JPH11332837A - Biomonitor - Google Patents

Biomonitor

Info

Publication number
JPH11332837A
JPH11332837A JP10147095A JP14709598A JPH11332837A JP H11332837 A JPH11332837 A JP H11332837A JP 10147095 A JP10147095 A JP 10147095A JP 14709598 A JP14709598 A JP 14709598A JP H11332837 A JPH11332837 A JP H11332837A
Authority
JP
Japan
Prior art keywords
pulse wave
living body
calculating
output signal
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10147095A
Other languages
Japanese (ja)
Other versions
JP3855460B2 (en
Inventor
Hiroyuki Ogino
弘之 荻野
Yoshiaki Watanabe
義明 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14709598A priority Critical patent/JP3855460B2/en
Publication of JPH11332837A publication Critical patent/JPH11332837A/en
Application granted granted Critical
Publication of JP3855460B2 publication Critical patent/JP3855460B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve failures in judging the movement of blood circulation of a living being such as contraction capacity of the heart unavoidably affected by the degree of arterial scleosis and in judging pathologic arterial scleosis distinguished from increase in the resistance of a blood vessel attributed to a drop in the room temperature or mental tension during the measurement in a biomonitor. SOLUTION: There are arranged a pulse wave detection means 1 for detecting a pulse wave of a living being, a heart contraction time computing means 4 to compute contraction time of the heart based on an output signal of the pulse wave detection means, a circulation kinetics judging means 6 to judge the blood circulation movement of the living being and a display means 12 to display an output signal of the circulation movement judging means. The heart contraction time is computed from the pulse wave of the living being to judge the blood circulation kinetics of the living being such as the contraction capacity of the heart based on the contraction time computed. This capability of judging the blood circulation kinetics of the living being such as the contraction capacity of the heart allows the judging of the blood circulation movement of the living being handily.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、生体の循環動態を
判定する生体モニタ装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a living body monitor for determining the circulatory dynamics of a living body.

【0002】[0002]

【従来の技術】従来のこの種の生体モニタ装置は特開平
7−124129号公報に記載されているようなものが
一般的であった。この生体モニタ装置は血圧測定用のカ
フにより生体の動脈を圧迫した際の脈波の振幅を検出
し、カフ圧と前記振幅とに基づき図17に示すような圧
力−容積曲線を求め、この曲線の傾きから動脈硬化の程
度を判定するものであった。
2. Description of the Related Art A conventional biological monitor of this type is generally the one described in Japanese Patent Application Laid-Open No. Hei 7-124129. This biological monitoring device detects the amplitude of a pulse wave when a blood pressure measurement cuff compresses an artery of a living body, and obtains a pressure-volume curve as shown in FIG. 17 based on the cuff pressure and the amplitude. Was used to determine the degree of arteriosclerosis.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記従来
の生体モニタ装置では、動脈硬化の度合いが判定できて
もそれによって影響を受ける心臓の収縮力のような生体
の血液循環動態を判定することはできないという課題が
あった。また、病的な動脈硬化と測定時の室温が低かっ
たり精神的な緊張等の環境変化による血管抵抗の増大と
を区別して判定することができないという課題があっ
た。
However, in the conventional living body monitoring apparatus, even if the degree of arteriosclerosis can be determined, it is not possible to determine the blood circulation dynamics of the living body such as the contractile force of the heart affected by the degree. There was a problem that. In addition, there is a problem that it is impossible to distinguish between pathological arteriosclerosis and an increase in vascular resistance due to environmental changes such as low room temperature or mental tension at the time of measurement.

【0004】[0004]

【課題を解決するための手段】本発明は上記課題を解決
するため、生体の脈波を検出する脈波検出手段と、前記
脈波検出手段の出力信号に基づき心臓の収縮時間を演算
する心収縮時間演算手段と、前記心収縮時間演算手段の
出力信号に基づき前記生体の血液循環動態を判定する循
環動態判定手段と、前記循環動態判定手段の出力信号を
表示する表示手段とを備えたものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a pulse wave detecting means for detecting a pulse wave of a living body, and a heart which calculates a contraction time of the heart based on an output signal of the pulse wave detecting means. A device comprising: a systolic time calculating means; a circulatory state determining means for determining a blood circulation state of the living body based on an output signal of the systolic time calculating means; and a display means for displaying an output signal of the circulating state determining means. It is.

【0005】上記発明によれば、生体の脈波から心収縮
時間を演算し、演算した心収縮時間に基づき心臓の収縮
力のような生体の血液循環動態を判定するので、従来の
ように心臓の収縮力のような生体の血液循環動態を判定
することができないといった課題を解決でき、簡便に生
体の血液循環動態を判定することができる。
According to the above invention, the systolic time is calculated from the pulse wave of the living body, and the blood circulation dynamics of the living body such as the contractile force of the heart is determined based on the calculated systolic time. It is possible to solve the problem that it is not possible to determine the blood circulation dynamics of the living body such as the contraction force of the living body, and it is possible to easily determine the blood circulation dynamics of the living body.

【0006】また本発明は、生体の脈波を検出する脈波
検出手段と、前記脈波検出手段の出力信号に基づき加速
度脈波を演算する加速度脈波演算手段と、前記生体の動
脈を圧迫する圧迫手段と、前記圧迫手段により前記動脈
を圧迫している際の前記加速度脈波演算手段の出力信号
に基づき前記生体の血液循環動態を判定する循環動態判
定手段と、前記循環動態判定手段の出力信号を表示する
表示手段とを備えたものである。
The present invention also provides pulse wave detecting means for detecting a pulse wave of a living body, acceleration pulse wave calculating means for calculating an acceleration pulse wave based on an output signal of the pulse wave detecting means, and compression of an artery of the living body. Compression means, circulatory state determination means for determining the blood circulation state of the living body based on the output signal of the acceleration pulse wave calculation means when the artery is compressed by the compression means, Display means for displaying an output signal.

【0007】上記発明によれば、圧迫手段により前記動
脈を圧迫している際の加速度脈波の波形変化に基づき動
脈硬化といった生体の血液循環動態を判定するので、従
来のように病的な動脈硬化と測定時の室温が低かったり
精神的な緊張による血管抵抗の増大とを区別して判定す
ることができないという課題を解消でき、正確に動脈硬
化を判定することができる。
According to the above invention, the blood circulation dynamics of the living body such as arteriosclerosis is determined based on the waveform change of the acceleration pulse wave when the artery is compressed by the compression means. It is possible to solve the problem that it is impossible to distinguish between hardening and a low room temperature at the time of measurement or an increase in vascular resistance due to mental tension, and to accurately determine arteriosclerosis.

【0008】[0008]

【発明の実施の形態】本発明の請求項1にかかる生体モ
ニタ装置は、生体の脈波を検出する脈波検出手段と、前
記脈波検出手段の出力信号に基づき心臓の収縮時間を演
算する心収縮時間演算手段と、前記心収縮時間演算手段
の出力信号に基づき前記生体の血液循環動態を判定する
循環動態判定手段と、前記循環動態判定手段の出力信号
を表示する表示手段とを備えたものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A living body monitoring apparatus according to a first aspect of the present invention includes a pulse wave detecting means for detecting a pulse wave of a living body, and calculates a contraction time of the heart based on an output signal of the pulse wave detecting means. Systolic time calculating means, circulatory state determining means for determining blood circulation of the living body based on an output signal of the systolic time calculating means, and display means for displaying an output signal of the circulating state determining means. Things.

【0009】そして、生体の脈波から心収縮時間を演算
し、演算した心収縮時間に基づき心臓の収縮力のような
生体の血液循環動態を判定するので、簡便に生体の血液
循環動態を判定することができる。
Then, the systolic time is calculated from the pulse wave of the living body, and the blood circulation dynamics of the living body such as the contractile force of the heart are determined based on the calculated systolic time. can do.

【0010】また本発明の請求項2にかかる生体モニタ
装置は、生体の脈波を検出する脈波検出手段と、前記脈
波検出手段の出力信号に基づき心臓の収縮時間を演算す
る心収縮時間演算手段と、前記脈波検出手段の出力信号
に基づき脈拍のゆらぎを演算するゆらぎ演算手段と、前
記心収縮時間演算手段と前記ゆらぎ演算手段との出力信
号に基づき前記生体の血液循環動態を判定する循環動態
判定手段と、前記循環動態判定手段の出力信号を表示す
る表示手段とを備えたものである。
According to a second aspect of the present invention, there is provided a living body monitoring device, wherein a pulse wave detecting means for detecting a pulse wave of a living body, and a systolic time for calculating a contraction time of the heart based on an output signal of the pulse wave detecting means. Calculating means, a fluctuation calculating means for calculating a pulse fluctuation based on an output signal of the pulse wave detecting means, and determining a blood circulation dynamics of the living body based on output signals of the systolic time calculating means and the fluctuation calculating means. And a display means for displaying an output signal of the circulatory state determining means.

【0011】そして、生体の脈波から心収縮時間と脈拍
のゆらぎを演算し、演算した心収縮時間と脈拍のゆらぎ
に基づき生体の血液循環動態を判定するので、簡便に生
体の血液循環動態を判定することができる。
Then, the systolic time and the fluctuation of the pulse are calculated from the pulse wave of the living body, and the blood circulation of the living body is determined based on the calculated systolic time and the fluctuation of the pulse. Can be determined.

【0012】また本発明の請求項3にかかる生体モニタ
装置は、生体の脈波を検出する脈波検出手段と、前記脈
波検出手段の出力信号に基づき心臓の収縮時間を演算す
る心収縮時間演算手段と、前記生体の血圧を測定する血
圧測定手段と、前記心収縮時間演算手段と前記血圧測定
手段との出力信号に基づき、前記生体の血液循環動態を
判定する循環動態判定手段と、前記循環動態判定手段の
出力信号を表示する表示手段とを備えたものである。
According to a third aspect of the present invention, there is provided a living body monitoring device, comprising: a pulse wave detecting means for detecting a pulse wave of a living body; and a systolic time for calculating a systolic time of the heart based on an output signal of the pulse wave detecting means. A calculating means, a blood pressure measuring means for measuring the blood pressure of the living body, a circulatory dynamics determining means for determining a blood circulating dynamics of the living body based on output signals of the systolic time calculating means and the blood pressure measuring means, Display means for displaying an output signal of the circulatory state determining means.

【0013】そして、生体の脈波から心収縮時間を演算
するとともに、生体の血圧を測定し、演算した心収縮時
間と測定した血圧に基づき生体の血液循環動態を判定す
るので簡便に生体の血液循環動態を判定することができ
る。
Then, the systolic time is calculated from the pulse wave of the living body, the blood pressure of the living body is measured, and the blood circulation dynamics of the living body is determined based on the calculated systolic time and the measured blood pressure. Hemodynamics can be determined.

【0014】また本発明の請求項4にかかる生体モニタ
装置は、生体の脈波を検出する脈波検出手段と、前記脈
波検出手段の出力信号に基づき加速度脈波を演算する加
速度脈波演算手段と、前記生体の血圧を測定する血圧測
定手段と、前記加速度脈波演算手段と前記血圧測定手段
との出力信号に基づき前記生体の血液循環動態を判定す
る循環動態判定手段と、前記循環動態判定手段の出力信
号を表示する表示手段とを備えたものである。
According to a fourth aspect of the present invention, there is provided a living body monitoring apparatus, wherein a pulse wave detecting means for detecting a pulse wave of a living body, and an acceleration pulse wave calculating means for calculating an acceleration pulse wave based on an output signal of the pulse wave detecting means. Means, blood pressure measuring means for measuring the blood pressure of the living body, circulating dynamics determining means for determining the blood circulating dynamics of the living body based on output signals of the acceleration pulse wave calculating means and the blood pressure measuring means, and the circulating dynamics Display means for displaying the output signal of the determination means.

【0015】そして、生体の脈波から加速度脈波を演算
するとともに、生体の血圧を測定し、演算した加速度脈
波と測定した血圧に基づき生体の血液循環動態を判定す
るので簡便に生体の血液循環動態を判定することができ
る。
Then, the acceleration pulse wave is calculated from the pulse wave of the living body, the blood pressure of the living body is measured, and the blood circulation dynamics of the living body are determined based on the calculated acceleration pulse wave and the measured blood pressure. Hemodynamics can be determined.

【0016】また本発明の請求項5にかかる生体モニタ
装置は、生体の脈波を検出する脈波検出手段と、前記脈
波検出手段の出力信号に基づき心臓の収縮時間を演算す
る心収縮時間演算手段と、前記生体の心電位を検出する
心電位検出手段と、前記前記脈波検出手段と前記心電位
検出手段との出力信号に基づき、脈波伝播時間を演算す
る脈波伝播時間演算手段と、前記心収縮時間演算手段と
前記脈波伝播時間演算手段との出力信号に基づき前記生
体の血液循環動態を判定する循環動態判定手段と、前記
循環動態判定手段の出力信号を表示する表示手段とを備
えたものである。
According to a fifth aspect of the present invention, there is provided a living body monitoring apparatus, wherein a pulse wave detecting means for detecting a pulse wave of the living body, and a systolic time for calculating a contraction time of the heart based on an output signal of the pulse wave detecting means. Calculating means, a cardiac potential detecting means for detecting a cardiac potential of the living body, and a pulse wave transit time calculating means for calculating a pulse wave transit time based on output signals of the pulse wave detecting means and the cardiac potential detecting means Circulatory dynamics determining means for determining the blood circulation dynamics of the living body based on the output signals of the systolic time calculating means and the pulse wave transit time calculating means, and display means for displaying the output signal of the circulatory dynamics determining means It is provided with.

【0017】そして、生体の脈波から心収縮時間を演算
するとともに、生体の脈波と心電位から脈波伝播時間を
演算し、演算した心収縮時間と脈波伝播時間に基づき生
体の血液循環動態を判定するので簡便に生体の血液循環
動態を判定することができる。
Then, the cardiac contraction time is calculated from the pulse wave of the living body, and the pulse wave propagation time is calculated from the pulse wave and the cardiac potential of the living body. Based on the calculated cardiac contraction time and pulse wave propagation time, the blood circulation of the living body is calculated. Since the dynamics are determined, the blood circulation dynamics of the living body can be easily determined.

【0018】また本発明の請求項6にかかる生体モニタ
装置は、心収縮時間演算手段が脈波検出手段の出力信号
の波形の立ち上がり時点から波形ピーク時点までの時間
を演算するものである。
In the biological monitoring apparatus according to a sixth aspect of the present invention, the systole time calculating means calculates the time from the rising time point of the waveform of the output signal of the pulse wave detecting means to the waveform peak time point.

【0019】そして、脈波検出手段の出力信号の波形の
立ち上がり時点から波形ピーク時点までの時間を演算し
て心収縮時間が演算されるので、簡便に生体の血液循環
動態を判定することができる。
The time from the rise of the waveform of the output signal of the pulse wave detecting means to the peak of the waveform is calculated to calculate the systolic time, so that the blood circulation dynamics of the living body can be easily determined. .

【0020】また本発明の請求項7にかかる生体モニタ
装置は、生体の脈波を検出する脈波検出手段と、前記脈
波検出手段の出力信号に基づき、加速度脈波を演算する
加速度脈波演算手段と、前記生体の動脈を圧迫する圧迫
手段と、前記圧迫手段により前記動脈を圧迫している際
の前記加速度脈波演算手段の出力信号に基づき前記生体
の血液循環動態を判定する循環動態判定手段と、前記循
環動態判定手段の出力信号を表示する表示手段とを備え
たものである。
According to a seventh aspect of the present invention, there is provided a living body monitoring device, comprising: a pulse wave detecting means for detecting a pulse wave of a living body; and an acceleration pulse wave for calculating an acceleration pulse wave based on an output signal of the pulse wave detecting means. Calculating means, compressing means for compressing the artery of the living body, and circulating dynamics for determining blood circulation dynamics of the living body based on an output signal of the acceleration pulse wave calculating means when the artery is compressed by the compressing means. A determination unit; and a display unit for displaying an output signal of the circulatory dynamic state determination unit.

【0021】そして、圧迫手段により動脈を圧迫してい
る際の加速度脈波の波形変化に基づき動脈硬化といった
生体の血液循環動態を判定するので、病的な動脈硬化と
測定時の室温が低かったり精神的な緊張等の環境変化に
よる血管抵抗の増大とを区別して判定することができ
る。
Since the blood circulation dynamics of the living body such as arteriosclerosis is determined based on the waveform change of the acceleration pulse wave when the artery is compressed by the compression means, the pathological arteriosclerosis and the room temperature at the time of measurement may be low. An increase in vascular resistance due to an environmental change such as mental tension can be distinguished and determined.

【0022】また本発明の請求項8にかかる生体モニタ
装置は、生体の脈波を検出する脈波検出手段と、前記脈
波検出手段の出力信号に基づき心臓の収縮時間を演算す
る心収縮時間演算手段と、前記脈波検出手段の出力信号
に基づき加速度脈波を演算する加速度脈波演算手段と、
前記生体の動脈を圧迫する圧迫手段と、前記心収縮時間
演算手段の出力信号と前記圧迫手段により前記動脈を圧
迫している際の前記加速度脈波演算手段の出力信号とに
基づき、前記生体の血液循環動態を判定する循環動態判
定手段と、前記循環動態判定手段の出力信号を表示する
表示手段とを備えたものである。
According to a eighth aspect of the present invention, there is provided a living body monitoring apparatus, wherein a pulse wave detecting means for detecting a pulse wave of a living body, and a systolic time for calculating a systolic time of the heart based on an output signal of the pulse wave detecting means. Calculation means, acceleration pulse wave calculation means for calculating an acceleration pulse wave based on the output signal of the pulse wave detection means,
Compression means for compressing the artery of the living body, based on an output signal of the systolic time calculation means and an output signal of the acceleration pulse wave calculation means when the artery is compressed by the compression means, It is provided with a circulatory state determining means for determining a blood circulation state, and a display means for displaying an output signal of the circulating state determining means.

【0023】そして、生体の脈波から心収縮時間を演算
するとともに、圧迫手段により動脈を圧迫している際の
加速度脈波を演算し、演算された心収縮時間と加速度脈
波に基づき生体の血液循環動態を判定するので簡便に生
体の血液循環動態を判定することができる。
Then, the cardiac contraction time is calculated from the pulse wave of the living body, and the acceleration pulse wave when the artery is compressed by the compression means is calculated. Based on the calculated cardiac contraction time and the acceleration pulse wave, the cardiac contraction time is calculated. Since the blood circulation is determined, the blood circulation of the living body can be easily determined.

【0024】また本発明の請求項9にかかる生体モニタ
装置は、循環動態判定手段が判定結果を記憶する記憶部
を備え、表示手段は前記記憶部の記憶内容を表示できる
ものである。
According to a ninth aspect of the present invention, there is provided the living body monitoring device, wherein the circulatory dynamics determination means includes a storage unit for storing the determination result, and the display means can display the storage contents of the storage unit.

【0025】そして、判定結果を記憶するとともに、記
憶部の記憶内容を表示することができるので、判定結果
の過去からの推移を知ることができて的確に健康管理に
役立つたたせることができる。
Since the result of the judgment can be stored and the contents stored in the storage unit can be displayed, the transition of the result of the judgment from the past can be known, so that it is possible to properly contribute to health management.

【0026】また本発明の請求項10にかかる生体モニ
タ装置は、循環動態判定手段は身長、体重、年齢、治療
内容、食事内容、運動量、睡眠時間といった個人情報を
入力できる個人情報入力部を備え、前記個人情報入力部
の入力値に基づき判定基準を変更できるものである。
[0026] In the living body monitoring apparatus according to a tenth aspect of the present invention, the circulatory dynamics determining means includes a personal information input section for inputting personal information such as height, weight, age, treatment contents, meal contents, exercise amount, and sleep time. The criterion can be changed based on the input value of the personal information input section.

【0027】そして、入力された個人情報に基づき判定
基準を変更できるので、例えば年齢に応じた循環動態の
判定が的確に可能となる。
Since the criteria can be changed on the basis of the input personal information, for example, the determination of the circulatory dynamics according to the age can be accurately performed.

【0028】さらに本発明の請求項11にかかる生体モ
ニタ装置は、循環動態判定手段が、判定結果に基づき必
要な運動量の基準値や上限値を演算する運動量基準値演
算部と、生体の運動量を検出する運動量検出部とを備
え、前記運動量検出部により検出された運動量が前記基
準値未満、あるいは前記運動量の上限値以上となった場
合は表示手段により警報を発生させるものである。
Further, in the living body monitoring device according to the present invention, the circulatory dynamics determining means calculates a reference value or an upper limit value of a required amount of exercise based on the determination result; A momentum detecting section for detecting the momentum, wherein when the momentum detected by the momentum detecting section is less than the reference value or equal to or more than the upper limit of the momentum, an alarm is generated by the display means.

【0029】そして、判定結果に基づき必要な運動量の
基準値や上限値を演算し、検出された運動量が基準値未
満となったり前記上限値以上となった場合は表示手段に
より警報を発生させるので、的確に健康管理に役立たた
せることができる。
Then, a reference value and an upper limit value of the required amount of exercise are calculated based on the determination result. If the detected amount of exercise becomes less than the reference value or exceeds the upper limit, an alarm is generated by the display means. It can be used for health management accurately.

【0030】[0030]

【実施例】以下、本発明の実施例について図面を用いて
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0031】(実施例1)図1は本発明の実施例1の生
体モニタ装置のブロック図である。図1において、1は
脈波を検出する光電型の脈波検出手段で、指に装着する
光電型の脈波プローブ2と、脈波プローブ2からの出力
信号から脈波信号を抽出する脈波抽出部3を備えてい
る。脈波プローブ2使用時は、脈波プローブ2を心臓の
高さにして使用する。なお、複数個の脈波プローブ2を
複数部位に装着して脈波を検出してもよい。また、脈波
を検出する部位は指に限定するものではなく他の部位で
もよい。また、ここでは光電型の脈波プローブ2を用い
ているが、例えば手首の動脈から圧力センサや加速度セ
ンサ等を用いて圧脈波を検出してもよい。
(Embodiment 1) FIG. 1 is a block diagram of a living body monitoring apparatus according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 1 denotes a photoelectric pulse wave detecting means for detecting a pulse wave, a photoelectric pulse wave probe 2 attached to a finger, and a pulse wave for extracting a pulse wave signal from an output signal from the pulse wave probe 2. An extraction unit 3 is provided. When using the pulse wave probe 2, the pulse wave probe 2 is used at the height of the heart. Note that a plurality of pulse wave probes 2 may be attached to a plurality of sites to detect a pulse wave. Further, the part for detecting the pulse wave is not limited to the finger, and may be another part. Although the photoelectric pulse wave probe 2 is used here, a pressure pulse wave may be detected from a wrist artery using a pressure sensor, an acceleration sensor, or the like.

【0032】4は前記脈波検出手段1の脈波抽出部3の
出力信号に基づき、心臓の収縮時間を演算する心収縮時
間演算手段、5は脈波検出手段1の脈波抽出部3の出力
信号に基づき脈拍のゆらぎを演算するゆらぎ演算手段、
6は血液の循環動態判定手段で、心収縮時間演算手段4
と脈波のゆらぎ演算手段5との出力信号に基づき判定基
準値との比較において生体の血液循環動態を判定する判
定部7と、この判定部7の判定結果を記憶する記憶部8
と、身長、体重、年齢、治療内容、食事内容、運動量、
睡眠時間といった個人情報を入力できる個人情報入力部
9と、前記判定部7の判定結果に基づき必要な運動量の
基準値や上限値を演算する運動量基準値演算部10と、
前記運動量を検出する運動量検出部11とを備えてい
る。12は判定部7の判定結果と記憶部8の記憶内容を
表示できる表示手段である。運動量検出部11は例えば
加速度センサで歩行量等を検出するもので、腰ベルト等
に装着可能となっている。
Reference numeral 4 denotes a systole time calculating means for calculating a systolic time of the heart based on the output signal of the pulse wave extracting section 3 of the pulse wave detecting means 1. Reference numeral 5 denotes a pulse wave extracting section 3 of the pulse wave detecting means 1. Fluctuation calculation means for calculating the pulse fluctuation based on the output signal,
Reference numeral 6 denotes a blood circulatory state determining means, and a systolic time calculating means 4
A judgment unit 7 for judging the blood circulation dynamics of a living body in comparison with a judgment reference value based on an output signal from the pulse wave fluctuation calculation means 5 and a storage unit 8 for storing the judgment result of the judgment unit 7
And height, weight, age, treatment, diet, exercise,
A personal information input unit 9 for inputting personal information such as sleep time, an exercise amount reference value calculation unit 10 for calculating a reference value or an upper limit value of a required exercise amount based on the determination result of the determination unit 7;
An exercise amount detection unit 11 for detecting the exercise amount; Reference numeral 12 denotes a display unit that can display the determination result of the determination unit 7 and the content stored in the storage unit 8. The exercise amount detection unit 11 detects a walking amount or the like with an acceleration sensor, for example, and can be worn on a waist belt or the like.

【0033】次に動作、作用について説明する。図1の
ように指に脈波プローブ2を装着して脈波の測定を開始
する。図2は本実施例の動作手順を示したフローチャー
トである。まずステップST1で脈波検出手段1により
脈波を検出する。ここで、脈波プローブ2で検出した脈
波信号は身体の動き等により基線の動揺が生じる場合が
あるため、検出した各々の脈波信号に対応して、脈波抽
出部3により脈波信号から一拍毎の脈波波形を複数個抽
出して基線を合わせて平均し、平均的な脈波波形を求め
る。図3はこのようにして得られた代表的な脈波波形を
示したもので、図3(a)は健康な成年に見られ、正常
後隆波と呼ばれ、図3(b)は高血圧者や動脈硬化者等
に見られ、前隆波と呼ばれている。なお、この波形を基
に必要に応じて脈波間隔Piを求め、元の脈波波形の時
間軸を補正してもよい。これは脈拍数には個人差があり
後述する脈波波形の特徴量のうち時間的要素については
個人差を補正する必要があるためである。補正式につい
ては例えば(数1)で示されるBazzet(Bazzet,H,C.,1
920年)の式を用いる。
Next, the operation and operation will be described. The pulse wave probe 2 is attached to the finger as shown in FIG. 1 to start measuring the pulse wave. FIG. 2 is a flowchart showing the operation procedure of this embodiment. First, a pulse wave is detected by the pulse wave detecting means 1 in step ST1. Here, the pulse wave signal detected by the pulse wave probe 2 may cause the base line to fluctuate due to the movement of the body or the like. Therefore, the pulse wave signal is output by the pulse wave extraction unit 3 in accordance with each detected pulse wave signal. , A plurality of pulse wave waveforms for each beat are extracted, the base lines are combined and averaged to obtain an average pulse wave waveform. FIG. 3 shows a typical pulse waveform obtained in this manner. FIG. 3 (a) is seen in a healthy adult, is called a post-normal ridge, and FIG. 3 (b) is a hypertension. Is seen in the elderly and atherosclerotic, and is called anterior ridge. The pulse wave interval Pi may be obtained as needed based on this waveform, and the time axis of the original pulse wave waveform may be corrected. This is because there is an individual difference in the pulse rate, and it is necessary to correct the individual difference in the temporal element among the characteristic amounts of the pulse waveform described later. For the correction equation, for example, Bazzet (Bazzet, H, C., 1) shown in (Equation 1)
920).

【0034】[0034]

【数1】 (Equation 1)

【0035】続いて、ステップST2では心収縮時間演
算手段4により心臓の収縮時間Tuを演算する。この心
収縮時間Tuは図3の脈波波形の立ち上がり時点Sから
波形ピーク時点Pまでの時間として演算する。そしてス
テップST3で循環動態判定手段6の判定部7により心
収縮時間Tuが判定基準値Tu0より大であるかどうか
が判定される。心力が低下すると心拍出量を補うため心
臓の心収縮時間Tuを延長させることから、Tuが判定
基準値Tu0より大である場合はステップST4で判定
部7により心臓の収縮力、すなわち心力が低下している
と判定される。判定結果はステップST5で表示手段1
2に表示される。ステップST3で判定部7により心収
縮時間Tuが判定基準値Tu0以下である場合はステッ
プST6で判定部7により心力は正常であると判定さ
れ、判定結果はステップST5で表示手段12に表示さ
れる。
Subsequently, in step ST2, the systolic time calculating means 4 calculates the systolic time Tu of the heart. The cardiac contraction time Tu is calculated as the time from the rising point S of the pulse wave waveform of FIG. Then, in step ST3, the determination part 7 of the circulatory dynamics determination means 6 determines whether the cardiac contraction time Tu is longer than the determination reference value Tu0. When the cardiac power decreases, the cardiac contraction time Tu is extended to compensate for the cardiac output. If Tu is greater than the determination reference value Tu0, the determination unit 7 determines in step ST4 that the cardiac contraction power, that is, the cardiac power, is greater than the determination reference value Tu0. It is determined that it has decreased. The determination result is displayed in the display unit 1 in step ST5.
2 is displayed. If the cardiac contraction time Tu is equal to or less than the determination reference value Tu0 by the determination unit 7 in step ST3, the determination unit 7 determines that the cardiac power is normal in step ST6, and the determination result is displayed on the display unit 12 in step ST5. .

【0036】前記判定結果は判定部7の記憶部8に記憶
してもよく、記憶内容は表示手段12に表示可能であ
る。また、判定部7で用いる判定基準値Tu0は個人情
報入力部9の入力値に基づき変更してもよい。例えば個
人情報入力部9から年齢を入力して年齢に応じて判定基
準値Tu0の値を変更する場合は、年齢が高くなるに従
い判定基準値Tu0の値が大きくなるよう変更する。
The determination result may be stored in the storage unit 8 of the determination unit 7, and the stored content can be displayed on the display unit 12. The determination reference value Tu0 used in the determination unit 7 may be changed based on the input value of the personal information input unit 9. For example, when the age is input from the personal information input unit 9 and the value of the determination reference value Tu0 is changed according to the age, the value is changed so that the value of the determination reference value Tu0 increases as the age increases.

【0037】また判定部7の判定結果に基づき運動量基
準値演算部10により必要な運動量の基準値や上限値を
演算し、運動量検出部11により検出された運動量が前
記基準値未満となったり前記上限値以上となった場合は
表示手段12により警報を発生させるようにしてもよ
い。例えば、心力が低下していると判定された場合は、
心力か正常と判定された場合よりも必要な運動量の基準
値や上限値を低く演算して心臓に過剰な負担がかからな
いようにする。
Based on the determination result of the determination unit 7, a reference value and an upper limit of a required amount of exercise are calculated by an exercise amount reference value calculation unit 10, and the amount of exercise detected by the amount of exercise detection unit 11 becomes smaller than the reference value or When the value is equal to or more than the upper limit value, an alarm may be generated by the display unit 12. For example, if it is determined that your mental strength is decreasing,
The required reference value and upper limit of the amount of exercise are calculated lower than when it is determined that the heart strength is normal, so that an excessive load is not applied to the heart.

【0038】上記では判定部7が心臓の収縮時間に基づ
き心力の低下の有無を判定する際の動作手順を示した
が、次に、判定部7が心収縮時間演算手段4で演算した
心臓の収縮時間Tuとゆらぎ演算手段5で演算した脈拍
のゆらぎFrに基づいて血液循環動態を判定する動作手
順について述べる。ゆらぎ演算手段5では脈波検出手段
1の出力信号に基づき脈拍のゆらぎFrを演算する。F
rは例えば一拍毎に脈波間隔Piを求め、ある単位時間
に得られた脈波間隔Piのデータ系列の標準偏差を演算
して求めればよい。判定部7ではこのようにして求めた
心収縮時間Tuと脈拍のゆらぎFrに基づき血液循環動
態を判定する。図4は判定を行う際の心収縮時間Tu、
脈拍のゆらぎFrと判定結果D1〜D4の関係を示した
ものである。図中、Tu0とFr0は心収縮時間と、脈
拍のゆらぎの各判定基準値である。
In the above, the operation procedure when the determination unit 7 determines the presence or absence of a decrease in cardiac power based on the contraction time of the heart has been described. Next, the determination unit 7 calculates the heart contraction time calculated by the cardiac contraction time calculation means 4. An operation procedure for determining the blood circulation dynamics based on the contraction time Tu and the pulse fluctuation Fr calculated by the fluctuation calculation means 5 will be described. The fluctuation calculating means 5 calculates a pulse fluctuation Fr based on the output signal of the pulse wave detecting means 1. F
For example, r may be obtained by calculating the pulse wave interval Pi for each beat and calculating the standard deviation of the data series of the pulse wave interval Pi obtained in a certain unit time. The determination unit 7 determines the blood circulation dynamics based on the heart contraction time Tu and the pulse fluctuation Fr thus obtained. FIG. 4 shows the cardiac contraction time Tu for making the determination,
This shows the relationship between the pulse fluctuation Fr and the determination results D1 to D4. In the figure, Tu0 and Fr0 are the respective reference values for cardiac contraction time and pulse fluctuation.

【0039】一般にストレスがかかると脈拍のゆらぎが
減少すると言われている。従って、図4においてD1の
ように心収縮時間Tuが判定基準値Tu0以下で脈拍の
ゆらぎFrが判定基準値Fr0より大の場合は、心力は
正常でストレスもかかっていない状態なので心臓は正常
であると判定する。D2のように心収縮時間Tuが判定
基準値Tu0以下で脈拍のゆらぎFrが判定基準値Fr
0以下の場合は、心力は正常であるがストレスがかかっ
ている状態、D3のように心収縮時間Tuが判定基準値
Tu0より大で脈拍のようらぎFrが判定基準値Fr0
より大の場合は、心力が低下しているがストレスはかか
っていない状態で、いずれも心臓機能の低下への境界領
域であると判定する。D4のように心収縮時間Tuが判
定基準値Tu0より大で脈拍のゆらぎFrが判定基準値
Fr0以下の場合は、心力が低下しストレスがかかって
いる状態なので心臓機能が低下し注意を要すると判定す
る。なお、個人情報入力部9の入力値に基づき脈拍のゆ
らぎの判定基準Fr0の値を変更するようにしてもよ
い。
It is generally said that pulse stress decreases when stress is applied. Accordingly, in FIG. 4, when the cardiac contraction time Tu is equal to or less than the judgment reference value Tu0 and the pulse fluctuation Fr is larger than the judgment reference value Fr0 as in D1, the heart is in a normal state without stress and the heart is normal. It is determined that there is. As shown in D2, the heart contraction time Tu is equal to or less than the judgment reference value Tu0, and the pulse fluctuation Fr is equal to the judgment reference value Fr.
In the case of 0 or less, the heart strength is normal but stress is applied, and the heart contraction time Tu is larger than the criterion value Tu0 and the pulse Fr seems to be the criterion value Fr0 as in D3.
In the case of a larger value, in a state where the cardiac strength is reduced but no stress is applied, it is determined that any of the areas is a boundary region to a decrease in the heart function. When the cardiac contraction time Tu is larger than the criterion value Tu0 and the pulse fluctuation Fr is equal to or less than the criterion value Fr0 as in D4, the heart function is reduced and stress is applied, so that the heart function is reduced and caution is required. judge. Note that the value of the pulse fluctuation determination reference Fr0 may be changed based on the input value of the personal information input unit 9.

【0040】本発明の実施例1によれば、生体の脈波か
ら心収縮時間を演算し、演算した心収縮時間Tuに基づ
き心臓の収縮力のような生体の血液循環動態を判定する
ので、簡便に生体の血液循環動態を判定することができ
る。
According to the first embodiment of the present invention, the systolic time is calculated from the pulse wave of the living body, and the blood circulation dynamics such as the contractile force of the heart is determined based on the calculated systolic time Tu. It is possible to easily determine the blood circulation dynamics of a living body.

【0041】また、生体の脈波から心収縮時間と脈拍の
ゆらぎを演算し、演算した心収縮時間と脈拍のゆらぎf
rに基づき生体の血液循環動態を判定するので簡便に生
体の血液循環動態を判定することができる。
Further, the systolic time and pulse fluctuation are calculated from the pulse wave of the living body, and the calculated systolic time and pulse fluctuation f are calculated.
Since the blood circulation dynamics of the living body is determined based on r, the blood circulation dynamics of the living body can be easily determined.

【0042】また、脈波検出手段1の出力信号の波形の
立ち上がり時点Sから波形ピーク時点Pまでの時間を演
算して心収縮時間Tuが演算されるので、簡便に生体の
血液循環動態を判定することができる。
The cardiac contraction time Tu is calculated by calculating the time from the rising point S of the waveform of the output signal of the pulse wave detecting means 1 to the waveform peak point P, so that the blood circulation dynamics of the living body can be easily determined. can do.

【0043】また、判定結果を記憶するとともに、記憶
部8の記憶内容を表示することができるので、判定結果
の過去からの推移を知ることができ健康管理に役立つ。
Also, since the judgment result can be stored and the contents stored in the storage unit 8 can be displayed, the transition of the judgment result from the past can be known, which is useful for health management.

【0044】また、入力された個人情報に基づき判定基
準を変更できるので、例えば年齢に応じた循環動態の判
定が可能となる。
Further, since the criterion can be changed based on the input personal information, it is possible to determine the circulatory dynamics according to, for example, the age.

【0045】さらに、判定結果に基づき必要な運動量の
基準値や上限値を演算し、検出された運動量が基準値未
満となったり前記上限値以上となった場合は表示手段1
2により警報を発生させるので健康管理に役立つ。
Further, a reference value and an upper limit value of the required amount of exercise are calculated based on the determination result, and if the detected amount of exercise becomes less than the reference value or exceeds the above upper limit, the display means 1 is displayed.
2 generates an alarm, which is useful for health management.

【0046】(実施例2)本発明の実施例2の生体モニ
タ装置を以下に説明する。図5は本実施例2のブロック
図である。本実施例2において脈波検出手段1を除き、
実施例1と同一符号のものは同一構造と機能を有し、詳
細な説明は省略する。そして、実施例1と異なる点は、
図5のように血圧を測定する血圧測定手段13と、脈波
検出手段1の出力信号に基づき加速度脈波を演算する加
速度脈波演算手段17を備え、循環動態判定手段6が心
収縮時間演算手段4と血圧測定手段13と加速度脈波演
算手段17との出力信号に基づき血液循環動態を判定す
る点にある。図5のように、血圧測定手段13は上腕部
に装着するカフ14と、カフ14内を加圧・減圧する圧
力調整部14aと、カフ14内の圧力を検出する圧力検
出部15と、圧力検出部15の出力信号から脈波信号を
検出する脈波検出手段1と、圧力検出部15と脈波検出
手段1との出力信号に基づき最高血圧と最低血圧を演算
する血圧演算部16とを備えている。上記ではカフ14
は上腕部に装着したが、手首や指に装着してもよい。
(Embodiment 2) A biological monitoring apparatus according to Embodiment 2 of the present invention will be described below. FIG. 5 is a block diagram of the second embodiment. In the second embodiment, except for the pulse wave detecting means 1,
Components having the same reference numerals as those in the first embodiment have the same structure and function, and detailed description will be omitted. The difference from the first embodiment is that
As shown in FIG. 5, a blood pressure measuring means 13 for measuring blood pressure and an acceleration pulse wave calculating means 17 for calculating an acceleration pulse wave based on an output signal of the pulse wave detecting means 1 are provided. The point is that the blood circulation dynamics is determined based on the output signals of the means 4, the blood pressure measuring means 13 and the acceleration pulse wave calculating means 17. As shown in FIG. 5, the blood pressure measuring means 13 includes a cuff 14 attached to the upper arm, a pressure adjusting unit 14a for increasing / decreasing the pressure in the cuff 14, a pressure detecting unit 15 for detecting the pressure in the cuff 14, A pulse wave detecting unit for detecting a pulse wave signal from an output signal of the detecting unit; and a blood pressure calculating unit for calculating a systolic blood pressure and a diastolic blood pressure based on the output signals of the pressure detecting unit and the pulse wave detecting unit. Have. In the above, cuff 14
Was attached to the upper arm, but may be attached to the wrist or finger.

【0047】次に動作、作用について説明する。図6は
本実施例の動作手順を示したフローチャートである。先
ずステップST7で圧力調整部14aによりカフ14の
加圧を行って上腕部を圧迫し、圧力検出部15によりカ
フ圧が所定圧力になるまでカフ14内を昇圧する。そし
てステップST8でカフの減圧を開始し、ステップST
9で前記の減圧時に圧力検出部15で検出した圧力信号
から脈波検出手段1により脈波信号を抽出する。ステッ
プST10では血圧演算部16により脈波検出手段1で
脈波信号が検出し始めた時点の圧力を最高血圧に、脈波
信号の振幅変化がなくなった時点の圧力を最低血圧とし
て演算する。ステップST11では血圧演算部16が最
低血圧を演算した後に心収縮時間演算手段4により心臓
の収縮時間を演算する。この心臓の収縮時間Tuの演算
手順は実施例1と同様である。そしてステップ12で判
定部7により血液循環動態が判定される。図7は前記判
定を行う際の心臓の収縮時間心収縮時間Tu、血圧Bp
と判定結果D5〜D8の関係を示したものである。図
中、心収縮時間Tu0とBp0は判定基準である。ここ
で、Bpは最高血圧または最低血圧であるとする。
Next, the operation and operation will be described. FIG. 6 is a flowchart showing the operation procedure of this embodiment. First, in step ST7, the cuff 14 is pressurized by the pressure adjusting unit 14a to press the upper arm, and the pressure detecting unit 15 increases the pressure in the cuff 14 until the cuff pressure reaches a predetermined pressure. Then, in step ST8, the pressure of the cuff is reduced, and in step ST8,
In step 9, a pulse wave signal is extracted by the pulse wave detecting means 1 from the pressure signal detected by the pressure detecting section 15 at the time of the pressure reduction. In step ST10, the pressure at the time when the pulse wave signal is started to be detected by the pulse wave detection means 1 is calculated as the systolic blood pressure by the blood pressure calculation unit 16, and the pressure at the time when the amplitude change of the pulse wave signal stops is calculated as the diastolic blood pressure. In step ST11, the systolic time calculating means 4 calculates the systolic time of the heart after the blood pressure calculating section 16 calculates the diastolic blood pressure. The calculation procedure of the contraction time Tu of the heart is the same as in the first embodiment. Then, in step 12, the blood circulation dynamics are determined by the determination unit 7. FIG. 7 shows the contraction time of the heart and the contraction time Tu and the blood pressure Bp of the heart when making the above determination.
And the results of determination results D5 to D8. In the figure, the systolic times Tu0 and Bp0 are criteria. Here, Bp is assumed to be the systolic blood pressure or the diastolic blood pressure.

【0048】図7においてD5のように心収縮時間Tu
が判定基準値Tu0以下で血圧Bpが判定基準値Bp0
以下の場合は、心力は正常で血圧も正常である状態なの
で心臓、血管抵抗ともに正常であると判定する。D6の
ように心収縮時間Tuが判定基準値Tu0以下で血圧B
pが判定基準値Bp0より大の場合は、動脈硬化等の血
管抵抗の増大に対して心力を増加させ血圧を高めて心拍
出量を確保している状態で、このような心力増加状態が
継続すると負担に耐えきれず心力低下へと移行する遷移
状態であると判定する。D7のように心収縮時間Tuが
判定基準値Tu0より大で血圧Bpが判定基準値Bp0
より大の場合は、動脈硬化等の血管抵抗の増大が長期間
継続したため負担に耐えきれず心力が低下してしまい、
心収縮時間の延長により血圧を高めて心拍出量を確保し
ている状態で、この状態が継続すると心収縮時間の延長
によっても心拍出量を確保できないという危険な状態へ
移行する境界領域であると判定する。D8のように心収
縮時間Tuが心判定基準値Tu0より大で血圧Bpが判
定基準値Bp0以下の場合は、動脈硬化等の血管抵抗の
増大がさらに進んで心収縮時間の延長によっても血圧を
高められず心拍出量を確保できないという危険な状態
で、心不全等の発生の可能性が高く注意を要すると判定
する。判定結果はステップST13で表示手段12に表
示される。なお、個人情報入力部9の入力値に基づき心
収縮時間Tu0や血圧の判定基準値Bp0の値を変更す
るようにしてもよい。
In FIG. 7, the systole time Tu as indicated by D5 is shown.
Is equal to or less than the judgment reference value Tu0 and the blood pressure Bp is equal to the judgment reference value Bp0.
In the following cases, since the heart strength is normal and the blood pressure is normal, it is determined that both the heart and the vascular resistance are normal. When the systolic time Tu is equal to or less than the determination reference value Tu0 as in D6, the blood pressure B
When p is larger than the criterion value Bp0, a state in which the cardiac power is increased in response to an increase in the vascular resistance such as arteriosclerosis and the blood pressure is increased to secure the cardiac output, If the continuation is continued, it is determined that the state is a transition state in which the burden cannot be tolerated and the mental strength is reduced. As shown in D7, the systolic time Tu is larger than the criterion value Tu0 and the blood pressure Bp is equal to the criterion value Bp0.
In the case of larger, the increase in vascular resistance such as arteriosclerosis continued for a long period of time, so that it could not bear the burden and the heart strength decreased,
In the state where the cardiac output is secured by increasing the blood pressure by prolonging the systolic time, if this state continues, the boundary area shifts to a dangerous state where the cardiac output cannot be secured even by prolonging the systolic time Is determined. When the systolic time Tu is larger than the cardiac judgment reference value Tu0 and the blood pressure Bp is equal to or less than the judgment reference value Bp0 as in D8, the blood vessel resistance such as arteriosclerosis further increases, and the blood pressure is also increased by prolonging the systolic time. In a dangerous state in which the cardiac output cannot be secured without being raised, it is determined that the possibility of occurrence of heart failure or the like is high and attention is required. The determination result is displayed on the display means 12 in step ST13. The values of the systolic time Tu0 and the blood pressure determination reference value Bp0 may be changed based on the input values of the personal information input unit 9.

【0049】上記では判定部7が心臓の収縮時間と血圧
に基づき血液の循環動態を判定する動作手順を示した
が、次に、判定部7が血圧演算手段13で演算した血圧
と加速度脈波演算手段17で演算した加速度脈波に基づ
いて血液循環動態を判定する動作手順について述べる。
加速度脈波演算手段17では血圧演算部16が最低血圧
を演算した後に脈波検出手段1の出力信号を2回微分し
て加速度脈波を演算する。そして、判定部7では演算さ
れた加速度脈波をいくつかの波形パターンに分類する。
図8はその際の加速度脈波パターンの分類を示したもの
で、A〜Gの7つに分類される。この分類方法は例えば
小山内ら(1985)に記されているように、加速度脈
波の各ピークa〜eの位置関係により分類するもので、
心力低下や動脈硬化等により血液循環動態が悪化すると
Aから順にGへ移行するとされている。
The operation procedure in which the determination unit 7 determines the circulatory dynamics of the blood based on the systolic time and the blood pressure of the heart has been described above. Next, the determination unit 7 calculates the blood pressure and the acceleration pulse wave calculated by the blood pressure calculation means 13. An operation procedure for determining the blood circulation dynamics based on the acceleration pulse wave calculated by the calculation means 17 will be described.
The acceleration pulse wave calculating means 17 calculates the acceleration pulse wave by differentiating the output signal of the pulse wave detecting means 1 twice after the blood pressure calculating section 16 calculates the diastolic blood pressure. Then, the determination unit 7 classifies the calculated acceleration pulse wave into several waveform patterns.
FIG. 8 shows the classification of the acceleration pulse wave pattern at that time, which is classified into seven from A to G. In this classification method, as described in Koyamauchi et al. (1985), for example, classification is performed based on the positional relationship between the peaks a to e of the acceleration pulse wave.
It is said that when blood circulation dynamics deteriorate due to a decrease in heart strength, arteriosclerosis, etc., the state shifts from A to G in order.

【0050】判定部7では上記の波形パターンA〜Gの
分類結果と血圧Bpに基づき血液循環動態を判定する。
図9は判定を行う際の波形パターンA〜G、血圧Bpと
判定結果D9〜D12の関係を示したものである。ここ
で、図9のD9〜D12はそれぞれ図7のD5〜D8に
対応し、同様な判定を行うため、ここでの説明は省略す
る。
The determination section 7 determines the blood circulation dynamics based on the classification results of the waveform patterns A to G and the blood pressure Bp.
FIG. 9 shows the relationship between waveform patterns A to G, blood pressure Bp, and determination results D9 to D12 when making a determination. Here, D9 to D12 in FIG. 9 correspond to D5 to D8 in FIG. 7, respectively, and the same determination is performed, so that the description here is omitted.

【0051】本発明の実施例2によれば、生体の脈波か
ら心収縮時間を演算するとともに、生体の血圧を測定
し、演算した心収縮時間と測定した血圧に基づき生体の
血液循環動態を判定するので簡便に生体の血液循環動態
を判定することができる。
According to the second embodiment of the present invention, the systolic time is calculated from the pulse wave of the living body, the blood pressure of the living body is measured, and the blood circulation dynamics of the living body is calculated based on the calculated systolic time and the measured blood pressure. Since the determination is made, the blood circulation dynamics of the living body can be easily determined.

【0052】また、生体の脈波から加速度脈波を演算す
るとともに、生体の血圧を測定し、演算した加速度脈波
と測定した血圧に基づき生体の血液循環動態を判定する
ので簡便に生体の血液循環動態を判定することができ
る。
In addition, the acceleration pulse wave is calculated from the pulse wave of the living body, the blood pressure of the living body is measured, and the blood circulation dynamics of the living body is determined based on the calculated acceleration pulse wave and the measured blood pressure. Hemodynamics can be determined.

【0053】(実施例3)本発明の実施例3の生体モニ
タ装置を以下に説明する。図10は本実施例3のブロッ
ク図である。本実施例3において、実施例1と同一構造
および機能を有するものには同一符号を付して詳細な説
明を省略する。そして、実施例1と異なる点は、図10
のように心電位を検出する心電位検出手段18と、脈波
検出手段1の波脈抽出部3と心電位検出手段18の心電
位演算部21との出力信号に基づき脈波伝播時間を演算
する脈波伝播時間演算手段22とを備え、判定部7が心
収縮時間演算手段4と脈波伝播時間演算手段22との出
力信号に基づき血液循環動態を判定する点にある。心電
位検出手段18は両手首に装着した心電位用電極19、
20と、心電位用電極19、20の出力信号から心電位
を抽出する心電位演算部21とを備えている。
(Embodiment 3) A living body monitoring apparatus according to Embodiment 3 of the present invention will be described below. FIG. 10 is a block diagram of the third embodiment. In the third embodiment, components having the same structure and function as those of the first embodiment are denoted by the same reference numerals, and detailed description is omitted. The difference from the first embodiment is that FIG.
Calculates the pulse wave propagation time based on the output signals of the cardiac potential detecting means 18 for detecting the cardiac potential as described above, the pulse extracting section 3 of the pulse wave detecting means 1 and the cardiac potential calculating section 21 of the cardiac potential detecting means 18. Pulse wave transit time calculating means 22 for determining the blood circulation dynamics based on the output signals of the systolic time calculating means 4 and the pulse wave transit time calculating means 22. An electrocardiographic detecting means 18 includes an electrocardiographic electrode 19 attached to both wrists,
20 and a cardiac potential calculator 21 for extracting a cardiac potential from output signals of the electrodes 19 and 20 for cardiac potential.

【0054】次に動作、作用について説明する。図11
は本実施例の動作手順を示したフローチャートである。
まずステップST14、ステップST15は実施例1の
図2におけるST1、ステップST2と同様な処理を行
う。次にステップ16で心電位検出手段18により心電
位を検出する。ステップST17では脈波伝播時間演算
手段22により脈波伝播時間が演算される。脈波演算時
間は脈波検出手段1で検出した脈波波形のピーク時点と
心電位検出手段18により検出された心電位のR波のピ
ーク時点との時間差を演算することにより求まる。そし
てステップST18では判定部7により心臓の収縮時間
心収縮時間Tuと脈波伝播時間Pttに基づき血液の循
環動態の判定が行われる。図12は判定を行う際の心収
縮時間Tu、脈波伝藩時間Pttと判定結果D13〜D
15の関係を示したものである。図中、心収縮時間Tu
0とPtt0は判定基準である。
Next, the operation and operation will be described. FIG.
5 is a flowchart showing the operation procedure of the present embodiment.
First, in steps ST14 and ST15, the same processing as in steps ST1 and ST2 in FIG. 2 of the first embodiment is performed. Next, at step 16, the cardiac potential is detected by the cardiac potential detecting means 18. In step ST17, the pulse wave transit time is calculated by the pulse wave transit time calculating means 22. The pulse wave calculation time is obtained by calculating a time difference between the peak time of the pulse wave waveform detected by the pulse wave detecting means 1 and the peak time of the R wave of the cardiac potential detected by the cardiac potential detecting means 18. Then, in step ST18, the circulatory dynamics of the blood is determined by the determination unit 7 based on the contraction time of the heart, the contraction time Tu of the heart, and the pulse wave propagation time Ptt. FIG. 12 shows the heart contraction time Tu, the pulse wave transmission time Ptt, and the determination results D13 to D when making the determination.
15 shows the relationship. In the figure, the systole time Tu
0 and Ptt0 are criteria.

【0055】一般に動脈硬化の度合いが増すと脈波伝播
時間が短くなることが知られている。従って、図12に
おいてD13のように心収縮時間Tuが判定基準値Tu
0以下で脈波伝藩時間Pttが判定基準値Ptt0より
大の場合は、心力は正常で脈波伝播時間も長い状態なの
で心臓、血管抵抗ともに正常であると判定する。D14
のように心収縮時間Tuが判定基準値Tu0以下で脈波
伝播Pttが判定基準値Ptt0以下の場合は、動脈硬
化等の血管抵抗の増大に対して心力を増加させて血圧を
高め心拍出量を確保している状態で、このような心力増
加状態が継続すると負担に耐えきれず心力低下へと移行
する遷移状態であると判定する。D15のように心収縮
時間Tuが判定基準値Tu0より大で脈波伝播Pttが
判定基準値Ptt0以下の場合は、動脈硬化等の血管抵
抗の増大が長期間継続したため負担に耐えきれず心力が
低下してしまい、心収縮時間の延長により血圧を高め心
拍出量を確保している状態で、この状態が継続すると心
収縮時間の延長によっても心拍出量を確保できないとい
う危険な状態へ移行する境界領域であると判定する。判
定結果はステップST19で表示手段12に表示され
る。なお、個人情報入力部9の入力値に基づき心収縮時
間Tu0や脈波伝播時間の判定基準値Ptt0の値を変
更するようにしてもよい。
It is generally known that as the degree of arteriosclerosis increases, the pulse wave transit time becomes shorter. Accordingly, in FIG. 12, the cardiac contraction time Tu is equal to the determination reference value Tu as indicated by D13.
If the pulse wave transmission time Ptt is 0 or less and the pulse wave transmission time Ptt is larger than the determination reference value Ptt0, it is determined that both the heart and the vascular resistance are normal because the heart strength is normal and the pulse wave propagation time is long. D14
When the cardiac contraction time Tu is equal to or less than the criterion value Tu0 and the pulse wave propagation Ptt is equal to or less than the criterion value Ptt0, the heart force is increased in response to an increase in vascular resistance such as arteriosclerosis, thereby increasing blood pressure and increasing cardiac output. If such a state of increased heart strength continues while the amount is secured, it is determined that the state is a transition state in which the burden cannot be tolerated and the state shifts to a decrease in heart strength. When the cardiac contraction time Tu is larger than the criterion value Tu0 and the pulse wave propagation Ptt is equal to or less than the criterion value Ptt0 as in D15, the increase in vascular resistance such as arterial stiffness has continued for a long period of time, and it is difficult to withstand the burden and the heart strength is low. In a state where the blood pressure has been increased and the cardiac output has been secured by prolonging the systolic time, the cardiac output cannot be secured even if the cardiac contraction time is prolonged if this condition continues. It is determined that the boundary area is to be shifted. The determination result is displayed on the display means 12 in step ST19. It should be noted that the values of the cardiac contraction time Tu0 and the determination reference value Ptt0 of the pulse wave propagation time may be changed based on the input value of the personal information input unit 9.

【0056】本発明の実施例3によれば、生体の脈波か
ら心収縮時間を演算するとともに、生体の脈波と心電位
から脈波伝播時間を演算し、演算した心収縮時間と脈波
伝播時間に基づき生体の血液循環動態を判定するので簡
便に生体の血液循環動態を判定することができる。
According to the third embodiment of the present invention, the systolic time is calculated from the pulse wave of the living body, the pulse wave propagation time is calculated from the pulse wave and the cardiac potential of the living body, and the calculated systolic time and pulse wave are calculated. Since the blood circulation of the living body is determined based on the propagation time, the blood circulation of the living body can be easily determined.

【0057】(実施例4)本発明の実施例4の生体モニ
タ装置を以下に説明する。図13は本実施例4のブロッ
ク図である。本実施例4において、実施例1〜3と同一
構造および機能を有するものには同一符号を付して詳細
な説明を省略する。そして、実施例1〜3と異なる点
は、図13のように上腕部の動脈を圧迫する圧迫手段と
してのカフ14と、カフ14を備えた血圧測定手段13
と、上腕部より末梢側の指から脈波を検出する脈波検出
手段1と、脈波検出手段1の脈波抽出部3からの出力信
号に基づき加速度脈波を演算する加速度脈波演算手段1
7とを備え、判定部7が心収縮時間演算手段4の出力信
号と圧迫手段14により前記動脈を圧迫している際の加
速度脈波演算手段17の出力信号とに基づき生体の血液
循環動態を判定する点にある。なお、23は圧力検出部
15の出力信号から脈波を抽出する脈波検出部で、血圧
演算部16は圧力検出部15と脈波演算部23との出力
信号に基づき血圧を演算する。
(Embodiment 4) A biological monitoring apparatus according to Embodiment 4 of the present invention will be described below. FIG. 13 is a block diagram of the fourth embodiment. In the fourth embodiment, components having the same structure and function as those of the first to third embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted. The difference from the first to third embodiments is that a cuff 14 as a compression unit for compressing an artery of the upper arm as shown in FIG. 13 and a blood pressure measurement unit 13 having the cuff 14
A pulse wave detecting means 1 for detecting a pulse wave from a finger on the distal side of the upper arm, and an acceleration pulse wave calculating means for calculating an acceleration pulse wave based on an output signal from a pulse wave extracting section 3 of the pulse wave detecting means 1 1
And the determination unit 7 determines the blood circulation dynamics of the living body based on the output signal of the systolic time calculation means 4 and the output signal of the acceleration pulse wave calculation means 17 when the artery is compressed by the compression means 14. The point is to judge. Reference numeral 23 denotes a pulse wave detection unit that extracts a pulse wave from an output signal of the pressure detection unit 15, and a blood pressure calculation unit 16 calculates a blood pressure based on output signals from the pressure detection unit 15 and the pulse wave calculation unit 23.

【0058】次に動作、作用について説明する。図14
は本実施例の動作手順を示したフローチャートである。
先ずステップST20で圧力調整部14aによりカフ7
の加圧を行って上腕部を圧迫し、圧力検出部15により
カフ圧が所定圧力になるまでカフ14内を昇圧する。そ
してステップST21で圧力調整部14aによりカフの
減圧を開始し、ステップST22で脈波検出部23によ
り減圧時に圧力検出部15で検出した圧力信号から脈波
信号を抽出する。ステップST23では血圧演算部16
により脈波検出部23で脈波信号が検出し始めた時点の
圧力を最高血圧に、脈波信号の振幅変化がなくなった時
点の圧力を最低血圧として演算する。ステップST24
では血圧演算部16が最低血圧を演算した後に加速度脈
波演算手段17により指で検出された脈波から加速度脈
波を演算する。
Next, the operation and operation will be described. FIG.
5 is a flowchart showing the operation procedure of the present embodiment.
First, in step ST20, the cuff 7 is
Is pressed to press the upper arm, and the pressure detecting unit 15 increases the pressure in the cuff 14 until the cuff pressure reaches a predetermined pressure. Then, in step ST21, depressurization of the cuff is started by the pressure adjusting unit 14a, and in step ST22, the pulse wave detecting unit 23 extracts a pulse wave signal from the pressure signal detected by the pressure detecting unit 15 at the time of depressurizing. In step ST23, the blood pressure calculation unit 16
Accordingly, the pressure at the time when the pulse wave signal is started to be detected by the pulse wave detecting unit 23 is calculated as the systolic blood pressure, and the pressure at the time when the amplitude change of the pulse wave signal stops being calculated as the diastolic blood pressure. Step ST24
After the blood pressure calculator 16 calculates the diastolic blood pressure, the acceleration pulse wave calculator 17 calculates the acceleration pulse wave from the pulse wave detected by the finger.

【0059】ここで、カフ減圧時の加速度脈波の変化に
ついて述べる。図15は減圧時の加速度脈波の波形パタ
ーンの変化を模式的に示したものである。図15(a)
はカフ圧Pcの経時変化でP1、P2はそれぞれ最高血
圧と最低血圧を示す。図15(b)、図15(c)はそ
れぞれ動脈硬化は無いが室温が低かったり精神的な緊張
により血管抵抗が増大している人の加速度脈波と動脈硬
化のある人の加速度脈波で、いずれも図15(a)にお
ける時刻t=t1とt=t2での波形を示している。図
15よりカフ非加圧時のt=t2で図15(b)、図1
5(c)のように双方とも加速度脈波波形がEパターン
であっても、t=t1で上腕部が加圧状態の際の指の加
速度脈波波形は図15(c)の場合は加圧により緊張に
よる血管抵抗が解除されるため波形がAパターンを示
す。一方、図15(b)の場合はもともと血管自体に動
脈硬化があるので加圧されても波形パターンに変化がな
い。
Here, the change of the acceleration pulse wave when the cuff is depressurized will be described. FIG. 15 schematically shows a change in the waveform pattern of the acceleration pulse wave during pressure reduction. FIG. 15 (a)
Is a temporal change of the cuff pressure Pc, and P1 and P2 indicate a systolic blood pressure and a diastolic blood pressure, respectively. FIGS. 15 (b) and 15 (c) show acceleration pulse waves of a person who has no arteriosclerosis but has a low room temperature or has increased vascular resistance due to mental tension, and an acceleration pulse wave of a person who has arteriosclerosis. 15 shows waveforms at times t = t1 and t = t2 in FIG. As shown in FIG. 15, at t = t2 when the cuff is not pressurized, FIG.
As shown in FIG. 15 (c), the acceleration pulse wave waveform of the finger when the upper arm is in the pressurized state at t = t1 is added even if the acceleration pulse wave waveform is the E pattern in both cases as shown in FIG. 15 (c). Since the vascular resistance due to tension is released by the pressure, the waveform shows the A pattern. On the other hand, in the case of FIG. 15B, since the blood vessel itself originally has arteriosclerosis, the waveform pattern does not change even if the pressure is applied.

【0060】従ってステップ25では判定部7により、
減圧過程のt=t1で加速度脈波の波形がAパターンを
示すかどうかが比較され、Aパターンを示す場合はステ
ップ26で判定部7により動脈硬化がなく正常であると
判定される。判定結果はステップST27で表示手段1
2に表示される。ステップ25でAパターンを示さない
場合はステップST28で判定部7により動脈硬化有り
と判定され、判定結果はステップST27で表示手段1
2に表示される。なお、t=t1で比較される加速度波
形はAパターンに限らず他の波形パターンでもよい。
Therefore, in step 25, the judgment unit 7
At t = t1 in the decompression process, it is compared whether or not the waveform of the acceleration pulse wave indicates the A pattern. If the waveform indicates the A pattern, the determination unit 7 determines in step 26 that there is no arteriosclerosis and that the waveform is normal. The determination result is displayed in the display unit 1 in step ST27.
2 is displayed. If the pattern A is not shown in step 25, the determination section 7 determines that arteriosclerosis is present in step ST28, and the determination result is the display means 1 in step ST27.
2 is displayed. Note that the acceleration waveform compared at t = t1 is not limited to the A pattern, and may be another waveform pattern.

【0061】判定部7では心収縮時間演算手段4の出力
信号と圧迫手段14により上腕部の動脈を圧迫している
際の加速度脈波演算手段17の出力信号とに基づき生体
の血液循環動態を判定してもよい。図16は判定を行う
際の心臓の収縮時間Tu、上腕部の動脈を圧迫している
際の加速度脈波の変化から求めた動脈硬化の有無、及び
判定結果D16〜D18の関係を示したものである。図
中のD16〜D18は実施例3における図12のD13
〜D15の判定結果にに相当する。
The determination unit 7 determines the blood circulation dynamics of the living body on the basis of the output signal of the systole time calculation means 4 and the output signal of the acceleration pulse wave calculation means 17 when the compression means 14 is compressing the upper arm artery. It may be determined. FIG. 16 shows the relationship between the contraction time Tu of the heart when making a determination, the presence or absence of arteriosclerosis obtained from the change in the acceleration pulse wave when the artery in the upper arm is compressed, and the determination results D16 to D18. It is. D16 to D18 in the figure are D13 in FIG.
To D15.

【0062】本発明の実施例4によれば、圧迫手段14
により動脈を圧迫している際の加速度脈波の波形変化に
基づき動脈硬化といった生体の血液循環動態を判定する
ので、病的な動脈硬化と測定時の室温が低かったり精神
的な緊張等の環境変化による血管抵抗の増大とを区別し
て判定することができる。
According to the fourth embodiment of the present invention, the pressing means 14
The blood circulation dynamics of the living body such as arteriosclerosis is determined based on the change in the waveform of the acceleration pulse wave when the artery is compressed, so pathological arteriosclerosis and low room temperature during measurement or mental tension The determination can be made separately from the increase in the vascular resistance due to the change.

【0063】また、生体の脈波から心収縮時間を演算す
るとともに、圧迫手段により動脈を圧迫している際の加
速度脈波を演算し、演算された心収縮時間と加速度脈波
に基づき生体の血液循環動態を判定するので簡便に生体
の血液循環動態を判定することができる。
Further, the cardiac contraction time is calculated from the pulse wave of the living body, and the acceleration pulse wave when the artery is compressed by the compression means is calculated. Based on the calculated cardiac contraction time and the acceleration pulse wave, the body contraction time is calculated. Since the blood circulation is determined, the blood circulation of the living body can be easily determined.

【0064】なお、以上の各実施例では本発明を人体へ
適用する場合について述べたが、人間以外の他の動物に
適用してもよい。
In each of the embodiments described above, the present invention is applied to a human body. However, the present invention may be applied to animals other than humans.

【0065】[0065]

【発明の効果】以上説明したように本発明の請求項1に
かかる生体モニタ装置は、生体の脈波から心収縮時間を
演算し、演算した心収縮時間に基づき心臓の収縮力のよ
うな生体の血液循環動態を判定するので、簡便に生体の
血液循環動態を判定することができる。
As described above, the living body monitoring apparatus according to the first aspect of the present invention calculates the contraction time from the pulse wave of the living body, and calculates the contraction time of the heart based on the calculated contraction time. Is determined, the blood circulation of the living body can be easily determined.

【0066】また請求項2にかかる生体モニタ装置は、
生体の脈波から心収縮時間と脈拍のゆらぎを演算し、こ
の演算した心収縮時間と脈拍のゆらぎに基づき生体の血
液循環動態を判定するので、簡便に生体の血液循環動態
を判定することができる。
The living body monitor according to claim 2 is
Calculate the systolic time and pulse fluctuation from the pulse wave of the living body, and determine the blood circulation dynamics of the living body based on the calculated systolic time and pulse fluctuation, so that the blood circulation dynamics of the living body can be easily determined. it can.

【0067】また、請求項3にかかる生体モニタ装置
は、生体の脈波から心収縮時間を演算するとともに、生
体の血圧を測定し、演算した心収縮時間と測定した血圧
に基づき生体の血液循環動態を判定するので、簡便に生
体の血液循環動態を判定することができる。
Further, the living body monitoring device according to the third aspect calculates the systolic time from the pulse wave of the living body, measures the blood pressure of the living body, and based on the calculated systolic time and the measured blood pressure, the blood circulation of the living body. Since the dynamics are determined, the blood circulation dynamics of the living body can be easily determined.

【0068】また請求項4にかかる生体モニタ装置は、
生体の脈波から加速度脈波を演算するとともに、生体の
血圧を測定し、演算した加速度脈波と測定した血圧に基
づき生体の血液循環動態を判定するので、簡便に生体の
血液循環動態を判定することができる。
The living body monitor according to claim 4 is
Since the acceleration pulse wave is calculated from the pulse wave of the living body, the blood pressure of the living body is measured, and the blood circulation dynamics of the living body are determined based on the calculated acceleration pulse wave and the measured blood pressure. can do.

【0069】また請求項5にかかる生体モニタ装置は、
生体の脈波から心収縮時間を演算するとともに、生体の
脈波と心電位から脈波伝播時間を演算し、演算した心収
縮時間と脈波伝播時間に基づき生体の血液循環動態を判
定するので、簡便に生体の血液循環動態を判定すること
ができる。
The living body monitor according to claim 5 is
Since the cardiac contraction time is calculated from the pulse wave of the living body, the pulse wave transit time is calculated from the pulse wave of the living body and the cardiac potential, and the blood circulation dynamics of the living body is determined based on the calculated cardiac contraction time and pulse wave transit time. It is possible to easily determine the blood circulation dynamics of the living body.

【0070】また請求項6にかかる生体モニタ装置は、
脈波検出手段の出力信号の波形の立ち上がり時点から波
形ピーク時点までの時間を演算して心収縮時間が演算さ
れるので、簡便に生体の血液循環動態を判定することが
できる。
The living body monitor according to claim 6 is
The cardiac contraction time is calculated by calculating the time from the rising point of the waveform of the output signal of the pulse wave detecting means to the waveform peak, so that the blood circulation dynamics of the living body can be easily determined.

【0071】また請求項7にかかる生体モニタ装置は、
圧迫手段により動脈を圧迫している際の加速度脈波の波
形変化に基づき動脈硬化といった生体の血液循環動態を
判定するので、病的な動脈硬化と測定時の室温が低かっ
たり精神的な緊張による血管抵抗の増大とを区別して的
確に判定することができる。
The living body monitor according to claim 7 is:
The blood circulation dynamics of the living body such as arteriosclerosis is determined based on the waveform change of the acceleration pulse wave when the artery is compressed by the compression means. An accurate determination can be made while distinguishing from an increase in vascular resistance.

【0072】また請求項8にかかる生体モニタ装置は、
生体の脈波から心収縮時間を演算するとともに、圧迫手
段により動脈を圧迫している際の加速度脈波を演算し、
演算された心収縮時間と加速度脈波に基づき生体の血液
循環動態を判定するので、簡便に生体の血液循環動態を
判定することができる。
The living body monitoring device according to claim 8 is
Calculate the cardiac contraction time from the pulse wave of the living body, and calculate the acceleration pulse wave when the artery is compressed by the compression means,
Since the blood circulation dynamics of the living body are determined based on the calculated cardiac contraction time and the acceleration pulse wave, the blood circulation dynamics of the living body can be easily determined.

【0073】また請求項9にかかる生体モニタ装置は、
判定結果を記憶するとともに、記憶部の記憶内容を表示
することができるので、判定結果の過去からの推移を知
ることができ健康管理に役立たせることができる。
The living body monitoring device according to claim 9 is
Since the determination result can be stored and the storage content of the storage unit can be displayed, the transition of the determination result from the past can be known, which can be useful for health management.

【0074】また請求項10にかかる生体モニタ装置
は、入力された個人情報に基づき判定基準を変更できる
ので、例えば年齢に応じた的確な循環動態の判定が可能
となる。
Further, since the living body monitoring device according to the tenth aspect can change the criterion based on the input personal information, for example, it is possible to accurately determine the circulatory dynamics according to the age.

【0075】さらに請求項11にかかる生体モニタ装置
は、判定結果に基づき必要な運動量の基準値や上限値を
演算し、検出された運動量が基準値未満となったり、前
記上限値以上となった場合は表示手段により警報を発生
させるので、その表示を見落とすことなくできる。
Further, the living body monitoring device according to the eleventh aspect calculates a reference value and an upper limit value of the required amount of exercise based on the determination result, and the detected amount of exercise becomes less than the reference value or exceeds the upper limit value. In this case, an alarm is generated by the display means, so that the display can be overlooked.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における生体モニタ装置のブ
ロック図
FIG. 1 is a block diagram of a living body monitoring device according to a first embodiment of the present invention.

【図2】同装置の動作手順を示すフローチャートFIG. 2 is a flowchart showing an operation procedure of the apparatus.

【図3】(a)健康な青年に見られる代表的な脈波の波
形を示す特性図 (b)高血圧者などに見られる代表的な脈波の波形を示
す特性図
3A is a characteristic diagram showing a typical pulse wave waveform seen in a healthy adolescent; FIG. 3B is a characteristic diagram showing a typical pulse wave waveform seen in a hypertensive person and the like;

【図4】同装置による判定結果を、心収縮時間と脈拍の
ゆらぎとの関係で示した特性図
FIG. 4 is a characteristic diagram showing a result of determination by the apparatus in terms of a relationship between a systolic time and a pulse fluctuation.

【図5】本発明の実施例2における生体モニタ装置のブ
ロック図
FIG. 5 is a block diagram of a biological monitoring device according to a second embodiment of the present invention.

【図6】同装置の動作手順を示すフローチャートFIG. 6 is a flowchart showing an operation procedure of the apparatus.

【図7】同装置による判定結果を、心収縮時間と血圧と
の関係で示した特性図
FIG. 7 is a characteristic diagram showing a determination result by the device in a relationship between a systolic time and a blood pressure.

【図8】同装置において、使用する加速度脈波の波形パ
ターン分類を示す特性図
FIG. 8 is a characteristic diagram showing a waveform pattern classification of an acceleration pulse wave used in the apparatus.

【図9】同装置において使用する加速度脈波の波形パタ
ーンと血圧との関係を示す特性図
FIG. 9 is a characteristic diagram showing a relationship between a blood pressure pattern and a waveform pattern of an acceleration pulse wave used in the apparatus.

【図10】本発明の実施例3における生体モニタ装置の
ブロック図
FIG. 10 is a block diagram of a living body monitoring device according to a third embodiment of the present invention.

【図11】同装置の動作手順を示すフローチャートFIG. 11 is a flowchart showing an operation procedure of the apparatus.

【図12】同装置による判定結果を、心収縮時間と脈波
伝播時間との関係で示した特性図
FIG. 12 is a characteristic diagram showing a result of determination by the apparatus in terms of a relationship between a systolic time and a pulse wave transit time.

【図13】本発明の実施例4における生体モニタ装置の
ブロック図
FIG. 13 is a block diagram of a biological monitoring device according to a fourth embodiment of the present invention.

【図14】同装置の動作手順を示すフローチャートFIG. 14 is a flowchart showing an operation procedure of the apparatus.

【図15】(a)カフ減圧時の加速度脈波の径時変化の
波形を示す特性図 (b)精神的な緊張により血管が増大している人のカフ
減圧時の加速度脈波の波形変化を示す特性図 (c)動脈硬化のある人のカフ減圧時の加速度脈波の波
形変化を示す特性図
FIG. 15 (a) is a characteristic diagram showing a time-dependent waveform of an acceleration pulse wave when the cuff is depressurized. (B) A waveform change of the acceleration pulse wave when the cuff is depressed in a person whose blood vessels are increasing due to mental tension. (C) Characteristic diagram showing waveform change of acceleration pulse wave at the time of cuff decompression for a person with arteriosclerosis

【図16】同装置における判定結果を、心収縮時間と動
脈硬化の有無との関係で示した特性図
FIG. 16 is a characteristic diagram showing a determination result in the same device as a relationship between a systolic time and the presence or absence of arteriosclerosis.

【図17】従来の生体モニタ装置の圧力−容積曲線を示
す特性図
FIG. 17 is a characteristic diagram showing a pressure-volume curve of a conventional biological monitoring device.

【符号の説明】[Explanation of symbols]

1 脈波検出手段 4 心収縮時間演算手段 5 ゆらぎ演算手段 6 循環動態判定手段 8 記憶部 9 個人情報入力部 10 運動量基準値演算部 11 運動量検出部 12 表示手段 13 血圧測定手段 17 加速度脈波演算手段 18 心電位検出手段 22 脈波伝播時間演算手段 REFERENCE SIGNS LIST 1 pulse wave detecting means 4 systolic time calculating means 5 fluctuation calculating means 6 circulatory dynamics determining means 8 storage section 9 personal information input section 10 exercise amount reference value calculating section 11 exercise amount detecting section 12 display means 13 blood pressure measuring means 17 acceleration pulse wave calculating Means 18 Cardiac potential detecting means 22 Pulse wave transit time calculating means

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】生体の脈波を検出する脈波検出手段と、前
記脈波検出手段の出力信号に基づき心臓の収縮時間を演
算する心収縮時間演算手段と、前記心収縮時間演算手段
の出力信号に基づき前記生体の血液循環動態を判定する
循環動態判定手段と、前記循環動態判定手段の出力信号
を表示する表示手段とを備えた生体モニタ装置。
1. A pulse wave detecting means for detecting a pulse wave of a living body, a systolic time calculating means for calculating a contraction time of a heart based on an output signal of the pulse wave detecting means, and an output of the systolic time calculating means. A living body monitoring device comprising: a circulatory state determining unit that determines a blood circulation state of the living body based on a signal; and a display unit that displays an output signal of the circulating state determining unit.
【請求項2】生体の脈波を検出する脈波検出手段と、前
記脈波検出手段の出力信号に基づき心臓の収縮時間を演
算する心収縮時間演算手段と、前記脈波検出手段の出力
信号に基づき脈拍のゆらぎを演算するゆらぎ演算手段
と、前記心収縮時間演算手段と前記ゆらぎ演算手段との
出力信号に基づき前記生体の血液循環動態を判定する循
環動態判定手段と、前記循環動態判定手段の出力信号を
表示する表示手段とを備えた生体モニタ装置。
2. A pulse wave detecting means for detecting a pulse wave of a living body, a systolic time calculating means for calculating a contraction time of the heart based on an output signal of the pulse wave detecting means, and an output signal of the pulse wave detecting means. Fluctuation calculating means for calculating a pulse fluctuation based on the following: circulating dynamics determining means for determining the blood circulation dynamics of the living body based on the output signals of the systolic time calculating means and the fluctuation calculating means; and the circulating dynamics determining means And a display means for displaying the output signal of the biological monitor.
【請求項3】生体の脈波を検出する脈波検出手段と、前
記脈波検出手段の出力信号に基づき心臓の収縮時間を演
算する心収縮時間演算手段と、前記生体の血圧を測定す
る血圧測定手段と、前記心収縮時間演算手段と前記血圧
測定手段との出力信号に基づき前記生体の血液循環動態
を判定する循環動態判定手段と、前記循環動態判定手段
の出力信号を表示する表示手段とを備えた生体モニタ装
置。
3. A pulse wave detecting means for detecting a pulse wave of a living body, a systolic time calculating means for calculating a contraction time of a heart based on an output signal of the pulse wave detecting means, and a blood pressure for measuring a blood pressure of the living body. Measurement means, circulatory state determination means for determining the blood circulation state of the living body based on the output signals of the systole time calculation means and the blood pressure measurement means, and display means for displaying the output signal of the circulatory state determination means A biological monitoring device comprising:
【請求項4】生体の脈波を検出する脈波検出手段と、前
記脈波検出手段の出力信号に基づき加速度脈波を演算す
る加速度脈波演算手段と、前記生体の血圧を測定する血
圧測定手段と、前記加速度脈波演算手段と前記血圧測定
手段との出力信号に基づき前記生体の血液循環動態を判
定する循環動態判定手段と、前記循環動態判定手段の出
力信号を表示する表示手段とを備えた生体モニタ装置。
4. A pulse wave detecting means for detecting a pulse wave of a living body, an acceleration pulse wave calculating means for calculating an acceleration pulse wave based on an output signal of the pulse wave detecting means, and a blood pressure measurement for measuring a blood pressure of the living body Means, circulatory state determining means for determining the blood circulation state of the living body based on the output signals of the acceleration pulse wave calculating means and the blood pressure measuring means, and display means for displaying the output signal of the circulating state determination means. Biological monitoring device provided.
【請求項5】生体の脈波を検出する脈波検出手段と、前
記脈波検出手段の出力信号に基づき心臓の収縮時間を演
算する心収縮時間演算手段と、前記生体の心電位を検出
する心電位検出手段と、前記脈波検出手段と前記心電位
検出手段との出力信号に基づき脈波伝播時間を演算する
脈波伝播時間演算手段と、前記心収縮時間演算手段と前
記脈波伝播時間演算手段との出力信号に基づき前記生体
の血液循環動態を判定する循環動態判定手段と、前記循
環動態判定手段の出力信号を表示する表示手段とを備え
た生体モニタ装置。
5. A pulse wave detecting means for detecting a pulse wave of a living body, a cardiac contraction time calculating means for calculating a contraction time of a heart based on an output signal of the pulse wave detecting means, and detecting a cardiac potential of the living body. Cardiac potential detecting means, pulse wave transit time computing means for computing pulse wave transit time based on output signals of the pulse wave detecting means and the cardiac potential detecting means, cardiac contraction time computing means, and the pulse wave transit time A living body monitoring device comprising: a circulatory state determining unit that determines the blood circulation state of the living body based on an output signal from the arithmetic unit; and a display unit that displays an output signal of the circulating state determining unit.
【請求項6】心収縮時間演算手段は脈波検出手段の出力
信号の波形の立ち上がり時点から波形ピーク時点までの
時間を演算する請求項1乃至4のいずれか1項記載の生
体モニタ装置。
6. The living body monitoring apparatus according to claim 1, wherein the systolic time calculating means calculates a time from a rising time point of the waveform of the output signal of the pulse wave detecting means to a waveform peak time point.
【請求項7】生体の脈波を検出する脈波検出手段と、前
記脈波検出手段の出力信号に基づき加速度脈波を演算す
る加速度脈波演算手段と、前記生体の動脈を圧迫する圧
迫手段と、前記圧迫手段により前記動脈を圧迫している
際の前記加速度脈波演算手段の出力信号に基づき前記生
体の血液循環動態を判定する循環動態判定手段と、前記
循環動態判定手段の出力信号を表示する表示手段とを備
えた生体モニタ装置。
7. A pulse wave detecting means for detecting a pulse wave of a living body, an acceleration pulse wave calculating means for calculating an acceleration pulse wave based on an output signal of the pulse wave detecting means, and a compressing means for compressing an artery of the living body A circulatory state determining unit that determines a blood circulation state of the living body based on an output signal of the acceleration pulse wave calculating unit when the artery is compressed by the compression unit; and an output signal of the circulatory state determining unit. A biological monitor device comprising a display unit for displaying.
【請求項8】生体の脈波を検出する脈波検出手段と、前
記脈波検出手段の出力信号に基づき心臓の収縮時間を演
算する心収縮時間演算手段と、前記脈波検出手段の出力
信号に基づき加速度脈波を演算する加速度脈波演算手段
と、前記生体の動脈を圧迫する圧迫手段と、前記心収縮
時間演算手段の出力信号と前記圧迫手段により前記動脈
を圧迫している際の前記加速度脈波演算手段の出力信号
とに基づき前記生体の血液循環動態を判定する循環動態
判定手段と、前記循環動態判定手段の出力信号を表示す
る表示手段とを備えた生体モニタ装置。
8. A pulse wave detecting means for detecting a pulse wave of a living body, a systole time calculating means for calculating a contraction time of the heart based on an output signal of the pulse wave detecting means, and an output signal of the pulse wave detecting means. Acceleration pulse wave calculating means for calculating an acceleration pulse wave based on, a compression means for compressing the artery of the living body, and an output signal of the systole time calculation means and the compression means when the artery is compressed by the compression means. A living body monitor apparatus comprising: a circulatory state determining unit that determines the blood circulation state of the living body based on an output signal of the acceleration pulse wave calculating unit; and a display unit that displays an output signal of the circulating state determining unit.
【請求項9】循環動態判定手段は判定結果を記憶する記
憶部を備え、表示手段は前記記憶部の記憶内容を表示で
きる請求項1乃至8のいずれか1項記載の生体モニタ装
置。
9. The living body monitoring apparatus according to claim 1, wherein the circulatory dynamics determining unit includes a storage unit that stores the determination result, and the display unit can display the contents stored in the storage unit.
【請求項10】循環動態判定手段は身長、体重、年齢、
治療内容、食事内容、運動量、睡眠時間といった個人情
報を入力できる個人情報入力部を備え、前記個人情報入
力部の入力値に基づき判定基準を変更できる請求項1乃
至9のいずれか1項記載の生体モニタ装置。
10. The circulatory dynamics determining means includes height, weight, age,
10. The personal information input unit according to claim 1, further comprising a personal information input unit capable of inputting personal information such as treatment content, meal content, exercise amount, and sleep time, wherein a determination criterion can be changed based on an input value of the personal information input unit. Biological monitoring device.
【請求項11】循環動態判定手段は、判定結果に基づき
必要な運動量の基準値や上限値を演算する運動量基準値
演算部と、生体の運動量を検出する運動量検出部とを備
え、前記運動量検出部により検出された運動量が前記基
準値未満、あるいは前記運動量上限値以上となった場合
は表示手段により警報を発生させる請求項1乃至9のい
ずれか1項記載の生体モニタ装置。
11. A circulatory dynamics determining means comprising: a momentum reference value calculating section for calculating a reference value or an upper limit value of a required amount of exercise based on the determination result; and a momentum detecting section for detecting a momentum of the living body. The living body monitor device according to any one of claims 1 to 9, wherein when the amount of exercise detected by the unit is less than the reference value or equal to or more than the upper limit of the amount of exercise, an alarm is generated by the display means.
JP14709598A 1998-05-28 1998-05-28 Biological monitor device Expired - Fee Related JP3855460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14709598A JP3855460B2 (en) 1998-05-28 1998-05-28 Biological monitor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14709598A JP3855460B2 (en) 1998-05-28 1998-05-28 Biological monitor device

Publications (2)

Publication Number Publication Date
JPH11332837A true JPH11332837A (en) 1999-12-07
JP3855460B2 JP3855460B2 (en) 2006-12-13

Family

ID=15422379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14709598A Expired - Fee Related JP3855460B2 (en) 1998-05-28 1998-05-28 Biological monitor device

Country Status (1)

Country Link
JP (1) JP3855460B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004195204A (en) * 2002-12-05 2004-07-15 Omron Healthcare Co Ltd Pulse wave measuring device
JP2005066087A (en) * 2003-08-26 2005-03-17 Matsushita Electric Works Ltd Circulatory organ function determining device
JP2007236807A (en) * 2006-03-10 2007-09-20 Haruko Takada Exercise tolerability evaluation device
US7727159B2 (en) 2003-08-11 2010-06-01 Samsung Electronics Co., Ltd. Apparatus and method for detecting blood flow signal free from motion artifact and stress test apparatus using the same
JP2011189080A (en) * 2010-03-16 2011-09-29 Toyama Univ Finger-tip pulse wave analyzer and vascular endothelium function evaluation system using the same
JP2013511350A (en) * 2009-11-18 2013-04-04 日本テキサス・インスツルメンツ株式会社 Method and apparatus for detecting blood flow and hemodynamic parameters
JP2013099505A (en) * 2011-10-19 2013-05-23 Panasonic Corp Circulatory dynamics measurement apparatus
JP2016189807A (en) * 2015-03-30 2016-11-10 セイコーインスツル株式会社 Sphygmograph
CN108903924A (en) * 2018-07-03 2018-11-30 浙江理工大学 A kind of bracelet object wearing device that taking static tremor signal and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016214303A (en) * 2015-05-14 2016-12-22 日本光電工業株式会社 Index output method, index output device, and index output program

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7326180B2 (en) 2002-12-05 2008-02-05 Omron Healthcare Co., Ltd. Pulse wave monitoring device
JP4517619B2 (en) * 2002-12-05 2010-08-04 オムロンヘルスケア株式会社 Pulse wave measuring device
JP2004195204A (en) * 2002-12-05 2004-07-15 Omron Healthcare Co Ltd Pulse wave measuring device
US7727159B2 (en) 2003-08-11 2010-06-01 Samsung Electronics Co., Ltd. Apparatus and method for detecting blood flow signal free from motion artifact and stress test apparatus using the same
JP2005066087A (en) * 2003-08-26 2005-03-17 Matsushita Electric Works Ltd Circulatory organ function determining device
JP2007236807A (en) * 2006-03-10 2007-09-20 Haruko Takada Exercise tolerability evaluation device
JP2013511350A (en) * 2009-11-18 2013-04-04 日本テキサス・インスツルメンツ株式会社 Method and apparatus for detecting blood flow and hemodynamic parameters
JP2011189080A (en) * 2010-03-16 2011-09-29 Toyama Univ Finger-tip pulse wave analyzer and vascular endothelium function evaluation system using the same
JP2013099505A (en) * 2011-10-19 2013-05-23 Panasonic Corp Circulatory dynamics measurement apparatus
US10010252B2 (en) 2011-10-19 2018-07-03 Panasonic Intellectual Property Management Co., Ltd. Circulatory dynamics measurement apparatus
JP2016189807A (en) * 2015-03-30 2016-11-10 セイコーインスツル株式会社 Sphygmograph
CN108903924A (en) * 2018-07-03 2018-11-30 浙江理工大学 A kind of bracelet object wearing device that taking static tremor signal and method
CN108903924B (en) * 2018-07-03 2021-02-19 浙江理工大学 Bracelet wearing device and method adopting static tremor signal

Also Published As

Publication number Publication date
JP3855460B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
JP4025220B2 (en) Blood pressure monitor and cardiovascular disease risk analysis program
US5241966A (en) Method and apparatus for measuring cardiac output
US7309313B2 (en) Vascular disease examining system and bypass vascular diagnosing device
US6843772B2 (en) Inferior-and-superior-limb blood-pressure-index measuring apparatus
EP2292143B1 (en) Blood volume measuring method and blood volume measuring apparatus
US7029449B2 (en) Arteriosclerosis inspecting apparatus
JP2004195204A (en) Pulse wave measuring device
US20110257539A1 (en) Electronic sphygmomanometer and blood pressure measurement method
CN107405088A (en) Apparatus and method for providing control signal for blood pressure measurement device
JP3632021B2 (en) Automatic diagnostic equipment
US20060074327A1 (en) Pulse wave information display apparatus, program product for controlling pulse wave information display apparatus, and method of displaying pulse wave information
US6755792B2 (en) Arteriosclerosis examining apparatus
JPH11332837A (en) Biomonitor
JP2001008907A (en) Electric sphygmomanometer
EP0960598B1 (en) A method and a device for noninvasive measurement of the blood pressure and for detection of arrhythmia
US6730039B2 (en) Arteriosclerosis-degree evaluating apparatus
Chen et al. A new dual channel pulse wave velocity measurement system
US6881190B2 (en) Standard pulse-wave-propagation-velocity-related-value determining apparatus and pulse-wave-propagation-velocity-related-value obtaining apparatus
JP2008307307A (en) Evaluation method of blood vessel function, and apparatus for the same
JP7308519B2 (en) Pulse pressure estimation device, pulse pressure estimation system, pulse pressure estimation method, and control program
JP2000217796A (en) Circulatory function diagnostic device
Leone et al. Accuracy of a new instrument for noninvasive evaluation of pulse wave velocity: the Arterial sTiffness faitHful tOol aSsessment project
Freithaler et al. Smartphone-Based Blood Pressure Monitoring via the Oscillometric Finger Pressing Method: Analysis of Oscillation Width Variations Can Improve Diastolic Pressure Computation
GB2456947A (en) Non invasive determination of stroke volume based on incident wave suprasystolic blood pressure amplitude
Meigas et al. Pulse wave velocity in continuous blood pressure measurements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040915

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20041014

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees