JPH1133412A - Production of metal-supporting catalyst - Google Patents

Production of metal-supporting catalyst

Info

Publication number
JPH1133412A
JPH1133412A JP9196806A JP19680697A JPH1133412A JP H1133412 A JPH1133412 A JP H1133412A JP 9196806 A JP9196806 A JP 9196806A JP 19680697 A JP19680697 A JP 19680697A JP H1133412 A JPH1133412 A JP H1133412A
Authority
JP
Japan
Prior art keywords
metal
porous material
solution
surfactant
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9196806A
Other languages
Japanese (ja)
Inventor
Noriko Shibabuchi
範子 芝淵
Toshio Suzuki
俊男 鈴木
Kazuo Hirota
一雄 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP9196806A priority Critical patent/JPH1133412A/en
Publication of JPH1133412A publication Critical patent/JPH1133412A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To uniformly carry a metal having catalytic activity on a porous material by adjusting the pH of a solution containing the metal having catalytic activity to a specific range, adding a surfactant, dipping the porous material into the solution and treating with ultrasonic wave in the production of the metal-supporting catalyst. SOLUTION: In the production of the metal-supporting catalyst produced by carrying the metal having catalytic activity on the porous material as a catalyst for the hydrogenation of a hydrocarbon, the solution prepared by dissolving the metal to be carried as an aq. solution of the metallic salt such as the chloride and containing the metal having catalytic activity is adjusted to pH of 5-9 and after that, the surfactant is added. In the addition of the surfactant, a surfactant corresponding to the ionicity of the metallic salt is added. Next, the aq. solution, in which the porous material is dipped, is treated with ultrasonic wave. As a result, the infiltration of the metal having catalytic activity into inside of the porous material is accelerated. Then, the metal-supporting catalyst is dried and if necessary, fired to complete the desired catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属担持触媒の製
造方法に関するものであり、詳しくは、含浸法により多
孔質材料に金属を担持させて金属担持触媒を製造する方
法に関するものである。
The present invention relates to a method for producing a metal-supported catalyst, and more particularly to a method for producing a metal-supported catalyst by supporting a metal on a porous material by an impregnation method.

【0002】[0002]

【従来の技術】炭化水素の完全酸化反応や改質反応、脱
水素反応、水素化反応用の触媒として多孔質材料、特に
金属酸化物多孔質材料に触媒活性を有する金属を担持さ
せたものが利用されている。
2. Description of the Related Art As a catalyst for a complete oxidation reaction, a reforming reaction, a dehydrogenation reaction, and a hydrogenation reaction of a hydrocarbon, a porous material, particularly a metal oxide porous material, on which a metal having catalytic activity is supported. It's being used.

【0003】多孔質材料に金属を担持させて金属担持触
媒を製造する方法としては、含浸法、共沈法等などが知
られている(「化学総説」No. 34、p. 29、19
82年、日本化学会編、学会出版センター発行参照)。
これらの方法の中で含浸法は、触媒活性を含む金属含有
溶液、一般的には金属含有水溶液に、多孔質材料を浸漬
させて、その表面に金属を担持させる方法であり、簡便
でかつ高い性能を有するものが得られるため広く用いら
れている。
As a method for producing a metal-supported catalyst by supporting a metal on a porous material, an impregnation method, a coprecipitation method, and the like are known ("Chemical Review" No. 34, p. 29, 19).
(Edited by the Chemical Society of Japan in 1982, published by the Society Press).
Among these methods, the impregnation method is a method in which a porous material is immersed in a metal-containing solution containing a catalytic activity, generally, a metal-containing aqueous solution, and the metal is supported on the surface thereof. It is widely used because it has high performance.

【0004】[0004]

【発明が解決しようとする課題】しかし、このような方
法では、溶液中の金属を、物理的に表面上に吸着させる
ことで担持させることができるが、吸着量の点と、吸着
速度の点から担持させる金属の量があまり多くとれない
という問題があった。また、溶液の表面張力等の問題で
溶液が細孔内に入り込むことが難しく、その結果、特に
担体の形状が不織布又は織物のような繊維状物の集合体
である場合には、金属を均一に担持させることができな
いという問題があった。また、金属含有溶液が強酸溶液
である場合には、これを耐酸性の低い担体などに含浸さ
せると担体が変性してしまうなどの問題があった。
However, in such a method, the metal in the solution can be supported by physically adsorbing the metal on the surface. There is a problem that the amount of metal to be supported cannot be so large. In addition, it is difficult for the solution to enter the pores due to problems such as the surface tension of the solution. There was a problem that it could not be carried on. In addition, when the metal-containing solution is a strong acid solution, there is a problem in that when the solution is impregnated with a carrier having low acid resistance, the carrier is denatured.

【0005】特公平5−2372号公報には、白金族元
素を無機質繊維状積層体又は成型体に担持する際に界面
活性剤を含有する白金族元素化合物の水溶液を用いて含
浸法により触媒を製造する方法が開示されているが、単
に界面活性剤の浸透効果のみを利用するものであり、そ
のイオン性と担体や触媒金属塩のイオン性まで考慮した
ものではなかった。
[0005] Japanese Patent Publication No. 5-2372 discloses that when a platinum group element is supported on an inorganic fibrous laminate or molded article, a catalyst is prepared by impregnation using an aqueous solution of a platinum group element compound containing a surfactant. Although a production method is disclosed, it merely utilizes the permeation effect of a surfactant, and does not consider the ionicity of the carrier and the ionicity of a carrier or a catalyst metal salt.

【0006】本発明は、多孔質材料に触媒活性を有する
金属を大量かつ均一に担持させることのできる方法であ
り、特に従来の含浸法では難しかった繊維状物の集合体
に対しても、均一に担持させることのできる金属担持触
媒の製造方法を提供することを目的とするものである。
The present invention is a method capable of supporting a large amount and uniformly of a metal having catalytic activity on a porous material. In particular, the present invention is applicable to a method of uniformly collecting a fibrous material which has been difficult by a conventional impregnation method. It is an object of the present invention to provide a method for producing a metal-supported catalyst that can be supported on a metal.

【0007】[0007]

【課題を解決するための手段】本発明者等は、このよう
な課題を解決するために鋭意検討した結果、触媒活性を
有する金属含有溶液に界面活性剤を添加し、その溶液に
多孔質材料を浸漬させた状態で超音波で処理することよ
り、触媒活性を有する金属を多孔質材料に、大量に且つ
均一に担持させることができるということを見出し、本
発明に到達した。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve such problems, and as a result, added a surfactant to a metal-containing solution having catalytic activity, and added a porous material to the solution. It has been found that a metal having catalytic activity can be supported on a porous material in a large amount and uniformly by treating with ultrasonic waves in a state of immersion, and arrived at the present invention.

【0008】すなわち、本発明は、多孔質材料に金属を
担持させて金属担持触媒を製造するに際し、触媒活性を
有する金属を含有する溶液のpHをpH5〜9に調整し
た後、界面活性剤を添加し、この溶液に多孔質材料を浸
漬して超音波で処理することを特徴とする金属担持触媒
の製造方法を要旨とするものである。
That is, according to the present invention, when a metal-supported catalyst is produced by supporting a metal on a porous material, the pH of a solution containing a metal having catalytic activity is adjusted to pH 5 to 9, and then a surfactant is added. It is another object of the present invention to provide a method for producing a metal-carrying catalyst, which comprises adding a porous material to the solution and treating the porous material with ultrasonic waves.

【0009】[0009]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明に用いられる多孔質材料としては、炭素(例えば
活性炭)、金属、金属酸化物、セラミックス等からなる
多孔質材料が挙げられ、その中でも金属酸化物、セラミ
ックスからなる多孔質材料が好ましい。金属酸化物とし
ては、シリコン、アルミニウム、ベリリウム、マグネシ
ウム、カルシウム、バリウム、セリウム、チタン、ジル
コニウム、バナジウム、マンガン、銅、鉄、クロム、コ
バルト、スズ、亜鉛、ニオブ、タングステンよりなる群
から選ばれる少なくとも1種の金属の酸化物が挙げられ
る。これらの金属酸化物の金属と酸素との比としては、
特に限定されるものではないが、化学量論比にあること
が好ましい。また、これらの複数の金属からなる組成比
Mx Ny Oz (ここでM、Nは金属原子、Oは酸素原
子、X、YおよびZは組成比を表す数値を意味する)で
示される複合酸化物も用いることができ、この場合組成
比は特に限定されるものではない。好ましい酸化物また
は複合酸化物としてはAl2 3 、SiO2 、Mn
2 、TiO2 、ZrO2 、MgO、Al2 3 −Si
2 、TiO2 −Al2 3 、TiO2 −SiO2 、T
iO2 −ZrO2 、TiO2 −MgO等を例示すること
ができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
Examples of the porous material used in the present invention include porous materials made of carbon (for example, activated carbon), metals, metal oxides, and ceramics. Among them, porous materials made of metal oxides and ceramics are preferable. As the metal oxide, at least one selected from the group consisting of silicon, aluminum, beryllium, magnesium, calcium, barium, cerium, titanium, zirconium, vanadium, manganese, copper, iron, chromium, cobalt, tin, zinc, niobium, and tungsten Oxides of one kind of metal are mentioned. The ratio of metal to oxygen in these metal oxides is
Although not particularly limited, a stoichiometric ratio is preferable. Further, a composite oxide represented by a composition ratio MxNyOz (where M and N are metal atoms, O is an oxygen atom, and X, Y and Z are numerical values representing the composition ratios) composed of a plurality of these metals. Can also be used, and in this case, the composition ratio is not particularly limited. Preferred oxides or composite oxides include Al 2 O 3 , SiO 2 and Mn.
O 2, TiO 2, ZrO 2 , MgO, Al 2 O 3 -Si
O 2 , TiO 2 —Al 2 O 3 , TiO 2 —SiO 2 , T
The iO 2 -ZrO 2, TiO 2 -MgO, etc. can be exemplified.

【0010】本発明で用いられる多孔質材料中に存在す
る多孔の孔径などは、特に限定されるものでなく、化合
物固体に内在する微細気孔によって形成されたものでも
よいし、化合物微粒子の凝集により微粒子間に形成され
た空隙によるものでもよい。
[0010] The pore size of the porous material present in the porous material used in the present invention is not particularly limited, and may be formed by fine pores inherent in the compound solid, or may be formed by aggregation of the compound fine particles. It may be due to voids formed between the fine particles.

【0011】多孔質材料の形状は特に限定されるもので
はなく、例えば粒子状、繊維状、またはこれらからの成
形体、例えばハニカム状等が挙げられる。多孔質材料が
粒子状の場合、その粒径範囲は0. 5〜30mm、好ま
しくは1〜10mmであり、その比表面積は10〜50
0m2 /g、好ましくは30〜300m2 /gである。
The shape of the porous material is not particularly limited, and examples thereof include a particle shape, a fibrous shape, and a molded product thereof, such as a honeycomb shape. When the porous material is in the form of particles, the particle size range is 0.5 to 30 mm, preferably 1 to 10 mm, and the specific surface area is 10 to 50 mm.
0 m 2 / g, preferably from 30~300m 2 / g.

【0012】また、多孔質材料が繊維状物の場合、その
繊維の直径が1mm以下で、長さが直径とのアスペクト
比で10倍以上、好ましくは直径が0. 5mm以下でア
スペクト比で20倍以上のものが適している。この繊維
状の集合体の例としては、不織布形状、織物形状、巻物
形状が挙げられる。
When the porous material is a fibrous material, the fiber has a diameter of 1 mm or less and a length of at least 10 times the aspect ratio of the diameter, preferably 0.5 mm or less and an aspect ratio of 20%. More than double is suitable. Examples of the fibrous aggregate include a nonwoven fabric shape, a woven fabric shape, and a roll shape.

【0013】本発明で用いられる金属としては、触媒活
性を有する金属であれば、特に限定されるものではない
が、チタン、バナジウム、クロム、コバルト、マンガ
ン、白金、パラジウム、ロジウム、ルテニウム、ニッケ
ル等に代表される遷移金属が好ましく、特に、白金、パ
ラジウム、ロジウム、ニッケル等に代表される第VIII族
金属が好ましい。また、これらの金属を1種担持させる
こともできるし、2種以上を混合して担持させることも
できる。
The metal used in the present invention is not particularly limited as long as it is a metal having catalytic activity, but titanium, vanadium, chromium, cobalt, manganese, platinum, palladium, rhodium, ruthenium, nickel, etc. Are preferred, and particularly, a Group VIII metal represented by platinum, palladium, rhodium, nickel and the like. One of these metals may be supported, or two or more of these metals may be mixed and supported.

【0014】本発明の製造法においては、まず上記した
ような金属からなる金属含有溶液を調製する。この溶液
としては、通常、水溶液であればよく、担持させる金属
を水溶性金属塩として水に溶解させることにより調製す
ることができる。金属塩としては、塩化物、酢酸塩、硝
酸塩、塩素酸塩等の一般的な金属塩を用いることができ
る。金属塩の種類によっては水に溶けにくいものもある
ので、金属塩の溶解度を上げるために溶液の温度を上げ
たり、塩酸や硝酸などの無機酸やシュウ酸などの有機酸
を金属塩1モルに対して0. 1〜2モル、好ましくは
0. 5〜1モル加えることによって溶解させることがで
きる。
In the production method of the present invention, a metal-containing solution comprising the above-mentioned metal is first prepared. This solution is usually an aqueous solution, and can be prepared by dissolving the metal to be carried as a water-soluble metal salt in water. As the metal salt, general metal salts such as chloride, acetate, nitrate and chlorate can be used. Some metal salts are hardly soluble in water, so raise the temperature of the solution to increase the solubility of the metal salt, or convert inorganic acids such as hydrochloric acid and nitric acid and organic acids such as oxalic acid to 1 mole of metal salt. It can be dissolved by adding 0.1 to 2 moles, preferably 0.5 to 1 mole.

【0015】この金属含有溶液の濃度については特に限
定されないが、多孔質材料1g当たり0.1〜300m
g、好ましくは0.2〜200mgの金属を含有する濃
度に調製するのが好ましい。また、この金属含有溶液の
容量は、担持させようとする多孔質材料の見かけ体積比
で2〜10倍、好ましくは3〜6倍の金属含有溶液を用
いればよい。金属含有溶液に含まれる金属の量がこれよ
り少ない場合は超音波処理の効果が少なくなる傾向がみ
られる。
The concentration of the metal-containing solution is not particularly limited, but is preferably 0.1 to 300 m / g of the porous material.
g, preferably from 0.2 to 200 mg of metal. The volume of the metal-containing solution may be 2 to 10 times, preferably 3 to 6 times the apparent volume ratio of the porous material to be supported. When the amount of the metal contained in the metal-containing solution is smaller than this, the effect of the ultrasonic treatment tends to be reduced.

【0016】こうして得られた金属含有溶液は含まれる
金属塩の種類により様々なpHとなりうる。本発明にお
いては、金属含有溶液のpHを中性付近に調整する必要
があり、その範囲はpH5〜9である。より好ましくは
pH6〜8に調整すればよい。pHがpH5〜9の範囲
外であれば、多孔質材料が変性するなどの悪影響を及ぼ
し、触媒金属を均一かつ大量に担持させることができな
い。したがって、この範囲以外であれば、pH調整液を
添加し、この範囲内になるようにする。
The metal-containing solution thus obtained can have various pH depending on the kind of the metal salt contained. In the present invention, it is necessary to adjust the pH of the metal-containing solution to near neutrality, and the range is 5 to 9. More preferably, the pH may be adjusted to 6 to 8. If the pH is out of the range of pH 5 to 9, the porous material has an adverse effect such as denaturation, and the catalyst metal cannot be uniformly and largely supported. Therefore, if it is out of this range, a pH adjusting solution is added so as to be within this range.

【0017】ここで用いられるpH調整液としては、酢
酸水溶液などの弱酸水溶液、アンモニア水などの弱塩基
水溶液、フタル酸一カリウム、クエン酸一カリウム、酢
酸−酢酸ナトリウムなどのpH緩衝液などがある。
Examples of the pH adjusting solution used here include a weak acid aqueous solution such as an acetic acid aqueous solution, a weak base aqueous solution such as an ammonia water, and a pH buffer solution such as monopotassium phthalate, monopotassium citrate and acetic acid-sodium acetate. .

【0018】本発明では、次いでpHを調整した金属含
有溶液に界面活性剤を添加するが、その際、その金属塩
のイオン性に応じた界面活性剤を添加することが望まし
い。例えば、金属含有溶液中の金属塩が負イオンである
場合には、陰イオン系界面活性剤を、逆に金属塩が正イ
オンである場合には、陽イオン系界面活性剤を添加す
る。また、金属塩のイオン性と上記した多孔質材料のイ
オン性が正負逆である場合には、非イオン系界面活性剤
を添加することが望ましい。これらの例に限らず複数の
種類の異なる界面活性剤を添加しても構わない。非イオ
ン系界面活性剤はその浸透作用のため、多孔質材料のイ
オン性や担持する金属塩のイオン性に影響を受けにくい
ので、多くの場合に有効である。また、非イオン系界面
活性剤は、多孔質材料が塩基性を示す場合には特に有効
である。
In the present invention, a surfactant is then added to the pH-adjusted metal-containing solution. At this time, it is desirable to add a surfactant according to the ionicity of the metal salt. For example, when the metal salt in the metal-containing solution is a negative ion, an anionic surfactant is added, and when the metal salt is a positive ion, a cationic surfactant is added. When the ionicity of the metal salt is opposite to the ionicity of the porous material, it is desirable to add a nonionic surfactant. Not limited to these examples, a plurality of different surfactants may be added. The nonionic surfactant is effective in many cases because it is hardly affected by the ionicity of the porous material and the ionicity of the metal salt to be supported due to its osmotic action. Further, the nonionic surfactant is particularly effective when the porous material shows basicity.

【0019】本発明に用いられる界面活性剤は、化学工
業の分野で通常用いられるものが使用できる。陰イオン
系界面活性剤としては、硫酸エステル塩、スルホン酸塩
やリン酸エステルなどの陰イオン系界面活性剤が挙げら
れ、陽イオン系界面活性剤としては、脂肪族アミン塩や
第四級アンモニウム塩などの陽イオン系界面活性剤が挙
げられ、非イオン系界面活性剤としては、多価アルコー
ルの脂肪酸エステル、ポリオキシアルキレン縮合物やポ
リグリセリンなどの非イオン系界面活性剤などが挙げら
れる。
As the surfactant used in the present invention, those commonly used in the field of the chemical industry can be used. Examples of the anionic surfactant include an anionic surfactant such as a sulfate ester salt, a sulfonate salt and a phosphate ester, and examples of the anionic surfactant include an aliphatic amine salt and a quaternary ammonium salt. Examples include cationic surfactants such as salts, and examples of nonionic surfactants include fatty acid esters of polyhydric alcohols, nonionic surfactants such as polyoxyalkylene condensates, and polyglycerin.

【0020】本発明で用いる界面活性剤の添加量は特に
限定されないが、多孔質材料1g当たり0.05〜50
0mg、好ましくは0.1〜250mgである。添加量
がこれより少ない場合、添加の効果が小さいが、多すぎ
てもコスト高になってしまう可能性がある。
The amount of the surfactant used in the present invention is not particularly limited, but may be 0.05 to 50 per gram of the porous material.
0 mg, preferably 0.1 to 250 mg. If the amount is less than this, the effect of the addition is small, but if it is too large, the cost may increase.

【0021】本発明の製造法では、次いで界面活性剤が
添加された金属含有溶液に上記した多孔質材料を浸漬さ
せる。そのときの金属含有溶液の温度は特に限定される
ものではないが、20〜60℃の範囲が好ましい。浸漬
させた後、多孔質材料に金属含有溶液をなじませるため
に1時間以上放置することが好ましい。また溶液を多孔
質材料の内部へより効果的に浸入させるため、多孔質材
料を浸漬した溶液を減圧下に置くこともできる。
In the production method of the present invention, the porous material is then immersed in a metal-containing solution to which a surfactant has been added. The temperature of the metal-containing solution at that time is not particularly limited, but is preferably in the range of 20 to 60C. After immersion, it is preferable to leave the porous material for one hour or more in order to adapt the metal-containing solution to the porous material. In order to more effectively infiltrate the solution into the inside of the porous material, the solution in which the porous material is immersed can be placed under reduced pressure.

【0022】次に、多孔質材料が浸漬された水溶液を超
音波で処理する。超音波発生装置としては市販の超音波
洗浄機等が利用できる。一般的な方法としては超音波洗
浄機のタンクに水を満たし、そこに浸漬した多孔質材料
と金属含有溶液が入ったビーカーを入れて超音波処理を
行う。このとき超音波で処理することによりエネルギー
が加えられるが、そのエネルギーとしては0. 1〜10
W/cm2 が好ましく、特に0. 2〜8W/cm2 が好
ましい。加えるエネルギーがこれより低い場合、攪拌等
の効果が少なくなり、大量に、かつ均一に触媒活性を有
する金属を担持させにくくなる。また、これより大きく
なると、金属含有溶液の温度が上がるため、吸着量の制
御が困難になる傾向がある。
Next, the aqueous solution in which the porous material is immersed is treated with ultrasonic waves. As the ultrasonic generator, a commercially available ultrasonic cleaner or the like can be used. As a general method, a tank of an ultrasonic cleaning machine is filled with water, and a beaker containing a porous material immersed in the tank and a metal-containing solution is placed therein and subjected to ultrasonic treatment. At this time, energy is added by treating with ultrasonic waves, and the energy is 0.1 to 10
W / cm 2 are preferred, especially 0. 2~8W / cm 2 preferably. When the added energy is lower than this, the effect of stirring or the like is reduced, and it becomes difficult to carry a large amount of metal having catalytic activity uniformly. On the other hand, if it is larger than this, the temperature of the metal-containing solution rises, so that it becomes difficult to control the amount of adsorption.

【0023】超音波処理の時間は、加えるエネルギー、
多孔質材料の構造、水溶液の粘度や表面張力等によって
異なるが、0. 01〜10時間が好ましく、特に0. 5
〜5時間が好ましい。また、このときの金属含有溶液の
温度としては40〜90℃が好ましく、特に60〜80
℃が好ましい。金属含有溶液の温度を上記範囲に維持さ
せることにより、超音波で処理するのに要する時間を短
くすることができる。
The duration of the sonication depends on the applied energy,
Although it depends on the structure of the porous material, the viscosity of the aqueous solution, the surface tension and the like, it is preferably 0.01 to 10 hours, particularly preferably 0.5 to 10 hours.
~ 5 hours are preferred. Further, the temperature of the metal-containing solution at this time is preferably from 40 to 90 ° C, particularly from 60 to 80 ° C.
C is preferred. By maintaining the temperature of the metal-containing solution in the above range, the time required for ultrasonic treatment can be shortened.

【0024】このように、イオン性を考慮して添加され
た界面活性剤により均一に分散した触媒活性を有する金
属が、さらに超音波処理により、多孔質材料内部への浸
入が促進され、界面活性剤のみを添加することや超音波
処理のみでは想像もできなかったほど均一に金属を担持
できるようになった。
As described above, the metal having catalytic activity uniformly dispersed by the surfactant added in consideration of ionicity is further promoted by ultrasonic treatment to penetrate into the inside of the porous material. The addition of the agent alone or the ultrasonic treatment alone enabled the metal to be supported more uniformly than could be imagined.

【0025】本発明により金属担持触媒を得ることがで
きるが、さらに得られた金属担持触媒を乾燥させた後、
必要に応じて焼成することにより良好な触媒を得ること
ができる。乾燥の条件としては、特に限定されず多孔質
から水分を除くことができる条件で行えばよく、通常、
80℃以上、好ましくは100℃以上で水分を蒸発させ
る。また焼成の条件としては多孔質材料および担持させ
た金属により適宜選択すればよいが、大気雰囲気中で2
50〜500℃で1〜5時間、好ましくは300〜40
0℃で2〜4時間行えばよい。また、必要であれば水素
で還元することも可能である。この焼結によって金属が
多孔質材料に金属粒子として焼き付られ、良好な触媒機
能が発現される。
According to the present invention, a metal-supported catalyst can be obtained, and after drying the obtained metal-supported catalyst,
A good catalyst can be obtained by calcining if necessary. The drying conditions are not particularly limited and may be performed under conditions that can remove moisture from the porous material.
The water is evaporated at 80 ° C. or higher, preferably 100 ° C. or higher. The firing conditions may be appropriately selected depending on the porous material and the supported metal.
1 to 5 hours at 50 to 500 ° C, preferably 300 to 40
It may be performed at 0 ° C. for 2 to 4 hours. If necessary, it can be reduced with hydrogen. By this sintering, the metal is baked on the porous material as metal particles, and a good catalytic function is exhibited.

【0026】[0026]

【実施例】次に、本発明を実施例によって具体的に説明
する。なお、トルエンの燃焼率は次のようにして測定し
た。 〔トルエン燃焼率〕サンプル0.1g、希釈材0.5g
をよく混合した後、反応管に詰め、トルエン500pp
mを含む空気を常圧下、流量200cc/minで流
し、250℃において燃焼させた。反応前後のメタンを
ガスクロマトグラフ(島津製作所製GC−8A)を用い
てTCDにより検出し、次式により計算した。 燃焼率(%)=(1−反応後トルエン濃度/反応前トル
エン濃度)×100
Next, the present invention will be described specifically with reference to examples. In addition, the combustion rate of toluene was measured as follows. [Toluene combustion rate] Sample 0.1 g, diluent 0.5 g
Is mixed well, packed in a reaction tube, and toluene
m was flowed under normal pressure at a flow rate of 200 cc / min, and the mixture was burned at 250 ° C. Methane before and after the reaction was detected by TCD using a gas chromatograph (GC-8A manufactured by Shimadzu Corporation) and calculated by the following equation. Burn rate (%) = (1-toluene concentration after reaction / toluene concentration before reaction) x 100

【0027】実施例1〜4、比較例1 300〜500μmにふるい分けしたマグネシア(協和
化学工業製キョーワマグ150、比表面積150m2
g)1gを用意した。他方、塩化白金酸(ナカライテス
ク社製)をマグネシアに対する白金の量が0.5wt%
になるように水に溶解して作製した塩化白金酸水溶液
は、pHは、2.0であったので、アンモニア水を添加
し、pH6になるように調整した。マグネシアのイオン
性は負であり、また、塩化白金酸水溶液のイオン性は負
であるので、陰イオン系界面活性剤あるいは非イオン系
界面活性剤の使用が望ましい。そこで、この塩化白金酸
水溶液100mlに対して、非イオン系界面活性剤であ
るラウリルエーテルノニオン(竹本油脂社製)を10m
g(実施例1)、100mg(実施例3)および陰イオ
ン系界面活性剤であるラウリルトリメチルアンモニウム
クロライド(竹本油脂社製)を10mg(実施例2)、
100mg(実施例4)をそれぞれ添加した。
Examples 1-4, Comparative Example 1 Magnesia (Kyowa Mag 150 manufactured by Kyowa Chemical Industry Co., Ltd., specific surface area 150 m 2 /
g) 1 g was prepared. On the other hand, chloroplatinic acid (manufactured by Nacalai Tesque, Inc.) was prepared by adding 0.5 wt% of platinum to magnesia.
Since the pH of the aqueous chloroplatinic acid solution prepared by dissolving in water was adjusted to 2.0, ammonia water was added to adjust the pH to 6. Since the ionicity of magnesia is negative and the ionicity of aqueous chloroplatinic acid solution is negative, it is desirable to use an anionic surfactant or a nonionic surfactant. Therefore, for 100 ml of this chloroplatinic acid aqueous solution, 10 m of lauryl ether nonion (manufactured by Takemoto Yushi Co., Ltd.), which is a nonionic surfactant, is used.
g (Example 1), 100 mg (Example 3) and 10 mg (Example 2) of lauryltrimethylammonium chloride (manufactured by Takemoto Yushi Co., Ltd.) as an anionic surfactant.
100 mg (Example 4) were each added.

【0028】次に、マグネシアをこれらの塩化白金酸水
溶液に浸漬し、室温で6時間放置した。次に、この浸漬
液を入れたビーカーを超音波洗浄器(イウチ社製ウルト
ラソニッククリーナーVS−100)に入れ、60℃に
保った状態で50Wのエネルギー(0. 3W/cm2
を印加して、2時間超音波処理して、マグネシア中に塩
化白金酸水溶液を含浸させた。超音波処理を終了後、こ
の溶液を120℃で12時間乾燥した後、空気中、50
0℃で2時間、さらに水素中、300℃で3時間焼成し
て触媒を調製した。得られた触媒の初期トルエン燃焼率
および10時間後のトルエン燃焼率を表1に示した。
Next, magnesia was immersed in these aqueous solutions of chloroplatinic acid and left at room temperature for 6 hours. Next, the beaker containing the immersion liquid is placed in an ultrasonic cleaner (Ultrasonic Cleaner VS-100 manufactured by Iuchi Co., Ltd.), and 50 W of energy (0.3 W / cm 2 ) is maintained at 60 ° C.
Was applied and ultrasonic treatment was performed for 2 hours to impregnate magnesia with an aqueous solution of chloroplatinic acid. After sonication, the solution was dried at 120 ° C. for 12 hours,
The catalyst was prepared by calcining at 0 ° C. for 2 hours and further in hydrogen at 300 ° C. for 3 hours. Table 1 shows the initial toluene burning rate and the toluene burning rate after 10 hours of the obtained catalyst.

【0029】[0029]

【表1】 [Table 1]

【0030】比較として界面活性剤の添加を行わなかっ
たもの(比較例1)についても同様の操作を行い触媒を
作製した。トルエン燃焼率を表1に示したが、初期トル
エン転化率及び10時間後トルエン転化率とも劣ってい
ることが明らかである。
For comparison, the same operation was carried out for a catalyst without the addition of a surfactant (Comparative Example 1) to prepare a catalyst. The toluene conversion is shown in Table 1, and it is clear that both the initial toluene conversion and the toluene conversion after 10 hours are inferior.

【0031】実施例5 セラミックファイバークロス「ネクステルAF40」
(3M社製、ファイバ径約10μmの連続繊維のシュス
織り、目付854g/m2 )100g(約幅10cm×
長さ120cm×厚さ1cm)を空気中、500℃で2
時間焼成させてバインダーを除去した。このセラミック
ファイバークロスに対する白金の量が1重量%になるよ
うに、塩化白金酸(ナカライテスク社製)を水に溶解し
塩化白金酸水溶液を調製した。この溶液のpHをpH6
になるように調製した。セラミックファイバークロスの
イオン性は正であり、また、塩化白金酸水溶液のイオン
性は負であった。この塩化白金酸水溶液200mlに対
して非イオン系界面活性剤であるラウリルエーテルノニ
オン(竹本油脂社製)を200mgを添加し、室温で6
時間放置した。
Example 5 Ceramic fiber cloth "Nextel AF40"
(3M Co., woven Schuss of continuous fibers of a fiber diameter of about 10 [mu] m, basis weight 854g / m 2) 100g (width of about 10 cm ×
(Length 120cm x thickness 1cm) in air at 500 ° C
Baking was performed for a time to remove the binder. Chloroplatinic acid (manufactured by Nacalai Tesque) was dissolved in water to prepare an aqueous chloroplatinic acid solution such that the amount of platinum with respect to the ceramic fiber cloth was 1% by weight. The pH of this solution is adjusted to pH 6
Was prepared. The ionicity of the ceramic fiber cloth was positive, and the ionicity of the aqueous chloroplatinic acid solution was negative. To 200 ml of this aqueous solution of chloroplatinic acid, 200 mg of lauryl ether nonion (manufactured by Takemoto Yushi Co., Ltd.), which is a nonionic surfactant, was added.
Left for hours.

【0032】この溶液に上記セラミックファイバークロ
スを浸漬させ、室温で6時間放置した。次に、セラミッ
クファイバークロスと塩化白金酸水溶液を入れたビーカ
ーを実施例1〜4に用いたものと同様の超音波洗浄器に
入れ60Wのエネルギー(0. 3W/cm2 )を加え
て、2時間含浸させた。超音波処理を終了後、この溶液
を120℃で12時間乾燥した後、空気中、500℃で
2時間、さらに水素中、300℃で3時間焼成して触媒
を調製した。得られた触媒は、目視による観察では繊維
の表面全体に金属色を有しており、触媒活性を有する金
属が均一に担持されていることがわかる。また、クロス
の厚み方向へも内部まで均一な金属色を有していた。
The above-mentioned ceramic fiber cloth was immersed in this solution and left at room temperature for 6 hours. Next, a beaker containing a ceramic fiber cloth and an aqueous solution of chloroplatinic acid was placed in an ultrasonic cleaner similar to that used in Examples 1 to 4, and an energy of 60 W (0.3 W / cm 2 ) was applied to the beaker. Impregnated for hours. After the completion of the ultrasonic treatment, the solution was dried at 120 ° C. for 12 hours, and then calcined in air at 500 ° C. for 2 hours and further in hydrogen at 300 ° C. for 3 hours to prepare a catalyst. The obtained catalyst has a metal color on the entire surface of the fiber by visual observation, and it can be seen that the metal having catalytic activity is uniformly supported. In addition, the cloth had a uniform metal color even in the thickness direction of the cloth.

【0033】比較例2 界面活性剤を使用せず、超音波処理もしない以外は実施
例5と全く同様にしてセラミックファイバークロスに塩
化白金酸を担持させた触媒を調製した。得られた触媒
は、目視による観察でも、セラミックファイバークロス
はまだらに金属色を有しており、不均一に金属が担持さ
れていることがわかる。また、クロスの厚み方向は内部
では金属色を有していない部分もあった。
Comparative Example 2 A catalyst in which chloroplatinic acid was supported on a ceramic fiber cloth was prepared in exactly the same manner as in Example 5 except that no surfactant was used and no ultrasonic treatment was performed. In the obtained catalyst, even by visual observation, it can be seen that the ceramic fiber cloth has a mottled metallic color and the metal is unevenly supported. In the thickness direction of the cloth, there was a portion having no metal color inside.

【0034】[0034]

【発明の効果】本発明によれば、多孔質材料に触媒活性
を有する金属を大量かつ均一に担持させることができ、
反応活性が高い触媒を得ることができる。
According to the present invention, a large amount of metal having catalytic activity can be uniformly supported on a porous material.
A catalyst having high reaction activity can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多孔質材料に金属を担持させて金属担持
触媒を製造するに際し、触媒活性を有する金属を含有す
る溶液のpHをpH5〜9に調整した後、界面活性剤を
添加し、この溶液に多孔質材料を浸漬して超音波で処理
することを特徴とする金属担持触媒の製造方法。
When producing a metal-supported catalyst by supporting a metal on a porous material, the pH of a solution containing a metal having catalytic activity is adjusted to pH 5 to 9, and then a surfactant is added. A method for producing a metal-supported catalyst, comprising immersing a porous material in a solution and treating it with ultrasonic waves.
JP9196806A 1997-07-23 1997-07-23 Production of metal-supporting catalyst Pending JPH1133412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9196806A JPH1133412A (en) 1997-07-23 1997-07-23 Production of metal-supporting catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9196806A JPH1133412A (en) 1997-07-23 1997-07-23 Production of metal-supporting catalyst

Publications (1)

Publication Number Publication Date
JPH1133412A true JPH1133412A (en) 1999-02-09

Family

ID=16363966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9196806A Pending JPH1133412A (en) 1997-07-23 1997-07-23 Production of metal-supporting catalyst

Country Status (1)

Country Link
JP (1) JPH1133412A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100337024B1 (en) * 1999-07-02 2002-05-17 손재익 Manufacturing Method of high surface area alumina for high temperature catalytic combustion using surfactant
WO2002076614A1 (en) * 2001-03-23 2002-10-03 Emitec Gesellschaft Für Emissionstechnologie Mbh Method for applying a washcoat to a honeycomb structure
JP2005211845A (en) * 2004-01-30 2005-08-11 Chiyoda Corp Dehydrogenation catalyst for hydrogenated aromatic compounds and manufacturing method therefor
JP2006205105A (en) * 2005-01-31 2006-08-10 Japan Science & Technology Agency Method for manufacturing polymer-fixed transition metal catalyst
WO2006095392A1 (en) * 2005-03-04 2006-09-14 Mitsubishi Heavy Industries, Ltd. Process for producing catalyst for discharge gas treatment
JP2008006350A (en) * 2006-06-27 2008-01-17 Wako Pure Chem Ind Ltd Method for carrying metal catalyst on fibrous protein
KR100823094B1 (en) 2006-08-31 2008-04-18 한화석유화학 주식회사 Process for the electrochemical catalysts of fuel cells based on polymer electrolytes
WO2018221697A1 (en) * 2017-05-31 2018-12-06 古河電気工業株式会社 Catalyst structure for syngas production, syngas production device provided with said catalyst structure for syngas production, and production method of catalyst structure for syngas production
WO2018221706A1 (en) * 2017-05-31 2018-12-06 古河電気工業株式会社 Methanol reforming catalyst structure, methanol reforming device, production method for methanol reforming catalyst structure, and production method for at least one of olefins and aromatic hydrocarbons
WO2018221702A1 (en) * 2017-05-31 2018-12-06 古河電気工業株式会社 Photocatalyst structure, photocatalyst structure composition, photocatalyst coating material, production method of photocatalyst structure, and decomposition method of aldehydes
WO2018221701A1 (en) * 2017-05-31 2018-12-06 古河電気工業株式会社 Ammonia decomposition catalyst structure and fuel cell
WO2018221707A1 (en) * 2017-05-31 2018-12-06 古河電気工業株式会社 Steam reforming catalyst structure, reforming device provided with said steam reforming catalyst structure, and production method of steam reforming catalyst structure
WO2018221693A1 (en) * 2017-05-31 2018-12-06 国立大学法人北海道大学 Functional structure and production method for functional structure
WO2018221704A1 (en) * 2017-05-31 2018-12-06 古河電気工業株式会社 Catalyst structure for aromatic hydrocarbon production, aromatic hydrocarbon production device provided with said catalyst structure for aromatic hydrocarbon production, production method of catalyst structure for aromatic hydrocarbon production, and production method of aromatic hydrocarbons
JP2018202388A (en) * 2017-05-31 2018-12-27 国立大学法人北海道大学 Functional structure and manufacturing method therefor
JP2018202386A (en) * 2017-05-31 2018-12-27 国立大学法人北海道大学 Functional structure and manufacturing method of functional structure
JP2018202387A (en) * 2017-05-31 2018-12-27 国立大学法人北海道大学 Functional structure and manufacturing method therefor
CN111085256A (en) * 2018-10-24 2020-05-01 中国石油化工股份有限公司 Regular carrier catalyst with desulfurization effect and preparation and application thereof
CN111085197A (en) * 2018-10-23 2020-05-01 中国石油化工股份有限公司 Regular carrier catalyst with desulfurization effect and preparation and application thereof
CN111085186A (en) * 2018-10-23 2020-05-01 中国石油化工股份有限公司 Regular carrier catalyst with desulfurization effect and preparation and application thereof
US11161101B2 (en) 2017-05-31 2021-11-02 Furukawa Electric Co., Ltd. Catalyst structure and method for producing the catalyst structure
US11547987B2 (en) 2017-05-31 2023-01-10 Furukawa Electric Co., Ltd. Structured catalyst for oxidation for exhaust gas purification, method for producing same, automobile exhaust gas treatment device, catalytic molding, and gas purification method
US11648543B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11648542B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11648538B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11654422B2 (en) 2017-05-31 2023-05-23 Furukawa Electric Co., Ltd. Structured catalyst for catalytic cracking or hydrodesulfurization, catalytic cracking apparatus and hydrodesulfurization apparatus including the structured catalyst, and method for producing structured catalyst for catalytic cracking or hydrodesulfurization
US11666894B2 (en) 2017-05-31 2023-06-06 Furukawa Electric Co., Ltd. Structured catalyst for CO shift or reverse shift and method for producing same, CO shift or reverse shift reactor, method for producing carbon dioxide and hydrogen, and method for producing carbon monoxide and water
US11680211B2 (en) 2017-05-31 2023-06-20 Furukawa Electric Co., Ltd. Structured catalyst for hydrodesulfurization, hydrodesulfurization device including the structured catalyst, and method for producing structured catalyst for hydrodesulfurization
US12030041B2 (en) 2017-05-31 2024-07-09 Furukawa Electric Co., Ltd. Structured catalyst for steam reforming, reforming apparatus provided with structured catalyst for steam reforming, and method for manufacturing structured catalyst for steam reforming

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100337024B1 (en) * 1999-07-02 2002-05-17 손재익 Manufacturing Method of high surface area alumina for high temperature catalytic combustion using surfactant
WO2002076614A1 (en) * 2001-03-23 2002-10-03 Emitec Gesellschaft Für Emissionstechnologie Mbh Method for applying a washcoat to a honeycomb structure
JP2005211845A (en) * 2004-01-30 2005-08-11 Chiyoda Corp Dehydrogenation catalyst for hydrogenated aromatic compounds and manufacturing method therefor
JP4652695B2 (en) * 2004-01-30 2011-03-16 千代田化工建設株式会社 Hydrogenated aromatic dehydrogenation catalyst and method for producing the same
JP2006205105A (en) * 2005-01-31 2006-08-10 Japan Science & Technology Agency Method for manufacturing polymer-fixed transition metal catalyst
JP4568803B2 (en) * 2005-01-31 2010-10-27 独立行政法人科学技術振興機構 Production method of polymer-immobilized transition metal catalysts
WO2006095392A1 (en) * 2005-03-04 2006-09-14 Mitsubishi Heavy Industries, Ltd. Process for producing catalyst for discharge gas treatment
JP2008006350A (en) * 2006-06-27 2008-01-17 Wako Pure Chem Ind Ltd Method for carrying metal catalyst on fibrous protein
KR100823094B1 (en) 2006-08-31 2008-04-18 한화석유화학 주식회사 Process for the electrochemical catalysts of fuel cells based on polymer electrolytes
JPWO2018221706A1 (en) * 2017-05-31 2020-03-26 古河電気工業株式会社 Methanol reforming catalyst structure, methanol reforming apparatus, method for producing methanol reforming catalyst structure, and method for producing at least one of olefin or aromatic hydrocarbon
US11648542B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
WO2018221702A1 (en) * 2017-05-31 2018-12-06 古河電気工業株式会社 Photocatalyst structure, photocatalyst structure composition, photocatalyst coating material, production method of photocatalyst structure, and decomposition method of aldehydes
WO2018221701A1 (en) * 2017-05-31 2018-12-06 古河電気工業株式会社 Ammonia decomposition catalyst structure and fuel cell
WO2018221707A1 (en) * 2017-05-31 2018-12-06 古河電気工業株式会社 Steam reforming catalyst structure, reforming device provided with said steam reforming catalyst structure, and production method of steam reforming catalyst structure
WO2018221693A1 (en) * 2017-05-31 2018-12-06 国立大学法人北海道大学 Functional structure and production method for functional structure
WO2018221704A1 (en) * 2017-05-31 2018-12-06 古河電気工業株式会社 Catalyst structure for aromatic hydrocarbon production, aromatic hydrocarbon production device provided with said catalyst structure for aromatic hydrocarbon production, production method of catalyst structure for aromatic hydrocarbon production, and production method of aromatic hydrocarbons
JP2018202388A (en) * 2017-05-31 2018-12-27 国立大学法人北海道大学 Functional structure and manufacturing method therefor
JP2018202386A (en) * 2017-05-31 2018-12-27 国立大学法人北海道大学 Functional structure and manufacturing method of functional structure
JP2018202387A (en) * 2017-05-31 2018-12-27 国立大学法人北海道大学 Functional structure and manufacturing method therefor
CN110709168A (en) * 2017-05-31 2020-01-17 古河电气工业株式会社 Photocatalyst structure, photocatalyst structure composition, photocatalyst coating material, method for producing photocatalyst structure, and method for decomposing aldehyde
WO2018221697A1 (en) * 2017-05-31 2018-12-06 古河電気工業株式会社 Catalyst structure for syngas production, syngas production device provided with said catalyst structure for syngas production, and production method of catalyst structure for syngas production
JPWO2018221707A1 (en) * 2017-05-31 2020-03-26 古河電気工業株式会社 Steam reforming catalyst structure, reforming apparatus provided with the steam reforming catalyst structure, and method for producing steam reforming catalyst structure
JPWO2018221697A1 (en) * 2017-05-31 2020-04-02 古河電気工業株式会社 Synthetic gas producing catalyst structure, syngas producing apparatus including the syngas producing catalyst structure, and method for producing syngas producing catalyst structure
JPWO2018221701A1 (en) * 2017-05-31 2020-04-09 古河電気工業株式会社 Ammonia decomposition catalyst structure and fuel cell
US12030041B2 (en) 2017-05-31 2024-07-09 Furukawa Electric Co., Ltd. Structured catalyst for steam reforming, reforming apparatus provided with structured catalyst for steam reforming, and method for manufacturing structured catalyst for steam reforming
US11904306B2 (en) 2017-05-31 2024-02-20 Furukawa Electric Co., Ltd. Catalyst structure and method for producing the catalyst structure
US11684909B2 (en) 2017-05-31 2023-06-27 Furukawa Electric Co., Ltd. Structured catalyst for methanol reforming, methanol reforming device, method for producing structured catalyst for methanol reforming, and method for producing at least one of olefin or aromatic hydrocarbon
AU2018277967B2 (en) * 2017-05-31 2021-05-27 Furukawa Electric Co., Ltd. Functional structure and production method for functional structure
US11161101B2 (en) 2017-05-31 2021-11-02 Furukawa Electric Co., Ltd. Catalyst structure and method for producing the catalyst structure
US11547987B2 (en) 2017-05-31 2023-01-10 Furukawa Electric Co., Ltd. Structured catalyst for oxidation for exhaust gas purification, method for producing same, automobile exhaust gas treatment device, catalytic molding, and gas purification method
US11648543B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
WO2018221706A1 (en) * 2017-05-31 2018-12-06 古河電気工業株式会社 Methanol reforming catalyst structure, methanol reforming device, production method for methanol reforming catalyst structure, and production method for at least one of olefins and aromatic hydrocarbons
US11648538B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11655157B2 (en) 2017-05-31 2023-05-23 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11654422B2 (en) 2017-05-31 2023-05-23 Furukawa Electric Co., Ltd. Structured catalyst for catalytic cracking or hydrodesulfurization, catalytic cracking apparatus and hydrodesulfurization apparatus including the structured catalyst, and method for producing structured catalyst for catalytic cracking or hydrodesulfurization
US11666894B2 (en) 2017-05-31 2023-06-06 Furukawa Electric Co., Ltd. Structured catalyst for CO shift or reverse shift and method for producing same, CO shift or reverse shift reactor, method for producing carbon dioxide and hydrogen, and method for producing carbon monoxide and water
US11680211B2 (en) 2017-05-31 2023-06-20 Furukawa Electric Co., Ltd. Structured catalyst for hydrodesulfurization, hydrodesulfurization device including the structured catalyst, and method for producing structured catalyst for hydrodesulfurization
CN111085186A (en) * 2018-10-23 2020-05-01 中国石油化工股份有限公司 Regular carrier catalyst with desulfurization effect and preparation and application thereof
CN111085197A (en) * 2018-10-23 2020-05-01 中国石油化工股份有限公司 Regular carrier catalyst with desulfurization effect and preparation and application thereof
CN111085256A (en) * 2018-10-24 2020-05-01 中国石油化工股份有限公司 Regular carrier catalyst with desulfurization effect and preparation and application thereof

Similar Documents

Publication Publication Date Title
JPH1133412A (en) Production of metal-supporting catalyst
JP3130903B2 (en) Catalyst for purifying waste gas from internal combustion engine, method for producing catalyst and method for purifying waste gas
JPWO2012133526A1 (en) Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and method of manufacturing exhaust gas purification catalyst
JP3855426B2 (en) Method for producing exhaust gas purifying catalyst
JP2004041866A (en) Exhaust gas purifying catalyst
JPH0817942B2 (en) Exhaust purification catalyst manufacturing method
JP5140243B2 (en) Catalyst base material, catalyst, and production method thereof
JP4865250B2 (en) Method for producing exhaust gas treatment catalyst
JP5227363B2 (en) Exhaust gas purification catalyst
JPH02187148A (en) Catalyst for decomposing ozone
JP2000508970A (en) Three-way catalyst for exhaust gas treatment
JP2005139029A (en) Oxide powder, its preparation process, and catalyst
JP2018103102A (en) Low-temperature oxidation catalyst
JP2006341201A (en) Catalyst for purifying exhaust gas and its production method
JP2007289921A (en) Exhaust-gas cleaning catalyst and its regeneration method
JPH0312936B2 (en)
US11766662B2 (en) Homogeneous catalytic fiber coatings and methods of preparing same
JPH1085614A (en) Production of metal carrying catalyst
WO2018123787A1 (en) Method for manufacturing low-temperature oxidation catalyst
JP2005052779A (en) Metal oxide-covered alumina multiple oxide
JP4992172B2 (en) Exhaust gas purification catalyst and method for producing the same
KR101151836B1 (en) High-yield Supporting Method of Uniform Nano-catalyst on surface of the carbonized cellulose, And The Nano-catalyst Support Using The Same
JP4697506B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH11276896A (en) Catalyst for cleaning exhaust gas
CA2605097A1 (en) Method and device for catalytic oxidation and reduction of gases and vapours by crystalline compounds of heavy metals and rare earths