JPH11337641A - Sonar device for detecting obstacle and underwater navigating body - Google Patents

Sonar device for detecting obstacle and underwater navigating body

Info

Publication number
JPH11337641A
JPH11337641A JP10146339A JP14633998A JPH11337641A JP H11337641 A JPH11337641 A JP H11337641A JP 10146339 A JP10146339 A JP 10146339A JP 14633998 A JP14633998 A JP 14633998A JP H11337641 A JPH11337641 A JP H11337641A
Authority
JP
Japan
Prior art keywords
wave
obstacle
receiving
reflected wave
direct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10146339A
Other languages
Japanese (ja)
Other versions
JP3147084B2 (en
Inventor
Yoshiyuki Nakamura
義行 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14633998A priority Critical patent/JP3147084B2/en
Publication of JPH11337641A publication Critical patent/JPH11337641A/en
Application granted granted Critical
Publication of JP3147084B2 publication Critical patent/JP3147084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Abstract

PROBLEM TO BE SOLVED: To conserve the power of an underwater navigating body by offloading a sonar sound source to a ship upper part such as a supporting mother ship. SOLUTION: An underwater navigating body 1 operates, together with a ship upper part such as a supporting ship 1. At this time, the ship upper part 2 is the sonar sound source. The underwater navigating body 1 comprises a wave receiving circuit 4 to receive direct waves from the ship upper part and a wave receiving circuit 5 for receiving reflected waves. When there is a presence of an obstacle 3, sound waved from the ship upper part 2 are reflected at the obstacle 3, are delayed by the difference in course from the direct waves, and are received. By measuring this time delay and appropriately correcting the angle of incidence of the direct waves, the relative distance between the navigating body 1 and the obstacle 3 is computed. In addition, by using a narrow-directional wave receiver for the reflected wave receiving circuit 5, it is possible to obtain the direction of an obstacle as well and to specify the location of the obstacle in a polar coordinate system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、前方監視、障害物
探知等で用いられる障害物探知ソーナーに関し、特に潜
水艇等の水中航走体と支援母船とにより海底あるいは物
体等(以下、障害物という)を探査するシステムにおけ
る障害物探知ソーナーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an obstacle detection sonar used for forward monitoring, obstacle detection, etc. Obstacle detection sonar in a system for searching for obstacles.

【0002】[0002]

【従来の技術】従来、この種の障害物監視ソーナーは、
水中で活動するロボットや潜水艇等の水中航走体に設け
られ、海底面や障害物への衝突防止あるいは水中の目標
探知を目的に用いられている。この前方障害物監視ソー
ナー基本原理は、水中の航走体が水中で音波を発射し、
障害物等からの反射波(エコー)を受波し、その戻り時
間や方向から障害物等の相対位置を計算する方式であ
る。
2. Description of the Related Art Conventionally, this kind of obstacle monitoring sonar is
It is provided on underwater vehicles such as robots and submersibles that are active in the water, and is used for the purpose of preventing collision with the sea floor and obstacles and detecting underwater targets. The basic principle of this forward obstacle monitoring sonar is that an underwater vehicle emits sound waves in the water,
In this method, a reflected wave (echo) from an obstacle or the like is received, and the relative position of the obstacle or the like is calculated from its return time or direction.

【0003】また、この前方障害物監視ソーナーの運用
性能や障害物を探知率向上のため各種の技術が従来より
開発されている。例えば、特開昭62−247279号
公報には、受波器サイドローブによるゴーストの影響を
低減して性能向上を図る技術が記載されている。
[0003] Also, various techniques have been conventionally developed for improving the operation performance of the forward obstacle monitoring sonar and the detection rate of obstacles. For example, Japanese Patent Application Laid-Open No. 62-247279 describes a technique for improving the performance by reducing the influence of ghost due to the receiver side lobe.

【0004】[0004]

【発明が解決しようとする課題】従来のこの種の前方障
害物監視ソーナーは、水中航走体自身がソーナー音源を
有しており、航走体自身が搭載している送波器で音響出
力を水中に発射しているが、一般に音響出力が大きいほ
ど探知距離は長くなり、分解能も向上するため、音源は
できるだけ大きいほうがよい。
A conventional forward obstacle monitoring sonar of this type has a sonar body which has a sonar sound source, and a sound output by a transmitter mounted on the body. Is emitted into the water. Generally, the larger the sound output is, the longer the detection distance is and the higher the resolution is. Therefore, the larger the sound source is, the better.

【0005】しかしながら、大出力の音源を駆動すれ
ば、消費電力も大きくなり、水中で電力供給を受けずに
活動する無索航走体の場合、電源容量の制限を受けて限
界活動時間は短くなり、また活動範囲も限られてしまう
ため実用性能を著しく損ねてしまうという問題がある。
However, driving a high-output sound source increases power consumption. In the case of a non-voyage vehicle that operates without receiving power supply underwater, the marginal activity time is short due to the limitation of the power supply capacity. In addition, there is a problem that practical performance is significantly impaired because the range of activity is limited.

【0006】また、音響送波系の回路を備える必要があ
るが、一般に、送波系回路は大出力のパワーアンプとそ
の駆動系から構成されており、具体的には高電圧供給回
路、大出力パワーアンプとトランス、および送波器等か
らなる。これらの構成部品は、いずれも他の回路構成部
品に比べて寸法・重量が大きいものばかりであり、ハー
ドウェア規模が大きくなる。さらに、上記第1の問題点
に関連し、消費電力が大きくなるとその分大容量のバッ
テリーセットを航走体に搭載する必要が生じ、間接的に
ハードウェア規模をさらに大きくしている。このため、
運用取り扱いの容易性が強く求められる海洋機器への適
用に際し、寸法・重量面で大きな不利益を被ることにな
る。
It is necessary to provide an acoustic transmission system circuit. Generally, the transmission system circuit is composed of a high-output power amplifier and its driving system. It consists of an output power amplifier, a transformer, a transmitter and the like. All of these components are larger in size and weight than other circuit components, and the hardware scale becomes larger. Further, in connection with the first problem, as the power consumption increases, it becomes necessary to mount a large-capacity battery set on the vehicle, which indirectly increases the hardware scale. For this reason,
When applied to marine equipment, which is required to be easy to operate and handle, there will be significant disadvantages in size and weight.

【0007】本発明の目的は、上記問題点に鑑み、低消
費電力の前方監視ソーナー方式を提供することにある。
An object of the present invention is to provide a low power consumption forward monitoring sonar system in view of the above problems.

【0008】本発明の他の目的は、ハードウェア規模を
小さくすることができる前方監視ソーナー方式を提供す
ることにある。
Another object of the present invention is to provide a forward monitoring sonar system capable of reducing the hardware scale.

【0009】[0009]

【課題を解決するための手段】本発明は、前方障害物探
知ソーナーのうちで最も電力消費の大きいユニットであ
る音響送波回路を水中航走部には組み込まず、水中航走
部では、自らは音響送波を行わず、他の代替音源から発
射された音波による反響波(エコー)を受波することに
より障害物探知を行うことを特徴とする。この代替音源
としては、水中航走体の支援母船等の船上部が発する短
パルスを用いる。
SUMMARY OF THE INVENTION According to the present invention, an acoustic transmission circuit, which is the unit that consumes the most power among the forward obstacle detection sonars, is not incorporated in the underwater navigation unit. Is characterized by performing obstacle detection by receiving an echo wave generated by a sound wave emitted from another alternative sound source without performing acoustic transmission. As this alternative sound source, a short pulse emitted from the upper part of the underwater vehicle such as a support mother ship is used.

【0010】具体的には、水中航走部は、この代替音源
からの音波が直接自身に到達した瞬間の時間と、障害物
に反射してから受信された時間の差を計測し、この経路
差から水中航走部自身と障害物との相対距離を計算す
る。この時、経路差は直接波の入射角により変化するの
で入射角を一般的なSSBL音響測位装置で計測し経路
差補正を行う。
Specifically, the underwater traveling unit measures the difference between the time at which the sound wave from the alternative sound source directly arrives at itself and the time at which the sound wave is received after being reflected by an obstacle. From the difference, the relative distance between the underwater navigation unit itself and the obstacle is calculated. At this time, since the path difference changes depending on the incident angle of the direct wave, the incident angle is measured by a general SSBL acoustic positioning device to correct the path difference.

【0011】同時に反射波の到来方位を検知すること
で、障害物の極座標形式の相対位置を把握することがで
きる。
At the same time, by detecting the arrival direction of the reflected wave, the relative position of the obstacle in the polar coordinate format can be grasped.

【0012】本発明は、水中部の航走体は自ら音響送信
を行わないため、自身が送信を行うシステムに比べて消
費電力を大幅に低減できる。この結果、水中で活動でき
る限界時間が長くなり、活動能力が大幅に向上する。
According to the present invention, since the underwater vehicle does not transmit sound by itself, the power consumption can be greatly reduced as compared with a system that performs transmission by itself. As a result, the time limit for activity in water is lengthened, and activity ability is greatly improved.

【0013】また、ハードウェアが小規模で済み、運用
上の容易性が増す。特に省電力性向上により、航走体に
搭載するバッテリーを少なくできるため、水中部構成は
大幅な軽量化、小型化が可能となる。
In addition, the hardware is small, and the operability is increased. In particular, by improving power savings, the number of batteries mounted on the hull can be reduced, so that the underwater configuration can be significantly reduced in weight and size.

【0014】[0014]

【発明の実施の形態】図1は、本発明の前方障害物探知
ソーナーの実施の形態を示す全体構成図である。図1に
おいて、1は水中航走体、2は母船、3は例えば海底の
障害物、4、5は水中航走体に設けられた音波受波器で
ある。
FIG. 1 is an overall configuration diagram showing an embodiment of a forward obstacle detection sonar according to the present invention. In FIG. 1, reference numeral 1 denotes an underwater vehicle, reference numeral 2 denotes a mother ship, reference numeral 3 denotes, for example, an obstacle on the sea floor, and reference numerals 4 and 5 denote sound wave receivers provided on the underwater vehicle.

【0015】水中航走体1は、母船2に備えられている
音波送波装置から発射された短パルス音波の直接波を受
波器4で受信し、また、障害物3からの反射波を受波器
5で受信し、それぞれの受信時間の差を計測することに
より水中航走体1と障害物3の間の距離を測定し、例え
ば障害物3との衝突を回避するように水中航走体1の走
行制御等を行う。
The underwater vehicle 1 receives the direct wave of the short pulse sound wave emitted from the sound wave transmitting device provided in the mother ship 2 by the receiver 4, and receives the reflected wave from the obstacle 3. The distance between the underwater vehicle 1 and the obstacle 3 is measured by measuring the difference between the reception times by receiving the signals by the receiver 5. For example, the underwater navigation is performed so as to avoid the collision with the obstacle 3. The running control of the running body 1 is performed.

【0016】図2は、本発明の水中航走体が備えてい
る、受信音波の処理部の構成を示すブロック図であり、
直接波受波部4、反射波受波部5、SSBL音響測位装
置6及びCPU6によって構成されている。
FIG. 2 is a block diagram showing a configuration of a received sound wave processing unit provided in the underwater vehicle according to the present invention.
It comprises a direct wave receiving unit 4, a reflected wave receiving unit 5, an SSBL acoustic positioning device 6, and a CPU 6.

【0017】直接波受波部4は、母船2から発射された
直接波を受波し、CPU7およびSSBL音響測位装置
6へ連続的にデータを出力するものであり、主に受波器
アレイとプリアンプ、帯域フィルタおよびA/D変換器
からなり、所定帯域の音響信号を受信、増幅し、受波レ
ベルをデジタル化して出力する。
The direct wave receiving unit 4 receives the direct wave emitted from the mother ship 2 and continuously outputs data to the CPU 7 and the SSBL acoustic positioning device 6, and mainly includes a receiver array and It comprises a preamplifier, a bandpass filter, and an A / D converter, receives and amplifies an audio signal in a predetermined band, digitizes a received wave level, and outputs it.

【0018】SSBL測位装置6は、直接波受波部4と
CPU7の間にあり、直接波受波部4からの信号を受け
て音響到来方向を算出し、その値をCPU7へ渡す。ま
たこれとは別系統で直接波受波部4からCPU7へ直接
受波信号を渡すラインも用意されている。
The SSBL positioning device 6 is located between the direct wave receiving unit 4 and the CPU 7, receives a signal from the direct wave receiving unit 4, calculates a sound arrival direction, and passes the value to the CPU 7. In addition, a line for directly passing a received signal from the direct wave receiving unit 4 to the CPU 7 is provided in another system.

【0019】反射波受波部5は、直接波受波部とは全く
別系統でCPU7に受波信号を渡す系であり、主に狭指
向性の受波器アレイ、プリアンプ、帯域フィルタおよび
A/D変換器からなっており、直接波受波部4とほぼ同
じ機能、構成を有している。
The reflected wave receiving section 5 is a system for transmitting a received signal to the CPU 7 in a completely different system from the direct wave receiving section, and mainly includes a narrow directional receiver array, a preamplifier, a bandpass filter, / D converter, and has almost the same function and configuration as the direct wave receiving unit 4.

【0020】CPU7は、直接波受波部4、反射波受波
部5およびSSBL測位装置6からのデータを取り込む
信号入出力部(SIO)、取り込んだデータを一時保持
するメモリ、時間差計測可能な内部タイマ等を備えてい
る。
The CPU 7 has a signal input / output unit (SIO) for receiving data from the direct wave receiving unit 4, the reflected wave receiving unit 5, and the SSBL positioning device 6, a memory for temporarily storing the received data, and a time difference measurement. An internal timer and the like are provided.

【0021】次に、本発明の実施の形態の動作について
図1、図2を参照して説明する。図2において、CPU
7は、直接波受波部4、反射波受波部5から連続的に出
力されるデータを読み込み、プリセットされた閾値と値
を逐次比較する。閾値は各受波部が音響パルスを受信し
た時に得られる音響レベルの最小値を推定して選び、デ
ータの値がこれを上回った時、各受波部が音響信号を受
信したと判断するためのものである。
Next, the operation of the embodiment of the present invention will be described with reference to FIGS. In FIG. 2, the CPU
Reference numeral 7 reads data continuously output from the direct wave receiving unit 4 and the reflected wave receiving unit 5, and sequentially compares the preset threshold value with the value. The threshold value is selected by estimating the minimum value of the sound level obtained when each receiving unit receives an acoustic pulse, and when the data value exceeds this, it is determined that each receiving unit has received an acoustic signal. belongs to.

【0022】図1に示す運用形態において母船から短パ
ルスが発せられると、まず図2の直接波受波器4が直接
波を受信する。この時出力される受信データ値はCPU
7にプリセットされたしきい値を上回り、これをトリガ
ーとしてCPU7は内部タイマカウントをスタートさせ
時間差計測を開始する。タイマは反射波受波部5障害物
からの反射波を受信するまで時間差計測を行う。
When a short pulse is emitted from the mother ship in the operation mode shown in FIG. 1, first, the direct wave receiver 4 shown in FIG. 2 receives a direct wave. The received data value output at this time is
The threshold value exceeds a preset value of 7 and the CPU 7 starts an internal timer count and starts a time difference measurement by using this as a trigger. The timer measures the time difference until a reflected wave from the reflected wave receiving unit 5 is received.

【0023】一方、SSBL音響測位装置6は、直接波
受波部4で受信された信号から音響到来方位を連続的に
算出してCPU7に出力するが、CPU7が内部タイマ
のカウントを開始した時の方位を特に選択して直接波信
号の到来方位とする。
On the other hand, the SSBL acoustic positioning device 6 continuously calculates the sound arrival direction from the signal received by the direct wave receiving unit 4 and outputs it to the CPU 7, but when the CPU 7 starts counting the internal timer. Is selected as the arrival direction of the direct wave signal.

【0024】その後、反射波が反射波受波部5に到達
し、反射波受波部5の出力データがCPU7が保持する
しきい値を超えると、CPU7は反射波受信部が反射波
を受信したと判断し、内部タイマのカウントを停止し、
この経過時間を直接波/反射波の受波時間差として獲得
する。
Thereafter, when the reflected wave reaches the reflected wave receiving unit 5 and the output data of the reflected wave receiving unit 5 exceeds the threshold value held by the CPU 7, the CPU 7 causes the reflected wave receiving unit to receive the reflected wave. Judgment has been made, the internal timer stops counting,
This elapsed time is obtained as a reception time difference between the direct wave and the reflected wave.

【0025】この一連の動作により得られた直接波/反
射波の受波時間差、直接波の到来方位から、前方障害物
までの距離を算出できる。また反射波受波部に狭指向性
受波器アレイを用いているので、この特性を利用して障
害物の方位を算出することができる。
The distance to the obstacle ahead can be calculated from the reception time difference between the direct wave / reflected wave and the arrival direction of the direct wave obtained by the above series of operations. In addition, since the narrow-directional receiver array is used in the reflected wave receiver, the azimuth of the obstacle can be calculated using this characteristic.

【0026】図3は、図2の受信音波処理部の実施例を
示すブロック図である。直接波受波部を構成する受波器
アレイ4は、母船から発射された直接波を各受波素子毎
に受信する。各受波素子毎の受波信号はそれぞれプリア
ンプ11およびフィルタ12にて増幅、抽出される。こ
れらの信号をSSBL音響測位装置13に入力し、それ
らの位相差等に基づいて音源方位αが計算される。αは
CPU7へ音源方位情報として出力される。また、受波
信号レベルはA/D変換器14でデジタル化されて直接
CPU7の別のSIOポートへ渡される。
FIG. 3 is a block diagram showing an embodiment of the reception sound wave processing section of FIG. The receiver array 4 constituting the direct wave receiving unit receives the direct wave emitted from the mother ship for each of the receiving elements. The received signal of each receiving element is amplified and extracted by the preamplifier 11 and the filter 12, respectively. These signals are input to the SSBL acoustic positioning device 13, and the sound source direction α is calculated based on the phase difference and the like. α is output to the CPU 7 as sound source direction information. The received signal level is digitized by the A / D converter 14 and passed directly to another SIO port of the CPU 7.

【0027】一方、反射波受波部を構成する狭指向性受
波器5は、障害物3からの反射波を受信し、受信信号は
プリアンプ21、フィルタ22で増幅、抽出され、A/
D変換器23でデジタル化されてCPU7へ出力され
る。
On the other hand, the narrow directional receiver 5 constituting the reflected wave receiving section receives the reflected wave from the obstacle 3, and the received signal is amplified and extracted by the preamplifier 21 and the filter 22.
It is digitized by the D converter 23 and output to the CPU 7.

【0028】CPU7は、直接波の受波レベルと方位、
および反射波レベルを取り込んで直接波と反射波の受信
時間差を計測し、音源方位補正を行って障害物と自身の
距離を算出する。ここで直接波と反射波の受信時間計測
は、受信信号がプリセットされた受信レベルしきい値を
上回った瞬間をもって受信と定義する。
The CPU 7 determines the receiving level and direction of the direct wave,
Then, by taking in the reflected wave level, the receiving time difference between the direct wave and the reflected wave is measured, the sound source direction is corrected, and the distance between the obstacle and itself is calculated. Here, the reception time measurement of the direct wave and the reflected wave is defined as reception at a moment when the reception signal exceeds a preset reception level threshold value.

【0029】図4に入射角αをもって音波が到来する場
合の音波の経路を示す。ここでβは受波器水平方向と反
射点Rのなす角である。図4において、航走体深度Lが
探知距離に比べて極めて大きい場合、すなわちL>>r
であれば AO//A’O’と近似される。この時α、
βを考慮した直接波と反射波の経路差 O’ROは、反
射最短経路rを用いて O’RO=r+r’=r{1+cos(α−β)} (1) ここで、音速をc、直接波と反射波の受波時間差をTと
すると、r+r’=cTであるから、計測すべき距離O
R=rは r=cT−r’=cT−rcos(α−β) (2) よって r=cT/{1+cos(α−β)} (3) 障害物と水中航走体自身の距離は、受波器5の指向幅内
で探知される最近点(最短反射経路)と定義すれば、受
波器5の指向半幅をφとして、 r min[−φ≦β≦φ|cT/{1+cos(α−β)}] (4 ) と定義される。
FIG. 4 shows the path of a sound wave when the sound wave arrives at an incident angle α. Here, β is the angle between the horizontal direction of the receiver and the reflection point R. In FIG. 4, when the navigation body depth L is extremely larger than the detection distance, that is, L >> r
Then, it is approximated as AO // A'O '. At this time, α,
The path difference O′RO between the direct wave and the reflected wave in consideration of β is calculated using the shortest path r as follows: O′RO = r + r ′ = r {1 + cos (α−β)} (1) where Assuming that the receiving time difference between the direct wave and the reflected wave is T, r + r '= cT, so the distance O to be measured is
R = r is given by: r = cT-r '= cT-rcos (α-β) (2) Therefore, r = cT / {1 + cos (α-β)} (3) The distance between the obstacle and the underwater vehicle is: If it is defined as the closest point (shortest reflection path) detected within the directivity width of the receiver 5, r min [−φ ≦ β ≦ φ | cT / {1 + cos (where φ is the directivity half width of the receiver 5) α-β)}] (4).

【0030】CPU7は、所与のc、T、α、φを用い
て式(4)に従い障害物との距離rを算出する。また、
障害物方位は受波器5の向けられている方位により決定
される。
The CPU 7 calculates the distance r to the obstacle using given c, T, α, and φ according to equation (4). Also,
The obstacle direction is determined by the direction to which the receiver 5 is directed.

【0031】図3中のCPU7に取り込まれる受波信号
の時系列データを、図5に示す。ここで、信号1は図3
中のA/D変換器14から得られる直接波の受波信号、
信号2は図3中のA/D変換器23から得られる反射波
の受波信号である。
FIG. 5 shows time-series data of the received signal taken into the CPU 7 in FIG. Here, signal 1 corresponds to FIG.
Receiving signal of a direct wave obtained from the A / D converter 14 in the inside,
The signal 2 is a received signal of a reflected wave obtained from the A / D converter 23 in FIG.

【0032】信号1についてCPU7はプリセット可能
なしきい値Th1を持ち、受波レベルを連続的に計測す
る。信号レベルL1がTh1を上回った瞬間TR1をも
って直接波の受波とする。直接波の受波を認識するとC
PU7は信号2の受波レベルL2の計測を開始し、L2
がプリセット可能なしきい値Th2を上回った瞬間TR
2をもって反射波の受波とする。
The CPU 7 has a preset threshold value Th1 for the signal 1, and continuously measures the reception level. The instant TR1 at which the signal level L1 exceeds Th1 is regarded as a direct wave reception. Recognizing the direct wave reception, C
The PU 7 starts measuring the reception level L2 of the signal 2, and
Moment TR exceeds the preset threshold value Th2
2 is the reception of the reflected wave.

【0033】L2計測はプリセット可能なタイムアウト
時間to秒だけ行い、to以内に反射波の受信が認識さ
れると信号2のレベル計測を停止し、式(4)に示した
計算を行って距離rを得、障害物探知の1サイクルを終
了する。to以内に反射波が認識されなかった場合、探
知範囲内に障害物なしとして障害物探知の1サイクルを
終了する。1サイクル終了後CPU7再度信号1の計測
へ戻り、次の1サイクル動作を開始する。
The L2 measurement is performed for a preset time-out time to seconds, and when the reception of the reflected wave is recognized within to, the level measurement of the signal 2 is stopped, and the calculation shown in the equation (4) is performed to calculate the distance r. To complete one cycle of obstacle detection. If no reflected wave is recognized within to, no obstacle is detected within the detection range, and one cycle of obstacle detection ends. After one cycle, the CPU 7 returns to measuring the signal 1 again, and starts the next one cycle operation.

【0034】なお時間計測はCPU7が有する内部タイ
マにより行われ、直接波と反射波の受波時間差Tは、 T=TR2−TR1 (5) により計算する。上述の動作シーケンスをフローチャー
トによって示すと図6のようになる。
The time measurement is performed by an internal timer of the CPU 7, and the reception time difference T between the direct wave and the reflected wave is calculated by T = TR2-TR1 (5). FIG. 6 is a flowchart showing the operation sequence described above.

【0035】なお、図3の具体例においては、反射波の
受波系を単一の狭指向性受波器5を用いて反射波方位探
知に供しているが、これを直接波受波系と同様に受波器
アレイを用いてSSBL測位を行うことで反射波方位探
知を行うこともできる。その場合には、直接波受波系と
反射波受波系の構成はほぼ同様のものとなる。
In the specific example shown in FIG. 3, the reflected wave receiving system is used for detecting the reflected wave direction using a single narrow directional receiver 5, but this is used for the direct wave receiving system. In the same manner as described above, the reflected wave direction can be detected by performing SSBL positioning using a receiver array. In that case, the configurations of the direct wave receiving system and the reflected wave receiving system are almost the same.

【0036】また、式(5)に示した音響信号の受波時
間TR1およびTR2の判断方式として、具体例では受
波レベルとしきい値Th1、Th2の比較による判定法
を使用しているが、これを他の方式に置き換えることも
できる。例えば、図5に示した各受波波形に対して、図
7に示すような単位時間あたりのレベル差DL1、DL
2を算出し、しきい値Th1’、Th2’との比較判定
とする方式があげられる。すなわち、DL1>Th
1’、DL2>Th2’のときに、直接波、反射波をそ
れぞれ受波した時間TR1、TR2としてもよい。
As a method of determining the reception times TR1 and TR2 of the acoustic signal shown in equation (5), a specific example uses a determination method based on a comparison between the reception level and threshold values Th1 and Th2. This can be replaced with another method. For example, for each of the received waveforms shown in FIG. 5, level differences DL1 and DL per unit time as shown in FIG.
2 is calculated and compared with threshold values Th1 'and Th2'. That is, DL1> Th
When 1 ′ and DL2> Th2 ′, the times TR1 and TR2 when the direct wave and the reflected wave are received may be used.

【0037】[0037]

【発明の効果】本発明は、水中部には大きな電力消費を
必要とする音響送信手段を設けないで、電源事情のよい
船上部がこれを肩代わりしているので、水中部の消費電
力を低減することができ、このため水中航走体の活動時
間、活動範囲が広がりシステム性能の大幅な向上を図る
ことができる。
According to the present invention, there is no acoustic transmission means requiring a large amount of power consumption in the underwater part. As a result, the activity time and activity range of the underwater vehicle can be expanded, and the system performance can be greatly improved.

【0038】また、水中部は、音響送信を行うための送
波器、送信回路、電力供給回路等を初めから実装してい
ないので、水中部のハードウェア規模を小型化すること
ができ、このため、厳しい環境下で運用される水中航走
体や水中ロボット(ROV)への応用に際し、運用容易
性が大きく向上する。
In the underwater part, since a transmitter, a transmission circuit, a power supply circuit and the like for performing sound transmission are not mounted from the beginning, the hardware scale of the underwater part can be reduced. Therefore, when applied to an underwater vehicle or an underwater robot (ROV) operated in a severe environment, operability is greatly improved.

【0039】さらに、前記省電力化の作用により、水中
部に搭載するバッテリー容量の低減が可能となるので、
本システムを応用する水中部の規模をさらに小型化する
ことができる。
Further, the capacity of the battery mounted in the underwater part can be reduced by the power saving function.
The scale of the underwater part to which this system is applied can be further reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】発明の前方障害物探知ソーナーの実施の形態を
示す全体構成図である。
FIG. 1 is an overall configuration diagram showing an embodiment of a forward obstacle detection sonar according to the present invention.

【図2】本発明の水中航走体が備えている、受信音波の
処理部の構成を示すブロック図である。
FIG. 2 is a block diagram showing a configuration of a received sound wave processing unit provided in the underwater vehicle according to the present invention.

【図3】図2の受信音波処理部の実施例を示す図であ
る。
FIG. 3 is a diagram illustrating an embodiment of a reception sound wave processing unit in FIG. 2;

【図4】障害物との間の距離を算出する動作を説明する
ための図である。
FIG. 4 is a diagram for explaining an operation for calculating a distance to an obstacle.

【図5】本発明の実施例の受波信号レベルと受波時刻の
関係を示す図である。
FIG. 5 is a diagram illustrating a relationship between a received signal level and a received time according to the embodiment of the present invention.

【図6】本発明の実施例の動作を示すフローチャートで
ある
FIG. 6 is a flowchart showing the operation of the embodiment of the present invention.

【図7】本発明の他の実施例での受波信号レベルと受波
時刻の関係を示す図である。
FIG. 7 is a diagram illustrating a relationship between a received signal level and a received time according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 水中航走体 2 母船 3 障害物 4 直接波受波部 5 反射波受波部 6 SSBL音響測位装置 7 CPU 11,21 プリアンプ 12,22 フィルタ 14,23 A/D変換器 DESCRIPTION OF SYMBOLS 1 Underwater vehicle 2 Mother ship 3 Obstacle 4 Direct wave receiving part 5 Reflection wave receiving part 6 SSBL acoustic positioning device 7 CPU 11,21 Preamplifier 12,22 Filter 14,23 A / D converter

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 他の音波発射源から発射された音波の直
接波を受波する手段と、前記音波による障害物からの反
射波を受波する手段と、前記受波した直接波と反射波の
間の受信時間差と前記直接波の到来方位を求める手段
と、求めた前記受信時間差及び前記直接波の到来方位か
ら前記障害物までの相対距離を算出する手段を有してい
ることを特徴とする障害物探知ソーナー装置。
1. A means for receiving a direct wave of a sound wave emitted from another sound source, a means for receiving a reflected wave from an obstacle due to the sound wave, and the received direct wave and a reflected wave A means for calculating a reception time difference between the direct wave and the arrival direction of the direct wave, and a means for calculating a relative distance to the obstacle from the obtained reception time difference and the arrival direction of the direct wave. Obstacle detection sonar device.
【請求項2】 前記直接波を受波する手段及び反射波を
受波する手段は、それぞれ受波器アレイによって構成さ
れ、かつ前記反射波を受波する手段は、狭指向性特性の
受波器として構成されていることを特徴とする請求項1
記載の障害物探知ソーナー装置。
2. The means for receiving the direct wave and the means for receiving the reflected wave are each constituted by a receiver array, and the means for receiving the reflected wave includes a wave having a narrow directivity characteristic. 2. The device according to claim 1, wherein the device is configured as a container.
Obstacle detection sonar device as described.
【請求項3】 他の音波発射源から発射された音波の直
接波を受波する手段と、前記音波による障害物からの反
射波を受波する手段と、前記受波した直接波と反射波の
間の受信時間差と前記直接波及び反射波の到来方位を求
める手段と、求めた前記受信時間差と前記直接波及び反
射波の到来方位とから前記障害物の相対位置を算出する
手段を有していることを特徴とする障害物探知ソーナー
装置。
3. A means for receiving a direct wave of a sound wave emitted from another sound source, a means for receiving a reflected wave from an obstacle due to the sound wave, and the received direct wave and reflected wave Means for calculating the arrival time difference between the reception time and the direct wave and the reflected wave, and means for calculating the relative position of the obstacle from the obtained reception time difference and the arrival direction of the direct wave and the reflected wave. An obstacle detection sonar device, comprising:
【請求項4】 前記直接波を受波する手段及び反射波を
受波する手段は、それぞれ受波器アレイによって構成さ
れていることを特徴とする請求項3記載の障害物探知ソ
ーナー装置。
4. The obstacle detecting sonar apparatus according to claim 3, wherein the means for receiving the direct wave and the means for receiving the reflected wave are each constituted by a receiver array.
【請求項5】 前記音波の直接波または反射波を受波す
る手段は、前記音波の受波レベルが所定しきい値以上と
なった時点または単位時間あたりの受波レベル差が所定
しきい値以上となった時点を、前記音波の受波時刻と判
定することを特徴とする請求項1または3記載の障害物
探知ソーナー装置。
5. A means for receiving a direct wave or a reflected wave of the sound wave, wherein a difference between a reception level of the sound wave or a reception time per unit time when the reception level of the sound wave becomes a predetermined threshold value or more The obstacle detection sonar device according to claim 1 or 3, wherein the time point when the above is determined is the reception time of the sound wave.
【請求項6】 請求項1または3記載の障害物探知ソー
ナー装置を備えていることを特徴とする水中航走体。
6. An underwater vehicle comprising the sonar device for detecting an obstacle according to claim 1 or 3.
【請求項7】 母船と水中航走体とからなり、 前記母船は、水中に音波を発射する手段を備え、 前記水中航走体は、前記母船から発射された音波の直接
波を受波する手段と、前記音波による障害物からの反射
波を受波する手段と、前記受波した直接波と反射波の間
の受信時間差と前記直接波及び反射波の到来方位を求め
る手段と、求めた前記受信時間差と前記直接波及び反射
波の到来方位とから前記水中航走体と前記障害物の相対
位置を算出する手段とを備えていることを特徴とする障
害物探知ソーナーシステム。
7. The underwater vehicle includes a mother ship and an underwater vehicle, and the underwater vehicle includes a unit that emits a sound wave into the water, and the underwater vehicle receives a direct wave of the sound wave emitted from the mother ship. Means, means for receiving a reflected wave from the obstacle due to the sound wave, means for determining the reception time difference between the received direct wave and the reflected wave, and the arrival direction of the direct wave and the reflected wave, An obstacle detection sonar system comprising: means for calculating a relative position between the underwater vehicle and the obstacle from the reception time difference and the arrival directions of the direct wave and the reflected wave.
JP14633998A 1998-05-27 1998-05-27 Obstacle detection sonar device and underwater vehicle Expired - Fee Related JP3147084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14633998A JP3147084B2 (en) 1998-05-27 1998-05-27 Obstacle detection sonar device and underwater vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14633998A JP3147084B2 (en) 1998-05-27 1998-05-27 Obstacle detection sonar device and underwater vehicle

Publications (2)

Publication Number Publication Date
JPH11337641A true JPH11337641A (en) 1999-12-10
JP3147084B2 JP3147084B2 (en) 2001-03-19

Family

ID=15405470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14633998A Expired - Fee Related JP3147084B2 (en) 1998-05-27 1998-05-27 Obstacle detection sonar device and underwater vehicle

Country Status (1)

Country Link
JP (1) JP3147084B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015038489A (en) * 2014-09-29 2015-02-26 日本電気株式会社 Underwater sailing boody guidance system, individual sailing body, underwater sailing control method therefor, and control program therefor
CN105005050A (en) * 2015-08-04 2015-10-28 梁彦云 Underwater rock detection method adopting neural network identification
CN105882909A (en) * 2016-06-02 2016-08-24 西安天和海防智能科技有限公司 Maritime security protection system
CN113126100A (en) * 2021-03-16 2021-07-16 武汉中仪物联技术股份有限公司 Navigation method and navigation system of pipeline detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015038489A (en) * 2014-09-29 2015-02-26 日本電気株式会社 Underwater sailing boody guidance system, individual sailing body, underwater sailing control method therefor, and control program therefor
CN105005050A (en) * 2015-08-04 2015-10-28 梁彦云 Underwater rock detection method adopting neural network identification
CN105882909A (en) * 2016-06-02 2016-08-24 西安天和海防智能科技有限公司 Maritime security protection system
CN113126100A (en) * 2021-03-16 2021-07-16 武汉中仪物联技术股份有限公司 Navigation method and navigation system of pipeline detector
CN113126100B (en) * 2021-03-16 2023-09-08 武汉中仪物联技术股份有限公司 Navigation method and navigation system of pipeline detector

Also Published As

Publication number Publication date
JP3147084B2 (en) 2001-03-19

Similar Documents

Publication Publication Date Title
JP5252578B2 (en) Underwater detection device and fish species discrimination method
US7363125B2 (en) Tracking system and autonomous mobile unit
KR20120108823A (en) Line array sonar and method for detecting target bearing of the same
NO20063347L (en) Device for avoiding obstacles to fast multi-hull vessels
US5663930A (en) Signal processing system and method for use in multibeam sensing systems
JP4120334B2 (en) Synthetic aperture sonar, shake correction method and program therefor
JP3147084B2 (en) Obstacle detection sonar device and underwater vehicle
JP3573090B2 (en) Underwater target position detecting device and method
JP2543610B2 (en) Submarine reflected wave position detector
JP4075472B2 (en) Ship detecting method and ship detecting device using cross fan beam
JPH0385476A (en) Sea bottom searching apparatus
JP3576532B2 (en) Underwater acoustic exploration method and underwater acoustic exploration system
RU2010148968A (en) METHOD FOR SHOOTING AREA BOTTOM RELIEF WITH MOVING VESSEL BY A MULTI-BEAM Sounder with a vertical sounding of a hydro-acoustic bosom and a multi-beam bosom
JPH02115782A (en) Estimated stranding distance instrument
JP2916362B2 (en) Apparatus and method for correcting sound velocity in position measurement
JPH07270527A (en) Equipment for detecting position of ship
JP2972630B2 (en) Wake detector
JP3215535B2 (en) Tidal current measuring device
JPH046487A (en) Underwater position detector having underwater detection function
JP2845851B2 (en) Wake detector
JP2765317B2 (en) Sonar device
JPH0227624B2 (en)
JPH04273086A (en) Inter-fellow metric side scan sonar
JP3113120B2 (en) Ship speed measurement device
JP2770651B2 (en) Navigation noise reduction method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees