JPH11339816A - Manufacture of electrode for fuel cell - Google Patents

Manufacture of electrode for fuel cell

Info

Publication number
JPH11339816A
JPH11339816A JP10146176A JP14617698A JPH11339816A JP H11339816 A JPH11339816 A JP H11339816A JP 10146176 A JP10146176 A JP 10146176A JP 14617698 A JP14617698 A JP 14617698A JP H11339816 A JPH11339816 A JP H11339816A
Authority
JP
Japan
Prior art keywords
electrode
coating film
catalyst
electrode substrate
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10146176A
Other languages
Japanese (ja)
Inventor
Yoshiaki Sakamoto
芳昭 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10146176A priority Critical patent/JPH11339816A/en
Publication of JPH11339816A publication Critical patent/JPH11339816A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To prevent a catalyst paste from infiltrating into the porous section of an electrode base material by providing a coating film between the gas- permeable porous electrode base material face and the catalyst paste applied on the faces. SOLUTION: A gas-permeable porous electrode base material 1 is coated with a hydroxy propyl methyl cellulose aqueous solution having the concentration of about 2-3% and the viscosity of about 2000-7000 CPS, and it is dried to form a coating film 3. The coating film 3 is coated with a catalyst paste 2 mixed and dispersed with catalyst powder carrying a noble metal, PTFE serving as a water-repellent binder, an auxiliary and a solvent, it is quickly frozen in a preliminary freezing tank, and the icy solvent is eliminated by sublimation in a vacuum freeze dryer. It is then pressed by a hydraulic press, it is baked at about 200-400 deg.C to extinguish the coating film 3, and the gas permeability of the porous electrode base material 1 is secured. A catalyst layer 4 and a catalyst layer infiltration section 5 are formed on the surface of the electrode base material 1 and a porous section surface layer to obtain an electrode for a fuel cell.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、燃料電池用電極
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electrode for a fuel cell.

【0002】[0002]

【従来の技術】第3図は従来の燃料電池の電極の一般的
な模式的断面図を示す。第3図(a)は従来例の製造過
程の模式的断面図であって、1は電極基材であり、導電
性多孔質のカーボン繊維から構成されたペーパー状のも
のである。2は触媒ペーストであり、貴金属を担持した
触媒粉末と撥水性結着剤としてのポリテトラフルオロエ
チレン(以下PTFEと称す)及び助剤、および溶媒と
を混合分散し、電極基材面上に処理したものである。6
は触媒層と電極基材との接合境界部である。第3図
(b)は従来例の電極の模式的断面図であって、1は電
極基材、4は電極基材面上に形成された触媒層であり、
5は電極基材多孔部に侵入し、残存形成された触媒層で
ある。
2. Description of the Related Art FIG. 3 shows a general schematic sectional view of an electrode of a conventional fuel cell. FIG. 3 (a) is a schematic cross-sectional view of a manufacturing process of a conventional example, in which reference numeral 1 denotes an electrode substrate, which is a paper-like material made of conductive porous carbon fibers. Reference numeral 2 denotes a catalyst paste, which is obtained by mixing and dispersing a catalyst powder carrying a noble metal, polytetrafluoroethylene (hereinafter referred to as PTFE) as a water-repellent binder, an auxiliary, and a solvent, and treating the mixture on the electrode substrate surface. It was done. 6
Is a joining boundary portion between the catalyst layer and the electrode substrate. FIG. 3 (b) is a schematic cross-sectional view of a conventional electrode, where 1 is an electrode substrate, 4 is a catalyst layer formed on the electrode substrate surface,
Reference numeral 5 denotes a catalyst layer which penetrates into the electrode base porous portion and remains.

【0003】次に、動作について説明する。従来、燃料
電池用電極の製造方法においては、触媒粉末と撥水性結
着剤としてのPTFE及び助剤、および溶媒とを混合分
散した触媒ペースト2をスプレー法、ドクターブレード
法、ロールコータ法及びスクリーン印刷法、グラビア印
刷法等の方法により、電極基材1に直接吹き付け又は塗
布処理を行った後、加熱あるいは真空凍結乾燥により溶
媒を除去して電極基材面上に触媒層4を形成させると共
に、電極基材多孔部の触媒ペーストが侵入した部分にも
触媒層5が残存形成される。
Next, the operation will be described. Conventionally, in a method for manufacturing an electrode for a fuel cell, a catalyst paste 2 in which a catalyst powder, PTFE as a water-repellent binder and an auxiliary agent, and a solvent are mixed and dispersed is sprayed, a doctor blade method, a roll coater method, and a screen. After directly spraying or coating the electrode substrate 1 by a method such as a printing method or a gravure printing method, the solvent is removed by heating or vacuum freeze drying to form the catalyst layer 4 on the electrode substrate surface. In addition, the catalyst layer 5 is also left in the portion of the electrode base porous portion where the catalyst paste has entered.

【0004】[0004]

【発明が解決しようとする課題】従来の燃料電池用電極
の製造方法は、以上のようにカーボン繊維で構成された
多孔質のペースト状を電極基材1に触媒ペーストを直接
吹き付け又は塗布するため、全面又は部分的に触媒ペー
スト2が電極基材1の多孔部に浸み込んだり、あるいは
電極基材1裏面に浸み出したりするため、電極の電極基
材1と触媒層4の接合境界部6の厚さを均一に制御する
ことが困難であった。また、触媒ペースト2が電極基材
1多孔部へ侵入したり、電極反応に有効に利用されない
触媒層5の厚さが厚くなると共に、目詰まりを生じ電解
質としてのリン酸にも濡れ易くなる。さらには電極基材
1裏面に浸み出した場合、リン酸の液溜まり又は液膜が
形成され電極面内における、ガス拡散孔の閉塞、減少及
び分布のバラツキ等の問題点が生じ、ガス拡散阻害によ
る電極の経時劣化に大きく関係していた。
A conventional method for manufacturing an electrode for a fuel cell is to directly spray or apply a catalyst paste to the electrode substrate 1 using a porous paste made of carbon fibers as described above. Since the catalyst paste 2 entirely or partially penetrates into the porous portion of the electrode substrate 1 or leaches into the back surface of the electrode substrate 1, the bonding boundary between the electrode substrate 1 and the catalyst layer 4 of the electrode is formed. It was difficult to control the thickness of the portion 6 uniformly. Further, the catalyst paste 2 penetrates into the porous portion of the electrode substrate 1 and the thickness of the catalyst layer 5 that is not effectively used for the electrode reaction increases, and the catalyst layer 2 is clogged and easily wetted with phosphoric acid as an electrolyte. Further, when leached on the back surface of the electrode substrate 1, a liquid pool or a liquid film of phosphoric acid is formed, which causes problems such as blockage, reduction, and uneven distribution of gas diffusion holes in the electrode surface. This was largely related to the aging of the electrode due to inhibition.

【0005】[0005]

【発明が解決しようとする課題】この発明は、上記のよ
うな課題を解決するためになされたものであり、電極基
材と触媒層の接合境界部の厚さを均一化し、触媒ペース
トの電極基材多孔部あるいは裏面への浸み込み、浸み出
し等の侵入を防止して、多孔部の目詰まりとリン酸ぬれ
及び裏面におけるリン酸液溜まり、液膜生成をなくする
ことにより、優れたガス拡散性能を得ると共に、電極の
特性及び品質の向上を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned problems, and has an object to make the thickness of a joining boundary between an electrode base material and a catalyst layer uniform and to form an electrode of a catalyst paste. Excellent by preventing infiltration, seepage, etc., into the porous part or the back surface of the base material, eliminating clogging of the porous part, phosphoric acid wetting and accumulation of phosphoric acid liquid on the back surface, and liquid film formation. It is intended to obtain improved gas diffusion performance and to improve characteristics and quality of the electrode.

【0006】[0006]

【課題を解決するための手段】この発明に係る燃料電池
用電極の製造方法は、ガス透気性の多孔質電極基材面上
に、貴金属を担持した触媒粉末と撥水性結着剤及び助
剤、および溶媒とを混合分散して得た触媒ペーストを塗
布することにより、触媒層を形成した燃料電池用電極に
おいて、前記多孔質電極基材面上に塗布される触媒ペー
ストの電極基材多孔部への浸み込み、浸み出し等の侵入
を防止又は抑制するために、多孔質電極基材面上をコー
ティング皮膜処理することを特徴とするものである。
According to a method of manufacturing an electrode for a fuel cell according to the present invention, a catalyst powder carrying a noble metal on a gas-permeable porous electrode substrate, a water-repellent binder and an auxiliary agent are provided. In a fuel cell electrode having a catalyst layer formed by applying a catalyst paste obtained by mixing and dispersing a solvent and a solvent, an electrode substrate porous portion of the catalyst paste applied on the porous electrode substrate surface In order to prevent or suppress intrusion such as infiltration or exudation into the substrate, a coating film treatment is performed on the surface of the porous electrode substrate.

【0007】さらに、この発明に係る燃料電池用電極の
製造方法は、コーティング皮膜処理のために、皮膜を形
成し150〜400℃で熱分解する水溶性又は有機溶剤
にも溶解されるセルロース系材料又は高分子材料のいず
れかを使用することを特徴とするものである。
Further, the method for producing an electrode for a fuel cell according to the present invention provides a cellulosic material which is dissolved in a water-soluble or organic solvent which forms a film and thermally decomposes at 150 to 400 ° C. for coating film treatment. Alternatively, any one of polymer materials is used.

【0008】さらに、この発明に係る燃料電池用電極の
製造方法は、コーティング皮膜処理として、ロールコー
タ又はスクリーン印刷法を用いることを特徴とするもの
である。
Further, the method of manufacturing an electrode for a fuel cell according to the present invention is characterized in that a roll coater or a screen printing method is used as a coating film treatment.

【0009】さらに、この発明に係る燃料電池用電極の
製造方法は、コーティング皮膜処理前記材料がヒドロキ
シプロピルセルロース、ヒドロキシプロピルメチルセル
ロース及びポリビニルアルコールからなる群から選ばれ
ることを特徴とするものである。
Further, the method of manufacturing an electrode for a fuel cell according to the present invention is characterized in that the material for coating film treatment is selected from the group consisting of hydroxypropylcellulose, hydroxypropylmethylcellulose and polyvinyl alcohol.

【0010】[0010]

【発明の実施の形態】実施の形態1.以下、この発明の
実施の形態1を図に基づいて説明する。第1図(a)の
この発明の実施の形態による製造過程の模式的断面図に
示すように、例えば520×520×0.1mmのガス
透気性多孔質電極基材1に、ヒドロキシプロピルメチル
セルロース(信越化学製HPMC、商品名60SH−4
000)の濃度2〜3%、粘度2000〜7000CP
Sの水溶液をロールコータ法で塗布乾燥して、コーティ
ング皮膜3を形成した。次に、コーティング皮膜を形成
させた電極基材1面上に、貴金属を担持した触媒粉末と
撥水性結着剤としてのPTFE及び助剤、および溶媒と
を混合分散した触媒ペースト2をロールコータ法により
塗布した後、予備凍結槽で急速凍結し、真空凍結乾燥器
内で氷状の溶媒を昇華消失させて除去し、液圧ブレスに
て加圧後200〜400℃の条件で焼成した。この焼成
工程において、先に電極基材1面上に形成させたコーテ
ィング皮膜3を焼失させ、多孔質として電極基材1が有
するガス透気性が確保された。前記のような製造工程に
より、のこの発明による電極の模式的断面図[第1図
(b)]に示すように、電極基材1の表面上及び多孔部
表面層に触媒層4、5を形成させた電極を作製した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. As shown in a schematic cross-sectional view of the manufacturing process according to the embodiment of the present invention in FIG. 1 (a), hydroxypropyl methylcellulose (for example, 520 × 520 × 0.1 mm) is provided on a gas-permeable porous electrode substrate 1. Shin-Etsu Chemical HPMC, trade name 60SH-4
000) at a concentration of 2 to 3% and a viscosity of 2000 to 7000 CP
An aqueous solution of S was applied and dried by a roll coater method to form a coating film 3. Next, a catalyst paste 2 obtained by mixing and dispersing a catalyst powder carrying a noble metal, PTFE as a water-repellent binder, an auxiliary agent, and a solvent on a surface of the electrode substrate 1 on which the coating film is formed is roll-coated. Then, the mixture was rapidly frozen in a preliminary freezing tank, the ice-like solvent was removed by sublimation disappearance in a vacuum freeze dryer, and then baked at 200 to 400 ° C. after pressurizing with a hydraulic press. In this firing step, the coating film 3 previously formed on the surface of the electrode substrate 1 was burned off, and the gas permeability of the electrode substrate 1 as porous was secured. As shown in the schematic sectional view of the electrode according to the present invention [FIG. 1 (b)], the catalyst layers 4 and 5 are formed on the surface of the electrode substrate 1 and on the porous portion surface layer by the above-described manufacturing process. The formed electrode was produced.

【0011】次に動作について説明する。前記の製造方
法で得られ本発明の電極は、電極基材1面上に形成され
たコーティング皮膜3により、電極基材1へ塗布される
触媒ペースト2の該基材1多孔部への浸み込み、浸み出
し等の侵入を極く表面層のみに抑制し、形成された触媒
層4は膜厚の均一な状態を有すると共に電極基材1と触
媒層4の接合境界部6の厚さが均一化されるため、電極
基材1多孔部の目詰まりやリン酸に濡れ易さ、さらには
電極基材1の裏面に発生したリン酸液溜まり、液膜等の
従来例の電極にあった問題点等を解消することが可能と
なり、優れたガス拡散性能が得られるものである。ま
た、電極基材1面上へのコーティング皮膜3処理は、ロ
ールコータ法により簡易に処理できるもので、生産性に
も全く問題ないものであった。
Next, the operation will be described. The electrode of the present invention, which is obtained by the above-mentioned manufacturing method, is characterized in that the coating film 3 formed on the surface of the electrode substrate 1 allows the catalyst paste 2 applied to the electrode substrate 1 to soak into the porous portion of the substrate 1. Intrusion such as intrusion and seepage is suppressed only to the surface layer, and the formed catalyst layer 4 has a uniform thickness and the thickness of the joint boundary 6 between the electrode substrate 1 and the catalyst layer 4. Is uniform, so that the porous portion of the electrode substrate 1 is easily clogged and wetted with phosphoric acid. It is possible to solve the problems and the like, and obtain excellent gas diffusion performance. In addition, the coating film 3 on the electrode substrate 1 can be easily processed by a roll coater method and has no problem in productivity.

【0012】比較例1 この例では、触媒ペースト2をロールコータ法により直
接コーティング皮膜処理することなく、その他は実施の
形態1と同様に電極を作成した。例えば520×520
×0.1mmの電極基材1に塗布した後、実施の形態
1.と同様の製造工程を経て作製した電極は塗布時触媒
ペースト2が電極基材1多孔部へ侵入し、浸み出したた
め電極基材1裏面に空気溜まりが生じ、電極の面内に直
径10〜20mm大の斑点状凹凸のある現象が見られ、
電極として使用できないものであった。
Comparative Example 1 In this example, an electrode was prepared in the same manner as in Embodiment 1 except that the catalyst paste 2 was not directly subjected to a coating film treatment by a roll coater method. For example, 520 × 520
After the electrode paste was applied to the electrode substrate 1 having a size of × 0.1 mm, the electrode produced through the same manufacturing process as that of the embodiment 1. An air pocket is formed on the back surface of the electrode substrate 1, and a phenomenon in which spot-like irregularities having a diameter of 10 to 20 mm are observed on the surface of the electrode,
It could not be used as an electrode.

【0013】実施の形態2.実施の形態1と同様に例え
ば520×520×0.2mmのガス透気性多孔質電極
基材1に、ヒドロキシプロピルセルロース(信越化学製
HPC、商品名MG)の濃度2〜3%、粘度7000〜
20000CPSの水溶液をロールコータ法で塗布乾燥
して、コーティング皮膜3を形成させ後に実施の形態1
と同様の製造工程を経て電極を作製した。この製造方法
により得た電極は実施の形態1.のヒドロキシプロピル
メチルセルロースにより電極基材1面上をコーティング
皮膜3形成したのと同様に、触媒ペースト2の塗布時に
電極基材1多孔部への侵入を極く表面層のみに抑制する
ことができ、優れたガス拡散性能が得られた。また、コ
ーティング皮膜にヒドロキシプロピルセルロースを用い
ることにより、皮膜形成性が良好で、電極基材1厚さ
0.2mmのものを使用しても、触媒ペーストの電極基
材1多孔部への侵入は極く表面層のみに抑制されてお
り、電極特性として良好な結果が得られた。
Embodiment 2 FIG. As in the first embodiment, for example, a gas-permeable porous electrode substrate 1 of 520 × 520 × 0.2 mm has a concentration of hydroxypropylcellulose (HPC manufactured by Shin-Etsu Chemical, trade name MG) of 2-3% and a viscosity of 7000-7000.
Embodiment 1 After coating and drying an aqueous solution of 20,000 CPS by a roll coater method to form a coating film 3,
An electrode was manufactured through the same manufacturing steps as in. The electrode obtained by this manufacturing method penetrates into the porous portion of the electrode substrate 1 when the catalyst paste 2 is applied, similarly to the case where the coating film 3 is formed on the surface of the electrode substrate 1 with hydroxypropylmethylcellulose of Embodiment 1. Was extremely suppressed only on the surface layer, and excellent gas diffusion performance was obtained. Further, by using hydroxypropyl cellulose for the coating film, the film forming property is good, and even if the electrode substrate 1 having a thickness of 0.2 mm is used, the catalyst paste does not enter the porous portion of the electrode substrate 1. Only the surface layer was suppressed, and good results were obtained as electrode characteristics.

【0014】実施の形態3.実施の形態1と同様に例え
ば200×200×0.2mmの多孔質基材1に、水溶
性高分子であるポリビニールアルコール(信越化学製、
商品名ボバール)の濃度4%、粘度20〜100CPS
の水溶液をスクリーン印刷法で塗布乾燥して、コーティ
ング皮膜3を形成させた後に、実施の形態1と同様の製
造工程を経て電極を作製した。この製造方法により得た
電極は実施の形態1及び2と同様に触媒ペースト2の塗
布時に電極基材1多孔部への侵入を抑制することがで
き、優れたガス拡散性能が得られた。また、コーティン
グ皮膜3にポリビニールアルコールを用いることによ
り、皮膜が形成し易く、その水溶液のポットライフも長
く経済的である。
Embodiment 3 As in the first embodiment, for example, a polyvinyl alcohol (a product of Shin-Etsu Chemical Co., Ltd.,
Concentration 4%, viscosity 20-100 CPS
The solution was applied and dried by screen printing to form a coating film 3, and then an electrode was manufactured through the same manufacturing process as in the first embodiment. As in the first and second embodiments, the electrode obtained by this manufacturing method was able to suppress intrusion into the porous portion of the electrode substrate 1 when the catalyst paste 2 was applied, and excellent gas diffusion performance was obtained. Further, by using polyvinyl alcohol for the coating film 3, a film is easily formed and the pot life of the aqueous solution is long and economical.

【0015】比較例2 この例では、触媒ペースト3をスクリーン印刷法により
直接コーティング皮膜処理することなく、その他は実施
の形態1と同様に電極を作成した。例えば200×20
0×0.2mmの電極基材1に塗布した後、実施の形態
1と同様の製造工程を経て作製した電極は塗布時触媒ペ
ースト2が電極基材1多孔部へ侵入し、浸み出したため
電極基材1裏面に浸み出した触媒層が多量に付着してい
た。
Comparative Example 2 In this example, an electrode was prepared in the same manner as in Embodiment 1 except that the catalyst paste 3 was not directly subjected to a coating film treatment by a screen printing method. For example, 200 × 20
After the electrode paste was applied to the electrode substrate 1 of 0 × 0.2 mm, the electrode produced through the same manufacturing process as in the first embodiment caused the catalyst paste 2 to penetrate into the porous portion of the electrode substrate 1 at the time of application and leached out. A large amount of the leached catalyst layer adhered to the back surface of the electrode substrate 1.

【0016】実施の形態4.実施の形態1と同様に例え
ば200×200×0.2mmの多孔質基材1に、ヒド
ロキシプロピルセルロース(信越化学製HPC、商品名
MG)を濃度2〜3%、粘度5000〜10000CP
Sのエチルアルコール溶剤に溶かした液を、スクリーン
印刷法で塗布乾燥して、コーティング皮膜3を形成した
後に、実施の形態1と同様の製造工程を経て電極を作製
した。この製造方法により得た電極は、溶剤系コーティ
ング皮膜材3を用いているため、水溶性コーティング皮
膜材3を使用した実施の形態1〜3と同等もしくはそれ
以上に水溶性の触媒ペースト2の塗布時にコーティング
皮膜材が湿潤することもなく電極基材1多孔部への触媒
ペースト3の侵入を完全に抑制することができて、目詰
まりもほとんどなく優れたガス拡散性能が得られた。ま
た、コーティング皮膜材3に溶剤系のものを用いること
により、安定した強度のある皮膜を得ることができる効
果がある。
Embodiment 4 As in the first embodiment, for example, hydroxypropylcellulose (HPC manufactured by Shin-Etsu Chemical Co., Ltd., trade name: MG) has a concentration of 2 to 3% and a viscosity of 5000 to 10000 CP on a porous substrate 1 of 200 × 200 × 0.2 mm, for example.
A liquid dissolved in the ethyl alcohol solvent of S was applied and dried by a screen printing method to form a coating film 3, and then an electrode was manufactured through the same manufacturing process as in the first embodiment. Since the electrode obtained by this manufacturing method uses the solvent-based coating film material 3, the application of the water-soluble catalyst paste 2 is equal to or more than that of the first to third embodiments using the water-soluble coating film material 3. At times, the coating film material was not wetted, and the penetration of the catalyst paste 3 into the porous portion of the electrode substrate 1 could be completely suppressed, and excellent gas diffusion performance was obtained with almost no clogging. Also, by using a solvent-based coating film material 3, there is an effect that a film having stable strength can be obtained.

【0017】この発明の実施の形態による製造過程の模
式的断面図[第2図(a)]に示すように、例えば52
0×520×0.2mmのガス透気性多孔質電極基材1
に、ヒドロキシプロピルメチルセルロース(信越化学製
HPMC、商品名60SH−4000)の濃度5%以
上、粘度50,000CPS以上のグリス状に近い高粘
度水溶液を、ロールコータ法で塗布乾燥して、厚肉コー
ティング皮膜3を形成した後、実施の形態1と同様の製
造工程を経て電極を作製した。前記のような製造過程に
より作製した電極の模式的断面図は第2図(b)に示す
ように、電極基材1多孔部への触媒層侵入をほとんど防
止することができ、電極基材1面上のみに触媒層4を形
成することが可能になった。
As shown in a schematic cross-sectional view of the manufacturing process according to the embodiment of the present invention [FIG.
0 × 520 × 0.2 mm gas-permeable porous electrode substrate 1
A high-viscosity aqueous solution of hydroxypropyl methylcellulose (HPMC manufactured by Shin-Etsu Chemical Co., Ltd., product name: 60SH-4000) having a concentration of 5% or more and a viscosity of about 50,000 CPS or more, which is close to grease, is applied by a roll coater method, dried and coated. After the film 3 was formed, an electrode was manufactured through the same manufacturing steps as in the first embodiment. As shown in FIG. 2 (b), a schematic cross-sectional view of the electrode manufactured by the above-described manufacturing process can almost prevent the catalyst layer from penetrating into the porous portion of the electrode substrate 1. The catalyst layer 4 can be formed only on the surface.

【0018】このようにして製造した電極は電極基材1
多孔部内に触媒層侵入部がないため、目詰まりもなく、
よりガス拡散性が向上すると共に電極反応に有効な触媒
層4を最少限に、電極基材1面上に均一な膜厚で形成で
きるため、高価な材料が低減でき、経済性に優れた電極
を得ることができる。又、電極基材1に厚肉コーティン
グ皮膜3を形成することで、塗布する触媒ペースト2粘
度は高範囲のものが使用できる利点がある。
The electrode manufactured in this manner is an electrode substrate 1
Since there is no catalyst layer penetration part in the porous part, there is no clogging,
Since the gas diffusion property is further improved and the catalyst layer 4 effective for the electrode reaction can be formed at a minimum on the surface of the electrode substrate 1 with a uniform film thickness, expensive materials can be reduced, and the electrode is excellent in economical efficiency. Can be obtained. Also, by forming the thick coating film 3 on the electrode substrate 1, there is an advantage that the viscosity of the applied catalyst paste 2 can be used in a high range.

【0019】[0019]

【発明の効果】請求項1記載の発明によれば、ガス透気
性の多孔質電極基材1面上にコーティング皮膜処理3を
した後に、貴金属を担持した触媒粉末と、撥水性結着剤
としてのPTFE及び助剤、および溶媒とを混合分散し
た触媒ペースト2を塗布する時、電極基材1多孔部への
触媒ペースト2の侵入防止又は抑制するため、従来例で
問題のあった目詰まり、リン酸濡れ及び電極基材1裏面
のリン酸溜まり、液膜生成等によるガス拡散阻害が解消
できる効果を有する。
According to the first aspect of the present invention, after the coating film treatment 3 is performed on the gas-permeable porous electrode substrate 1, the catalyst powder supporting the noble metal and the water-repellent binder are used. When applying the catalyst paste 2 in which PTFE, an auxiliary agent, and a solvent are mixed and dispersed, in order to prevent or suppress the intrusion of the catalyst paste 2 into the porous portion of the electrode substrate 1, clogging which has been a problem in the conventional example, This has the effect of eliminating gas diffusion inhibition due to phosphoric acid wetting and accumulation of phosphoric acid on the back surface of the electrode substrate 1 and generation of a liquid film.

【0020】請求項2記載の発明によれば、コーティン
グ皮膜処理のために、皮膜を形成し150〜400℃で
熱分解する水溶性又は有機溶剤にも溶解されるセルロー
ス系材料又は高分子材料のいずれかを使用するので、触
媒ペースト2の電極基材1多孔部への浸み込み、浸み出
しがなくなり、触媒層4膜厚の均一化ができ、電極反応
に有効な触媒層4を最少限に形成することが可能にな
り、高価な材料の低減により、経済性に優れた電極を得
ることができる効果を有する。
According to the second aspect of the present invention, for the treatment of a coating film, a cellulose-based material or a polymer material which forms a film and is also dissolved in a water-soluble or organic solvent which is thermally decomposed at 150 to 400 ° C. Since either of them is used, the catalyst paste 2 does not seep into or permeate the porous portion of the electrode substrate 1, so that the thickness of the catalyst layer 4 can be made uniform and the catalyst layer 4 effective for the electrode reaction can be minimized. It is possible to obtain an electrode with excellent economy by reducing expensive materials.

【0021】請求項3記載の発明によれば、コーティン
グ皮膜処理として、ロールコータ又はスクリーン印刷法
を用いるので、電極基材1の厚さ、空隙率、及び電極基
材1の撥水処理有無に関係なく、電極基材1と触媒層4
の接合境界部の厚さを均一に制御することが容易になる
効果を有する。
According to the third aspect of the present invention, since the roll coater or the screen printing method is used as the coating film treatment, the thickness, the porosity of the electrode substrate 1 and the presence or absence of the water repellent treatment of the electrode substrate 1 are determined. Regardless of the electrode substrate 1 and the catalyst layer 4
This has an effect that it is easy to uniformly control the thickness of the bonding boundary portion.

【0022】請求項4記載の発明によれば、コーティン
グ皮膜処理として、ヒドロキシプロピルセルロース、ヒ
ドロキシプロピルメチルセルロース又はポリビニルアル
コールロールを用いるので、皮膜が形成し易く、その水
溶液のポットライフも長く経済的であるという効果を有
する。
According to the fourth aspect of the present invention, since hydroxypropylcellulose, hydroxypropylmethylcellulose or polyvinyl alcohol roll is used for the coating film treatment, the film is easily formed, and the aqueous solution has a long pot life and is economical. It has the effect of.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態1〜4を示す模式的断面
図である。
FIG. 1 is a schematic sectional view showing Embodiments 1 to 4 of the present invention.

【図2】この発明の実施の形態5を示す模式的断面図で
ある。
FIG. 2 is a schematic sectional view showing a fifth embodiment of the present invention.

【図3】従来の燃料電池用電極の一般的な模式的断面図
である。
FIG. 3 is a general schematic sectional view of a conventional fuel cell electrode.

【符号の説明】[Explanation of symbols]

1 電極基材 2 触媒ペースト 3 コーティング皮膜 4 触媒層 5 触媒層侵入部 6 触媒層接合境界部 DESCRIPTION OF SYMBOLS 1 Electrode base material 2 Catalyst paste 3 Coating film 4 Catalyst layer 5 Catalyst layer penetration part 6 Catalyst layer joining boundary

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ガス透気性の多孔質電極基材面上に、貴
金属を担持した触媒粉末と撥水性結着剤及び助剤、およ
び溶媒とを混合分散して得た触媒ペーストを塗布するこ
とにより、触媒層を形成した燃料電池用電極において、 前記多孔質電極基材面上に塗布される触媒ペーストの電
極基材多孔部への浸み込み、浸み出し等の侵入を防止又
は抑制するために、多孔質電極基材面上をコーティング
皮膜処理することを特徴とする燃料電池用電極の製造方
法。
1. A method for applying a catalyst paste obtained by mixing and dispersing a catalyst powder carrying a noble metal, a water-repellent binder and an auxiliary agent, and a solvent onto a gas-permeable porous electrode substrate surface. Thereby, in the fuel cell electrode on which the catalyst layer is formed, the penetration of the catalyst paste applied on the porous electrode substrate surface into the electrode substrate porous portion, the seepage, and the like are prevented or suppressed. A method of producing an electrode for a fuel cell, wherein a coating film treatment is performed on the surface of a porous electrode substrate.
【請求項2】 コーティング皮膜処理のために、皮膜を
形成し150〜400℃で熱分解する水溶性又は有機溶
剤にも溶解されるセルロース系材料又は高分子材料のい
ずれかを使用する請求項1記載の燃料電池用電極の製造
方法。
2. The method of claim 1, wherein the coating film is formed by using a cellulose-based material or a polymer material which forms a film and is also dissolved in a water-soluble or organic solvent which is thermally decomposed at 150 to 400 ° C. A method for producing the electrode for a fuel cell according to the above.
【請求項3】 コーティング皮膜処理として、ロールコ
ータ又はスクリーン印刷法を用いる請求項1又は2記載
の燃料電池用電極の製造方法。
3. The method for producing an electrode for a fuel cell according to claim 1, wherein a roll coater or a screen printing method is used as the coating film treatment.
【請求項4】 前記材料がヒドロキシプロピルセルロー
ス、ヒドロキシプロピルメチルセルロース及びポリビニ
ルアルコールからなる群から選ばれる請求項2記載の燃
料電池用電極の製造方法。
4. The method according to claim 2, wherein said material is selected from the group consisting of hydroxypropylcellulose, hydroxypropylmethylcellulose, and polyvinyl alcohol.
JP10146176A 1998-05-27 1998-05-27 Manufacture of electrode for fuel cell Pending JPH11339816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10146176A JPH11339816A (en) 1998-05-27 1998-05-27 Manufacture of electrode for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10146176A JPH11339816A (en) 1998-05-27 1998-05-27 Manufacture of electrode for fuel cell

Publications (1)

Publication Number Publication Date
JPH11339816A true JPH11339816A (en) 1999-12-10

Family

ID=15401864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10146176A Pending JPH11339816A (en) 1998-05-27 1998-05-27 Manufacture of electrode for fuel cell

Country Status (1)

Country Link
JP (1) JPH11339816A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166500A (en) * 2003-12-03 2005-06-23 Permelec Electrode Ltd Manufacturing method of porous electrode for electrochemistry
JP2005216511A (en) * 2004-01-27 2005-08-11 Aisin Seiki Co Ltd Method of manufacturing gas diffusion member for fuel cell
JP2011108544A (en) * 2009-11-19 2011-06-02 Fuji Electric Holdings Co Ltd Manufacturing method for gas diffusion electrode
CN111162242A (en) * 2018-11-08 2020-05-15 康宁股份有限公司 Cathode for solid-state lithium-sulfur battery and method for manufacturing same
CN113056324A (en) * 2018-04-26 2021-06-29 阿克拉有限公司 Apparatus and method for preparing slurry and coating substrate with slurry

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166500A (en) * 2003-12-03 2005-06-23 Permelec Electrode Ltd Manufacturing method of porous electrode for electrochemistry
JP4673550B2 (en) * 2003-12-03 2011-04-20 ペルメレック電極株式会社 Method for producing electrochemical porous electrode
JP2005216511A (en) * 2004-01-27 2005-08-11 Aisin Seiki Co Ltd Method of manufacturing gas diffusion member for fuel cell
JP2011108544A (en) * 2009-11-19 2011-06-02 Fuji Electric Holdings Co Ltd Manufacturing method for gas diffusion electrode
CN113056324A (en) * 2018-04-26 2021-06-29 阿克拉有限公司 Apparatus and method for preparing slurry and coating substrate with slurry
US11398628B2 (en) * 2018-04-26 2022-07-26 Inition Energy Ltd. Devices and methods for preparing a slurry and coating a substrate with a slurry
CN113056324B (en) * 2018-04-26 2023-07-04 阿克拉有限公司 Apparatus and method for preparing a slurry and coating a substrate with the slurry
CN111162242A (en) * 2018-11-08 2020-05-15 康宁股份有限公司 Cathode for solid-state lithium-sulfur battery and method for manufacturing same

Similar Documents

Publication Publication Date Title
EP2671274B1 (en) Fuel cells
US3423247A (en) Porous conductive electrode having at least two zones
KR100781946B1 (en) Hybrid membrane electrode assemblies
JP6923184B2 (en) Methods and equipment for producing catalyst-coated thin films
JP2010267539A (en) Method of manufacturing gas diffusion layer for fuel cell
JPS5832472B2 (en) Manufacturing process of electrolyte retention matrix for fuel cells
JPH11339816A (en) Manufacture of electrode for fuel cell
JP2001068119A (en) Polymer electrolyte fuel cell and method of manufacturing its electrode
JP3941515B2 (en) Method for producing catalyst layer for fuel cell electrode and method for producing ink for producing catalyst layer for fuel cell electrode
JP4954362B2 (en) Method for producing polymer electrolyte fuel cell
US20040071881A1 (en) Method and apparatus for the continuous coating of an ion-exchange membrane
EP1563560B1 (en) Carrier substrate for an electrode layer of a fuel cell and method for the production thereof
JPH02215049A (en) Manufacture of electrode for fuel cell
JP7102412B2 (en) Manufacturing method of membrane electrode assembly
JP2005038695A (en) Method of manufacturing gas diffusion layer for fuel cell
JPH0757742A (en) Gas diffusion electrode
JP3107245B2 (en) Manufacturing method of gas diffusion electrode
JP2010251033A (en) Method of manufacturing membrane-catalyst assembly, membrane-catalyst assembly, and fuel cell
EP1531509A1 (en) Method and apparatus for the continuous coating of an ion-exchange membrane
KR100380049B1 (en) Method for preparing electrodes and electrodes manufactured by using same
JP3033791B2 (en) Manufacturing method of gas diffusion electrode
JP3126349B2 (en) Manufacturing method of gas diffusion electrode
WO2020126416A1 (en) Method for producing an electrochemical cell
JPS58133305A (en) Preparation of sintered base plate
JPH01292755A (en) Manufacture of electrode for fuel cell