JPH11332979A - Membrane type blood dialyzer - Google Patents

Membrane type blood dialyzer

Info

Publication number
JPH11332979A
JPH11332979A JP10145511A JP14551198A JPH11332979A JP H11332979 A JPH11332979 A JP H11332979A JP 10145511 A JP10145511 A JP 10145511A JP 14551198 A JP14551198 A JP 14551198A JP H11332979 A JPH11332979 A JP H11332979A
Authority
JP
Japan
Prior art keywords
endotoxin
membrane
hollow fiber
dialysate
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10145511A
Other languages
Japanese (ja)
Other versions
JP4042876B2 (en
Inventor
Noriyuki Hosoya
範行 細矢
Masatomi Sasaki
正富 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP14551198A priority Critical patent/JP4042876B2/en
Publication of JPH11332979A publication Critical patent/JPH11332979A/en
Application granted granted Critical
Publication of JP4042876B2 publication Critical patent/JP4042876B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the infiltration of endotoxin from a dialyzate side to a blood side by interposing an endotoxin adsorbent in dialyzate side flow passages. SOLUTION: Fibers 21 which adsorb the endotoxin are interposed between hollow fiber membranes 3 forming the dialyzate side flow passages. These fibers 21 are arranged at the hollow fiber membranes 3 or may be knitted among the hollow fiber membranes 3. The fibers may also be arranged at the plane membranes or among the plane membranes of the dialyzate flow passages. The ratio of the endotoxin adsorbent cross-sectional area to the membrane cross-sectional area is preferably specified to about 5 to about 90% in the case of the fibers 21. About 20 to about 50% is more preferable. Endotoxin adsorption efficiency is higher at about >=20% and the assembly of the blood dialyzer is easier at about <=50%. The endotoxin concn. of the dialyzate may be lowered below the detection threshold and endotoxin prohibition performance improved by this constitution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、血液透析療法およ
び血液透析濾過療法において利用される膜型血液透析器
に関する。
The present invention relates to a membrane type hemodialyzer used in hemodialysis therapy and hemodiafiltration therapy.

【0002】[0002]

【従来の技術】分子量11,800ダルトンのβ2−ミ
クログロブリンが尿毒素物質といわれてから、本来の小
分子物質および中分子物質のみならず分子量約20,0
00〜40,000ダルトンの低分子蛋白の除去をも目
的として、血液透析膜の大孔径化および活性層の薄膜化
という血液透析膜のハイパフォーマンス化が推進されて
きたが、これによりエンドトキシンの血液側への侵入が
懸念されるようになった。発熱物質として知られるエン
ドトキシンは、グラム陰性菌の表皮の構成成分であり、
生菌では通常ミセル状態で存在しその分子量は数百万ダ
ルトンであるが、菌が死ぬと分子量数千〜数万ダルトン
の小片(フラグメント)となって遊離する。即ち、従
来、血液透析膜の膜孔径はエンドトキシンのフラグメン
トが通過できない程度の大きさであったため、血液透析
においては逆濾過によるエンドトキシンの血液側への混
入は大きな問題とならなかったが、大孔径化によりエン
ドトキシンの侵入が問題となってきたのである。また、
血液透析濾過においても、血液透析膜の大孔径化による
エンドトキシンの侵入が懸念されている。特に、血液透
析濾過療法の一種であるプッシュプル血液透析濾過法
は、透析液側から強制的に大量の濾過・逆濾過を促進し
たものであるから、エンドトキシンの血液側への侵入の
防止が大きな課題となる。
2. Description of the Related Art Since β-microglobulin having a molecular weight of 11,800 daltons has been referred to as a uremic substance, not only the original small and medium molecular substances but also a molecular weight of about 20,0.
For the purpose of removing low molecular weight proteins of 00 to 40,000 daltons, the high performance of the hemodialysis membrane has been promoted by increasing the diameter of the hemodialysis membrane and reducing the thickness of the active layer. Has become a concern. Endotoxin, known as a pyrogen, is a constituent of the epidermis of Gram-negative bacteria,
Live bacteria usually exist in a micelle state and have a molecular weight of several million daltons, but when the bacteria die, they are released as small fragments having a molecular weight of thousands to tens of thousands of daltons. That is, conventionally, since the membrane pore size of the hemodialysis membrane was so large that fragments of endotoxin could not pass through, in hemodialysis, the incorporation of endotoxin into the blood side by back-filtration did not pose a major problem. The invasion of endotoxin has become a problem as a result of the development. Also,
Also in hemodiafiltration, there is a concern that endotoxin may enter due to an increase in the diameter of the hemodialysis membrane. In particular, the push-pull hemodiafiltration method, a type of hemodiafiltration therapy, forcibly promotes a large amount of filtration and back-filtration from the dialysate side, so that endotoxin is largely prevented from entering the blood side. Will be an issue.

【0003】一方、血液透析濾過のコスト削減等を目的
として、滅菌した置換液の代わりに透析液を患者の体内
に注入するオンライン血液透析濾過等の試みがなされて
いる。この場合の透析液には施設水、水道水等が用いら
れるが、これらの中には、エンドトキシンが多く存在す
るので問題となっている。
On the other hand, for the purpose of reducing the cost of hemodiafiltration, online hemodiafiltration or the like in which a dialysate is injected into a patient's body instead of a sterilized replacement liquid has been attempted. In this case, facility water, tap water, and the like are used as the dialysate, but these are problematic because they contain a large amount of endotoxin.

【0004】従来から、施設水や水道水、または透析液
中のエンドトキシンのフラグメントを除去するために
は、疎水性多孔質膜の分画分子量特性を利用した濾過に
よる手法が利用されてきた。これは、エンドトキシンフ
ラグメントの大きさでふるい分けできることを利用した
ものであり、透析器に流入する透析液を透析器入口以前
の流路で濾過するものである。しかし、前記の手法では
濾過フィルターを再利用するため、エンドトキシン濃度
を厳密に低く管理するのが困難であり、かつ、コストが
かかるという欠点があった。また、濾過フィルターを通
った透析液が、透析液回路用チューブと血液透析器の接
合部において、エンドトキシンにより再汚染されてしま
うという問題もあった。従って、大孔径の血液透析膜を
利用したハイパフォーマンス血液透析器であって、エン
ドトキシンの侵入が高い精度で防止され、かつ、コスト
の安価な膜型血液透析器が望まれていた。
[0004] Conventionally, in order to remove endotoxin fragments in facility water, tap water, or dialysate, a filtration method utilizing the molecular weight cutoff characteristics of a hydrophobic porous membrane has been used. This utilizes the fact that the size of endotoxin fragments can be sieved, and the dialysate flowing into the dialyzer is filtered through a channel before the dialyzer inlet. However, in the above-mentioned method, since the filtration filter is reused, it is difficult to control the endotoxin concentration strictly low, and there is a disadvantage that the cost is high. There is also a problem that the dialysate passed through the filtration filter is re-contaminated with endotoxin at the junction between the dialysate circuit tube and the hemodialyzer. Therefore, a high-performance hemodialyzer using a large-diameter hemodialysis membrane, which can prevent invasion of endotoxin with high accuracy and is inexpensive, has been desired.

【0005】[0005]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、エンドトキシンの透析液側から血液側への
侵入を防ぐ膜型血液透析器を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a membrane type hemodialyzer which prevents endotoxin from penetrating from the dialysate side to the blood side.

【0006】[0006]

【課題を解決するための手段】本発明は、中空糸膜を含
むハウジングを有し、中空糸内部に血液側流路が形成さ
れ、中空糸外部に透析液側流路が中空糸膜を隔てて形成
されている膜型血液透析器において、該透析液側流路に
エンドトキシン吸着材を介在させた膜型血液透析器を提
供する。
SUMMARY OF THE INVENTION The present invention has a housing including a hollow fiber membrane, a blood-side flow path is formed inside the hollow fiber, and a dialysate-side flow path is provided outside the hollow fiber with the hollow fiber membrane interposed therebetween. The present invention provides a membrane hemodialyzer in which an endotoxin adsorbent is interposed in the dialysate-side flow path.

【0007】本発明は、平膜を含むハウジングを有し、
血液側流路と透析液側流路が平膜を隔てて形成されてい
る膜型血液透析器において、該透析液側流路を形成する
平膜間にエンドトキシン吸着材を介在させた膜型血液透
析器を提供する。
The present invention has a housing including a flat membrane,
In a membrane type hemodialyzer in which a blood side channel and a dialysate side channel are formed with a flat membrane interposed therebetween, a membrane type blood in which an endotoxin adsorbent is interposed between the flat membranes forming the dialysate side channel Provide a dialyzer.

【0008】前記エンドトキシン吸着材が、エンドトキ
シン吸着剤をコートした繊維、メッシュまたは不織布で
あることが好ましい。
[0008] It is preferable that the endotoxin adsorbent is a fiber, a mesh or a nonwoven fabric coated with an endotoxin adsorbent.

【0009】[0009]

【発明の実施の形態】以下、本発明の構成を図面を参照
しつつ説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of the present invention will be described below with reference to the drawings.

【0010】本発明の第1の態様は、中空糸膜を含むハ
ウジングを有し、中空糸内部に血液側流路が形成され、
中空糸外部に透析液側流路が中空糸膜を隔てて形成され
ている膜型血液透析器において、該透析液側流路にエン
ドトキシン吸着材を介在させた膜型血液透析器である。
本発明の第2の態様は、平膜を含むハウジングを有し、
血液側流路と透析液側流路が平膜を隔てて形成されてい
る膜型血液透析器において、該透析液側流路を形成する
平膜間にエンドトキシン吸着材を介在させた膜型血液透
析器である。
According to a first aspect of the present invention, there is provided a housing including a hollow fiber membrane, wherein a blood-side flow path is formed inside the hollow fiber,
A membrane hemodialyzer in which a dialysate-side flow path is formed outside a hollow fiber with a hollow fiber membrane interposed therebetween, wherein an endotoxin adsorbent is interposed in the dialysate-side flow path.
A second aspect of the present invention has a housing including a flat membrane,
In a membrane type hemodialyzer in which a blood side channel and a dialysate side channel are formed with a flat membrane interposed therebetween, a membrane type blood in which an endotoxin adsorbent is interposed between the flat membranes forming the dialysate side channel It is a dialyzer.

【0011】本発明に用いられるエンドトキシン吸着材
は、エンドトキシンを吸着できる繊維、不織布またはメ
ッシュ等であり、特に限定されず、エンドトキシン吸着
剤で処理した繊維、メッシュ、不織布、スポンジ、多孔
体等を用いることができる。エンドトキシン吸着剤は、
例えば、カチオン性樹脂、キトサン、N,N−ジメチル
アクリルアミドおよび/またはN,N−ジメチルアミノ
アルキルアクリルアミドと架橋型モノマーとの共重合
体、グリシジルメタクリレートとエチレングリコールジ
メタクリレートとの共重合体、アミノアルキルメタクリ
レートおよびアルキルメタクリレートまたはビニル系単
量体の共重合体、アミノ基を有するポリアルキレンオキ
サイド、ポリエチレンイミン、アリルアミン塩酸塩とジ
アリルアミン塩酸塩の共重合体、シリコンポリマー、パ
ラフィン、ポリアリルアミンをグルタルアルデヒドによ
り架橋処理したポリマー、アリルアミン塩酸塩と共重合
性ビニルモノマーとの共重合体、スルホン酸基を有する
スチレン−ジビニルベンゼン共重合体、ポリアリレート
とポリエーテルスルホンを有する重合体、固定化ポリミ
キシン、アジリジン化合物のポリマーが挙げられる。な
かでも、繊維、メッシュ、不織布等に処理しやすいこと
から、ポリエチレンイミンが好ましい。エンドトキシン
吸着剤が固定される繊維、メッシュ、不織布等の素材
は、例えば、ポリエステル、テトロン、ガラス繊維、レ
ーヨン、キュプラ、アセテート、酢化アセテート、ビニ
ロン、ナイロン、ビニリデン、アクリル、ポリウレタン
(スパンデックス)、綿、羊毛、絹、ポリ塩化ビニル、
ポリ尿素、ポリエチレン、ポリプロピレンが挙げられ
る。なかでも、耐熱性および加工性が優れるポリエステ
ルが好ましい。エンドトキシン吸着剤を繊維、メッシ
ュ、不織布等に固定する処理は、コーティング、組成物
として混合する方法等が挙げられるが、コーティングに
よるのが好ましい。コーティング処理は、浸漬、熱処
理、共有結合等の化学処理が例示される。
The endotoxin adsorbent used in the present invention is a fiber, a nonwoven fabric, a mesh, or the like that can adsorb endotoxin, and is not particularly limited. be able to. Endotoxin adsorbent
For example, a cationic resin, a copolymer of chitosan, N, N-dimethylacrylamide and / or N, N-dimethylaminoalkylacrylamide and a crosslinkable monomer, a copolymer of glycidyl methacrylate and ethylene glycol dimethacrylate, aminoalkyl Copolymer of methacrylate and alkyl methacrylate or vinyl monomer, polyalkylene oxide having amino group, polyethyleneimine, copolymer of allylamine hydrochloride and diallylamine hydrochloride, silicone polymer, paraffin, polyallylamine cross-linked with glutaraldehyde Treated polymer, copolymer of allylamine hydrochloride and copolymerizable vinyl monomer, styrene-divinylbenzene copolymer having sulfonic acid group, polyarylate and polyether sulfone Polymers having a down, immobilized polymyxin include polymers of aziridine compounds. Among them, polyethyleneimine is preferred because it can be easily processed into fibers, meshes, nonwoven fabrics and the like. Materials such as fibers, meshes, and nonwoven fabrics to which the endotoxin adsorbent is fixed include, for example, polyester, tetron, glass fiber, rayon, cupra, acetate, acetate acetate, vinylon, nylon, vinylidene, acrylic, polyurethane (spandex), and cotton. , Wool, silk, polyvinyl chloride,
Examples include polyurea, polyethylene, and polypropylene. Among them, polyester having excellent heat resistance and workability is preferable. The treatment for fixing the endotoxin adsorbent to fibers, meshes, nonwoven fabrics and the like includes coating, a method of mixing as a composition, and the like, but coating is preferred. Examples of the coating treatment include chemical treatments such as immersion, heat treatment, and covalent bonding.

【0012】また、本発明に用いられるエンドトキシン
吸着材は、前記エンドトキシン吸着剤自体を繊維、メッ
シュ、不織布等に加工、成形したものであってもよい。
The endotoxin adsorbent used in the present invention may be the endotoxin adsorbent itself processed into a fiber, mesh, nonwoven fabric, or the like and molded.

【0013】これらのエンドトキシン吸着材は、単独で
用いてもよいが、形状、素材、エンドトキシン吸着剤の
種類等の異なる2つ以上を併用することもできる。
Although these endotoxin adsorbents may be used alone, two or more different endotoxin adsorbents having different shapes, materials and types of endotoxin adsorbents may be used in combination.

【0014】本発明の第1の態様において透析液側流路
である中空糸膜間にエンドトキシン吸着材を介在させる
態様および本発明の第2の態様において透析液側流路の
平膜間にエンドトキシン吸着材を介在させる態様につい
て、以下に説明する。図1は、エンドトキシン吸着材の
好適な一例であるエンドトキシンを吸着する繊維21を
中空糸膜間に介在させた本発明の第1の態様の血液透析
器1の例を模式的に示した縦断面図である。繊維21を
介在させる態様は、図2に表されるように中空糸膜間に
繊維21を配置してもよいし、図3に表されるように中
空糸膜に繊維21を編み込んでもよい。図示してはいな
いが、本発明の第2の態様においては、透析液側流路の
平膜自身、または平膜の間、または平膜から離れた適切
な位置にエンドトキシンを吸着する繊維を配置すること
ができる。膜間の断面積(透析液流路断面積)に対する
エンドトキシン吸着材の断面積の割合は、吸着材が繊維
である場合、5〜90%が好ましく、20〜50%がよ
り好ましい。20%以上であるとエンドトキシンンの吸
着効率が高くなり、50%以下であると血液透析器の組
立てが容易になる。
In the first embodiment of the present invention, the endotoxin adsorbent is interposed between the hollow fiber membranes serving as the dialysate-side flow path, and in the second embodiment of the present invention, the endotoxin is located between the flat membranes of the dialysate-side flow path. An embodiment in which the adsorbent is interposed will be described below. FIG. 1 is a longitudinal sectional view schematically showing an example of a hemodialyzer 1 according to a first embodiment of the present invention in which a fiber 21 for adsorbing endotoxin, which is a preferred example of an endotoxin adsorbent, is interposed between hollow fiber membranes. FIG. The mode in which the fiber 21 is interposed may be such that the fiber 21 is arranged between the hollow fiber membranes as shown in FIG. 2 or the fiber 21 may be woven into the hollow fiber membrane as shown in FIG. Although not shown, in the second embodiment of the present invention, the fiber for adsorbing endotoxin is disposed at an appropriate position in the dialysate-side flow path itself, between the flat membranes, or at an appropriate position away from the flat membrane. can do. When the adsorbent is a fiber, the ratio of the cross-sectional area of the endotoxin adsorbent to the cross-sectional area between the membranes (dialysate flow path cross-sectional area) is preferably 5 to 90%, more preferably 20 to 50%. When it is 20% or more, the endotoxin adsorption efficiency increases, and when it is 50% or less, assembly of the hemodialyzer becomes easy.

【0015】図4は、エンドトキシン吸着材の好適な一
例であるエンドトキシンを吸着するメッシュおよび/ま
たは不織布22を中空糸間に介在させた本発明の第1の
態様の血液透析器2の例を模式的に示した縦断面図であ
る。メッシュおよび/または不織布22を介在させる態
様は、図5に表されるように中空糸束とハウジング外壁
との間にメッシュおよび/または不織布22を巻いても
よいし、図6に表されるように中空糸外部の空間にメッ
シュおよび/または不織布22を巻き込んでもよい。図
示してはいないが、本発明の第2の態様においては、透
析液側流路の平膜自身、または平膜の間、または平膜か
ら離れた適切な位置にエンドトキシンを吸着するメッシ
ュおよび/または不織布を配置することができる。
FIG. 4 schematically shows an example of the hemodialyzer 2 according to the first embodiment of the present invention in which a mesh and / or a nonwoven fabric 22 for adsorbing endotoxin, which is a preferred example of an endotoxin adsorbent, are interposed between hollow fibers. FIG. 3 is a longitudinal sectional view schematically shown. In a mode in which the mesh and / or nonwoven fabric 22 is interposed, the mesh and / or nonwoven fabric 22 may be wound between the hollow fiber bundle and the housing outer wall as shown in FIG. 5, or as shown in FIG. The mesh and / or the nonwoven fabric 22 may be wound into the space outside the hollow fiber. Although not shown, in the second aspect of the present invention, a mesh and / or a mesh for adsorbing endotoxin at an appropriate position in the dialysate-side flow channel itself, between the flat membranes, or at an appropriate position away from the flat membrane. Or a non-woven fabric can be arranged.

【0016】また、上述したエンドトキシン吸着材の介
在の各種態様をとる場合においては、エンドトキシン吸
着材を透析液側流路の中空糸膜間に均一に分布させても
よいし、局所的に集中させる等不均一に分布させてもよ
い。特に、透析液入口付近の配置密度を高くすること
は、エンドトキシンの血液側への侵入の効果的かつ効率
的な防止を可能とするので好適な態様である。
In the case where the above-described various modes of intervening the endotoxin adsorbent are employed, the endotoxin adsorbent may be uniformly distributed between the hollow fiber membranes in the dialysate-side flow path or may be locally concentrated. The distribution may be non-uniform. In particular, increasing the disposition density in the vicinity of the dialysate inlet is a preferred embodiment because it enables effective and efficient prevention of endotoxin from entering the blood side.

【0017】本発明の膜型血液透析器は、透析液側流路
にエンドトキシン吸着材を介在させたものなので、濾過
フィルターによっては除去しきれない低濃度のエンドト
キシンおよび濾過フィルター通過後の再汚染によるエン
ドトキシンをエンドトキシン吸着材が吸着し、血液側へ
の侵入を高い精度で防止することができる。また、エン
ドトキシン吸着性物質を塗布等により透析膜に加工する
場合には、エンドトキシン吸着性物質を膜の細孔表面に
吸着させることとなり、その吸着の程度により透析膜の
物質透過性能が低下することがあるが、本発明の膜型血
液透析器においてはそのような問題はない。
In the membrane type hemodialyzer of the present invention, since the endotoxin adsorbent is interposed in the dialysate-side flow path, low-concentration endotoxin which cannot be completely removed by the filtration filter and recontamination after passing through the filtration filter. The endotoxin is adsorbed by the endotoxin adsorbent, so that invasion to the blood side can be prevented with high accuracy. Further, when the endotoxin-adsorbing substance is processed into a dialysis membrane by coating or the like, the endotoxin-adsorbing substance is adsorbed on the pore surface of the membrane, and the degree of the adsorption deteriorates the substance permeability of the dialysis membrane. However, there is no such problem in the membrane hemodialyzer of the present invention.

【0018】本発明の膜型血液透析器は、エンドトキシ
ンの血液側への侵入を高い精度で防止するので、血液透
析療法および血液透析濾過療法に好適に用いることがで
きる。血液透析濾過療法に用いる場合においては、大孔
径のハイパフォーマンス血液透析器とすることができ
る。また、強制的に逆濾過を促進したプッシュプル血液
透析濾過法にも好適に用いられる。
The membrane type hemodialyzer of the present invention can prevent endotoxin from entering the blood side with high accuracy and can be suitably used for hemodialysis therapy and hemodiafiltration therapy. When used in hemodiafiltration therapy, a high-performance hemodialyzer with a large pore size can be obtained. Further, it is suitably used for a push-pull hemodiafiltration method in which back filtration is forcibly promoted.

【0019】[0019]

【実施例】以下に実施例を示して本発明を具体的に説明
するが、本発明はこれらに限られるものではない。 (実施例1)ポリエステル繊維(繊維直径:7μm)
を、ポリエチレンイミン(数平均分子量10,000ダ
ルトン)のメタノール溶液にピリジンを加えた溶液に浸
漬し、120℃で8時間乾燥し、ポリエステル繊維にポ
リエチレンイミンを固定した。このポリエチレンイミン
処理ポリエステル繊維を、ポリスルフォン中空糸膜(外
径280μm、内径200μm)をバンドル化する際に
中空糸膜1本に対して3本一緒に巻き取り、ポリエチレ
ンイミン処理ポリエステル繊維がポリスルホン中空糸と
平行に存在する図2の態様の約10,000本の中空糸
束(有効膜面積1.5m2 )を作製した。この中空糸膜
の束を、透析液流入口・流出口付きのポリカーボネート
製の筒状のハウジング(有効長0.235m、内径0.
0345m)に挿入した。次に筒状ハウジング内に挿入
された各中空糸膜の両端部にポリウレタンポッティング
剤を注入、硬化して各中空糸膜を固定し、その両端をス
ライスして各中空糸膜を開口させた。筒状のハウジング
の両端部に、それぞれ血液流入口ポート付きカバー・血
液流出口ポート付きカバーを融着することにより、液密
に固定して、膜型血液透析器を得た。 (実施例2)ポリエステルメッシュ(70メッシュ、線
径120μm、オープニング243μm、開口率45
%、メッシュ厚み182μm)を、ポリエチレンイミン
(数平均分子量10,000ダルトン)のメタノール溶
液にピリジンを加えた溶液に浸漬し、120℃で8時間
乾燥し、ポリエステル繊維にポリエチレンイミンを固定
した。このポリエチレンイミン処理ポリエステルメッシ
ュを、ポリスルフォン中空糸膜(外径280μm、内径
200μm)約10,000本の束(有効膜面積1.5
2 )に巻き付け、図5の態様とした。この中空糸膜の
束を、透析液流入口・流出口付きのポリカーボネート製
の筒状のハウジング(有効長0.235m、内径0.0
345m)に挿入した。次いで、実施例1と同様の方法
により、膜型血液透析器を得た。 (比較例1)実施例2で用いたのと同様のポリスルフォ
ン中空糸膜の束を、透析液流入口・流出口付きのポリカ
ーボネート製の筒状のハウジング(有効長0.235
m、内径0.0345m)に挿入した。次いで、実施例
1と同様の方法により、膜型血液透析器を得た。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. (Example 1) Polyester fiber (fiber diameter: 7 µm)
Was immersed in a solution obtained by adding pyridine to a methanol solution of polyethyleneimine (number-average molecular weight 10,000 daltons), dried at 120 ° C. for 8 hours, and polyethyleneimine was fixed to polyester fibers. When bundling a polysulfone hollow fiber membrane (outside diameter: 280 μm, inside diameter: 200 μm), three polyethyleneimine-treated polyester fibers are wound together with one hollow fiber membrane. About 10,000 hollow fiber bundles (effective membrane area: 1.5 m 2 ) of the embodiment of FIG. 2 existing in parallel with the yarns were produced. This bundle of hollow fiber membranes is transferred to a polycarbonate cylindrical housing (diameter 0.235 m, inner diameter 0.
0345m). Next, a polyurethane potting agent was injected into both ends of each hollow fiber membrane inserted into the cylindrical housing and cured to fix each hollow fiber membrane, and both ends were sliced to open each hollow fiber membrane. By fusing a cover with a blood inlet port and a cover with a blood outlet port to both ends of the cylindrical housing, the membrane-type hemodialyzer was obtained in a liquid-tight manner. (Example 2) Polyester mesh (70 mesh, wire diameter 120 µm, opening 243 µm, opening ratio 45
%, Mesh thickness of 182 μm) was immersed in a solution of pyridine in a methanol solution of polyethyleneimine (number average molecular weight 10,000 daltons) and dried at 120 ° C. for 8 hours to fix the polyethyleneimine to the polyester fiber. This polyethyleneimine-treated polyester mesh is bundled with about 10,000 bundles of polysulfone hollow fiber membranes (outside diameter: 280 μm, inside diameter: 200 μm) (effective membrane area: 1.5
m 2 ), as shown in FIG. This bundle of hollow fiber membranes is transferred to a polycarbonate cylindrical housing (effective length 0.235 m, inner diameter 0.0
345m). Next, a membrane hemodialyzer was obtained in the same manner as in Example 1. (Comparative Example 1) A bundle of polysulfone hollow fiber membranes similar to that used in Example 2 was placed in a polycarbonate cylindrical housing (diameter 0.235) having a dialysate inlet and outlet.
m, 0.0345 m inside diameter). Next, a membrane hemodialyzer was obtained in the same manner as in Example 1.

【0020】実施例1、2および比較例1に使用したポ
リスルフォン膜の細孔半径は5.8nmであった。細孔
半径は、反発係数から以下の方法によって求めた(参考
文献を以下に記す。Journal of Chem
ical Engineering of Japa
n,20(1987)Sakai K,Takesaw
a S,Miura R,Ohashi H,Stru
ctual analysis of hollow
fiber dialysis membranes
for clinical use.p.351−35
6、Desalination,(1966)Sp
iegler K S,Kedem O,Thermo
dynamics of hyperfiltrati
on(reverse osmosis):crite
ria for efficient membran
es.p.311−326、Desalinatio
n,(1966)Jagur−Grondzinsk
i J,Kedem O,Transport coe
fficient and saltrejectio
n in unchanged hyperfiltr
ation membranes.p.327−34
1、Journal of MembraneSci
ence,(1979)Wendt R P,Kle
in E,Bresler E H,Holland
F F,Serino R M,Villa H,Si
eving coefficient of hemo
dialysis membranes.p.23−4
9)。
The polysulfone membranes used in Examples 1 and 2 and Comparative Example 1 had a pore radius of 5.8 nm. The pore radius was determined from the coefficient of restitution by the following method (the reference is described below. Journal of Chem.).
Ial Engineering of Japan
n, 20 (1987) Sakai K, Takesaw.
a S, Miura R, Ohashi H, Stru
ctual analysis of Hollow
fiber dialysis members
for clinical use. p. 351-35
6, Desalination, 1 (1966) Sp
iegler KS, Kedem O, Thermo
dynamics of hyperfiltrati
on (reverse osmosis): write
ria for efficient membrane
es. p. 311-326, Desalinatio
n, 1 (1966) Jagur-Grondzinsk
iJ, Kedem O, Transport coe
ffficient and saltrejectio
n in unchanged hyperfiltr
ation members. p. 327-34
1.Journal of MembraneSci
ence, 5 (1979) Wendt RP, Kle
in E, Bresler E H, Holland
FF, Serino RM, Villa H, Si
evening coefficient of hemo
dialysis members. p. 23-4
9).

【0021】反発係数を測定する溶液を血液側流量を1
00〜500ml/minの4〜5点ふりダイアライザ
に導いた。それぞれの血液側流量において、濾過流量を
5〜30ml/minの5点ふり定速濾過実験を行っ
た。血液側の入口、出口および濾過側出口よりサンプリ
ングを行い、(1)式より篩係数SCを求めた。各流量
を変化させた後には、30分以上定常待ちを行った。溶
質には、リゾチーム(重量平均分子量14,400ダル
トン、ストークス半径19.3nm)10mg/dl、
ミオグロビン(重量平均分子量17,000ダルトン、
ストークス半径19.5nm)10mg/dlおよびα
−キモトリプシノーゲン(重量平均分子量25,700
ダルトン、ストークス半径23.2nm)10〜20m
g/dlを用いた。 SC=2×CFo/(CBi+CBo) (1) ここで、C:濃度、添字Bi:血液側入口、Bo:血液
型出口、Fo:濾過側出口である。反発係数の算出方法
を以下に示す。濃度境界層内において次式が成立する。 Js=c×Jv−D×(dc/dx)=cP ×Jv (2) ここで、c:溶質濃度、D:溶質の拡散係数、Js:溶
質の透過流束、Jv:体積透過流束、x:境界層厚み方
向の変数、添字P:透過側である。(2)式をJvが一
定とみなして次の境界条件で積分すると(5)式が得ら
れる。 x=0;c=cF (3) x=δ;c=cM (4) Jv=k×ln{(cM −cP )/(cF −cP )} (5) ここで、k:物質移動係数=D/δ、δ:境界層厚み、
添字F:供給側、M:膜面である。真の阻止率Rint
および見かけの阻止率Robsは次式で表されるため、
(6)〜(7)式より(8)式が導かれる。 Rint=1−cP /cM (6) Robs=1−cP /cF (7) ln{(1−Robs)/Robs}=ln{(1−Rint)/Rint} +Jv/k (8) また、管型モジュールの層流領域では、kにはColb
urnの無次元相関式が成り立つため、(9)式よりk
を算出してある透過流束JvにおけるRintを求め、
それらの値の平均値をRintとした。 Sh=1.62×(Sc×Re×d/L)0.333 (9) ここで、Sh:シャーウッド数、Sc:シュミット数、
Re:レイノルズ数、d:中空糸内径、L:中空糸長さ
である。さらに、Jagur−Grondzinski
とKedemにより2層からなる膜の反発係数σと真の
阻止率Rintの間には次式が成り立つことが導かれて
いる。 Rint={(1−fsk)×(1−σsp)+fsk×(1−σsk)×(1−fsp ×σsp)−(1−σsk)×(1−σsp)}/{(1−fsk)×(1−σsp)+f sk ×(1−σsk)(1−fsp×σsp)} (10) f=exp{−(1−σ)×Jv/Pm} (11) ここで、Pm:溶質透過係数、添字sk:緻密層、s
p:支持層である。また、σsp=0と仮定できるとき、
(10)式は次式で表される。 Rint=σsp×(1−fsk)/(1−σsk×fsk) (12) よって、真の阻止率Rint対透過流束の逆数1/Jv
を点綴し、最小二乗法により、反発係数σskを決定し
た。この反発係数から、細孔理論に基づき、試行錯誤法
を用いて細孔半径rskを決定した。
The solution for measuring the coefficient of restitution was adjusted to a blood flow rate of 1
4 ~ 5 point dialyzer of 00 ~ 500ml / min
Led to. For each blood-side flow rate,
Perform a 5-point constant speed filtration experiment with 5 to 30 ml / min
Was. Sampling from blood side inlet, outlet and filtration side outlet
And a sieve coefficient SC was determined from equation (1). Each flow rate
After changing, the stationary waiting was performed for 30 minutes or more. Dissolution
The quality is lysozyme (weight average molecular weight 14,400 dal
Ton, Stokes radius 19.3 nm) 10 mg / dl,
Myoglobin (weight average molecular weight 17,000 daltons,
Stokes radius 19.5 nm) 10 mg / dl and α
Chymotrypsinogen (weight average molecular weight 25,700
Dalton, Stokes radius 23.2 nm) 10-20 m
g / dl was used. SC = 2 × CFo/ (CBi+ CBo(1) where C: concentration, subscript Bi: blood side inlet, Bo: blood
Mold outlet, Fo: filtration side outlet. Calculation method of coefficient of restitution
Is shown below. The following equation holds in the concentration boundary layer. Js = c × Jv−D × (dc / dx) = cP× Jv (2) where c: solute concentration, D: diffusion coefficient of solute, Js:
Quality flux, Jv: volume flux, x: boundary layer thickness
Direction variable, subscript P: transmission side. Equation (2) is equal to Jv
Equation (5) is obtained by integrating under the following boundary conditions
It is. x = 0; c = cF (3) x = δ; c = cM (4) Jv = k × ln {(cM-CP) / (CF-CP)} (5) where, k: mass transfer coefficient = D / δ, δ: boundary layer thickness,
Subscript F: supply side, M: membrane surface. True rejection rate Rint
And the apparent rejection Robs is given by the following equation:
Equation (8) is derived from equations (6) and (7). Rint = 1-cP/ CM (6) Robs = 1-cP/ CF (7) In {(1-Robs) / Robs} = ln {(1-Rint) / Rint} + Jv / k (8) In the laminar flow region of the tubular module, k is Colb.
Since the dimensionless correlation equation of urn holds, k
Rint at the permeation flux Jv is calculated,
The average of those values was defined as Rint. Sh = 1.62 × (Sc × Re × d / L)0.333 (9) Here, Sh: Sherwood number, Sc: Schmidt number,
Re: Reynolds number, d: hollow fiber inner diameter, L: hollow fiber length
It is. Furthermore, Jagur-Grandzinski
And Kedem, the coefficient of restitution σ of the two-layer film and the true
It is derived that the following equation holds between the rejection rates Rint.
I have. Rint = {(1-fsk) × (1-σ)sp) + Fsk× (1-σsk) × (1-fsp × σsp)-(1-σsk) × (1-σ)sp)} / {(1-fsk) × (1-σ)sp) + F sk × (1-σsk) (1-fsp× σsp)} (10) f = exp {− (1−σ) × Jv / Pm} (11) where Pm: solute permeability coefficient, suffix sk: dense layer, s
p: It is a support layer. Also, σsp= 0
Equation (10) is represented by the following equation. Rint = σsp× (1-fsk) / (1-σ)sk× fsk(12) Thus, the true rejection rate Rint versus the inverse of the permeation flux 1 / Jv
And the least squares method is used to calculate the coefficient of restitution σskDetermine
Was. From this coefficient of restitution, a trial and error method based on the pore theory
Using the pore radius rskIt was determined.

【0022】エンドトキシン阻止性能試験 実施例1、2および比較例1の膜型血液透析器のエンド
トキシン阻止性能試験を、日本人工臓器工業協会で定め
る透析用エンドトキシンカットフィルター安全性・性能
試験ガイドライン(案)(竹沢真吾編「透析液エンドト
キシンがよくわかる本」(1995)(株)東京医学社
p.149−150)に準拠して行った。図7に示すよ
うに、エンドトキシン濃度100〜250EU/Lに調
製した調製透析液8を透析液流量500ml/minの
条件で、透析液ポート(入口)41から供給し、血液ポ
ート(入口)51から透過させる全濾過実験を行った。
実験中、透析液ポート(出口)42および血液ポート
(出口)52は閉鎖しておいた。また、定常待ちは15
分間以上行った。供給液(全濾過前)および透過液(全
濾過後)のエンドトキシン濃度をエンドスペシー法(生
化学工業(株)社)により測定し、(13)式を用いて
エンドトキシンの透過率を算出した。結果を第1表に示
す。 (エンドトキシン透過率)=(透過液エンドトキシン濃度)/(供給液エンド トキシン濃度) (13)
Endotoxin Inhibition Performance Test The endotoxin inhibition performance tests of the membrane hemodialyzers of Examples 1 and 2 and Comparative Example 1 were conducted according to the guidelines for the safety and performance test of endotoxin cut filters for dialysis specified by the Japan Society of Artificial Organs (draft). (Dialysis fluid endotoxin is well understood book, edited by Shingo Takezawa, 1995, Tokyo Medical Co., Ltd., p. 149-150). As shown in FIG. 7, a prepared dialysate 8 adjusted to an endotoxin concentration of 100 to 250 EU / L is supplied from a dialysate port (inlet) 41 at a dialysate flow rate of 500 ml / min, and from a blood port (inlet) 51. A permeation filtration experiment was performed.
During the experiment, dialysate port (outlet) 42 and blood port (outlet) 52 were closed. In addition, regular waiting is 15
Went for more than a minute. The endotoxin concentrations of the feed solution (before total filtration) and the permeate solution (after total filtration) were measured by the Endospecy method (Seikagaku Corporation), and the endotoxin transmittance was calculated using equation (13). The results are shown in Table 1. (Endotoxin permeability) = (Permeate endotoxin concentration) / (Feed solution endotoxin concentration) (13)

【0023】 [0023]

【0024】実施例1および2は、透過液のエンドトキ
シン濃度が検出限界以下であり、比較例1に比べてエン
ドトキシン阻止性能が優れていることが分かる。
In Examples 1 and 2, the endotoxin concentration of the permeate was below the detection limit, indicating that the endotoxin-blocking performance was superior to that of Comparative Example 1.

【0025】[0025]

【発明の効果】以上に述べたように、本発明の膜型血液
透析器は、大孔径の血液透析膜を利用したハイパフォー
マンス血液透析器とすることができ、その場合において
もエンドトキシンの透析液側から血液側への侵入が有効
に防止される。従って、血液透析療法および血液透析濾
過療法に好適に用いることができる。また、逆濾過を促
進したプッシュプル血液透析濾過法や、透析液を患者の
体内に注入するオンライン血液透析濾過等の試みにおい
ても、好適に用いることができる。
As described above, the membrane hemodialyzer of the present invention can be a high-performance hemodialyzer using a large-diameter hemodialysis membrane. From the blood side is effectively prevented. Therefore, it can be suitably used for hemodialysis therapy and hemodiafiltration therapy. Further, it can be suitably used in a push-pull hemodiafiltration method in which back filtration is promoted, and in an on-line hemodiafiltration method in which a dialysate is injected into a patient's body.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明によるエンドトキシンを吸着する繊維
を設けた例を模式的に示した図である。
FIG. 1 is a diagram schematically showing an example in which fibers for adsorbing endotoxin according to the present invention are provided.

【図2】 本発明によるエンドトキシンを吸着する繊維
を設けた一例を示した断面図である。
FIG. 2 is a cross-sectional view showing an example in which fibers for adsorbing endotoxin according to the present invention are provided.

【図3】 本発明によるエンドトキシンを吸着する繊維
を膜に巻き付けた一例を示した図である。
FIG. 3 is a diagram showing an example in which a fiber for adsorbing endotoxin according to the present invention is wound around a membrane.

【図4】 本発明によるエンドトキシンを吸着するメッ
シュおよび/または不織布を設けた例を模式的に示した
図である。
FIG. 4 is a diagram schematically showing an example in which a mesh and / or a nonwoven fabric for adsorbing endotoxin according to the present invention are provided.

【図5】 本発明によるエンドトキシンを吸着するメッ
シュおよび/または不織布を設けた一例を示した断面図
である。
FIG. 5 is a cross-sectional view showing an example in which a mesh and / or a nonwoven fabric for adsorbing endotoxin according to the present invention are provided.

【図6】 本発明によるエンドトキシンを吸着するメッ
シュおよび/または不織布を設けた一例を示した断面図
である。
FIG. 6 is a cross-sectional view showing an example in which a mesh and / or a nonwoven fabric for adsorbing endotoxin according to the present invention are provided.

【図7】 膜型血液透析器のエンドトキシン阻止性能試
験の測定装置を示した図である。
FIG. 7 is a diagram showing a measurement device for an endotoxin inhibition performance test of a membrane hemodialyzer.

【符号の説明】[Explanation of symbols]

1:外筒ハウジング 3:中空糸膜 6:ポンプ 8:調整透析液 10:膜型血液透析器 21:エンドトキシン吸着繊維 22:エンドトキシン吸着メッシュまたは不織布 41:透析液ポート(入口) 42:透析液ポート(出口) 51:血液ポート(入口) 52:血液ポート(出口) 71:透析液入口回路(供給液回路) 72:血液入口回路(透過液回路) 1: outer cylinder housing 3: hollow fiber membrane 6: pump 8: adjusted dialysate 10: membrane type hemodialyzer 21: endotoxin-adsorbed fiber 22: endotoxin-adsorbed mesh or non-woven fabric 41: dialysate port (inlet) 42: dialysate port (Outlet) 51: Blood port (inlet) 52: Blood port (outlet) 71: Dialysate inlet circuit (supply liquid circuit) 72: Blood inlet circuit (permeate circuit)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】中空糸膜を含むハウジングを有し、中空糸
内部に血液側流路が形成され、中空糸外部に透析液側流
路が中空糸膜を隔てて形成されている膜型血液透析器に
おいて、該透析液側流路にエンドトキシン吸着材を介在
させた膜型血液透析器。
1. A membrane blood having a housing containing a hollow fiber membrane, a blood-side flow path formed inside the hollow fiber, and a dialysate-side flow path formed outside the hollow fiber with the hollow fiber membrane interposed therebetween. A dialyzer, wherein an endotoxin adsorbent is interposed in the dialysate-side flow path.
【請求項2】平膜を含むハウジングを有し、血液側流路
と透析液側流路が平膜を隔てて形成されている膜型血液
透析器において、該透析液側流路を形成する平膜間にエ
ンドトキシン吸着材を介在させた膜型血液透析器。
2. In a membrane hemodialyzer having a housing including a flat membrane, wherein a blood-side flow path and a dialysate-side flow path are formed with a flat membrane interposed therebetween, the dialysate-side flow path is formed. Membrane hemodialyzer with endotoxin adsorbent interposed between flat membranes.
【請求項3】前記エンドトキシン吸着材が、エンドトキ
シン吸着剤をコートした繊維、メッシュまたは不織布で
ある請求項1または2に記載の膜型血液透析器。
3. The membrane hemodialyzer according to claim 1, wherein the endotoxin adsorbent is a fiber, a mesh or a nonwoven fabric coated with an endotoxin adsorbent.
JP14551198A 1998-05-27 1998-05-27 Membrane hemodialyzer Expired - Fee Related JP4042876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14551198A JP4042876B2 (en) 1998-05-27 1998-05-27 Membrane hemodialyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14551198A JP4042876B2 (en) 1998-05-27 1998-05-27 Membrane hemodialyzer

Publications (2)

Publication Number Publication Date
JPH11332979A true JPH11332979A (en) 1999-12-07
JP4042876B2 JP4042876B2 (en) 2008-02-06

Family

ID=15386944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14551198A Expired - Fee Related JP4042876B2 (en) 1998-05-27 1998-05-27 Membrane hemodialyzer

Country Status (1)

Country Link
JP (1) JP4042876B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6638645B2 (en) 2001-03-05 2003-10-28 Hitachi, Ltd. Film for organic EL device and an organic EL device using the film
WO2006024902A1 (en) * 2004-08-06 2006-03-09 Asahi Kasei Medical Co., Ltd. Polysulfone hemodialyzer
JP2007503862A (en) * 2003-08-28 2007-03-01 ガンブロ・ルンディア・エービー Membrane surface treatment and related products
US8118176B2 (en) 2003-08-28 2012-02-21 Gambro Ab Membrane unit element, semipermeable membrane, filtration device, and processes for manufacturing the same
JP2016077604A (en) * 2014-10-17 2016-05-16 旭化成メディカル株式会社 Hollow fiber membrane type blood purifier
JP2021177833A (en) * 2020-05-11 2021-11-18 日機装株式会社 Hollow fiber membrane module and endotoxin removal method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6638645B2 (en) 2001-03-05 2003-10-28 Hitachi, Ltd. Film for organic EL device and an organic EL device using the film
US6896979B2 (en) 2001-03-05 2005-05-24 Hitachi, Ltd. Film for organic EL device and an organic EL device using the film
JP2007503862A (en) * 2003-08-28 2007-03-01 ガンブロ・ルンディア・エービー Membrane surface treatment and related products
US8118176B2 (en) 2003-08-28 2012-02-21 Gambro Ab Membrane unit element, semipermeable membrane, filtration device, and processes for manufacturing the same
WO2006024902A1 (en) * 2004-08-06 2006-03-09 Asahi Kasei Medical Co., Ltd. Polysulfone hemodialyzer
US8828225B2 (en) 2004-08-06 2014-09-09 Asahi Kasei Medical Co., Ltd. Polysulfone hemodialyzer
JP2016077604A (en) * 2014-10-17 2016-05-16 旭化成メディカル株式会社 Hollow fiber membrane type blood purifier
JP2021177833A (en) * 2020-05-11 2021-11-18 日機装株式会社 Hollow fiber membrane module and endotoxin removal method

Also Published As

Publication number Publication date
JP4042876B2 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
JP4795536B2 (en) Potting a tubular bundle into the housing
JP4453248B2 (en) Method for producing hollow fiber membrane and hollow fiber membrane module
JP2010104984A (en) Polysulfone-based hollow fiber membrane module and method of manufacturing the same
Sakai Dialysis membranes for blood purification
JP2000140589A (en) Porous polysulfone film
JP3548354B2 (en) Hollow fiber membrane and method for producing the same
JP4042876B2 (en) Membrane hemodialyzer
JP2011092928A (en) Separation membrane and separation membrane module
JP4937767B2 (en) Blood purifier and manufacturing method thereof
JP3821557B2 (en) Blood purifier manufacturing method
JP4245597B2 (en) Blood purifier
JPH10180058A (en) Hollow fiber membrane
JP3684676B2 (en) Method for producing polysulfone-based hollow fiber artificial kidney and artificial kidney
CN106659834B (en) System for removing pro-inflammatory mediator and granulocyte and monocyte in blood
JP2005137996A (en) Permselective separation membrane
EP2363196B1 (en) Diffusion and/or filtration device
JP3688109B2 (en) Blood purification membrane
JP4683402B2 (en) Hollow fiber membrane for blood purification, method for producing the same, and blood purifier
JP3948736B2 (en) Hemodialyzer
JPH10263375A (en) Selective permeable hollow fiber membrane
JP3334705B2 (en) Polysulfone-based selectively permeable hollow fiber membrane
JP4678063B2 (en) Hollow fiber membrane module
JP3392707B2 (en) Hemodialysis machine
JP2001162143A (en) Medical hollow fiver membrane and method for manufacturing the same
JP2005007004A (en) Hollow fiber type body fluid treatment apparatus, hollow fiber bundle used therefor, and method for producing them

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070308

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees