary equipment and reduce the running cost. Further according to the invention, P
AFC is used for base load (minimum load) power generation and PEF
By setting C to be used for DDS power generation and selecting the load of each of these batteries so as to match the power load pattern of the battery installation site, a power generation system capable of constantly and efficiently changing the load can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】PAFCの態様例を原理的に示す図。FIG. 1 is a diagram showing an example of an aspect of a PAFC in principle.

【図2】PEFCの操作態様例を模式的に示す図。FIG. 2 is a diagram schematically showing an example of an operation mode of PEFC.

【図3】水素供給装置の態様例を模式的に示す図。FIG. 3 is a diagram schematically showing an example of an embodiment of a hydrogen supply device.

【図4】PAFCで水素ガスを燃料として電力を得る機
構を模式的に示す図。
FIG. 4 is a diagram schematically showing a mechanism for obtaining electric power by using hydrogen gas as fuel in PAFC.

【図5】PAFCの機能を逆に作用させる水素の精製機
構を模式的に示す図。
FIG. 5 is a diagram schematically showing a hydrogen purification mechanism that reverses the function of a PAFC.

【図6】電力低負荷時において、水素供給装置にPAF
Cを連結し、ここで得られる高純度水素によりPEFC
を作動させて電力を得る例を示す図。
FIG. 6 shows that the PAF is connected to the hydrogen supply device when the power is low.
C and PEFC with high-purity hydrogen obtained here.
The figure which shows the example which obtains electric power by operating a.

【図7】電力高負荷時において、PAFCとPEFCを
同時に作動させて電力を得る例を示す図。
FIG. 7 is a diagram showing an example of obtaining electric power by simultaneously operating a PAFC and a PEFC at the time of high power load.

【符号の説明】[Explanation of symbols]

F 燃料導管 K 空気導管 1 PAFCからの高純度水素の導入管 2 PEFCへの高純度水素導出管 3 熱媒体導入管 4 熱媒体導出管 F Fuel conduit K Air conduit 1 High-purity hydrogen inlet pipe from PAFC 2 High-purity hydrogen outlet pipe to PEFC 3 Heat medium inlet pipe 4 Heat medium outlet pipe

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】水素供給装置にリン酸型燃料電池と固体高
分子型燃料電池とを併置し、電力低負荷運転時に水素供
給装置からの水素リッチガスを該リン酸型燃料電池に供
給して精製し、得られた高純度水素を該固体高分子型燃
料電池に供給して発電するとともに、水素吸蔵合金充填
容器に供給して貯蔵するようにしてなることを特徴とす
るハイブリッド型燃料電池システム。
1. A phosphoric acid type fuel cell and a polymer electrolyte fuel cell are juxtaposed in a hydrogen supply device, and a hydrogen-rich gas from the hydrogen supply device is supplied to the phosphoric acid type fuel cell during low-power operation to purify the phosphoric acid fuel cell. A hybrid fuel cell system, characterized in that the obtained high-purity hydrogen is supplied to the polymer electrolyte fuel cell to generate power, and is also supplied to and stored in a hydrogen storage alloy filled container.
【請求項2】水素供給装置にリン酸型燃料電池と固体高
分子型燃料電池とを併置し、電力低負荷運転時に水素供
給装置からの水素リッチガスを該リン酸型燃料電池に供
給して精製し、得られた高純度水素を該固体高分子型燃
料電池に供給して発電するとともに、水素吸蔵合金充填
容器に供給して貯蔵するようにし、且つ、リン酸型燃料
電池の電池冷却系の2次冷却系を固体高分子型燃料電池
の電池冷却系としてなることを特徴とするハイブリッド
型燃料電池システム。
2. A phosphoric acid type fuel cell and a solid polymer type fuel cell are juxtaposed in a hydrogen supply device, and a hydrogen rich gas from the hydrogen supply device is supplied to the phosphoric acid type fuel cell during power low load operation to purify the phosphoric acid type fuel cell. Then, the obtained high-purity hydrogen is supplied to the polymer electrolyte fuel cell to generate electric power, and is also supplied to and stored in the hydrogen storage alloy-filled container. A hybrid fuel cell system, wherein the secondary cooling system is a cell cooling system of a polymer electrolyte fuel cell.
【請求項3】水素供給装置にリン酸型燃料電池と固体高
分子型燃料電池とを併置し、電力低負荷運転時に水素供
給装置からの水素リッチガスを該リン酸型燃料電池に供
給して精製し、得られた高純度水素を該固体高分子型燃
料電池に供給して発電するとともに、水素吸蔵合金充填
容器に供給して貯蔵し、且つ、電力高負荷運転時に水素
吸蔵合金充填容器から高純度水素を放出させて固体高分
子型燃料電池に供給するようにしてなることを特徴とす
るハイブリッド型燃料電池システム。
3. A phosphoric acid fuel cell and a polymer electrolyte fuel cell are juxtaposed in a hydrogen supply device, and a hydrogen-rich gas from the hydrogen supply device is supplied to the phosphoric acid fuel cell for refining during low-power operation. Then, the obtained high-purity hydrogen is supplied to the polymer electrolyte fuel cell to generate electric power, and is also supplied to and stored in the hydrogen storage alloy-filled container. A hybrid fuel cell system, wherein hydrogen is discharged and supplied to a polymer electrolyte fuel cell.
【請求項4】水素供給装置にリン酸型燃料電池と固体高
分子型燃料電池とを併置し、電力低負荷運転時に水素供
給装置からの水素リッチガスを該リン酸型燃料電池に供
給して精製し、得られた高純度水素を該固体高分子型燃
料電池に供給して発電するとともに、水素吸蔵合金充填
容器に供給して貯蔵し、且つ、電力高負荷運転時に水素
吸蔵合金充填容器から高純度水素を放出させて固体高分
子型燃料電池に供給するようにし、さらにリン酸型燃料
電池の電池冷却系の2次冷却系を固体高分子型燃料電池
の電池冷却系としてなることを特徴とするハイブリッド
型燃料電池システム。
4. A phosphoric acid type fuel cell and a polymer electrolyte fuel cell are juxtaposed in a hydrogen supply device, and a hydrogen-rich gas from the hydrogen supply device is supplied to the phosphoric acid type fuel cell for refining during low power operation. Then, the obtained high-purity hydrogen is supplied to the polymer electrolyte fuel cell to generate electric power, and is also supplied to and stored in the hydrogen storage alloy-filled container. The hydrogen is released to be supplied to the polymer electrolyte fuel cell, and the secondary cooling system of the cell cooling system of the phosphoric acid fuel cell is used as the cell cooling system of the polymer electrolyte fuel cell. Hybrid fuel cell system.
【請求項5】上記水素リッチガスが都市ガス又は天然ガ
スを原料ガスとする改質ガスである請求項1〜4の何れ
かに記載のハイブリッド型燃料電池システム。
5. The hybrid fuel cell system according to claim 1, wherein the hydrogen-rich gas is a reformed gas using city gas or natural gas as a source gas.
JP10161329A 1998-05-26 1998-05-26 Hybrid fuel cell system Pending JPH11339821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10161329A JPH11339821A (en) 1998-05-26 1998-05-26 Hybrid fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10161329A JPH11339821A (en) 1998-05-26 1998-05-26 Hybrid fuel cell system

Publications (1)

Publication Number Publication Date
JPH11339821A true JPH11339821A (en) 1999-12-10

Family

ID=15733025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10161329A Pending JPH11339821A (en) 1998-05-26 1998-05-26 Hybrid fuel cell system

Country Status (1)

Country Link
JP (1) JPH11339821A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196903A (en) * 2007-02-09 2008-08-28 Niigata Univ Hydrogen quantity sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196903A (en) * 2007-02-09 2008-08-28 Niigata Univ Hydrogen quantity sensor
JP4538640B2 (en) * 2007-02-09 2010-09-08 国立大学法人 新潟大学 Hydrogen sensor

Similar Documents

Publication Publication Date Title
JP3658866B2 (en) Fuel cell power generator
US6410175B1 (en) Fuel cell system with improved starting capability
JP3781942B2 (en) Solid oxide fuel cell system
KR101992123B1 (en) Energy storage using an rep with an engine
JPH0395867A (en) Solid electrolyte fuel cell
JP2006031989A (en) Method and system for power generation by solid oxide fuel cell
JP2009117054A (en) Power generation method and system by high temperature operating fuel cell
KR102238761B1 (en) Ship
JP4457421B2 (en) Fuel cell system
JPH11176462A (en) Peak cut type fuel cell system
JP2007311200A (en) Fuel cell system
JP4403230B2 (en) Operation method of fuel cell power generator
JPH11339820A (en) Hybrid fuel cell system
JP2001023670A (en) Fuel cell power generating system
JPH11339821A (en) Hybrid fuel cell system
JP4620399B2 (en) Control method of fuel cell power generation system
JP3872006B2 (en) Fuel cell power generation system
KR20220155391A (en) Hydrogen generation using a fuel cell system with an rep
JP2000327306A (en) High-purity hydrogen production apparatus and fuel cell system
JPH06203864A (en) Fuel cell system
JP2005108509A (en) Fuel cell power generating system
JP4479361B2 (en) Hybrid fuel cell power generator
JP2004199878A (en) Fuel cell power generating system
JP2004277189A (en) Fuel gas generation apparatus
KR20070040249A (en) Fuel cell system having cooling apparatus