JPH1133304A - Method and apparatus for separating and recovering hydrophilic solvent - Google Patents

Method and apparatus for separating and recovering hydrophilic solvent

Info

Publication number
JPH1133304A
JPH1133304A JP19235097A JP19235097A JPH1133304A JP H1133304 A JPH1133304 A JP H1133304A JP 19235097 A JP19235097 A JP 19235097A JP 19235097 A JP19235097 A JP 19235097A JP H1133304 A JPH1133304 A JP H1133304A
Authority
JP
Japan
Prior art keywords
adsorbent
hydrophilic solvent
heating
separating
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19235097A
Other languages
Japanese (ja)
Inventor
Toshihide Imamura
敏英 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP19235097A priority Critical patent/JPH1133304A/en
Publication of JPH1133304A publication Critical patent/JPH1133304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the heat efficiency, miniaturize the apparatus, improve the recovery efficiency, and improve the durability. SOLUTION: A raw liquid, which is a hydrophilic solvent containing water, is supplied to the hollow part of a cylindrical body 2 made of inorganic fibers and the raw liquid is adsorbed by an adsorbent 3 having water-absorptive function and with which the outer circumferential part of the cylindrical body 2 made of inorganic fibers is filled while being passed through the cylindrical body 2 made of inorganic fibers. In this case, the adsorbent 3 is directly heated by an electric heating wire heater 4 to desorb water adsorbed in the adsorbent 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用の分野】本発明は、イソプロピルアルコ
ールに代表される各種のアルコール類、アセトンに代表
されるケトン類、又は、プロピン酸や酢酸等のカルボン
酸のような親水性溶剤中に含有する水を分離除去して溶
剤を回収する方法と同回収装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to various alcohols such as isopropyl alcohol, ketones such as acetone, and hydrophilic solvents such as carboxylic acids such as propic acid and acetic acid. The present invention relates to a method for recovering a solvent by separating and removing water and a recovery apparatus for the same.

【0002】[0002]

【従来の技術】液晶のガラス、半導体、超精密機器、光
通信用ファイバ等の関連分野にあっては、それらの製品
自体及び周辺環境に極めて高いクリーン度が要求され
る。そのため、例えばウエハ等の極度に汚染を嫌う物品
には、純水による洗浄がなされる。しかし、純水による
洗浄では乾燥性に劣るため、洗浄後に水をイソプロピー
ルアルコール(以下、単にIPAという。)で置換し
て、乾燥速度を高めている。洗浄に使われた水を含有す
るIPAは再生して回収され、繰り返し使用される。従
って、再生されたIPAの濃度は少なくとも99.5w
t%以上であることが望ましいとされる。
2. Description of the Related Art In related fields such as liquid crystal glass, semiconductors, ultra-precision equipment, and optical communication fibers, extremely high cleanliness is required for the products themselves and the surrounding environment. For this reason, for example, articles that are extremely resistant to contamination, such as wafers, are washed with pure water. However, since washing with pure water is inferior in drying property, water is replaced with isopropyl alcohol (hereinafter simply referred to as IPA) after washing to increase the drying rate. The IPA containing water used for washing is regenerated and recovered, and used repeatedly. Thus, the concentration of regenerated IPA is at least 99.5 watts.
It is considered that it is desirably t% or more.

【0003】前述の水を含有するIPA(以下、原液と
いう。)から水を除去してIPAを回収には、大別し
て、次のような従来から知られる蒸留法、膜分離
法、吸着法の3種類の分離法が採用されている。ここ
で、 蒸留法とは沸点差の大きい溶剤と溶質を分離して回
収するのに適しており、一般的な分離法である。 膜分離法とは、溶質に対して親和性を有する高分子
膜または中空糸(繊維)を介する一次側の流路に溶液を
流し、二次側の流路を減圧することにより前記溶質を蒸
気状にして高分子膜などを透過させることにより溶媒と
分離させる分離法である。 吸着法とは、溶質に対する吸着性能の高い吸着剤に
溶液を接触させて溶質を同吸着剤に吸着させ、再生工程
において吸着剤に吸着した溶質を加熱して脱着させ除去
する。前記吸着剤に溶液を均一に接触させるため、同吸
着剤は予め粒状や球状に成形されている。
The recovery of IPA by removing water from the above-mentioned IPA containing water (hereinafter referred to as a stock solution) is roughly classified into the following known methods of distillation, membrane separation and adsorption. Three types of separation methods have been employed. Here, the distillation method is suitable for separating and recovering a solvent and a solute having a large difference in boiling point, and is a general separation method. The membrane separation method is a method in which a solution is flowed through a primary channel through a polymer membrane or a hollow fiber (fiber) having an affinity for a solute, and the solute is vaporized by depressurizing a secondary channel. This is a separation method in which the resin is separated from the solvent by permeating through a polymer membrane or the like. In the adsorption method, a solution is brought into contact with an adsorbent having high adsorption performance for the solute to cause the solute to be adsorbed to the adsorbent, and the solute adsorbed to the adsorbent is removed by heating in the regeneration step. In order to bring the solution into uniform contact with the adsorbent, the adsorbent is previously formed into granules or spheres.

【0004】[0004]

【発明が解決しようとする課題】しかして、上記原液か
らの蒸留法によりIPAを分離再生しようとする場合
には、IPAと水との間で共沸現象が生じ、一般的な蒸
留法では一定濃度以上のIPAを得ることは不可能であ
る。そのため、抽出蒸留法を採用することが考えられる
が、この抽出蒸留法は熱エネルギー的に非効率的であ
り、しかも装置の小型化が難しい。
However, when IPA is to be separated and regenerated by distillation from the above-mentioned stock solution, an azeotropic phenomenon occurs between IPA and water. It is impossible to obtain IPA above the concentration. Therefore, it is conceivable to employ an extractive distillation method, but this extractive distillation method is inefficient in terms of thermal energy, and it is difficult to reduce the size of the apparatus.

【0005】また、上記の膜分離法は、水分の蒸発潜
熱のため系内の温度が低下するため、高分子膜に対する
透過速度が低下し、水分が多い場合には必要膜面積を多
くせざるを得ない。更には、一定の透過速度を確保する
には真空装置の大型化が必要であり、高分子膜の耐久性
にも問題がある。
In the above-mentioned membrane separation method, the temperature in the system is lowered due to latent heat of evaporation of water, so that the permeation rate to the polymer membrane is lowered. If the water content is large, the required membrane area must be increased. Not get. Furthermore, in order to secure a constant transmission speed, the size of the vacuum device needs to be increased, and there is a problem in durability of the polymer film.

【0006】一方、上記の吸着法では、上述のように
溶液を吸着剤に均一に接触させるために、吸着剤の形状
を粒状や球状に成形している。そして、混合液を液状の
まま又は気化状態として吸着材に接触させている。しか
るに、吸着剤を前述の形状に成形して混合液を吸着させ
る場合には、それらの吸着剤形状が崩れやすく、粉体状
になりやすく、あるいはパーティクル化しやすく、長時
間の吸着工程においてその吸着性能が著しく低下してし
まう。また再生工程においては、吸着剤に吸着された水
分を除去するとき、気体を暖めて吸着剤と接触させてい
る。このように気体を間接的に熱媒体として使用する場
合、気体容量が多量に必要となり、熱効率が極めて低く
なり、しかも加熱気体として空気を使用する場合には爆
発や発火の危険性が高くなり、その防止策のために格別
の設備が必要となり、前記危険性を回避すべく窒素など
の不活性ガスを使用しようとすると、ガスの購入費や回
収設備などのコスト高につながる要因が多くなる。
On the other hand, in the above-mentioned adsorption method, the shape of the adsorbent is formed into a granular shape or a spherical shape in order to uniformly contact the solution with the adsorbent as described above. Then, the mixed liquid is brought into contact with the adsorbent in a liquid state or in a vaporized state. However, when the adsorbent is formed into the above-mentioned shape and the mixed liquid is adsorbed, the shape of the adsorbent is easily broken, the powder is easily formed, or the particles are easily formed into particles. Performance will be significantly reduced. In the regeneration step, when removing the water adsorbed by the adsorbent, the gas is warmed and brought into contact with the adsorbent. When a gas is used indirectly as a heat medium in this way, a large amount of gas is required, the thermal efficiency becomes extremely low, and when air is used as the heating gas, the risk of explosion or ignition increases. Special equipment is required for the prevention, and if an inert gas such as nitrogen is used in order to avoid the above danger, there are many factors that lead to high costs such as gas purchase cost and recovery equipment.

【0007】本発明は、上述の従来方式による分離・再
生法のもつ様々な課題を解決すべくなされたものであ
り、具体的には(1) 熱効率の向上、(2) 小型化の実現、
(3) 回収率の向上及び(4) 耐久性の向上が実現される親
水性溶剤の分離回収方法及び同分離回収装置を提供する
ことを目的としている。
The present invention has been made to solve various problems of the above-mentioned conventional separation / regeneration method, and specifically, (1) improvement of thermal efficiency, (2) realization of miniaturization,
It is an object of the present invention to provide a method and apparatus for separating and recovering a hydrophilic solvent which can achieve (3) an improved recovery and (4) an improved durability.

【0008】[0008]

【課題を解決しようとする手段】かかる目的は、本発明
の水を含有する親水性溶剤の原液中から水を分離して溶
剤を再生する方法であって、水吸着性能に優れた吸着剤
に液体透過部材を介して前記原液を直接接触させるこ
と、及び前記吸着剤を直接加熱して同吸着剤に吸着した
水分を蒸発により脱着させることを含んでなることを特
徴とする親水性溶剤分離回収方法により達成される。
SUMMARY OF THE INVENTION The object of the present invention is to provide a method for regenerating a solvent by separating water from a stock solution of a hydrophilic solvent containing water according to the present invention. Separating and contacting the stock solution directly through a liquid permeable member, and directly heating the adsorbent to desorb water adsorbed on the adsorbent by evaporation, thereby separating and recovering a hydrophilic solvent. Achieved by the method.

【0009】既述したとおり、吸着法による場合、吸着
剤から水分を脱着させるために、加熱空気や加熱不活性
ガスを吸着剤を接触させて蒸発させて再生している。こ
のように熱容量の少ない気体を熱触媒とするため、気体
容量が多量に必要となり、熱効率が低く且つ窒素などの
不活性ガスを使用した場合には経済的に不利であった。
As described above, in the case of the adsorption method, in order to desorb water from the adsorbent, heated air or a heated inert gas is brought into contact with the adsorbent and evaporated for regeneration. Since a gas having a small heat capacity is used as a heat catalyst, a large amount of gas is required, which is economically disadvantageous when the heat efficiency is low and an inert gas such as nitrogen is used.

【0010】そこで、本発明者は水分の脱着に対する熱
効率、イニシァルコストやランニングコストについて検
討を行ったところ、水吸着性に優れ、水分を多量に吸着
したた吸着剤を直接加熱することが熱効率から最も有利
であるとの結論に達した。前記直接加熱の手段として
は、電熱線を使用することが、加熱温度を制御しやすく
且つ装置全体のコンパクト化が可能であり、液体移送用
小型ポンプを除く他のポンプ類や熱交換器が不要である
ことから極めて有利であると考えた。従って、本発明で
は再生時に水分を多量に吸着したゼオライト等の吸着剤
を電熱線ヒータ等により直接加熱して、吸湿した吸着剤
から熱伝導による水分の脱着を行うことにした。親水性
溶剤は吸着剤に殆ど吸着されず、水の脱着前に液状のま
ま回収される。また、吸着剤に吸着された一部の溶剤は
後述する方法により吸着剤から脱着される。
Therefore, the present inventor examined thermal efficiency for desorption of water, initial cost and running cost. It was found that direct heating of an adsorbent having excellent water adsorbability and adsorbing a large amount of water required direct thermal efficiency. Came to the conclusion that it was the most advantageous. As a means for the direct heating, the use of a heating wire makes it easy to control the heating temperature and makes it possible to make the whole apparatus compact, and other pumps and heat exchangers other than a small liquid transfer pump are unnecessary. Therefore, it was considered to be extremely advantageous. Therefore, in the present invention, the adsorbent such as zeolite, which has adsorbed a large amount of water during regeneration, is directly heated by a heating wire heater or the like, and desorption of water from the absorbed adsorbent by heat conduction is performed. The hydrophilic solvent is hardly adsorbed by the adsorbent and is collected in a liquid state before desorption of water. Further, a part of the solvent adsorbed by the adsorbent is desorbed from the adsorbent by a method described later.

【0011】吸着剤と原液を液状で直接均等に接触させ
ることができれば、装置をコンパクト化でき、しかも吸
着湿度は分散されて相対的に低くなり吸着効率が高くな
る。しかし、吸着剤の形態が粉体状では通常は殆ど均一
な接触は不可能であって、原液の重力だけでは当然に不
可能となるが、例えばポンプにより加圧しても流動抵抗
が大きいので偏流すら起こらず吸着層を透過することが
できない。
If the adsorbent and the stock solution can be brought into direct and uniform contact with each other in a liquid state, the apparatus can be made compact, and the adsorption humidity is dispersed to be relatively low, so that the adsorption efficiency is increased. However, when the form of the adsorbent is in powder form, it is usually impossible to make almost uniform contact, and it is naturally impossible only by the gravity of the undiluted solution. Even it does not occur and cannot pass through the adsorption layer.

【0012】通常の吸着法による場合には、既述したよ
うに原液との接触性を高めるため、吸着剤を球状や円柱
状又は破砕粒状に成形して、充填層に充填して被処理液
と接触させているが、(1) 一応は原液が透過しても、
偏流の生じることが多く、接触効率をさらに改善させる
必要があり、(2) 吸着剤が前記形態に成形されている
ため、部分的に破壊して容易に粉体化してしまい、その
粉体は、成形する以前の結晶化した比較的大きいサイズ
の原料粉体よりも極めて微細化しパーティクル化しやす
いため、水分の残量が多く高いクリーン度が要求される
精密製品などの高速洗浄にそのまま再利用することはで
きない。
In the case of the usual adsorption method, as described above, in order to enhance the contact with the stock solution, the adsorbent is formed into a spherical shape, a columnar shape, or a crushed granule, and the formed adsorbent is filled in a packed bed to be treated. (1) Even if the undiluted solution permeates,
Often, drift occurs, and it is necessary to further improve the contact efficiency. (2) Since the adsorbent is formed in the above-mentioned form, it is partially broken and easily powdered, and the powder is Because it is extremely finer and easier to form particles than the relatively large-sized raw material powder that has been crystallized before molding, it can be reused as it is for high-speed cleaning of precision products that require a large amount of water and require high cleanliness. It is not possible.

【0013】かかる前提の基に、吸着剤の形態に基づく
吸着特性についても次の実験を行った。吸着剤としては
非成形の上記原料粉体からなるゼオライトと、比較のた
め球状に成形したゼオライトとを使用した。図1は同実
験装置を模式的に示している。
Based on this premise, the following experiment was also conducted on the adsorption characteristics based on the form of the adsorbent. As the adsorbent, a zeolite made of the above-mentioned raw material powder which was not formed and a zeolite formed into a spherical shape for comparison were used. FIG. 1 schematically shows the experimental apparatus.

【0014】同図(a)はガラス筒体1の内部に球状体
からなる吸着剤3′を充填させて原液を上方から流下さ
せた場合の例を示し、同図(b)は同一形態のガラス
筒体に原料粉体からなる吸着剤3を充填し、同じく上方
から原液を流下させた場合の例を示しており、同図
(c)は同一形態のガラス筒体1に同心上に無機繊維製
の筒体2を配すると共に、同図(c)の上半部には同繊
維製筒体2とガラス筒体1との間に原料粉体からなる吸
着剤3を充填し、同図(c)の下半部には同繊維製筒体
2とガラス筒体1との間に原料粉体より微細な粉末から
なる吸着剤3″を充填し、前記繊維製筒体2の中空部内
に原液を供給した例を示している。
FIG. 1A shows an example in which an adsorbent 3 'made of a spherical body is filled in a glass cylinder 1 and a stock solution is allowed to flow down from above. FIG. FIG. 3C shows an example in which the glass cylinder is filled with the adsorbent 3 made of the raw material powder and the stock solution is allowed to flow down from above, and FIG. A fiber cylinder 2 is arranged, and an adsorbent 3 made of raw material powder is filled between the fiber cylinder 2 and the glass cylinder 1 in the upper half of FIG. In the lower half of FIG. 3 (c), an adsorbent 3 ″ made of finer powder than the raw material powder is filled between the fiber cylinder 2 and the glass cylinder 1, and the hollow of the fiber cylinder 2 is filled. 5 shows an example in which a stock solution is supplied into the unit.

【0015】これらの図からも理解できるように、例
による球状に成形した吸着剤3′の場合には部分的に原
液と接触しない部分が生じ、例のように何ら介在物を
介在させることなく直接に原料粉体の形態の吸着剤3と
原液とを接触させる場合には接触界面から3cmまでは1
分以内で均一に接触するが、それ以上の高さでは全く接
触体積は広がらないことが判明した。また、同図(c)
からも理解できるように、例では原料粉体の形態をも
つ吸着剤3を充填した場合には繊維製筒体の内部を原液
が透過して、吸着剤に拡散して速やかに全体的に接触さ
せることができた。
As can be understood from these figures, in the case of the spherically shaped adsorbent 3 'according to the example, there is a portion that does not come into contact with the undiluted solution, and without any intervening material as in the example. When the adsorbent 3 in the form of a raw material powder is brought into direct contact with the stock solution, 1 cm from the contact interface to 3 cm.
It was found that the contact was uniform within minutes, but the contact volume did not increase at any height higher than that. Also, FIG.
As can be understood from the above, in the example, when the adsorbent 3 in the form of the raw material powder is filled, the undiluted solution permeates through the inside of the fiber cylinder, diffuses into the adsorbent, and immediately contacts the whole. I was able to.

【0016】かかる実験により、吸着剤の形態の如何に
かかわらず、吸着剤に直接原液を供給しても接触面積の
増加は望めないことを意味しており、また繊維製の筒体
を介在させることにより原液の供給領域が吸着剤の全体
にわたるように広げられて、その透過領域が大幅に増加
するとともに透過速度も速まるものと考えられる。しか
も、吸着剤の形態は成形前の原料粉体の状態にあること
が望ましいことが理解できる。
According to this experiment, regardless of the form of the adsorbent, it is understood that an increase in the contact area cannot be expected even if the stock solution is directly supplied to the adsorbent, and that a fiber cylinder is interposed. It is considered that the supply region of the stock solution is thereby extended so as to cover the entire adsorbent, and the permeation region is greatly increased and the permeation speed is also increased. Moreover, it can be understood that the form of the adsorbent is desirably in the state of the raw material powder before molding.

【0017】前記実験結果を踏まえ、原液の供給路と吸
着剤の配置部との間に、例えば透過膜などの透過部材を
介在させることの影響について更に検討を加えた。従来
の膜を使用する場合には、再生時に耐熱性不良のため採
用することは不可能である。
Based on the above experimental results, further investigation was made on the effect of interposing a permeable member such as a permeable membrane between the supply path of the undiluted solution and the adsorbent placement portion. When a conventional film is used, it cannot be adopted because of poor heat resistance during reproduction.

【0018】そこで、原液を透過する様々な素材からな
る透過部材について実験を行った結果、高分子素材から
なる透過部材では原液中に高分子が溶出したりすること
で、異物により吸着剤の吸着性能が低下し、更にはそれ
らの異物を除去する機構が必要となるため、実用化する
ことは無理であるとの結論に達した。
Therefore, as a result of an experiment conducted on a permeable member made of various materials permeable to the undiluted solution, the polymer was eluted into the undiluted solution with the permeable member made of a polymer material, and the adsorbent was adsorbed by the foreign matter. It has been concluded that it is impossible to put it to practical use because the performance is lowered and a mechanism for removing those foreign substances is required.

【0019】一方、各種のセラミックスの焼結体からな
る透過部材を使用する場合には、その透過速度が適当で
あれば吸着剤との接触性の改善に極めて有効であること
が判明したが、一般的に焼結体の空隙は小さく原液の透
過速度が小さいため再生効率に難があり、その透過速度
を高めるため焼結体の空隙率を大きくして成形すると、
脆性が増して破損しやすく実用化にはそぐわない場合が
多く、採用が困難である。またセラミック焼結体は透過
抵抗が高いため、採用が困難である。
On the other hand, in the case of using a permeable member made of a sintered body of various ceramics, it has been found that if the permeation speed is appropriate, it is extremely effective in improving the contact with the adsorbent. Generally, the porosity of the sintered body is small and the permeation speed of the stock solution is small, so the regeneration efficiency is difficult.If the porosity of the sintered body is increased in order to increase the permeation speed, then molding is performed.
In many cases, the brittleness is increased and it is easily broken, which is not suitable for practical use, and it is difficult to adopt it. Further, since the ceramic sintered body has a high transmission resistance, it is difficult to adopt it.

【0020】そこで、本発明者は上記実験のごとく無機
繊維から得られるチューブ状の組紐を使い、その周囲に
パーティクル化しにくく吸着性能に優れるが、直接原液
を浸漬させる場合には、接触面積に限度がある上記非成
形の原料粉体からなる吸着剤を配置し、同組紐の空隙を
通して原液を吸着剤に供給したところ極めて均一な接触
が得られることを知った。無機繊維の素材としては、ア
ルミナ、シリカ、炭素、ガラス、アルミナ−シリカの混
合物などを使うことができ、前記繊維構造体としては単
なるシート状であってもよく、また必ずしも前述のよう
な組紐に限定されるものでもなく、無機繊維から所要の
密度で編成または織成された編織物であってもよいこと
は理解できよう。
Therefore, the present inventor uses a tubular braid obtained from inorganic fibers as in the above experiment, and is less likely to form particles around it and has excellent adsorption performance. However, when the stock solution is directly immersed, the contact area is limited. When an adsorbent composed of the above-mentioned non-molded raw material powder was arranged and the undiluted solution was supplied to the adsorbent through the gap of the braid, it was found that extremely uniform contact was obtained. As the material of the inorganic fiber, alumina, silica, carbon, glass, a mixture of alumina-silica, and the like can be used, and the fibrous structure may be a mere sheet, and may not necessarily be used in the above-described braid. It will be appreciated that the fabric is not limited and may be knitted or woven from inorganic fibers at the required density.

【0021】ただし、この場合、前記繊維構造体には次
の特性を満足すべきである。 (1) 繊維構造体の空隙が吸着剤の原料粉体より小さ
く、吸着剤が繊維構造体を通過しないようにすること。 (2) 耐熱性があること。 (3) 原液中にイオンやパーティクルの流出がないこ
と。
However, in this case, the fiber structure should satisfy the following characteristics. (1) The voids of the fibrous structure are smaller than the raw material powder of the adsorbent, and the adsorbent should not pass through the fibrous structure. (2) Heat resistance. (3) There should be no outflow of ions or particles in the stock solution.

【0022】以上の結果から、本発明方法にあっては前
記液体浸透部材が内外壁面間に多数の微細な連通孔を有
する耐熱性材料からなるチューブ状の円筒体であり、前
記吸着剤を前記円筒体の外周空間部に充填するととも
に、前記原液を前記円筒体の中空部に供給することが好
ましく、更に好ましくは前記液体浸透部材が無機繊維か
ら得られる織編物又は組紐から構成されるチューブ体か
らなり、前記吸着剤として非成形の原料粉体を使用する
ことである。図2は本発明方法による親水性溶剤と水と
の分離機構の説明図である。同図に示す装置は、図1
(c)に示したものと実質的に同一であるが、電熱線ヒ
ータ4をガラス筒体1の内周面と無機繊維製筒体2の外
周面にそれぞれ独立させて螺旋状に巻き回している。
From the above results, in the method of the present invention, the liquid permeable member is a tubular cylindrical body made of a heat-resistant material having a large number of fine communication holes between the inner and outer wall surfaces, and the adsorbent is It is preferable to supply the undiluted solution to the hollow portion of the cylindrical body while filling the outer circumferential space of the cylindrical body, and more preferably, the liquid-permeable member is formed of a woven or knitted fabric or a braid obtained from inorganic fibers. And using non-molded raw material powder as the adsorbent. FIG. 2 is an explanatory view of a separation mechanism of a hydrophilic solvent and water according to the method of the present invention. The device shown in FIG.
Although substantially the same as that shown in (c), the heating wire heater 4 is spirally wound independently on the inner peripheral surface of the glass cylindrical body 1 and the outer peripheral surface of the inorganic fiber cylindrical body 2, respectively. I have.

【0023】同図(a)は電熱線ヒータ4により加熱せ
ず、無機繊維製筒体2の中空部に原液を供給している。
この状態で、原液は無機繊維製筒体2を透過して、水と
IPAの一部が原料粉体からなる親水性吸着剤3に吸着
され、無機繊維製筒体2を透過して吸着されないIPA
は系外に回収される。
In FIG. 1A, the undiluted solution is supplied to the hollow portion of the inorganic fiber cylinder 2 without being heated by the heating wire heater 4.
In this state, the undiluted solution permeates through the inorganic fiber cylinder 2, and a part of water and IPA is adsorbed by the hydrophilic adsorbent 3 made of the raw material powder, and does not permeate through the inorganic fiber cylinder 2. IPA
Is collected outside the system.

【0024】ここで、同図(b)に示すようにガラス筒
体1の内周面に配された電熱線ヒータに通電されて吸着
剤3をIPAの蒸発温度(約83℃)以上まで加熱し
て、脱水IPAを蒸発させて回収する。または、蒸発温
度以下の脱水IPAは液状で回収されることもある。な
お、水の分子量はIPAの分子量よりも小さく、水は吸
着剤の細孔(4Å)に入るが、IPAは吸着剤の細孔に
入らない。即ち、水は吸吸着剤に吸着されるが、IPA
は吸着剤に吸着されず、吸着剤の周囲に存在するだけで
ある。そのため、IPAは蒸発温度に加熱することで蒸
発し、吸着剤に吸着された水は脱着温度以上に加熱する
ことで脱着される。
Here, as shown in FIG. 2B, a heating wire heater disposed on the inner peripheral surface of the glass tube 1 is energized to heat the adsorbent 3 to a temperature higher than the IPA evaporation temperature (about 83 ° C.). Then, the dehydrated IPA is evaporated and collected. Alternatively, dehydrated IPA below the evaporation temperature may be recovered in a liquid state. Note that the molecular weight of water is smaller than the molecular weight of IPA, and water enters the pores (4 °) of the adsorbent, but IPA does not enter the pores of the adsorbent. That is, although water is adsorbed by the adsorbent, IPA
Is not adsorbed by the adsorbent and only exists around the adsorbent. Therefore, the IPA evaporates by heating to the evaporating temperature, and the water adsorbed by the adsorbent is desorbed by heating to the desorption temperature or higher.

【0025】IPAの回収が終了すると、同図(c)に
示すように無機繊維性筒体2の外周面に配された電熱線
ヒータ4にも通電し、吸着剤3を周辺から水の脱着温度
以上(250〜350℃)に加熱する。この直接加熱に
より、吸着剤3に吸着されている水分の全てが速やかに
脱着し、系外に排出される。
When the recovery of the IPA is completed, as shown in FIG. 4C, the heating wire 4 disposed on the outer peripheral surface of the inorganic fibrous tubular body 2 is also energized to desorb the adsorbent 3 from the periphery. Heat to above temperature (250-350 ° C). By this direct heating, all of the water adsorbed on the adsorbent 3 is quickly desorbed and discharged out of the system.

【0026】しかして、原液を液状で前記繊維構造体に
透過させても既述したとおりの高い再生効率が達成され
るが、原液を直接加熱して気体状態で透過させるとき
は、更に再生効率が高まることを知った。しかしなが
ら、再生対象であるアルコール類やケトン類は沸点が低
く、可燃性であるため電熱線などによる直接加熱は危険
を伴うと考えられる。
Thus, the high regeneration efficiency as described above is achieved even when the undiluted solution is permeated through the fibrous structure, but when the undiluted solution is directly heated and permeated in a gaseous state, the regeneration efficiency is further increased. Knew that it would increase. However, since alcohols and ketones to be regenerated have low boiling points and are flammable, direct heating with a heating wire or the like is considered to be dangerous.

【0027】そこで、本発明を実用化するために安全性
をも踏まえて電熱線による直接加熱につき種々の実験を
行った。
Therefore, in order to put the present invention into practical use, various experiments were conducted on direct heating by a heating wire in consideration of safety.

【0028】図3は、その実験装置の模式図と、そのと
きの結果とを概略的に示している。その実験内容は、ア
ルミナ繊維を原料とする内径12mmの筒状の組紐2に
電熱線ヒータ4を組み込み、同組紐2にIPAを十分に
湿潤させると共に、組紐2の内部空間部に電気着火装置
5を設置して、IPAで湿潤された前記組紐1の下端を
IPA漕に浸漬する。
FIG. 3 schematically shows a schematic view of the experimental apparatus and the results at that time. The experiment was conducted by incorporating a heating wire heater 4 into a cylindrical braid 2 having an inner diameter of 12 mm and using alumina fiber as a raw material. Is installed, and the lower end of the braid 1 moistened with IPA is immersed in the IPA tank.

【0029】この状態で、次の2様の実験を行った。 (1) 組紐2の内部空間部に設置された着火装置5の着
火部を通電赤熱して30秒間経過させたところ、全く着
火は認められなかった。 (2) 同じく、組紐に組み込まれた電熱線ヒータ4を通
電赤熱したところ、組紐の外周面が燃焼した。 しかし、(1) 及び(2) の実験時に上方から観察しても、
組紐2の内部空間に炎の発生は皆無であって、筒状の組
紐2では内壁部に燃焼が起きないことが判明した。
In this state, the following two experiments were performed. (1) When the ignition portion of the ignition device 5 installed in the internal space of the braid 2 was energized and glowed for 30 seconds, no ignition was recognized. (2) Similarly, when the heating wire heater 4 incorporated in the braid was energized and glowed red, the outer peripheral surface of the braid burned. However, when observed from above during the experiments (1) and (2),
It was found that no flame was generated in the internal space of the braid 2 and no combustion occurred on the inner wall of the tubular braid 2.

【0030】以上の実験結果から、本発明方法では再生
効率が向上するため、前記液体浸透部材の中空部に供給
される原液を、同中空部内で直接加熱することが望まし
く、その場合にも上記繊維構造体の中空部内で発火が伴
うことがないため安全性も十分に確保される。
From the above experimental results, in order to improve the regeneration efficiency in the method of the present invention, it is desirable to directly heat the stock solution supplied to the hollow portion of the liquid permeable member in the hollow portion. Since ignition does not occur in the hollow portion of the fibrous structure, safety is sufficiently ensured.

【0031】そして、このように中空部内の原液を直接
加熱する場合には、溶剤の回収時に前記吸着剤の加熱温
度を前記溶剤の蒸発温度に設定して所定時間を経過さ
せ、吸着剤に吸着された水親和性溶剤を蒸発させて回収
し、その回収が終了した時点で加熱温度をゼオライト水
分脱着温度まで上昇させて水分を吸着剤から脱着させ
る。
When the undiluted solution in the hollow portion is directly heated as described above, the heating temperature of the adsorbent is set to the evaporation temperature of the solvent when the solvent is recovered, and a predetermined time elapses. The water-affinity solvent thus obtained is evaporated and collected. When the collection is completed, the heating temperature is raised to the zeolite water desorption temperature to desorb water from the adsorbent.

【0032】上記方法発明を実施するため、水を含有す
る親水性溶剤の原液中から水を分離して溶剤を再生する
ための本発明の装置にあっては、ケーシングと、前記ケ
ーシングの内部に収容され、前記原液供給空間を有する
とともに、微細な多数の連通孔を有する1以上の液体透
過部材と、前記液体透過部材の外部空間に充填された水
吸着性能に優れた吸着剤と、前記吸着剤を直接加熱する
加熱手段と、前記ケーシングに形成された前記溶剤の蒸
発出口とを備えてなることを特徴としている。
In order to carry out the method of the present invention, the apparatus of the present invention for regenerating a solvent by separating water from a stock solution of a hydrophilic solvent containing water comprises a casing and a casing. One or more liquid permeable members housed and having the undiluted liquid supply space and having a large number of fine communication holes, an adsorbent filled in an outer space of the liquid permeable member and having excellent water adsorption performance; It is characterized by comprising heating means for directly heating the agent, and an evaporation outlet for the solvent formed in the casing.

【0033】前記ケーシングは水分の蒸発出口を更に備
えており、溶剤回収時には前記水分蒸発出口を閉じて溶
剤回収口を開き、水分をケーシング外に排出するときは
前記蒸発出口を開き前記溶剤回収口を閉じる。
The casing is further provided with a water evaporation outlet. When the solvent is recovered, the water evaporation outlet is closed and the solvent recovery port is opened, and when the water is discharged out of the casing, the water evaporation port is opened and the solvent recovery port is opened. Close.

【0034】前記液体浸透部材が内外壁面間を連通する
多数の微細な連通孔を有する耐熱性材料からなるチュー
ブ状の円筒体であり、前記吸着剤が前記円筒体の外周空
間に充填されてなり、前記ケーシングの内部には前記円
筒体の中空部に前記原液を供給する原液供給手段を有し
ており、好ましくは前記液体浸透部材が無機繊維から得
られる織編物又は組紐からなる無機繊維製のチューブ体
であり、前記加熱手段が前記チューブ体の外周面に沿っ
て配設された電熱線である。
The liquid permeable member is a tubular cylindrical body made of a heat-resistant material having a large number of fine communication holes communicating between the inner and outer wall surfaces, and the adsorbent is filled in an outer peripheral space of the cylindrical body. The casing has a stock solution supply means for supplying the stock solution to the hollow portion of the cylindrical body, and preferably, the liquid permeable member is made of an inorganic fiber made of a woven or knitted fabric or a braid obtained from an inorganic fiber. The heating means is a heating wire disposed along an outer peripheral surface of the tube body.

【0035】更に前記液体浸透部材は無機繊維から得ら
れる径の異なる2以上の織編物又は組紐からなるチュー
ブ体であって、各チューブ体が軸線を一致させて順次外
装されるとともに、各チューブ体間の間隙空間に前記吸
着材及び電熱線が収容されるように変形させることもで
きる。
Further, the liquid permeable member is a tube made of two or more woven or knitted fabrics or braids obtained from inorganic fibers and having different diameters. The adsorbent and the heating wire may be deformed so as to be accommodated in the gap space therebetween.

【0036】そして、原液を気化した状態で前記体浸透
部材を透過させるときは、前記液体浸透部材の原液供給
中空部を直接加熱する加熱手段を更に有していてもよ
く、この場合、その加熱温度を前記溶剤の蒸発温度に設
定して所定時間を経過させて溶剤を蒸発回収するととも
に、同時間の経過後に前記吸着剤の加熱温度を水分の脱
着温度まで上昇させるための温度及び時間の制御手段を
有している。
In the case where the undiluted solution is allowed to pass through the body-penetrating member in a vaporized state, a heating means for directly heating the undiluted liquid supply hollow portion of the liquid-penetrating member may be further provided. Controlling the temperature and time for evaporating and recovering the solvent after elapse of a predetermined time by setting the temperature to the evaporating temperature of the solvent and elevating the heating temperature of the adsorbent to the desorption temperature of moisture after the elapse of the same time Means.

【0037】[0037]

【発明の実施の形態】以下、本発明の好適な実施形態を
図面を参照しつつ代表的な実施例をもって具体的に説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be specifically described below with reference to the accompanying drawings by way of typical examples.

【0038】(実施例1)図2(c)の装置と同様の、
内径が12mmのガラス筒体1の内部に無機繊維からな
る組紐2を同心上に配するとともに、前記ガラス筒体1
と組紐2との間に形成される空間部に以下に示す様々な
形態を有するゼオライトからなる吸着剤を充填した。前
記ガラス筒体1の内周面及び組紐2の外周面にはそれぞ
れ再生用の電熱線ヒータ4を螺旋状に巻き回した。
(Example 1) A device similar to the device shown in FIG.
A braid 2 made of inorganic fibers is concentrically arranged inside a glass cylinder 1 having an inner diameter of 12 mm, and the glass cylinder 1
The space formed between the braid and the braid 2 was filled with an adsorbent made of zeolite having various forms shown below. A heating wire heater 4 for reproduction was spirally wound around the inner peripheral surface of the glass cylinder 1 and the outer peripheral surface of the braid 2, respectively.

【0039】前記ゼオライトの形体は、成形前の形態に
ある原料粉体(150μ〜10μ)、球状成形品(10
〜15メッシュ)、円柱状成形品(直径1.5mm、長
さ5.0mm)、破砕品(14〜30メッシュ)の4種
類である。
The form of the zeolite may be a raw material powder (150 μm to 10 μm) in a form before molding, a spherical molded product (10 μm).
1515 mesh), a columnar molded product (diameter 1.5 mm, length 5.0 mm), and a crushed product (14 to 30 mesh).

【0040】かかる形態をもつゼオライトについて、同
一容積当たりの原液の処理量及び脱水処理後の水分量の
比較を行ったところ、表1に示す結果となった。ただ
し、1回当たりの再生電力は(0.5kwh/kg)と
一定にし、吸着剤の細孔直径はすべて4Åのものを用い
た。その他の共通実験条件として、原液中の水分を30
%とした。
The zeolite having such a form was subjected to comparison between the amount of the stock solution treated per volume and the amount of water after the dehydration treatment. The results are shown in Table 1. However, the regenerating power per operation was fixed at (0.5 kwh / kg), and the pore diameter of the adsorbent was all 4 mm. As another common experimental condition, the water content of the stock solution was 30
%.

【0041】[0041]

【表1】 [Table 1]

【0042】表1から明らかなように、吸着剤の形態と
しては結晶度の高い原料粉体が一定容積当たりのチャー
ジ量が最も少ない上に、一定時間毎の被処理液の処理量
が最も多く、しかも粉体化が無くパーティクルフリー化
が可能であることが理解できる。これは、図1に示し既
述した無機繊維製の組紐を用いることと相まって、本発
明装置のコンパクト化、処理環境のクリーン化及び耐久
性が保障されたことを意味する。
As is apparent from Table 1, as the form of the adsorbent, the raw material powder having a high degree of crystallinity has the smallest charge amount per fixed volume and the largest amount of the liquid to be treated per fixed time. In addition, it can be understood that particle-free processing is possible without powdering. This means that the use of the braid made of inorganic fibers shown in FIG. 1 and described above has ensured the compactness of the apparatus of the present invention, the cleanness of the processing environment, and the durability.

【0043】(実施例2)図4は本発明に係る親水性溶
剤の分離回収装置をモジュール化した実施例を概略で示
している。同実施例装置は、原液供給口11、親水性溶
剤出口12、水蒸気出口13及び窒素ガス入口14を有
する密閉状のチャンバ10と、前記原液供給口11に連
通し前記チャンバ10内の天井部に固設された原液貯留
槽15と、前記チャンバ10内であって前記原液貯留槽
15の下部空間内に立設された多数のアルルミナ繊維製
の筒状組紐16と、各組紐16間の間隙空間部に充填さ
れたゼオライトの原料粉体17と、多数の組紐の外周部
に連続して螺旋状に配された電熱線ヒータ18とを備え
ている。
(Embodiment 2) FIG. 4 schematically shows an embodiment in which the apparatus for separating and recovering a hydrophilic solvent according to the present invention is modularized. The apparatus of the embodiment includes a closed chamber 10 having a stock solution supply port 11, a hydrophilic solvent outlet 12, a steam outlet 13, and a nitrogen gas inlet 14, and a ceiling portion in the chamber 10 which communicates with the stock solution supply port 11. An undiluted solution storage tank 15, a large number of tubular braids 16 made of alumina fiber in the chamber 10 erected in the lower space of the undiluted solution storage tank 15, and a gap space between the braids 16. A zeolite raw material powder 17 filled in the portion, and a heating wire heater 18 spirally arranged continuously around the outer periphery of a number of braids are provided.

【0044】前記原液貯留槽15の底部には、前記多数
の筒状組紐16の各上部開口端に臨設する同数の液下ノ
ズル15aが設けられており、原液貯留槽15に貯留さ
れた原液は前記液下ノズル15aを通って各組紐16の
中空部内に滴下する。
At the bottom of the undiluted solution storage tank 15, the same number of under-drain nozzles 15a are provided at the upper open ends of the large number of tubular braids 16, and the undiluted solution stored in the undiluted solution storage tank 15 is The liquid is dripped into the hollow portion of each braid 16 through the submerged nozzle 15a.

【0045】前記親水性溶剤出口12及び水蒸気出口1
3は、それぞれバルブを有しており、溶剤の回収時には
親水性溶剤出口12が開くと共に、水蒸気出口13が閉
じ、水分脱着時には水蒸気出口13を開くと共に、親水
性溶剤出口12を閉じる。また、上記窒素ガス入口14
は、前記原液貯留槽15の下方で組紐16の上方の側壁
と、底壁との2箇所に形成されており、両入口間が同じ
窒素ガス供給源と切替バルブ19を介して連結されてい
る。更に、前記電熱線ヒータ18は外部電源20と接続
され、制御装置21からの指令により加熱温度及び加熱
時間が制御される。また、この制御装置21は図示せぬ
液圧回路と接続しており、前記親水性溶剤出口12及び
水蒸気出口13の各シャッタ及び前記窒素ガス供給路に
配された切替バルブ19を自動的に操作する操作指令を
発する。
The hydrophilic solvent outlet 12 and the steam outlet 1
Numerals 3 each have a valve, and when the solvent is recovered, the hydrophilic solvent outlet 12 is opened and the steam outlet 13 is closed. When moisture is desorbed, the steam outlet 13 is opened and the hydrophilic solvent outlet 12 is closed. The nitrogen gas inlet 14
Are formed below the stock solution storage tank 15 at two places, a side wall above the braid 16 and a bottom wall, and both inlets are connected to the same nitrogen gas supply source via a switching valve 19. . Further, the heating wire heater 18 is connected to an external power supply 20, and a heating temperature and a heating time are controlled by a command from a control device 21. The control device 21 is connected to a hydraulic circuit (not shown), and automatically operates the shutters of the hydrophilic solvent outlet 12 and the steam outlet 13 and the switching valve 19 disposed in the nitrogen gas supply passage. Issue an operation command.

【0046】上記構成を備えた本実施例によるモジュー
ルと、従来の間接吸着式及び浸透気化膜式による各分離
装置により、次の条件でその性能等を比較した。その結
果を表2に示した。その表2に示す以外の実施条件は、
吸着剤として実施例1で使用したゼオライトの原料粉体
体を用い、原液はIPA−水の混合液とした。ここで、
「間接吸着式」とはアルコールと水のような2つの物質
が気体で存在する状態において、この水分のみを吸着す
る方式をいう。
The performance and the like of the module according to the present embodiment having the above-mentioned configuration and the conventional indirect adsorption type and pervaporation membrane type separation devices were compared under the following conditions. The results are shown in Table 2. Implementation conditions other than those shown in Table 2 are as follows:
The raw material powder of zeolite used in Example 1 was used as an adsorbent, and a stock solution was a mixed solution of IPA-water. here,
"Indirect adsorption type" refers to a method of adsorbing only water in a state where two substances such as alcohol and water are present as gases.

【0047】[0047]

【表2】 [Table 2]

【0048】表2から理解できるように、本発明による
親水性溶剤の分離回収装置によると、従来の同様の装置
と比較してその装置容積が小さくコンパクトであって、
時間処理能力当たりの装置容積(L/(L/h))は4
0と最も小さいにも関わらず、他と比較して原液中の含
有水分量が多い場合にも溶剤の回収濃度が99.9%と
高く、しかも再生のための電力量も格段と少ない。
As can be understood from Table 2, according to the separation / recovery apparatus for a hydrophilic solvent according to the present invention, the volume of the apparatus is small and compact as compared with a similar apparatus of the related art.
The device volume per time processing capacity (L / (L / h)) is 4
Despite being the smallest value of 0, the recovery concentration of the solvent is as high as 99.9% even when the amount of water contained in the undiluted solution is large compared to the others, and the amount of electric power for regeneration is remarkably small.

【0049】また、上記モジュールによる原液中に含有
する金属の再生回収液中の残量について、ICP発光分
光分析によるIPA中の金属成分分析結果を表3に示
す。
Table 3 shows the results of analysis of the metal components in the IPA by ICP emission spectroscopy with respect to the remaining amount of the metal contained in the stock solution by the above-mentioned module in the regenerated and recovered liquid.

【0050】[0050]

【表3】 [Table 3]

【0051】表3から、ゼオライトを使用するとIPA
に含有する金属の全てが殆ど吸着除去されることが理解
できる。
From Table 3, it can be seen that when zeolite is used, IPA
It can be understood that almost all of the metal contained in is removed by adsorption.

【0052】(実施例3)図5は本発明の第3実施例を
示しており、同実施例によれば径の異なる2本の筒状組
紐16a,16bを同心上に配し、両組紐16a,16
bと大径の組紐16aの外周側とにそれぞれゼオライト
の原料粉体からなる吸着剤17を充填すると共に、前記
大径の組紐16aの内周面と小径の組紐16bの外周面
とに、それぞれ螺旋状に電熱線ヒータ18a,18bを
巻き回している。
(Embodiment 3) FIG. 5 shows a third embodiment of the present invention. According to this embodiment, two tubular braids 16a and 16b having different diameters are arranged concentrically, and both braids are arranged. 16a, 16
b and the outer peripheral side of the large-diameter braid 16a are filled with the adsorbent 17 made of zeolite raw material powder, and the inner peripheral surface of the large-diameter braid 16a and the outer peripheral surface of the small-diameter braid 16b, respectively. The heating wire heaters 18a and 18b are spirally wound.

【0053】この状態で上記第1実施例と同一の条件で
小径の組紐16bの中空部に原液を供給すると同時に電
熱線ヒータ18a,18bに通電して吸着剤17を直接
加熱した。処理後のIPAに含有する水の濃度は0.0
6wt%を越えなかった。
In this state, the undiluted solution was supplied to the hollow portion of the small-diameter braid 16b under the same conditions as in the first embodiment, and at the same time, the heating wires 18a and 18b were energized to directly heat the adsorbent 17. The concentration of water contained in the IPA after the treatment is 0.0
It did not exceed 6 wt%.

【0054】(実施例4)上記第3実施例と同一条件
で、電熱線ヒータ18a,18bに代えて図6に示すよ
うに細テープ状の電熱テープ18c,18dを第3実施
例と同様に同一のピッチで螺旋状に巻き回して、原液を
処理した。その結果、処理後のIPAに含有する水の量
は0.05wt%以下であった。
(Embodiment 4) Under the same conditions as in the third embodiment, thin tape-shaped electric heating tapes 18c and 18d are used in place of the heating wire heaters 18a and 18b, as shown in FIG. The stock solution was processed by spirally winding at the same pitch. As a result, the amount of water contained in the treated IPA was 0.05 wt% or less.

【0055】以上の結果から、吸着剤の単位重量当たり
を加熱するヒーター面積が増加する程、吸着剤17に対
する加熱分布が均一化し、処理後におけるIPA中の水
分の量が少なくなることが分かる。
From the above results, it can be seen that as the area of the heater for heating the adsorbent per unit weight increases, the heating distribution to the adsorbent 17 becomes more uniform, and the amount of water in the IPA after the treatment decreases.

【0056】(実施例5)実施例1と同じ装置を用い、
ゼオライトの原料粉体からなる吸着剤を交換することな
く100g用いると共に、60gの原液を供給してIP
Aを回収後、250℃、3時間乾燥処理を行い、吸着剤
に吸着された水分を脱着する操作を5回行い、各回ごと
の水の吸・脱着特性差を検討した。その結果を、表4に
示す。なお、原液としては水分30重量%のIPA混合
液であり、吸着剤の再生脱水用の電力は全て0.5 (kw
h/kg) とした。
Example 5 Using the same apparatus as in Example 1,
100 g of adsorbent consisting of zeolite raw material powder is used without replacement, and 60 g of undiluted solution is supplied to supply IP.
After recovering A, a drying treatment was performed at 250 ° C. for 3 hours, and an operation of desorbing water adsorbed on the adsorbent was performed five times, and a difference in water absorption / desorption characteristics in each time was examined. Table 4 shows the results. The undiluted solution is an IPA mixed solution having a water content of 30% by weight, and the power for regeneration and dehydration of the adsorbent is all 0.5 (kw).
h / kg).

【0057】[0057]

【表4】 [Table 4]

【0058】表4から、本発明による分離回収装置によ
ると、水に対する吸・脱着操作の繰り返しによっても、
その脱着機能が低下していないことが分かる。
As shown in Table 4, according to the separation and recovery apparatus of the present invention, even if the operation of absorbing and desorbing water is repeated,
It can be seen that the desorption function has not been reduced.

【0059】(実施例6)図2(c)に示す装置に、更
に無機繊維性組紐2の中空部をも直接加熱するため電熱
線ヒータを配し、原液を気化させて無機繊維性組紐2を
透過させた。その結果、透過速度は液状のままで透過さ
せる場合に比べて2倍程度も高まると同時に吸着剤3の
全体に均一に素早く吸着された。これは、液状で吸着剤
に吸着させる場合には、上部の吸着剤のみに吸着されて
飽和し、下部の吸着剤は上部からの拡散により吸着され
ることになるため、吸着速度が遅くなるものと考えられ
る。
Example 6 A heating wire heater for directly heating the hollow portion of the inorganic fibrous braid 2 is further provided in the apparatus shown in FIG. Was transmitted. As a result, the permeation speed was about twice as high as that in the case where the permeation was performed in a liquid state, and at the same time, the adsorbent 3 was uniformly and quickly adsorbed. This is because when adsorbed in liquid form, only the upper adsorbent adsorbs and saturates, and the lower adsorbent is adsorbed by diffusion from the upper part, resulting in a lower adsorption speed. it is conceivable that.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による親水性溶剤と水との分離機構の説
明図である。
FIG. 1 is an explanatory view of a separation mechanism of a hydrophilic solvent and water according to the present invention.

【図2】本発明による親水性溶剤と水との分離手順の一
態様を示す説明図である。
FIG. 2 is an explanatory diagram showing one embodiment of a procedure for separating a hydrophilic solvent and water according to the present invention.

【図3】本発明装置の着火実験説明図である。FIG. 3 is an explanatory diagram of an ignition experiment of the device of the present invention.

【図4】本発明をモジュール化した代表的な再生装置例
を示す概略構成図である。
FIG. 4 is a schematic configuration diagram showing a typical example of a reproducing apparatus in which the present invention is modularized.

【図5】本発明装置の他の実施例を示す要部の概略断面
図である。
FIG. 5 is a schematic sectional view of a main part showing another embodiment of the device of the present invention.

【図6】本発明装置の更に他の実施例を示す要部の概略
構成図である。
FIG. 6 is a schematic configuration diagram of a main part showing still another embodiment of the apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス筒体 2,16 無機繊維製組紐 3,17 吸着剤 4,18 電熱線ヒータ 5 着火装置 10 チャンバ 11 原液供給口 12 親水性溶剤出口 13 水蒸気出口 14 窒素ガス入口 15 原液貯留漕 19 切替バルブ 20 外部電源 21 制御装置 DESCRIPTION OF SYMBOLS 1 Glass cylinder 2, 16 Inorganic fiber braid 3, 17 Adsorbent 4, 18 Heating wire heater 5 Ignition device 10 Chamber 11 Stock solution supply port 12 Hydrophilic solvent outlet 13 Steam outlet 14 Nitrogen gas inlet 15 Stock solution storage tank 19 Switching valve 20 external power supply 21 controller

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 水を含有する親水性溶剤の原液中から水
を分離して溶剤を回収する方法であって、 水吸着性能に優れた吸着剤に液体透過部材を介して前記
原液を直接接触させること、及び前記吸着剤を直接加熱
して同吸着剤に吸着した水分を脱着させること、を含ん
でなることを特徴とする親水性溶剤再生方法。
1. A method for recovering a solvent by separating water from a stock solution of a hydrophilic solvent containing water, wherein the stock solution is directly contacted with an adsorbent having excellent water adsorption performance via a liquid permeable member. And directly heating the adsorbent to desorb water adsorbed on the adsorbent.
【請求項2】 前記液体浸透部材が内外壁面間が多数の
微細な連通孔を有する耐熱性材料からなるチューブ状の
円筒体であり、 前記吸着剤を前記円筒体の外周空間部に充填すること、
及び前記原液を前記円筒体の中空部に供給すること、を
含む請求項1記載の親水性溶剤分離回収方法。
2. The liquid permeable member is a tubular cylindrical body made of a heat-resistant material having a large number of fine communication holes between inner and outer wall surfaces, and the adsorbent is filled in an outer peripheral space of the cylindrical body. ,
And supplying the undiluted solution to a hollow portion of the cylindrical body.
【請求項3】 前記液体浸透部材が無機繊維から得られ
る織編物又は組紐から構成されるチューブ体からなる請
求項2記載の親水性溶剤再生方法。
3. The method for regenerating a hydrophilic solvent according to claim 2, wherein the liquid permeable member is a tube formed of a woven or knitted fabric obtained from inorganic fibers or a braid.
【請求項4】 前記吸着剤として未成形の原料粉を使用
することを含む請求項2又は3記載の親水性溶剤分離回
収方法。
4. The method for separating and recovering a hydrophilic solvent according to claim 2, further comprising using unformed raw material powder as the adsorbent.
【請求項5】 前記液体浸透部材の中空部に供給される
原液を、同中空部内で直接加熱することを含む請求項2
又は3記載の親水性溶剤分離回収方法。
5. The method according to claim 2, further comprising directly heating the stock solution supplied to the hollow portion of the liquid permeable member in the hollow portion.
Or the method for separating and recovering a hydrophilic solvent according to 3.
【請求項6】 前記加熱が電熱線による直接加熱である
請求項1〜5のいずれかに記載の親水性溶剤再生方法。
6. The method for regenerating a hydrophilic solvent according to claim 1, wherein the heating is direct heating by a heating wire.
【請求項7】 前記加熱温度を前記溶剤の蒸発温度に設
定して所定時間を経過させること、及び同時間の経過後
に前記吸着剤の加熱温度を水分の脱着温度まで上昇させ
ることを含む請求項1〜6記載の親水性溶剤分離回収方
法。
7. The method according to claim 7, further comprising: setting the heating temperature to the evaporating temperature of the solvent for a predetermined time, and increasing the heating temperature of the adsorbent to the desorption temperature of moisture after the elapse of the same time. 7. The method for separating and recovering a hydrophilic solvent according to 1 to 6.
【請求項8】 前記溶剤がアルコール類、ケトン類又は
カルボン酸から選択され、前記吸着剤がゼオライトであ
る請求項1〜7記載の親水性溶剤分離回収方法。
8. The method according to claim 1, wherein the solvent is selected from alcohols, ketones or carboxylic acids, and the adsorbent is zeolite.
【請求項9】 水を含有する親水性溶剤の原液中から水
を分離して溶剤を分離回収する装置であって、 原液の供給部を有するケーシングと、 前記ケーシングの内部に収容され、前記原液供給空間を
有するとともに、微細な多数の連通孔を有する1以上の
液体透過部材と、 前記液体透過部材の外部空間に充填された水吸着性能に
優れた吸着剤と、 前記吸着剤を直接加熱する加熱手段と、 前記ケーシングに形成された前記溶剤の回収口と、を備
えてなることを特徴とする親水性溶剤分離回収装置。
9. An apparatus for separating and recovering a solvent by separating water from a stock solution of a hydrophilic solvent containing water, comprising: a casing having a supply section for the stock solution; One or more liquid permeable members having a supply space and a large number of fine communication holes, an adsorbent filled with an outer space of the liquid permeable member and having excellent water adsorption performance, and directly heating the adsorbent A hydrophilic solvent separation / recovery device comprising: a heating means; and a recovery port for the solvent formed in the casing.
【請求項10】前記ケーシングに水分の蒸発出口を更に
備えてなる請求項9記載の親水性溶剤分離回収装置。
10. The apparatus for separating and recovering a hydrophilic solvent according to claim 9, further comprising an outlet for evaporating moisture in the casing.
【請求項11】前記液体浸透部材が内外壁面間を連通す
る多数の微細な連通孔を有する耐熱性材料からなるチュ
ーブ状の円筒体であり、前記吸着剤が前記円筒体の外周
空間に充填されてなり、前記ケーシングの内部には前記
円筒体の中空部に前記原液を供給する原液供給手段を有
してなる請求項9又は10記載の親水性溶剤分離回収装
置。
11. The liquid-permeable member is a tubular cylindrical body made of a heat-resistant material having a large number of fine communication holes communicating between inner and outer wall surfaces, and the adsorbent is filled in an outer peripheral space of the cylindrical body. The hydrophilic solvent separation / recovery device according to claim 9 or 10, further comprising a stock solution supply means for supplying the stock solution to a hollow portion of the cylindrical body inside the casing.
【請求項12】前記液体浸透部材が無機繊維から得られ
る織編物又は組紐からなるチューブ体であり、前記加熱
手段が前記チューブ体の外周面に沿って配設された電熱
ヒータである請求項9〜11のいずれかに記載の親水性
溶剤分離回収装置。
12. The liquid permeating member is a tube made of a woven or knitted fabric or a braid obtained from inorganic fibers, and the heating means is an electric heater disposed along the outer peripheral surface of the tube. 12. The apparatus for separating and collecting a hydrophilic solvent according to any one of claims 11 to 11.
【請求項13】前記液体浸透部材が無機繊維から得られ
る径の異なる2以上の織編物又は組紐からなるチューブ
体であって、各チューブ体が軸線を一致させて順次外装
されるとともに、各チューブ体間の間隙空間に前記吸着
材及び電熱線が収容されてなる請求項11又は12記載
の親水性溶剤分離回収装置。
13. A tube body in which the liquid-permeable member is made of two or more woven or knitted fabrics or braids having different diameters obtained from inorganic fibers. The hydrophilic solvent separation / recovery device according to claim 11 or 12, wherein the adsorbent and the heating wire are accommodated in a gap space between the bodies.
【請求項14】前記液体浸透部材の原液供給中空部を直
接加熱する加熱手段を更に有してなる請求項11〜13
のいずれかに記載の親水性溶剤分離回収装置。
14. The apparatus according to claim 11, further comprising heating means for directly heating the raw liquid supply hollow portion of said liquid permeable member.
The hydrophilic solvent separation and recovery device according to any one of the above.
【請求項15】前記溶剤がアルコール類、ケトン類又は
カルボン酸であり、前記吸着剤が未成形の原料粉からな
るゼオライトである請求項9〜14のいずれかに記載の
親水性溶剤分離回収装置。
15. The apparatus for separating and recovering a hydrophilic solvent according to claim 9, wherein the solvent is an alcohol, a ketone or a carboxylic acid, and the adsorbent is a zeolite composed of unformed raw material powder. .
【請求項16】前記加熱温度を前記溶剤の蒸発温度に設
定して所定時間を経過させて溶剤を蒸発回収するととも
に、同時間の経過後に前記吸着剤の加熱温度を水分の脱
着温度まで上昇させて水分を脱着させるための温度・時
間の制御手段を有してなる請求項14記載の親水性溶剤
分離回収装置。
16. The method according to claim 16, wherein the heating temperature is set to an evaporation temperature of the solvent, and the solvent is evaporated and recovered after a lapse of a predetermined time, and after the lapse of the same time, the heating temperature of the adsorbent is increased to a desorption temperature of moisture. 15. The apparatus for separating and recovering a hydrophilic solvent according to claim 14, further comprising control means for controlling temperature and time for desorbing moisture.
JP19235097A 1997-07-17 1997-07-17 Method and apparatus for separating and recovering hydrophilic solvent Pending JPH1133304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19235097A JPH1133304A (en) 1997-07-17 1997-07-17 Method and apparatus for separating and recovering hydrophilic solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19235097A JPH1133304A (en) 1997-07-17 1997-07-17 Method and apparatus for separating and recovering hydrophilic solvent

Publications (1)

Publication Number Publication Date
JPH1133304A true JPH1133304A (en) 1999-02-09

Family

ID=16289823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19235097A Pending JPH1133304A (en) 1997-07-17 1997-07-17 Method and apparatus for separating and recovering hydrophilic solvent

Country Status (1)

Country Link
JP (1) JPH1133304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149040A (en) * 2008-12-25 2010-07-08 Toyobo Co Ltd Organic solvent-containing gas treating system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149040A (en) * 2008-12-25 2010-07-08 Toyobo Co Ltd Organic solvent-containing gas treating system

Similar Documents

Publication Publication Date Title
JP3936867B2 (en) Selective adsorption and desorption of gases by electrically heated activated carbon fiber fabric elements.
US5701762A (en) Apparatus for recovering high-boiling point solvents
CA1149308A (en) Process and apparatus for recovering hydrocarbons from air-hydrocarbon vapor mixtures
US4737164A (en) Process for recovering contaminants from gases
JP2013059760A (en) Adsorption unit, adsorption device, and method for regenerating thereof
DK152018B (en) METHOD AND GAS FRACTION APPARATUS WITH HEAT ACTIVATION
DK153369B (en) METHOD AND GAS FRACTION APPARATUS USING MICROWAVES
US5761910A (en) High capacity gas storage and dispensing system
JP2001322801A (en) Hydrogen storage device
CN216396378U (en) Multi-section current heating desorption system
JP2000000425A (en) Treatment of low-concentration gaseous organic solvent and its treatment apparatus
JP2002102693A (en) Method for regenerating conductive adsorbing agent charged with organic substance
JPH1133304A (en) Method and apparatus for separating and recovering hydrophilic solvent
JP3994157B2 (en) Method and apparatus for purifying gases containing organic contaminants
JPS5824319A (en) Treating device for waste gas of fumigation
JP4851432B2 (en) Volatile organic matter recovery processing apparatus and volatile organic matter recovery processing system having the same
JP3620650B2 (en) Gas processing apparatus and processing method
JPH0631163A (en) Method and device for regeneration of activated carbon and adsorption treating device
JPH02307527A (en) Solvent adsorbing material and solvent recovery apparatus
JP4515571B2 (en) Solvent recovery device and solvent recovery method
JP2000229214A (en) Recovering device and recovering method for hydrophilic solvent
TWM570308U (en) No heat regeneration system
JPH05154379A (en) Heat regenerating device for active carbon
US20220410061A1 (en) Gas-processing systems and methods
JP4051606B2 (en) Gas processing apparatus and gas processing method using the same