JPH11332293A - Control device of variable speed generation system - Google Patents

Control device of variable speed generation system

Info

Publication number
JPH11332293A
JPH11332293A JP10137958A JP13795898A JPH11332293A JP H11332293 A JPH11332293 A JP H11332293A JP 10137958 A JP10137958 A JP 10137958A JP 13795898 A JP13795898 A JP 13795898A JP H11332293 A JPH11332293 A JP H11332293A
Authority
JP
Japan
Prior art keywords
current
command
generation system
axis current
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10137958A
Other languages
Japanese (ja)
Other versions
JP3812142B2 (en
Inventor
Yuzuru Kubota
譲 久保田
Motoo Futami
基生 二見
Masaya Ichinose
雅哉 一瀬
Mitsusachi Motobe
光幸 本部
Akihiro Maoka
明洋 真岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13795898A priority Critical patent/JP3812142B2/en
Publication of JPH11332293A publication Critical patent/JPH11332293A/en
Application granted granted Critical
Publication of JP3812142B2 publication Critical patent/JP3812142B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Control Of Water Turbines (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve stable control on system operation, by switching a current control gain according to a plurality of operation states of a variable speed generation system by giving a switch instruction to a power converter for excitation so that the rotor coil current matches a current instruction. SOLUTION: The modulation wave signal of a field current controller 32 is compared with a carrier signal by a gate pulse generator 41, and a PWM pulse signal that is obtained by the comparison result is fed to an inverse converter 40 as a power converter as a switch instruction. Then, d and q-axis current instructions Ids* and Iqs* for self starting are inputted to the field current controller 32 for switching a current control gain according to a plurality of operation states of a variable speed generation system, thus achieving stable control without depending on such operation conditions as self start and system operation, and obtaining the optimum effective power or reactive power control of the variable generation electric motor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は可変速発電システム
の制御装置に関する。
The present invention relates to a control device for a variable speed power generation system.

【0002】[0002]

【従来の技術】最近、電力系統の周波数調整及び系統安
定化のためにGTO変換器やサイクロコンバータで二次
側を励磁される可変速揚水発電システム及び可変速フラ
イホイールシステムなどが用いられている。これらのシ
ステムでは発電所スペース、経済性などを考慮して発電
電動機の励磁装置と始動装置とを兼用した自己始動方式
が用いられている。可変速発電システムの発電電動機に
は巻線型誘導機もしくは交流励磁同期機が用いられてい
る。このため、二次励磁装置は、システムが系統から切
り離されて運転される自己始動から系統投入後のシステ
ム運転まで安定した電流制御が必要となる。従来、この
種の電流制御方式としては特開平2− 246797号公報
及び文献「ACサーボシステムの理論と設計の実際(総
合電子出版社、1995年5月8日出版)」に記載され
ているものが知られている。すなわち、二次励磁電流を
回転座標軸のd,q軸成分に分解してそれらの相互干渉
をなくすための非干渉方式が提案されている。しかし、
この方式は非干渉制御の一般的な解析であり、発電電動
機の固定子側漏れインダクタンスが自己始動及びシステ
ム運転などに応じて大きく変化するものに対しては、制
御が追従できず運転状態が不安定になるという問題があ
る。
2. Description of the Related Art Recently, variable-speed pumped-storage power generation systems and variable-speed flywheel systems in which the secondary side is excited by a GTO converter or a cycloconverter are used for frequency adjustment and system stabilization of an electric power system. . In these systems, a self-starting method is used in which an exciting device and a starting device of a generator motor are used in consideration of a power plant space, economy, and the like. A winding type induction machine or an AC excitation synchronous machine is used as a generator motor of the variable speed power generation system. For this reason, the secondary excitation device requires stable current control from self-starting when the system is disconnected from the system and operation to system operation after the system is switched on. Conventionally, a current control method of this type is described in Japanese Patent Application Laid-Open No. 2-246797 and the document "Theory and Design of AC Servo System (Sogo Denshi Publishing Co., published May 8, 1995)". It has been known. That is, there has been proposed a non-interference method for decomposing a secondary excitation current into d- and q-axis components of a rotating coordinate axis to eliminate mutual interference therebetween. But,
This method is a general analysis of non-interference control, and if the stator-side leakage inductance of the generator motor changes greatly depending on self-starting and system operation, control cannot follow and the operating state is not good. There is a problem of becoming stable.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、自己
始動時及び系統へ並入した後のシステム運転時において
安定な制御を可能とする可変速発電システムの制御装置
を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a control device for a variable-speed power generation system that enables stable control during self-starting and during system operation after being connected to the system. .

【0004】[0004]

【課題を解決するための手段】本発明による可変速発電
システムの制御装置は、回転子巻線電流を電流指令に合
わせるように励磁用電力変換器にスイッチング指令を与
え、可変速発電システムの複数の運転状態に応じて電流
制御ゲインを切り替える。ここで、複数の運転状態と
は、例えば可変速発電システムが系統に連系される系統
並入運転状態及び系統から切り離される自己始動状態で
ある。本発明によれば、運転状態に応じて電流制御ゲイ
ンを切り替えるので、可変速発電システムの安定な制御
が可能になる。
A control device for a variable speed power generation system according to the present invention provides a switching command to an exciting power converter so as to match a rotor winding current with a current command, and controls a plurality of variable speed power generation systems. The current control gain is switched according to the operation state of. Here, the plurality of operating states are, for example, a system side-by-side operating state in which the variable speed power generation system is connected to the system and a self-starting state in which the system is separated from the system. According to the present invention, since the current control gain is switched according to the operating state, stable control of the variable speed power generation system can be performed.

【0005】ここで、好ましくは、電流指令を、固定子
巻線側の有効電力を有効電力指令に合わせるための電流
指令とする。また、好ましくは、回転子巻線電流を、回
転座標軸におけるd軸またはq軸電流とし、電流指令を
d軸またはq軸電流指令とし、電流制御ゲインd軸また
はq軸電流制御ゲインとしたり、さらに、このq軸電流
を固定子巻線側の有効電力を有効電力指令に合わせるた
めのq軸電流指令としたりする。これらによれば、高速
な電力制御ができる。
Preferably, the current command is a current command for adjusting the active power on the stator winding side to the active power command. Also, preferably, the rotor winding current is a d-axis or q-axis current in the rotating coordinate axis, the current command is a d-axis or q-axis current command, and the current control gain is a d-axis or q-axis current control gain, or The q-axis current is used as a q-axis current command for adjusting the active power on the stator winding side to the active power command. According to these, high-speed power control can be performed.

【0006】また、本発明による可変速発電システムの
制御装置は、交流発電電動機の固定子巻線電圧を電圧指
令に合わせるように励磁用電力変換器にスッチング指令
を与え、可変速発電システムの複数の運転状態に応じて
電圧制御ゲインを切り替える。本構成によれば、上記構
成と同様に安定な電力制御ができるとともに、安定な電
圧制御が可能になる。
Further, the control device for a variable speed power generation system according to the present invention provides a switching command to an exciting power converter so that the stator winding voltage of the AC generator motor is adjusted to the voltage command. The voltage control gain is switched according to the operation state of. According to this configuration, stable power control can be performed similarly to the above configuration, and stable voltage control can be performed.

【0007】[0007]

【発明の実施の形態】以下、図1及び図2を用いて本発
明の一実施例について説明する。図1に可変速揚水発電
システムの構成図を示す。図1において、電力系統VO
から主変圧器Mtr及び同期投入遮断器33を介して発
電電動機36に接続し、一方、同期投入遮断器33は始
動用遮断器34を介して短絡回路35に接続されてい
る。また同じ主変圧器Mtrからさらに励磁用トランス
Etrを介して励磁装置37を接続し、この励磁装置3
7により可変周波数の交流を発生して前記の発電電動機
36の回転子巻線を交流励磁するものである。励磁装置
37は交流を直流に変換する順変換器(コンバータ)3
8,順変換器38の出力電圧リプルを低減するためのコ
ンデンサ39,コンデンサ39の直流をさらに所望の周
波数の交流に変換する逆変換器(インバータ)40から
構成される。なお、この励磁装置37はサイクロコンバ
ータでも構成できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a configuration diagram of the variable speed pumped storage power generation system. In FIG. 1, the power system VO
Are connected to a generator motor 36 via a main transformer Mtr and a synchronous closing circuit breaker 33, while the synchronous closing circuit breaker 33 is connected to a short circuit 35 via a starting circuit breaker 34. An exciting device 37 is further connected from the same main transformer Mtr via an exciting transformer Etr.
7, a variable frequency alternating current is generated to excite the rotor winding of the generator motor 36. The exciter 37 is a forward converter (converter) 3 for converting AC to DC.
8. It comprises a capacitor 39 for reducing the output voltage ripple of the forward converter 38, and an inverter (inverter) 40 for further converting the DC of the capacitor 39 into an AC having a desired frequency. In addition, this exciting device 37 can also be constituted by a cycloconverter.

【0008】励磁電流調節器32により逆変換器40を
制御して可変周波数の交流を出力するが、この交流の位
相を、固定子側に接続した固定周波数交流の電圧位相と
発電電動機の回転位相から決定し、発電電動機の回転子
側に流れる電流、すなわち励磁電流が所定の大きさと位
相になるように励磁装置の出力電圧を制御する。励磁電
流調整器32の制御としては発電電動機の誘起電圧を発
生させるd軸方向の電流成分Idとこれに電気的に直交
し、発電電動機の誘起電圧には無関係に有効電力のみが
変化するq軸方向の電流成分Iqの2軸に励磁電流を分
解して制御する。そしてこれらの軸方向は固定子側に接
続した固定周波数の交流の電圧角周波数と発電電動機の
回転角周波数から一意に決定できるので、電圧角周波数
検出器28と回転角周波数検出器29の出力からすべり
角周波数ωs*を励磁角周波数検出器30で演算し上記
のd軸方向とq軸方向を決定することができる。スイッ
チ素子SW1は自己始動時のすべり角周波数指令△ωs
*及び電圧角周波数検出器28の出力を切り替えるため
のスイッチ回路である。
The inverter 40 is controlled by the exciting current regulator 32 to output a variable frequency alternating current. The phase of the alternating current is determined by the voltage phase of the fixed frequency alternating current connected to the stator and the rotational phase of the generator motor. And the output voltage of the excitation device is controlled such that the current flowing on the rotor side of the generator motor, that is, the excitation current has a predetermined magnitude and phase. The excitation current regulator 32 is controlled by a current component Id in the d-axis direction that generates an induced voltage of the generator motor and a q-axis that is electrically orthogonal to the current component Id and changes only the active power regardless of the induced voltage of the generator motor. The control is performed by decomposing the exciting current into two axes of the current component Iq in the direction. These axial directions can be uniquely determined from the fixed angular frequency AC voltage angular frequency connected to the stator side and the rotational angle frequency of the generator motor, so that the output from the voltage angular frequency detector 28 and the rotational angular frequency detector 29 can be determined. The slip angular frequency ωs * is calculated by the excitation angular frequency detector 30 to determine the d-axis direction and the q-axis direction. The switch element SW1 has a slip angular frequency command at the time of self-starting △ ωs
* And a switch circuit for switching the output of the voltage angular frequency detector 28.

【0009】励磁電流検出器31は、電流検出手段50
によって検出される可変周波数の交流電流を励磁角周波
数検出器30で演算されたωs*から励磁電流位相を演
算し、その結果からd軸の電流成分(無効電流)Idと
q軸の電流成分(有効電流)Iqを検出する。
The exciting current detector 31 includes a current detecting means 50.
The excitation current phase is calculated from the ωs * calculated by the excitation angular frequency detector 30 with the AC current of the variable frequency detected by the above, and the current component (reactive current) Id on the d-axis and the current component (q Active current) Iq is detected.

【0010】有効電力の制御を行うためには、前記q軸
方向の電流を制御すればよいので有効電力調節器21は
その制御出力としてq軸電流指令Iq*を出力する。ま
た、交流電圧の制御を行うためには前記d軸方向の電流
を制御すればよいので交流電圧調節器27はその制御出
力としてd軸電流指令Id*を出力する。
Since the control of the active power can be performed by controlling the current in the q-axis direction, the active power controller 21 outputs a q-axis current command Iq * as its control output. Further, since the control of the AC voltage can be performed by controlling the current in the d-axis direction, the AC voltage regulator 27 outputs a d-axis current command Id * as its control output.

【0011】励磁電流調節器32では、励磁電流検出器
31により検出したd軸方向の電流とq軸方向の電流が
それぞれ交流電圧調節器27,有効電力調節器21の出
力に一致するように制御する。励磁電流調節器32の出
力信号(変調波信号)はゲートパルス発生器41で搬送
波信号と比較され、それによって得られたPWMパルス
信号は逆変換器40にスイッチング指令(ゲート信号)
を与える。一方、励磁電流調節器32には自己始動時用
のd,q軸電流指令Ids*,Iqs*が入力されてい
る。このように、自己始動時用に個別に電流指令を設け
ることにより、後述するように、制御ゲインの切り替え
とともに、システムの運転状態に応じた安定した電流制
御が可能になる。なお、有効電力調整器21にIqs*
を出力する機能を持たせてもよい。
The exciting current adjuster 32 controls the current in the d-axis direction and the current in the q-axis direction detected by the exciting current detector 31 so as to match the outputs of the AC voltage adjuster 27 and the active power adjuster 21, respectively. I do. The output signal (modulated wave signal) of the exciting current controller 32 is compared with the carrier signal by the gate pulse generator 41, and the PWM pulse signal obtained thereby is transmitted to the inverter 40 by a switching command (gate signal).
give. On the other hand, d and q axis current commands Ids * and Iqs * for self-starting are input to the excitation current controller 32. By individually providing the current command for the self-starting in this way, as described later, switching of the control gain and stable current control according to the operating state of the system can be performed. It should be noted that Iqs *
May be provided.

【0012】交流電圧検出器26は電力系統VOの大き
さを検出し、交流電圧調節器27はこの検出した交流電
圧VLが電圧指令Vc*に一致するようにd軸電流指令
Id*を調整して交流電圧を制御する。
An AC voltage detector 26 detects the size of the power system VO, and an AC voltage regulator 27 adjusts the d-axis current command Id * such that the detected AC voltage VL matches the voltage command Vc *. To control the AC voltage.

【0013】速度検出器25は発電電動機の回転速度を
検出する。速度調節器23は前記速度検出器25で検出
した発電電動機の回転速度が速度指令値Nc*に一致す
るように有効電力補正量△Pを調節する。スイッチ素子
8は自己始動の別方式を構成するもので、速度調節器2
3の出力△Pを有効電力演算器22及びq軸電流指令I
qs*に切り替えるためのスイッチ回路である。有効電
力演算器22は外部有効電力指令Pc*に有効電力補正
量△Pを加算し内部有効電力指令値Ps*を出力する。
The speed detector 25 detects the rotation speed of the generator motor. The speed adjuster 23 adjusts the active power correction amount ΔP so that the rotation speed of the generator motor detected by the speed detector 25 matches the speed command value Nc *. The switch element 8 constitutes another method of self-starting.
3 is output to the active power calculator 22 and the q-axis current command I.
qs * is a switch circuit for switching to qs *. Active power calculator 22 adds active power correction amount ΔP to external active power command Pc * and outputs internal active power command value Ps *.

【0014】有効電力調節器21は、電流検出手段51
により検出される発電電動機から系統への出力電流及び
電圧検出手段60により検出される発電電動機の出力電
圧から、有効電力検出器24で検出したシステムの有効
電力が内部有効電力指令値Ps*に一致するようにq軸
電流指令Iq*を調整してシステムの有効電力を制御す
る。
The active power controller 21 includes a current detecting means 51
, The active power of the system detected by the active power detector 24 matches the internal active power command value Ps * from the output current from the generator motor to the system detected by the above and the output voltage of the generator motor detected by the voltage detecting means 60. The active power of the system is controlled by adjusting the q-axis current command Iq *.

【0015】一方、順変換器38は順変換器の入力電流
及び出力電圧をもとに直流電圧が一定となるように電圧
調節器42で制御され、ゲートパルス発生回路43から
スイッチング指令が与えられる。以上のようにして可変
速揚水発電システムはシステムの有効電力を制御してい
る。可変速発電システムとしての運転は同期投入遮断器
33投入,始動用遮断器34開放,スイッチ素子SW1
b側,d軸電流指令Ids*とq軸電流指令Iqs*は
切り離し、実質的には両者とも“0”の条件で行われ
る。一方、自己始動は発電電動機の一次側を短絡するた
めに同期投入用遮断器33開放し、始動用遮断器34投
入して発電電動機36の一次側を短絡する。続いて、ス
イッチ素子SW1をa側に設定し、さらにd,q軸電流
指令Ids*,Iqs*を与える(Id*とIq*は切
り離す)ことにより発電電動機36をすべり周波数ωs
*に応じて速度を上昇させる。
On the other hand, the forward converter 38 is controlled by the voltage regulator 42 based on the input current and the output voltage of the forward converter so that the DC voltage is constant, and a switching command is given from the gate pulse generation circuit 43. . As described above, the variable speed pumped storage power generation system controls the active power of the system. The operation as the variable-speed power generation system is performed by turning on the synchronous closing circuit breaker 33, opening the starting circuit breaker 34, and switching element SW1.
The b-side, d-axis current command Ids * and the q-axis current command Iqs * are separated, and both are performed substantially under the condition of “0”. On the other hand, in the case of self-starting, the circuit breaker 33 for synchronizing is opened to short-circuit the primary side of the generator motor, and the circuit breaker 34 for starting is closed to short-circuit the primary side of the generator motor 36. Subsequently, the switch element SW1 is set to the a side, and the d and q-axis current commands Ids * and Iqs * are given (Id * and Iq * are separated) so that the generator motor 36 has the slip frequency ωs.
* Increase speed according to.

【0016】ところで、本発明者の検討によれば、可変
速揚水発電システムでは発電電動機36の一次側、すな
わち固定子側は自己始動時、系統並入前の交流電圧制御
時並びに系統並入後のシステム運転などの条件でインピ
ーダンスが大きく変化する。図2に、発電電動機36の
一相分の等価回路(抵抗分無視)を示す。同図より回転
子側の漏れインダクタンスは一定値となるが、固定子側
の漏れインダクタンスは自己始動に対し交流電圧制御で
は一般に約20%、またシステム運転時には約60%増
加する。したがって、運転条件すなわち固定子側インピ
ダンスすべての範囲を高速で、かつ安定な電流制御を行
うためにはd,q軸電流の制御ゲインを切り替える必要
がある。また、自己始動の別方式としてq軸電流指令I
q*の代わりに速度調節器23の出力△Pを加えても同
様に速度を上昇させることができる。
According to the study of the present inventors, in the variable speed pumped storage power generation system, the primary side of the generator motor 36, that is, the stator side, is at the time of self-starting, at the time of AC voltage control before the system is connected, and after the system is connected. The impedance greatly changes under conditions such as system operation. FIG. 2 shows an equivalent circuit for one phase of the generator motor 36 (resistance is ignored). As shown in the drawing, the leakage inductance on the rotor side is constant, but the leakage inductance on the stator side is increased by about 20% in self-starting with AC voltage control and about 60% in system operation. Therefore, in order to perform high-speed and stable current control over the operating conditions, that is, the entire range of the stator-side impedance, it is necessary to switch the control gains of the d- and q-axis currents. As another method of self-starting, the q-axis current command I
The speed can be similarly increased by adding the output ΔP of the speed controller 23 instead of q *.

【0017】図3に、本発明による自己始動及びシステ
ム運転を行う場合の励磁電流調節器32の一例の詳細図
を示す。本例は非干渉制御方式を用い非干渉制御ゲイン
を切り替えるものである。スイッチ素子SW2,SW3
は自己始動とシステム運転時のd,q軸電流指令Ids
*,Iqs*とId*,Iq*を切り替えるためのスイ
ッチ回路、d軸電流調節器1はd軸電流指令Id*また
はIds*と無効電流Idとの偏差を演算し、d軸電圧
指令ed1*を算出する。一方、q軸電流調節器2はq
軸電流指令のIq*またはIqs*と前記有効電流Iq
の偏差を演算し、q軸電圧指令eq1*算出する。ま
た、非干渉制御回路10は掛算器3及び4,制御ゲイン
に相当する自己始動用漏れインダクタンス定数5a及び
5bとシステム運転用漏れインダクタンス定数5b及び
6b,スイッチ素子SW4及びSW5から構成されてお
り、自己始動及びシステム運転時に応じてスイッチ回路
を切り替え補償電圧ed2*及びeq2*を演算し、出
力する。減算器7はd軸電流調節器1の出力ed1*と
スイッチSW5の出力ed2*を減算しd軸電圧指令e
d*を出力するための回路、また加算器8はq軸電流調
整器2の出力eq1*とスイッチSW4の出力eq2*
を加算し、q軸電圧指令eq*を出力するための回路で
ある。2相/3相変換器9は基準位相信号に基づいて
d,q軸電圧指令ed*及びeq*から三相の電圧指令
eu*,ev*,ew*を出力する。
FIG. 3 shows a detailed view of an example of the exciting current regulator 32 when performing self-starting and system operation according to the present invention. In this example, a non-interference control gain is switched using a non-interference control method. Switch element SW2, SW3
Is the d, q axis current command Ids during self-start and system operation
*, Iqs * and a switch circuit for switching between Id * and Iq *, and the d-axis current controller 1 calculates a deviation between the d-axis current command Id * or Ids * and the reactive current Id, and obtains a d-axis voltage command ed1 *. Is calculated. On the other hand, the q-axis current controller 2
The shaft current command Iq * or Iqs * and the effective current Iq
Is calculated, and a q-axis voltage command eq1 * is calculated. The non-interference control circuit 10 includes multipliers 3 and 4, self-start leakage inductance constants 5a and 5b corresponding to control gains, system operation leakage inductance constants 5b and 6b, and switch elements SW4 and SW5. The switch circuit is switched according to the self-start and system operation, and the compensation voltages ed2 * and eq2 * are calculated and output. The subtractor 7 subtracts the output ed1 * of the d-axis current controller 1 and the output ed2 * of the switch SW5 to obtain a d-axis voltage command e.
A circuit for outputting d *, and the adder 8 includes an output eq1 * of the q-axis current regulator 2 and an output eq2 * of the switch SW4.
And outputs a q-axis voltage command eq *. The two-phase / three-phase converter 9 outputs three-phase voltage commands eu *, ev *, ew * from the d and q-axis voltage commands ed * and eq * based on the reference phase signal.

【0018】上記の回路において自己始動時はスイッチ
素子SW2〜SW5をa側に設定することにより、発電
電動機36には所定のd,q軸電流Id,Iqが流れす
べり周波数ωs*に応じて加速される。続いて発電電動
機36の速度が同期速度近傍に達するとシステム運転に
する。このためスイッチ素子SW2〜SW5をb側に設
定することによりシステムはd,q軸電流指令Id*,
Iq*に応じて動作する。この結果、非干渉制御ゲイン
を自己始動及びシステム運転時に応じて切り替えること
により安定な電流制御ができ、さらに信頼性が向上でき
る。
In the above-mentioned circuit, at the time of self-starting, by setting the switch elements SW2 to SW5 to the a side, predetermined d and q axis currents Id and Iq flow through the generator motor 36 to accelerate according to the slip frequency ωs *. Is done. Subsequently, when the speed of the generator motor 36 reaches the vicinity of the synchronous speed, the system operation is started. For this reason, by setting the switch elements SW2 to SW5 to the b side, the system can execute the d and q axis current commands Id *,
It operates according to Iq *. As a result, stable current control can be performed by switching the non-interference control gain according to self-starting and system operation, and reliability can be further improved.

【0019】以上のようにして、発電電動機の二次励磁
電流を回転座標軸のd,q軸成分に分解して制御し、そ
れぞれd,q軸成分の制御ゲインを自己始動及びシステ
ム運転毎に設け、両者の運転に応じて制御ゲインを切り
替えることにより自己始動からシステム運転まで安定し
た電流制御ができるので信頼性を向上できる。
As described above, the secondary excitation current of the generator motor is decomposed into the d- and q-axis components of the rotating coordinate axis and controlled, and the control gains of the d- and q-axis components are provided for each self-start and system operation. By switching the control gain according to both operations, stable current control can be performed from self-starting to system operation, so that reliability can be improved.

【0020】図4は本発明の他の実施例である。図1,
図3と同一物には同じ番号を付しているので説明を省略
する。図1,図3と異なる点はすべり角周波数演算器4
3,基準位相発生器44並びにスイッチ素子10を設け
たところにある。すべり角周波数演算器43は速度調節
器23の出力Iqs*とd軸電流指令Ids*からすべ
り角周波数ωs*(ωs*=1/T2・Iqs*/Ids
*)を演算する。またスイッチ素子10は自己始動とシ
ステム運転の切り替えのためのスイッチ回路、基準位相
発生器44はすべり角周波数(ωss*またはωs*)
から2相/3相変換器9の基準位相となるSINθ及び
COSθを発生する回路である。自己始動時にはスイッ
チ素子(SW2,SW3,SW10)をすべてa側に設
定し、速度指令Nc*(ωc*)を与えることにより、
回転周波数ωrに応じてすべり角周波数ωs*が演算さ
れ前述の場合と同様に速度を上昇させることができる。
FIG. 4 shows another embodiment of the present invention. Figure 1
The same components as those in FIG. 3 are denoted by the same reference numerals, and description thereof will be omitted. The difference from FIGS. 1 and 3 is that the slip angular frequency calculator 4
3, where the reference phase generator 44 and the switch element 10 are provided. The slip angular frequency calculator 43 calculates the slip angular frequency ωs * (ωs * = 1 / T 2 · Iqs * / Ids) from the output Iqs * of the speed controller 23 and the d-axis current command Ids *.
*) Is calculated. The switch element 10 is a switch circuit for switching between self-start and system operation, and the reference phase generator 44 is a slip angular frequency (ωss * or ωs *).
Is a circuit for generating SINθ and COSθ serving as reference phases of the two-phase / three-phase converter 9 from. At the time of self-starting, all the switch elements (SW2, SW3, SW10) are set to the a side, and the speed command Nc * (ωc *) is given.
The slip angle frequency ωs * is calculated according to the rotation frequency ωr, and the speed can be increased in the same manner as described above.

【0021】図5は本発明の他の実施例である。可変速
発電システムでは交流電圧制御においても電流制御系と
同様に、発電電動機固定子(一次)側の回路インピーダ
ンスが開放時とシステム運転時で大きく変わる。このた
め、交流電圧調整器27の補償ゲインを切り替えること
により安定した交流電圧制御が可能になる。交流電圧調
整器27aは系統並入前の補償ゲインを、また交流電圧
調整器27bは系統並入後の補償ゲインがそれぞれ設定
されスイッチ素子9により上記運転状態に応じて切り替
える。この結果、発電電動機固定子(一次)側の開放状
態からシステム運転まで安定かつ高応答の交流電圧制御
ができるので信頼性が向上する。電流制御ゲインを変え
ない場合で負荷と電流制御系の伝達関数を条件に応じて
考慮した電圧制御ゲインを設定すれば高速な電圧制御が
可能である。
FIG. 5 shows another embodiment of the present invention. In the variable-speed power generation system, the circuit impedance on the generator motor stator (primary) side also greatly changes between the open state and the system operation in the AC voltage control, similarly to the current control system. Therefore, by switching the compensation gain of the AC voltage regulator 27, stable AC voltage control can be performed. The AC voltage regulator 27a is set with the compensation gain before the system is connected, and the AC voltage regulator 27b is set with the compensation gain after the system is connected. As a result, stable and high-response AC voltage control can be performed from the open state of the generator motor stator (primary) side to the system operation, thereby improving reliability. In the case where the current control gain is not changed, high-speed voltage control is possible by setting the voltage control gain in consideration of the transfer function of the load and the current control system according to the conditions.

【0022】AVRゲイン切り替えと同時にACRゲイ
ンを切り替えた場合も同様に最適な応答を得ることがで
きる。
Similarly, when the ACR gain is switched at the same time as the AVR gain is switched, an optimum response can be obtained.

【0023】図6は本発明の他の実施例である。前述の
交流電圧制御が安定に行われない場合、発電電動機固定
子(一次)の交流電圧が変動し有効電力制御系が不安定
状態になる。このため、有効電力調整器21bの補償ゲ
インを交流電圧検出器26の出力VLに応じて切り替え
る。これにより、たとえ交流電圧制御系が不安定になっ
ても有効電力制御が安定でしかも高応答の有効電力制御
ができるので信頼性が向上する。電流制御ゲインを変え
ない場合でも負荷と電流制御系の伝達関数を条件に応じ
て考慮した有効電力制御ゲインを設定すれば高速な有効
電力制御が可能である。
FIG. 6 shows another embodiment of the present invention. If the aforementioned AC voltage control is not performed stably, the AC voltage of the generator motor stator (primary) fluctuates, and the active power control system becomes unstable. Therefore, the compensation gain of the active power regulator 21b is switched according to the output VL of the AC voltage detector 26. Thereby, even if the AC voltage control system becomes unstable, the active power control is stable and the active power control with high response can be performed, so that the reliability is improved. Even when the current control gain is not changed, high-speed active power control is possible by setting the active power control gain in consideration of the load and the transfer function of the current control system according to the conditions.

【0024】図7は本発明の他の実施例における励磁電
流調節器を示す。図3と同一物には同じ番号を付してい
るので説明を省略する。図3と異なる点はd,q軸電流
の非干渉制御を非干渉制御ゲインを変えずに、その代わ
りにd軸電流調節器1及びq軸電流調節器2のゲインを
変えていることである。積分定数11及び比例定数1
2,13はd軸電流の補償ゲイン、スイッチ素子SW6
は比例定数12及び13を切り替えるためのスイッチ、
加算器14はスイッチ素子SW6の出力及び積分定数1
1の出力を加算しed1*を出力するための回路であ
る。同様に積分定数16及び比例定数17,18はq軸
電流の補償ゲイン、スイッチ素子SW7は比例定数17
及び18を切り替えるためのスイッチ、加算器19はス
イッチ素子SW7の出力及び積分定数16の出力を加算
しeq1*を出力するための回路である。本実施例は、
非干渉制御ゲインを一定値(例えば、始動用インダクタ
ンス定数)に設定し、負荷条件に応じて比例定数のゲイ
ンをスイッチ素子SW6,7で切り替えてもd,q軸電
流の干渉を、抑制することができる。なお、システムの
接続されている系統の状況に応じて切り替える手段を用
いれば系統事故時(1回線/2回線)の変更に際しても
最適な運用ができる。
FIG. 7 shows an exciting current controller according to another embodiment of the present invention. The same components as those in FIG. 3 are denoted by the same reference numerals, and description thereof will be omitted. The difference from FIG. 3 is that the non-interference control of the d- and q-axis currents does not change the non-interference control gain, but changes the gains of the d-axis current regulator 1 and the q-axis current regulator 2 instead. . Integral constant 11 and proportional constant 1
Reference numerals 2 and 13 denote compensation gains for the d-axis current and the switching element SW6
Is a switch for switching the proportional constants 12 and 13,
The adder 14 outputs the output of the switching element SW6 and the integration constant 1
This is a circuit for adding the output of 1 and outputting ed1 *. Similarly, the integral constant 16 and the proportional constants 17 and 18 are the compensation gain of the q-axis current, and the switch element SW7 is the proportional constant 17
And an adder 19 are a circuit for adding the output of the switch element SW7 and the output of the integration constant 16 and outputting eq1 *. In this embodiment,
Even if the non-interference control gain is set to a constant value (for example, a starting inductance constant) and the gain of the proportional constant is switched by the switch elements SW6 and SW7 according to the load condition, the interference of the d and q-axis currents is suppressed. Can be. If a means for switching according to the status of the system to which the system is connected is used, optimal operation can be performed even in the event of a system failure (one line / two lines).

【0025】[0025]

【発明の効果】本発明によれば、自己始動やシステム運
転などの運転条件によらない安定な制御が可能になるの
で、可変速発電電動機の最適な有効電力または交流電圧
(または無効電力)制御が実現できる。
According to the present invention, stable control can be performed regardless of operating conditions such as self-starting and system operation. Therefore, optimal active power or AC voltage (or reactive power) control of a variable speed generator motor can be performed. Can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における可変速揚水発電シス
テムの回路構成図。
FIG. 1 is a circuit configuration diagram of a variable speed pumped storage power generation system according to an embodiment of the present invention.

【図2】運転条件によるインピーダンスの変化を説明す
るための詳細図。
FIG. 2 is a detailed diagram for explaining a change in impedance according to operating conditions.

【図3】本発明による励磁電流調節器の一例。FIG. 3 shows an example of an exciting current regulator according to the present invention.

【図4】本発明の他の実施例。FIG. 4 shows another embodiment of the present invention.

【図5】本発明の他の実施例における交流電圧制御の回
路構成図。
FIG. 5 is a circuit configuration diagram of AC voltage control according to another embodiment of the present invention.

【図6】本発明の他の実施例における有効電力制御の回
路構成図。
FIG. 6 is a circuit configuration diagram of active power control in another embodiment of the present invention.

【図7】本発明の他の実施例における励磁電流調節器。FIG. 7 shows an exciting current regulator according to another embodiment of the present invention.

【符号の説明】 1…q軸電流調節器、2…d軸電流調節器、3,4…掛
算器、5a〜5b…自己始動用漏れインダクタンス定
数、6a〜6b…システム運転用漏れインダクタンス定
数、7…減算器、8,14,19…加算器、9…2相/
3相変換器、10…非干渉制御回路、11,16…積分
定数、12,13,17,18…比例定数、SW1〜S
W9…スイッチ素子、Mtr…主変圧器、Etr…励磁
用変圧器、Pc*…有効電力指令値、Nc*…速度指令
値、Vc*…電圧指令値、VL…系統電圧検出値、Id
*…d軸電流指令値、Id…d軸電流検出値、Iq*…
q軸電流指令値、Iq…q軸電流検出値、21…有効電
力調節器、21b…有効電力調節器(補償ゲイン切り替
え機能付)、22…有効電力演算器、23…速度調節
器、24…有効電力検出器、25…速度検出器、26…
交流電圧検出器、27…交流電圧調節器、27a…交流
電圧調整器(系統並入前補償ゲイン)、27b…交流電
圧調整器(系統並入後補償ゲイン)、28…電圧角周波
数検出器、29…回転角周波数検出器、30…励磁角周
波数検出器、31…励磁電流検出器、32…励磁電流調
節器、33…同期投入遮断器、34…始動用遮断器、3
5…短絡回路、36…発電電動機、37…周波数変換装
置、38…順変換器、39…コンデンサ、40…逆変換
器、41,43…パルス発生回路、42…電圧調節器、
43…すべり角周波数演算器、44…基準位相発生器。
[Description of Signs] 1 ... q-axis current regulator, 2 ... d-axis current regulator, 3,4 ... multiplier, 5a-5b ... leakage inductance constant for self-starting, 6a-6b ... leakage inductance constant for system operation, 7 ... subtractor, 8, 14, 19 ... adder, 9 ... 2 phase /
3-phase converter, 10: non-interference control circuit, 11, 16: integration constant, 12, 13, 17, 18: proportional constant, SW1 to S
W9: Switch element, Mtr: Main transformer, Etr: Exciting transformer, Pc *: Active power command value, Nc *: Speed command value, Vc *: Voltage command value, VL: System voltage detection value, Id
* ... d-axis current command value, Id ... d-axis current detection value, Iq * ...
q-axis current command value, Iq: q-axis current detection value, 21: active power controller, 21b: active power controller (with compensation gain switching function), 22: active power calculator, 23: speed controller, 24 ... Active power detector, 25 ... Speed detector, 26 ...
AC voltage detector, 27: AC voltage regulator, 27a: AC voltage regulator (compensation gain before system parallelization), 27b: AC voltage regulator (compensation gain after system parallelism), 28: voltage angular frequency detector, 29: rotational angular frequency detector, 30: exciting angular frequency detector, 31: exciting current detector, 32: exciting current adjuster, 33: synchronous closing circuit breaker, 34: starting circuit breaker, 3
5 Short circuit, 36 Generator motor, 37 Frequency converter, 38 Forward converter, 39 Capacitor, 40 Reverse converter, 41, 43 Pulse generator circuit, 42 Voltage regulator,
43: slip angular frequency calculator; 44: reference phase generator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本部 光幸 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 真岡 明洋 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Mitsuyuki Honbu 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Akihiro Moka 3-chome, Sachimachi, Hitachi City, Ibaraki Prefecture No. 1 Inside Hitachi, Ltd. Hitachi Plant

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】交流発電電動機と、該交流発電電動機の回
転子巻線に接続される励磁用電力変換器とを備える可変
速発電システムの制御装置において、 回転子巻線電流を電流指令に合わせるように前記励磁用
電力変換器にスイッチング指令を与え、前記可変速発電
システムの複数の運転状態に応じて電流制御ゲインを切
り替えることを特徴とする可変速発電システムの制御装
置。
1. A control device for a variable speed power generation system comprising an AC generator motor and an exciting power converter connected to a rotor winding of the AC generator motor, wherein a rotor winding current is adjusted to a current command. A switching device is provided with a switching command to the exciting power converter to switch a current control gain according to a plurality of operating states of the variable speed power generation system.
【請求項2】請求項1において、前記複数の運転状態
が、系統並入状態及び自己始動状態を含むことを特徴と
する可変速発電システムの制御装置。
2. The control device for a variable-speed power generation system according to claim 1, wherein said plurality of operating states include a system parallel state and a self-starting state.
【請求項3】請求項2において、前記電流指令が、系統
並入状態において固定子巻線側の有効電力を有効電力指
令に合わせるための電流指令と、自己始動状態のための
電流指令と、を含むことを特徴とする可変速発電システ
ムの制御装置。
3. The current command according to claim 2, wherein the current command is a current command for adjusting the active power on the stator winding side to the active power command in a system parallel state, and a current command for a self-starting state. A control device for a variable-speed power generation system, comprising:
【請求項4】請求項1において、前記電流指令が、系統
並入状態において前記固定子巻線側の電圧を電圧指令に
合わせるための電流指令と、自己始動状態のための電流
指令と、を含むことを特徴とする可変速発電システムの
制御装置。
4. The method according to claim 1, wherein the current command is a current command for adjusting the voltage on the stator winding side to a voltage command in a system parallel state, and a current command for a self-starting state. A control device for a variable speed power generation system, comprising:
【請求項5】請求項1において、前記回転子巻線電流
が、電流検出手段によって検出される前記電力変換器の
出力電流の回転座標軸における電流成分であり、前記電
流指令が電流成分指令であることを特徴とする可変速発
電システムの制御装置。
5. The method according to claim 1, wherein the rotor winding current is a current component on a rotating coordinate axis of an output current of the power converter detected by current detection means, and the current command is a current component command. A control device for a variable-speed power generation system, comprising:
【請求項6】請求項5において、前記複数の運転状態
が、系統並入状態及び自己始動状態を含むことを特徴と
する可変速発電システムの制御装置。
6. The control device for a variable speed power generation system according to claim 5, wherein said plurality of operating states include a system parallel state and a self-starting state.
【請求項7】請求項5において、前記電流成分がq軸電
流であり、前記電流成分指令がq軸電流指令であり、前
記電流制御ゲインがq軸電流制御ゲインであることを特
徴とする可変速発電システムの制御装置。
7. The apparatus according to claim 5, wherein the current component is a q-axis current, the current component command is a q-axis current command, and the current control gain is a q-axis current control gain. Control device for variable speed power generation system.
【請求項8】請求項7において、前記複数の運転状態
が、系統並入状態及び自己始動状態を含むことを特徴と
する可変速発電システムの制御装置。
8. The control device for a variable speed power generation system according to claim 7, wherein said plurality of operation states include a system parallel state and a self-start state.
【請求項9】請求項8において、前記q軸電流指令が、
系統並入状態において固定子巻線側の有効電力を有効電
力指令に合わせるためのq軸電流指令と、自己始動状態
のためのq軸電流指令と、を含むことを特徴とする可変
速発電システムの制御装置。
9. The system according to claim 8, wherein the q-axis current command is:
A variable speed power generation system comprising: a q-axis current command for adjusting the active power on the stator winding side to the active power command in a system parallel state; and a q-axis current command for a self-starting state. Control device.
【請求項10】請求項5において、前記電流成分がd軸
電流であり、前記電流成分指令がd軸電流指令であり、
前記電流制御ゲインがd軸電流制御ゲインであることを
特徴とする可変速発電システムの制御装置。
10. The method according to claim 5, wherein the current component is a d-axis current, the current component command is a d-axis current command,
A control device for a variable-speed power generation system, wherein the current control gain is a d-axis current control gain.
【請求項11】請求項10において、前記複数の運転状
態が、系統並入状態及び自己始動状態を含むことを特徴
とする可変速発電システムの制御装置。
11. The control device for a variable speed power generation system according to claim 10, wherein said plurality of operation states include a system parallel state and a self-start state.
【請求項12】請求項11において、前記d軸電流指令
が、系統並入状態において固定子巻線側の電圧を電圧指
令に合わせるためのd軸電流指令と、自己始動状態のた
めのd軸電流指令と、を含むことを特徴とする可変速発
電システムの制御装置。
12. The d-axis current command according to claim 11, wherein the d-axis current command is a d-axis current command for adjusting a voltage on a stator winding side to a voltage command in a system parallel state, and a d-axis current command for a self-starting state. A control device for a variable speed power generation system, comprising: a current command.
【請求項13】請求項5において、前記電流成分がd軸
電流及びq軸電流であり、前記電流成分指令がd軸電流
指令及びq軸電流指令であり、前記電流制御ゲインがd
軸電流制御ゲイン及びq軸電流制御ゲインであることを
特徴とする可変速発電システムの制御装置。
13. The method according to claim 5, wherein the current components are a d-axis current and a q-axis current, the current component commands are a d-axis current command and a q-axis current command, and the current control gain is d.
A control device for a variable speed power generation system, wherein the control device has a shaft current control gain and a q-axis current control gain.
【請求項14】請求項13において、前記d軸電流及び
前記q軸電流の電流調節手段と、前記d軸電流及び前記
q軸電流の非干渉制御回路と、を有し、前記d軸電流制
御ゲイン及び前記q軸電流制御ゲインが前記非干渉制御
回路の電流制御ゲインであることを特徴とする可変速発
電システムの制御装置。
14. The d-axis current control according to claim 13, further comprising current adjusting means for the d-axis current and the q-axis current, and a non-interference control circuit for the d-axis current and the q-axis current. A variable speed power generation system control device, wherein the gain and the q-axis current control gain are current control gains of the non-interference control circuit.
【請求項15】請求項13において、前記d軸電流及び
前記q軸電流の電流調節手段と、前記d軸電流及び前記
q軸電流の非干渉制御回路と、を有し、前記d軸電流制
御ゲイン及び前記q軸電流制御ゲインが前記電流調節手
段の電流制御ゲインであることを特徴とする可変速発電
システムの制御装置。
15. The d-axis current control according to claim 13, further comprising current adjusting means for the d-axis current and the q-axis current, and a non-interference control circuit for the d-axis current and the q-axis current. A control device for a variable speed power generation system, wherein the gain and the q-axis current control gain are current control gains of the current adjusting means.
【請求項16】請求項15において、前記電流調節手段
が積分及び複数の比例を含み、前記複数の比例の切り替
えによって前記電流制御ゲインを切り替えることを特徴
とする可変速発電システムの制御装置。
16. The control device for a variable speed power generation system according to claim 15, wherein said current adjusting means includes an integral and a plurality of proportions, and switches said current control gain by switching said plurality of proportions.
【請求項17】請求項10において、固定子巻線側の電
圧を電圧指令に合わせるためのd軸電流指令を作成しか
つ互いに補償ゲインの異なる交流電圧調節手段を複数備
え、該複数交流電圧調節手段を、前記可変速発電システ
ムの複数の運転状態に応じて切り替えることを特徴とす
る可変速発電システムの制御装置。
17. The apparatus according to claim 10, further comprising a plurality of AC voltage adjusting means for generating a d-axis current command for adjusting the voltage on the stator winding side to the voltage command and having mutually different compensation gains. A control device for a variable-speed power generation system, wherein the means is switched according to a plurality of operating states of the variable-speed power generation system.
【請求項18】請求項7において、固定子巻線側の有効
電力を有効電力指令に合わせるためのq軸電流指令を作
成しかつ補償ゲインが前記固定子巻線側の電圧に応じて
切り替えられる有効電力調節手段を備えることを特徴と
する可変速発電システムの制御装置。
18. A method according to claim 7, wherein a q-axis current command for adjusting the active power on the stator winding side to the active power command is created, and the compensation gain is switched according to the voltage on the stator winding side. A control device for a variable speed power generation system, comprising: an active power adjusting means.
【請求項19】交流発電電動機と、該交流発電電動機の
回転子巻線に接続される励磁用電力変換器とを備える可
変速発電システムの制御装置において、前記交流発電電
動機の固定子巻線電圧を電圧指令に合わせるように前記
励磁用電力変換器にスッチング指令を与え、前記可変速
発電システムの複数の運転状態に応じて電圧制御ゲイン
を切り替えることを特徴とする可変速発電システムの制
御装置。
19. A control device for a variable speed power generation system comprising an AC generator motor and an exciting power converter connected to a rotor winding of the AC generator motor, wherein a stator winding voltage of the AC generator motor is provided. A switching command is given to the excitation power converter so as to match the voltage command with a voltage command, and a voltage control gain is switched according to a plurality of operating states of the variable speed power generation system.
【請求項20】請求項19において、互いに補償ゲイン
の異なる交流電圧調節手段を複数備え、該複数の交流電
圧調節手段を、前記複数の運転状態に応じて切り替える
ことを特徴とする可変速発電システムの制御装置。
20. A variable speed power generation system according to claim 19, wherein a plurality of AC voltage adjusting means having different compensation gains are provided, and said plurality of AC voltage adjusting means are switched in accordance with said plurality of operating states. Control device.
【請求項21】請求項19において、補償ゲインが前記
固定子巻線の電圧に応じて切り替えられる有効電力調節
手段を備えることを特徴とする可変速発電システムの制
御装置。
21. The control device for a variable speed power generation system according to claim 19, further comprising: an active power adjusting means for switching a compensation gain according to a voltage of said stator winding.
JP13795898A 1998-05-20 1998-05-20 Control device for variable speed power generation system Expired - Fee Related JP3812142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13795898A JP3812142B2 (en) 1998-05-20 1998-05-20 Control device for variable speed power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13795898A JP3812142B2 (en) 1998-05-20 1998-05-20 Control device for variable speed power generation system

Publications (2)

Publication Number Publication Date
JPH11332293A true JPH11332293A (en) 1999-11-30
JP3812142B2 JP3812142B2 (en) 2006-08-23

Family

ID=15210708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13795898A Expired - Fee Related JP3812142B2 (en) 1998-05-20 1998-05-20 Control device for variable speed power generation system

Country Status (1)

Country Link
JP (1) JP3812142B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283856A (en) * 2007-05-14 2008-11-20 Siemens Ag Method for starting wind power station, wind power station, and method for utilizing wind power station

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283856A (en) * 2007-05-14 2008-11-20 Siemens Ag Method for starting wind power station, wind power station, and method for utilizing wind power station

Also Published As

Publication number Publication date
JP3812142B2 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
JP3721116B2 (en) DRIVE DEVICE, POWER OUTPUT DEVICE, AND CONTROL METHOD THEREOF
EP2043241B1 (en) Motor Drive Using Flux Adjustment to Control Power Factor
EP1100191B1 (en) Inverter control apparatus and method for controlling an inverter
JPS6024676B2 (en) Device that controls a permanent magnet synchronous motor
US5479081A (en) AC motor controller with voltage margin adjustment
JP4344523B2 (en) Distributed power supply output stabilization device and control method thereof
JPH07250500A (en) Variable speed controller for induction motor
JP2000232800A (en) Controller for permanent magnet synchronous motor
JP3812142B2 (en) Control device for variable speed power generation system
JPH1084689A (en) Beatless controller
JPH11103600A (en) Method of controlling voltage of induction generator
JP4061517B2 (en) AC motor variable speed controller
JP3242814B2 (en) Power system compensation controller
JPH0522938A (en) Controlling circuit for power conversion system
JPH0326038B2 (en)
JPH07274600A (en) Method and apparatus for controlling acceleration/ deceleration of induction motor
JP3770286B2 (en) Vector control method for induction motor
US20240113645A1 (en) Symmetrical components domain control in a multiphase machine system
US20230145167A1 (en) Torque ripple compensation in a motor control system
JPH06261584A (en) Control device of ac motor
JPH04281387A (en) Controller for brushless dc motor
Guerrero et al. Flux level selection in vector-controlled dual stator winding induction machines
JP2645012B2 (en) Motor control device
JPS5949799B2 (en) How to operate an induction machine
KR20220096128A (en) Fault tolerance operation apparatus of six-phase permanent magnet synchronous motor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050203

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060522

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees