JPH11327201A - Toner for developing electrostatic charge image, its reduction, electrostatic charge image developer and image forming method - Google Patents

Toner for developing electrostatic charge image, its reduction, electrostatic charge image developer and image forming method

Info

Publication number
JPH11327201A
JPH11327201A JP30565398A JP30565398A JPH11327201A JP H11327201 A JPH11327201 A JP H11327201A JP 30565398 A JP30565398 A JP 30565398A JP 30565398 A JP30565398 A JP 30565398A JP H11327201 A JPH11327201 A JP H11327201A
Authority
JP
Japan
Prior art keywords
particles
toner
release agent
resin
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30565398A
Other languages
Japanese (ja)
Inventor
Manabu Serizawa
学 芹澤
Yasuo Matsumura
保雄 松村
Takao Ishiyama
孝雄 石山
Takeshi Shoji
毅 庄子
Atsuhiko Eguchi
敦彦 江口
Hideo Maehata
英雄 前畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP30565398A priority Critical patent/JPH11327201A/en
Publication of JPH11327201A publication Critical patent/JPH11327201A/en
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a toner for developing an electrostatic charge image inhibiting the liberation of a releasing agent from the toner, excellent in fixability, electrostatic chargeability and powder characteristics, simultaneously satisfying such various characteristics as electrostatic chargeability, developing performance, transferability, fixability and cleanability and excellent particularly in image smoothness, transparency, color mixing property and color forming property, to provide a method for producing the toner, to obtain an electrostatic charge image developer and to provide an image forming method. SOLUTION: Relating to a toner for developing an electrostatic charge image contg. a resin, a colorant and a releasing agent, the releasing agent is disposed as a releasing agent layer along the surface of the toner. A dispersion of fine resin particles is mixed with a dispersion of a colorant to form aggregated particles. A dispersion of fine releasing agent particles is then added and mixed to stick the releasing agent particles to the surfaces of the aggregated particles. A dispersion of fine resin particles is further added and mixed to stick the fine resin particles to the surfaces of releasing agent layers on the aggregated particles. The resultant particles are heated to a temp. above the glass transition temp. of the fine resin particles to form a the objective toner particles by fusion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子写真法等によ
る画像を形成するときに用いる静電荷像現像用トナー及
びその製造方法、静電荷像現像剤、並びに、画像形成方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic image developing toner used for forming an image by electrophotography and the like, a method for producing the same, an electrostatic image developer, and an image forming method.

【0002】[0002]

【従来の技術】電子写真法等のように静電荷像を経て画
像情報を可視化する方法は、現在各種の分野で広く利用
されている。この電子写真法は、帯電工程、露光工程等
を経て感光体上に静電荷像を現像し、転写工程、定着工
程等を経て前記静電荷像を可視化するものである。
2. Description of the Related Art Methods of visualizing image information via an electrostatic image, such as electrophotography, are currently widely used in various fields. In the electrophotographic method, an electrostatic image is developed on a photoreceptor through a charging step, an exposure step, and the like, and the electrostatic image is visualized through a transfer step, a fixing step, and the like.

【0003】電子写真法に用いる現像剤には、トナー粒
子及びキャリア粒子を含有する二成分系現像剤と、磁性
トナー粒子又は非磁性トナー粒子のみを含有する一成分
系現像剤とが知られている。トナー粒子は、通常、混練
粉砕法により製造される。混練粉砕法は、熱可塑性樹脂
等を顔料、帯電制御剤、ワックスなどの離型剤等と共に
溶融混練し、冷却した後、この溶融混練物を微粉砕し、
分級してトナー粒子を製造する方法である。なお、混練
粉砕法により製造されたトナー粒子に対し、流動性やク
リーニング性等を改善する目的で、必要に応じてその表
面に無機微粒子や有機微粒子を添加することがある。
[0003] Two-component developers containing toner particles and carrier particles and one-component developers containing only magnetic toner particles or non-magnetic toner particles are known as developers used in electrophotography. I have. The toner particles are usually manufactured by a kneading and pulverizing method. The kneading and pulverization method is a method in which a thermoplastic resin or the like is melt-kneaded with a pigment, a charge controlling agent, a release agent such as wax, and the like, and after cooling, the melt-kneaded material is finely pulverized.
This is a method of producing toner particles by classification. In addition, inorganic particles or organic particles may be added to the surface of the toner particles produced by the kneading and pulverizing method, if necessary, for the purpose of improving the fluidity and the cleaning property.

【0004】混練粉砕法で製造されるトナー粒子は、形
状が通常不定形であり、表面組成を均一に調整すること
はできない。即ち、使用材料の粉砕性や粉砕工程の条件
等により、トナー粒子の形状や表面組成は微妙に変化
し、これらを意図的に制御することは困難である。特に
粉砕性の高い材料を用いて混練粉砕法で製造したトナー
は、現像機内部でいろいろの剪断力を受けて粉砕され、
微粉化したり、形状が変化することがある。二成分系現
像剤では微粉化トナー粒子がキャリア表面に固着して、
現像剤の帯電性能の劣化を加速する。また、一成分系現
像剤は、粒度分布を拡大し、微粉化トナー粒子が飛散し
たり、トナー形状の変化に伴い現像性が低下し、画質の
低下を招くという問題が生ずる。
[0004] The toner particles produced by the kneading and pulverizing method are usually irregular in shape, and the surface composition cannot be adjusted uniformly. That is, the shape and surface composition of the toner particles slightly change depending on the pulverizability of the materials used, the conditions of the pulverization step, and the like, and it is difficult to intentionally control these. In particular, toner produced by a kneading and pulverization method using a material having high pulverizability is pulverized by receiving various shearing forces inside the developing machine,
It may be pulverized or its shape may change. In a two-component developer, finely divided toner particles adhere to the carrier surface,
Accelerates deterioration of developer charging performance. In addition, the one-component developer has a problem that the particle size distribution is enlarged, finely-divided toner particles are scattered, and the developing property is reduced due to a change in the toner shape, thereby causing a deterioration in image quality.

【0005】トナー粒子の形状が不定形であると、流動
性助剤を添加してもトナー粒子の流動性を十分に確保す
ることができない。また、現像機内部では剪断力により
流動性助剤の微粒子がトナー粒子の凹部に移動したり、
トナー粒子内部に埋没したりして、経時的に流動性を低
下させ、現像性、転写性、クリーニング性等が悪化する
という問題がある。また、このようなトナーをクリーニ
ング処理工程で回収して再び現像機に戻して再利用する
と、画質が劣化し易いという問題がある。これらの問題
を防止するために、流動性助剤の添加量をさらに増加さ
せることも考えられるが、流動性助剤を大量に用いる
と、感光体に黒点が発生したり、流動性助剤の微粒子が
飛散するという問題が生ずる。
[0005] If the shape of the toner particles is irregular, even if a flow aid is added, the flowability of the toner particles cannot be sufficiently ensured. Further, inside the developing machine, the fine particles of the fluidity aid move to the concave portions of the toner particles due to shearing force,
There is a problem that, for example, the toner is buried inside the toner particles and the fluidity is reduced with time, so that the developing property, the transfer property, and the cleaning property are deteriorated. Further, if such a toner is collected in the cleaning process, returned to the developing device and reused, there is a problem that the image quality is easily deteriorated. In order to prevent these problems, it is conceivable to further increase the amount of the flow aid. However, when a large amount of the flow aid is used, black spots are generated on the photoreceptor or the flow aid is not used. There is a problem that fine particles are scattered.

【0006】一方、ワックスなどの離型剤を内添するト
ナーは、離型剤と熱可塑性樹脂との組み合わせによって
は、トナー粒子の表面に離型剤が移動して露出すること
がある。特に高分子量成分により弾性が付与された、や
や粉砕されにくい樹脂と、ポリエチレンのような脆いワ
ックスとを組み合わせたトナーは、トナー粒子表面にポ
リエチレンがしばしば露出する。ポリエチレン等の離型
剤が表面に露出したトナーは、定着時の離型性や感光体
表面の未転写トナーのクリーニング性については有利で
あるが、トナー粒子表面のポリエチレン等の離型剤が、
現像機内で剪断力等を受けてトナー粒子表面から脱離
し、現像ロール、感光体、キャリア等に容易に移行して
汚染する。この汚染は現像剤の信頼性を大幅に低下させ
る。
On the other hand, in a toner to which a release agent such as wax is internally added, the release agent may move to and be exposed on the surface of the toner particles depending on the combination of the release agent and the thermoplastic resin. In particular, in the case of a toner in which a resin which is imparted with elasticity by a high molecular weight component and is hardly pulverized and a brittle wax such as polyethylene are combined, polyethylene is often exposed on the surface of the toner particles. A toner in which a release agent such as polyethylene is exposed on the surface is advantageous in terms of releasability at the time of fixing and cleaning property of untransferred toner on the surface of the photoreceptor.
The particles are detached from the surface of the toner particles by receiving a shearing force or the like in the developing machine, and easily migrate to a developing roll, a photoreceptor, a carrier, or the like and become contaminated. This contamination greatly reduces the reliability of the developer.

【0007】そこで、近年、トナー粒子の形状や表面組
成を制御することが検討されており、例えは、特開昭6
3−282752号公報や特開平6−250439号公
報では乳化重合法が提案されている。この乳化重合法は
乳化重合により樹脂微粒子分散液を作製し、一方で溶媒
に着色剤を分散させた着色剤分散液を作製し、これらを
混合してトナー粒子に相当する凝集粒子を形成した後、
加熱することにより融合してトナー粒子を得る方法があ
る。この方法では、加熱温度を選択することにより、ト
ナー形状を不定形から球形まで任意に制御することが可
能である。
Therefore, in recent years, control of the shape and surface composition of the toner particles has been studied.
JP-A-3-282752 and JP-A-6-250439 propose an emulsion polymerization method. In this emulsion polymerization method, a resin fine particle dispersion is prepared by emulsion polymerization, while a colorant dispersion in which a colorant is dispersed in a solvent is prepared, and these are mixed to form aggregated particles corresponding to toner particles. ,
There is a method of obtaining toner particles by fusing by heating. In this method, the toner shape can be arbitrarily controlled from an irregular shape to a spherical shape by selecting a heating temperature.

【0008】しかし、この乳化重合凝集法では、樹脂微
粒子と着色剤の均一な混合状態で凝集粒子が形成され、
加熱融合されるため、トナー粒子内部から表面に向けて
組成が均一になり、意図的にトナーの粒子表面の構造や
組成を制御することは困難である。特に、凝集粒子に離
型剤を含有させる場合は、融合した後のトナー粒子表面
に離型剤が露出してフィルミングが発生したり、流動性
付与の目的でトナー表面に外添した外添剤が離型剤で被
覆され、トナー内部に埋没してその目的を果たすことが
できなくなる。
However, according to the emulsion polymerization aggregation method, aggregated particles are formed in a uniform mixed state of fine resin particles and a colorant.
Due to the heat fusion, the composition becomes uniform from the inside of the toner particle toward the surface, and it is difficult to intentionally control the structure and composition of the toner particle surface. In particular, when a release agent is contained in the aggregated particles, the release agent is exposed on the surface of the fused toner particles to cause filming, or externally added to the toner surface for the purpose of imparting fluidity. The agent is coated with the release agent and buried inside the toner so that it cannot fulfill its purpose.

【0009】また、特開平8−44111号公報や特開
平8−286416号公報には懸濁重合法が提案されて
いる。懸濁重合法は重合性モノマーを着色剤や離型剤等
と共に水系媒体中に分散し懸濁させた後、重合性モノマ
ーを用いて重合させることによりトナー粒子を得る方法
である。この懸濁重合法によると、例えば離型剤である
ワックスを結着樹脂で被覆した多層構造のトナー粒子を
得ることができる。
Further, a suspension polymerization method is proposed in JP-A-8-44111 and JP-A-8-286416. The suspension polymerization method is a method in which a polymerizable monomer is dispersed and suspended in an aqueous medium together with a colorant, a release agent, and the like, and then polymerized using the polymerizable monomer to obtain toner particles. According to the suspension polymerization method, toner particles having a multilayer structure in which, for example, wax as a release agent is coated with a binder resin can be obtained.

【0010】しかし、この懸濁重合法は懸濁状態で粒子
を適当な大きさに調整する必要がある。この調整は分散
液を強度にかつ高速に攪拌する必要があるが、一般的に
は水のような粘度を持つ液体を均一に高速攪拌すること
は極めて困難である。均一に混合できないと、離型剤が
遊離したり、離型剤含有量の著しく少ないトナー粒子や
全く含有していないトナー粒子が多量に発生する。その
結果、トナー粒子間の組成の偏在が著しくなり、トナー
に要求される定着性、帯電性等の各種特性を十分に満す
ことができなくなる。現在のところ、懸濁重合法で離型
剤の遊離を効果的に防止する技術は確立されていない。
However, in this suspension polymerization method, it is necessary to adjust particles to an appropriate size in a suspended state. For this adjustment, it is necessary to stir the dispersion liquid at a high speed and at a high speed. However, it is generally very difficult to stir a liquid having a viscosity such as water uniformly at a high speed. If the mixing cannot be performed uniformly, the release agent is released, and a large amount of toner particles having a very small amount of the release agent or no toner at all are generated. As a result, the uneven distribution of the composition between the toner particles becomes remarkable, and it becomes impossible to sufficiently satisfy various characteristics such as fixing property and charging property required for the toner. At present, a technique for effectively preventing release of a release agent by a suspension polymerization method has not been established.

【0011】他方、近年高画質化への要求が高まり、特
にカラー画像形成では高度に精細な画像を実現するた
め、トナーの小径化かつ粒径の均一化が強く求められて
いる。粒度分布の広いトナーを用いて画像形成を行う
と、微粉側のトナーが現像ロール、帯電ロール、帯電ブ
レード、感光体、キャリア等を汚染し、トナーの飛散が
顕著になる。そのため、高画質と高信頼性を同時に実現
することが困難になる。また、かかる粒度分布の広いト
ナーは、クリーニング機能やトナーリサイクル機能等を
有するシステムの信頼性も当然のことながら低下する。
高画質と高信頼性とを同時に実現するためには、トナー
の粒度分布をシャープにし、小径化及び粒径の均一化を
促進することが重要な課題である。
On the other hand, in recent years, there has been an increasing demand for higher image quality. In particular, in color image formation, in order to realize a highly fine image, it is strongly required to reduce the diameter of the toner and to make the particle diameter uniform. When an image is formed using a toner having a wide particle size distribution, the toner on the fine powder side contaminates a developing roll, a charging roll, a charging blade, a photoreceptor, a carrier, and the like, and scattering of the toner becomes remarkable. Therefore, it is difficult to simultaneously achieve high image quality and high reliability. In addition, such a toner having a wide particle size distribution naturally lowers the reliability of a system having a cleaning function, a toner recycling function, and the like.
In order to simultaneously achieve high image quality and high reliability, it is important to sharpen the particle size distribution of the toner and promote the reduction in the diameter and the uniformity of the particle size.

【0012】また、高画質化の要求を満たすためには、
トナーの定着性を改善することが重要な要素となる。十
分なトナー定着性を得るためには定着温度領域を拡大さ
せることが必要である。従来は、分子量が異なる複数種
の樹脂又はゲル成分を含有する樹脂を結着樹脂に用いて
高温側のオフセットを防止するのが一般的な方法であ
る。
In order to satisfy the demand for higher image quality,
An important factor is to improve the fixability of the toner. In order to obtain sufficient toner fixing properties, it is necessary to expand the fixing temperature range. Conventionally, it is a general method to use a resin containing a plurality of types of resins having different molecular weights or a gel component as a binder resin to prevent offset on a high temperature side.

【0013】しかし、特にカラー画像においては、分子
量が異なる複数種の樹脂又はゲル成分を含有する樹脂を
結着樹脂に用いると、定着画像の混色性、画像表面の平
滑性、さらには画像の透明性等が損なわれ、画質を著し
く劣化し、特に、フィルム上に画像を定着する場合に、
この影響は極めて大きなものとなる。逆に、樹脂の種類
を1種にし、分子量を一定にするか、又はゲル成分を含
有しない樹脂を用いると、前記定着画像の混色性、画像
表面の平滑性、画像の透明性等に問題はないが、特に離
型剤を大量に添加する場合に、トナーの粘性が低下して
高温側におけるオフセットが従来より発生しやすくな
る。
However, in the case of a color image in particular, if a resin containing plural kinds of resins having different molecular weights or a resin containing a gel component is used as a binder resin, the color mixing property of the fixed image, the smoothness of the image surface, and the transparency of the image are further improved. Properties are impaired, image quality is significantly degraded, especially when fixing images on film,
This effect is extremely large. Conversely, if the type of the resin is made one and the molecular weight is made constant or a resin containing no gel component is used, there are problems with the color mixing of the fixed image, the smoothness of the image surface, the transparency of the image, and the like. However, particularly when a large amount of a release agent is added, the viscosity of the toner is reduced and offset on the high temperature side is more likely to occur than before.

【0014】他方、カラー画像形成においては、トナー
を紙面上又はフィルム上に定着する場合、トナー定着画
像の平滑性を向上させて画像の発色性及び透明性を確保
する必要がある。このため、従来の方法においては、シ
リコーンオイル等の離型性の高いオイルを定着ロール表
面に供給することにより、定着ロールのトナーに対する
離型性、及び平滑性を保持するのが一般的であった。
On the other hand, in forming a color image, when the toner is fixed on a paper surface or a film, it is necessary to improve the smoothness of the toner-fixed image to secure the color development and transparency of the image. For this reason, in the conventional method, it is general to maintain the releasing property and the smoothness of the fixing roll with respect to the toner by supplying an oil having a high releasing property such as silicone oil to the surface of the fixing roll. Was.

【0015】しかし、この方法は、定着時に前記オイル
が紙面ないしフィルム上に移行し、定着画像にベタつき
感が生ずる等の問題があった。また、紙面に定着させる
場合、前記オイルが紙面の表面エネルギーを低下させる
ため、定着画像が形成された紙面にペン等による書き込
みをすることが困難になる等の問題があった。さらに、
フィルム上に定着させる場合、フィルムに残留する前記
オイルにより定着画像の透明性が低下するという問題が
あった。
However, this method has a problem that the oil migrates to the paper surface or onto the film at the time of fixing, and the fixed image has a sticky feeling. In addition, when fixing is performed on paper, there is a problem that writing with a pen or the like becomes difficult on the paper on which the fixed image is formed because the oil reduces the surface energy of the paper. further,
When fixing on a film, there is a problem that the transparency of a fixed image is reduced by the oil remaining on the film.

【0016】さらに、電子写真プロセスにおいて、様々
な機械的ストレスの下でトナーの流動性、帯電性等の性
能を安定に維持、発揮させるためには、トナー粒子表面
への離型剤の露出を抑制する必要がある。一方、前記離
型剤は定着ロール定着時においてトナー粒子表面に素早
く染み出し、トナーの定着ロールに対する離型性を上げ
る、いわゆる耐オフセット性、また離型剤のトナー内部
の残留による透明性の低下等のトナー性能を考慮する
と、離型剤の使用量を抑制し、トナー粒子の表面近傍に
配置することが望ましい。
Further, in the electrophotographic process, in order to stably maintain and exhibit the performance of the toner such as fluidity and chargeability under various mechanical stresses, it is necessary to expose a release agent to the surface of the toner particles. It needs to be suppressed. On the other hand, the release agent quickly oozes out to the toner particle surface when fixing the fixing roll, thereby increasing the releasability of the toner from the fixing roll. In consideration of the toner performance such as the above, it is desirable to suppress the use amount of the release agent and arrange the toner near the surface of the toner particles.

【0017】[0017]

【発明が解決しようとする課題】本発明は、混練粉砕
法、懸濁重合法及び乳化重合凝集法などの従来法におけ
る諸問題を解決し、下記の課題を解決した静電荷像現像
用トナー及びその製造方法、静電荷像現像剤並びに画像
形成方法を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention solves the problems of the conventional methods such as the kneading and pulverizing method, the suspension polymerization method and the emulsion polymerization agglutination method. An object of the present invention is to provide a manufacturing method, an electrostatic image developer and an image forming method.

【0018】帯電性、現像性、転写性、定着性、クリ
ーニング性等の諸特性を並立させ、特に画像における平
滑性、透明性、混色性、発色性に優れた静電荷像現像用
トナー及び該静電荷像現像用トナーを用いた静電荷像現
像剤を提供すること。 トナー表面への離型剤の露出を防止し、トナーから離
型剤の遊離を抑制するとともに、定着性、帯電性、粉体
特性に優れ、信頼性の高い静電荷像現像用トナー及び該
静電荷像現像用トナーを用いた静電荷像現像剤を提供す
ること。 転写効率が高く、トナー消費量が少なく、しかも寿命
の長い二成分系静電荷像現像剤に好適な静電荷像現像用
トナーを提供すること。
A toner for developing an electrostatic image, which has excellent properties such as chargeability, developability, transferability, fixability, and cleaning properties, and is particularly excellent in smoothness, transparency, color mixing and color development in an image. Provided is an electrostatic image developer using an electrostatic image developing toner. A toner for developing an electrostatic charge image, which is excellent in fixability, chargeability, powder characteristics, and has high reliability while preventing exposure of the release agent to the toner surface and suppressing release of the release agent from the toner. Provided is an electrostatic image developer using a charge image developing toner. An electrostatic image developing toner suitable for a two-component electrostatic image developer having high transfer efficiency, low toner consumption, and long life.

【0019】遊離する離型剤の量を著しく低く抑えた
状態で、前記諸特性を備えた静電荷像現像用トナーを容
易にかつ簡便に製造する方法を提供すること。 高画質で信頼性の高いフルカラー画像を容易にかつ簡
便に形成する画像形成方法を提供すること。 クリーニング機構を有しない、いわゆるクリーナーレ
スシステムにおいて高画質を得ることができる画像形成
方法を提供すること。 クリーナーから回収されたトナーを再利用する、いわ
ゆるトナーリサイクルシステムへの適性が高く、高画質
を得ることができる画像形成方法を提供すること。
It is an object of the present invention to provide a method for easily and simply producing a toner for developing an electrostatic image having the above-mentioned characteristics while keeping the amount of the releasing agent released extremely low. An image forming method for easily and easily forming a high-quality and highly reliable full-color image. Provided is an image forming method capable of obtaining high image quality in a so-called cleanerless system having no cleaning mechanism. Provided is an image forming method that is highly suitable for a so-called toner recycling system that reuses toner collected from a cleaner and that can obtain high image quality.

【0020】[0020]

【課題を解決するための手段】本発明は、次の手段をさ
きようすることにより、上記課題の解決に成功した。 (1) 樹脂、着色剤及び離型剤を含有する静電荷像現像用
トナーにおいて、前記離型剤をトナー表面に沿った離型
剤層としてトナー中に配置してなることを特徴とする静
電荷像現像用トナー。 (2) 前記離型剤層の内側のコア粒子に樹脂、着色剤及び
離型剤を含有させたことを特徴とする前記(1) 記載の静
電荷像現像用トナー。
The present invention has succeeded in solving the above problems by avoiding the following means. (1) An electrostatic image developing toner containing a resin, a colorant and a release agent, wherein the release agent is disposed in the toner as a release agent layer along the toner surface. Charge image developing toner. (2) The electrostatic image developing toner according to (1), wherein the core particles inside the release agent layer contain a resin, a colorant, and a release agent.

【0021】(3) 前記離型剤層の表面を樹脂で被覆して
なることを特徴とする前記(1) 又は(2) 記載の静電荷像
現像用トナー。 (4) 前記離型剤層をトナー中に複数層配置してなること
を特徴とする前記(1)〜(3) のいずれか1つに記載の静
電荷像現像用トナー。
(3) The toner for developing an electrostatic image according to the above (1) or (2), wherein the surface of the release agent layer is coated with a resin. (4) The toner for developing an electrostatic image according to any one of (1) to (3), wherein a plurality of the release agent layers are arranged in the toner.

【0022】(5) 前記離型剤層の厚さが0.01〜2.
0μmの範囲にあることを特徴とする前記(1) 〜(4) の
いずれか1つに記載の静電荷像現像用トナー。 (6) 前記離型剤層が、トナー表面から0.01〜3.0
μmの範囲にあることを特徴とする前記(1) 〜(5) のい
ずれか1つに記載の静電荷像現像用トナー。 (7) 前記離型剤の含有量がトナー重量のうち、0.5〜
50重量%の範囲にあることを特徴とする前記(1) 〜
(6) のいずれか1つに記載の静電荷像現像用トナー。
(5) The release agent layer has a thickness of 0.01 to 2.
The electrostatic image developing toner according to any one of the above (1) to (4), which is in a range of 0 μm. (6) The release agent layer is located between 0.01 and 3.0 from the toner surface.
The toner for developing an electrostatic image according to any one of the above (1) to (5), which is in a range of μm. (7) The content of the release agent is 0.5 to 0.5% of the toner weight.
(1) to (4), wherein the content is in the range of 50% by weight.
(6) The toner for developing an electrostatic image according to any one of the above (6).

【0023】(8) 前記トナーの形状係数SF1が100
≦SF1≦140の範囲にあることを特徴とする前記
(1) 〜(7) のいずれか1つに記載の静電荷像現像用トナ
ー。 (9) 前記トナーの体積平均粒径(D50)が3〜8μmの
範囲にあることを特徴とする前記(1) 〜(8) のいずれか
1つに記載の静電荷像現像用トナー。
(8) The shape factor SF1 of the toner is 100
≦ SF1 ≦ 140.
The toner for developing an electrostatic image according to any one of (1) to (7). (9) The electrostatic image developing toner according to any one of (1) to (8), wherein the toner has a volume average particle diameter (D 50 ) in a range of 3 to 8 μm.

【0024】(10)前記トナーの体積平均粒度分布指標G
SDv(D84V /D16V )が1.26以下であることを
特徴とする前記(1) 〜(9) のいずれか1つに記載の静電
荷像現像用トナー。
(10) Volume average particle size distribution index G of the toner
SDv (D 84V / D 16V) is an electrostatic image developing toner according to any one of above, wherein the at 1.26 or less (1) to (9).

【0025】(11)樹脂微粒子の分散液と、着色剤の分散
液とを混合し、前記樹脂微粒子及び前記着色剤を凝集さ
せて凝集粒子を形成し、次いで、離型剤微粒子の分散液
を追加して混合し、前記凝集粒子の表面に離型剤微粒子
を付着させ、さらに、樹脂微粒子の分散液を追加して混
合し、前記凝集粒子の離型剤層表面に樹脂微粒子を付着
させた後、前記樹脂微粒子のガラス転移点以上の温度に
加熱して融合・合一させ、トナー粒子を形成することを
特徴とする前記(1) 〜(10)のいずれか1つに記載の静電
荷像現像用トナーの製造方法。
(11) A dispersion of fine resin particles and a dispersion of colorant are mixed, and the fine resin particles and the colorant are aggregated to form aggregated particles. Added and mixed, the release agent fine particles were adhered to the surface of the aggregated particles, and further, a dispersion of resin fine particles was added and mixed, and the resin fine particles were adhered to the release agent layer surface of the aggregated particles. Thereafter, the electrostatic charge according to any one of (1) to (10), wherein the resin fine particles are heated to a temperature equal to or higher than the glass transition point to fuse and coalesce to form toner particles. A method for producing an image developing toner.

【0026】(12)前記樹脂微粒子分散液の極性と前記着
色剤分散液の極性とを異ならせて前記凝集粒子を形成す
ることを特徴とする前記(11)記載の静電荷像現像用トナ
ーの製造方法。 (13)前記樹脂微粒子及び前記着色剤を混合してなる分散
液の極性と異なる極性を有する界面活性剤を添加して前
記凝集粒子を形成することを特徴とする前記(11)又は(1
2)記載の静電荷像現像用トナーの製造方法。
(12) The toner for developing an electrostatic image according to (11), wherein the aggregated particles are formed by making the polarity of the resin fine particle dispersion different from that of the colorant dispersion. Production method. (13) The (11) or (1) wherein the aggregated particles are formed by adding a surfactant having a polarity different from the polarity of the dispersion liquid obtained by mixing the resin fine particles and the colorant.
2) The method for producing a toner for developing an electrostatic image as described in 2).

【0027】(14)前記樹脂微粒子と前記着色剤からなる
凝集粒子を分散する分散液の極性と異なる極性に離型剤
微粒子分散液を調整し、前記離型剤微粒子分散液を前記
凝集粒子分散液に添加して混合し、前記凝集粒子表面に
前記離型剤微粒子を付着することを特徴とする前記(11)
〜(13)のいずれか1つに記載の静電荷像現像用トナーの
製造方法。 (15)アニオン性界面活性剤を含有する溶液に前記樹脂微
粒子を分散させ、かつカチオン性界面活性剤を含有する
溶液に前記離型剤微粒子を分散させることを特徴とする
前記(11)〜(14)のいずれか1つに記載の静電荷像現像用
トナーの製造方法。
(14) A release agent fine particle dispersion is adjusted to a polarity different from the polarity of the dispersion liquid in which the resin particles and the colorant are dispersed, and the release agent fine particle dispersion is dispersed in the aggregated particle dispersion. Adding to the liquid and mixing, wherein the release agent fine particles are attached to the surface of the aggregated particles (11)
(13) The method for producing a toner for developing an electrostatic image according to any one of (13) to (13). (15) The resin particles are dispersed in a solution containing an anionic surfactant, and the release agent particles are dispersed in a solution containing a cationic surfactant, wherein the (11) to (11) to ( 14. The method for producing a toner for developing an electrostatic image according to any one of 14).

【0028】(16)樹脂微粒子の分散液と、着色剤の分散
液とを混合し、2価以上の電荷を有する無機金属塩を用
いて前記樹脂微粒子及び前記着色剤を凝集させて凝集粒
子を形成し、次いで、離型剤微粒子の分散液を追加して
混合し、前記凝集粒子の表面に離型剤微粒子を付着さ
せ、さらに、樹脂微粒子の分散液を追加して混合し、前
記凝集粒子の離型剤層表面に樹脂微粒子を付着させた
後、前記樹脂微粒子のガラス転移点以上の温度に加熱し
て融合・合一させ、トナー粒子を形成することを特徴と
する前記(1) 〜(10)のいずれか1つに記載の静電荷像現
像用トナーの製造方法。 (17)前記無機金属塩が重合体であることを特徴とする前
記(16)記載の静電荷像現像用トナーの製造方法。
(16) A dispersion of the resin fine particles and a dispersion of the colorant are mixed, and the resin fine particles and the colorant are aggregated using an inorganic metal salt having a charge of 2 or more to form aggregated particles. Forming, then adding and mixing a dispersion of release agent particles, adhering release agent particles to the surface of the aggregated particles, further adding and mixing a dispersion of resin particles, the aggregated particles After adhering the resin fine particles to the surface of the release agent layer, the resin particles are heated to a temperature equal to or higher than the glass transition point of the resin fine particles to fuse and coalesce, thereby forming toner particles. The method for producing a toner for developing an electrostatic image according to any one of (10) and (10). (17) The method for producing a toner for developing an electrostatic image according to (16), wherein the inorganic metal salt is a polymer.

【0029】(18)前記離型剤の分散液は、走査型電子顕
微鏡(SEM)により測定された平均粒径が0.01〜
2.0μmの離型剤を含有することを特徴とする前記(1
1)〜(17)のいずれか1つに記載の静電荷像現像用トナー
の製造方法。 (19)前記分散液中の樹脂微粒子、着色剤及び離型剤微粒
子の平均粒径が1μm以下であることを特徴とする前記
(11)〜(18)のいずれか1つに記載の静電荷像現像用トナ
ーの製造方法。 (20)前記凝集粒子を融合する温度を、前記離型剤の融点
Tmないし融点より20℃高い温度の範囲に調整するこ
とを特徴とする前記(11)〜(19)のいずれか1つに記載の
静電荷像現像用トナーの製造方法。
(18) The dispersion of the release agent has an average particle size of 0.01 to 0.01 as measured by a scanning electron microscope (SEM).
The above (1), comprising a release agent of 2.0 μm.
1) The method for producing a toner for developing electrostatic images according to any one of 1) to 17). (19) the resin particles in the dispersion, the colorant and the average particle diameter of the release agent particles is 1μm or less
(11) The method for producing a toner for developing an electrostatic image according to any one of (18) to (18). (20) The method according to any one of (11) to (19), wherein the temperature at which the aggregated particles are fused is adjusted to a range of a temperature higher by 20 ° C. than the melting point Tm or the melting point of the release agent. The method for producing a toner for developing an electrostatic image according to the above.

【0030】(21)キャリアとトナーとを含有する静電荷
像現像剤において、前記トナーが前記(1) 〜(10)のいず
れか1つに記載の静電荷像現像用トナーであることを特
徴とする静電荷像現像剤。 (22)前記キャリアが樹脂被覆層を有してなる前記(21)記
載の静電荷像現像剤。
(21) An electrostatic image developer containing a carrier and a toner, wherein the toner is the toner for developing an electrostatic image according to any one of (1) to (10). Electrostatic image developer. (22) The electrostatic image developer according to the above (21), wherein the carrier has a resin coating layer.

【0031】(23)静電潜像担持体上に静電潜像を形成す
る工程、現像剤担持体上の現像剤で前記静電潜像を現像
してトナー画像を形成する工程、前記トナー画像を転写
体上に転写する転写工程、及び静電潜像担持体上に残留
する静電荷像現像用トナーを除去するクリーニング工程
を含む画像形成方法において、前記現像剤として、前記
(21)又は(22)記載の静電荷像現像剤を用いることを特徴
とする画像形成方法。
(23) a step of forming an electrostatic latent image on an electrostatic latent image carrier, a step of developing the electrostatic latent image with a developer on a developer carrier and forming a toner image, An image forming method including a transfer step of transferring an image onto a transfer body, and a cleaning step of removing an electrostatic image developing toner remaining on the electrostatic latent image carrier, wherein the developer is
An image forming method using the electrostatic image developer according to (21) or (22).

【0032】[0032]

【発明の実施の形態】本発明の静電荷像現像用トナー
は、トナー表面近傍に離型剤層を設け、かつトナー表面
には樹脂被膜を設けることにより、トナーの定着ロール
通過時における離型剤のトナー表面への染み出しを容易
にし、耐オフセット性を向上させると同時に、定着時に
はトナー内部に残留する離型剤量を減少させることによ
りトナー画像への離型剤の混入による不都合を回避する
ことができ、特にカラー画像の透明性、混色性、発色
性、平滑性などを向上させることができる。また、定着
ロールを通過する前は、トナー表面に離型剤を実質的に
露出させることがないので、混練粉砕法に比較して離型
剤量を大量に添加することができ、トナーの粉体流動性
を維持することができる。また、キャリアや感光体など
を離型剤による汚染を回避することができるため、帯電
性、現像性などへの影響を抑制することができる。さら
に、着色剤はトナーのコア部分に相当する凝集粒子に主
に配置され、トナー表面に露出することがないので、着
色剤の露出によるトナーの帯電変動を抑制することがで
き、特に、カラートナーのように複数の着色剤を用いる
ときにトナー相互間で着色剤による帯電性に差が生ずる
ことを防止することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The toner for developing an electrostatic image of the present invention is provided with a release agent layer near the toner surface and a resin coating on the toner surface, so that the toner is released when passing through a fixing roll. Facilitates the exudation of the release agent onto the toner surface, improves the anti-offset properties, and at the same time, reduces the amount of the release agent remaining inside the toner at the time of fixing, thereby avoiding the inconvenience caused by mixing the release agent into the toner image. In particular, it is possible to improve the transparency, color mixture, color development, smoothness, and the like of a color image. In addition, since the release agent is not substantially exposed on the toner surface before passing through the fixing roll, a large amount of the release agent can be added as compared with the kneading and pulverizing method, and the toner powder Body fluidity can be maintained. In addition, since the contamination of the carrier, the photoconductor and the like by the release agent can be avoided, the influence on the chargeability, the developability and the like can be suppressed. Further, since the colorant is mainly disposed on the aggregated particles corresponding to the core portion of the toner and is not exposed on the toner surface, it is possible to suppress the fluctuation of the charge of the toner due to the exposure of the colorant. When a plurality of colorants are used as described above, it is possible to prevent a difference in chargeability due to the colorants between toners.

【0033】以下、本発明の静電荷像現像用トナーを製
造手順に沿って説明する。本発明の静電荷像現像用トナ
ーの製造方法は、少なくとも樹脂微粒子を分散させてな
る樹脂微粒子の分散液と、着色剤を分散させてなる着色
剤の分散液とを混合して樹脂微粒子と着色剤とを凝集さ
せ、凝集粒子を分散する凝集粒子の分散液を調製し(以
下「母凝集粒子の凝集工程」と称することがある)、そ
の後、凝集粒子の分散液に対し、離型剤微粒子を分散さ
せてなる離型剤の分散液を追加して混合し、凝集粒子表
面に離型剤を付着して離型剤層を形成し、(以下「離型
剤の付着工程」と称することがある)さらに、樹脂微粒
子等の分散液を追加して付着粒子表面に樹脂被膜用樹脂
微粒子を付着させ(以下「樹脂被膜用樹脂微粒子の付着
工程」と称することがある)、このようにして得た凝集
粒子の分散液を前記樹脂微粒子のガラス転移点以上の温
度で加熱して付着粒子を融合・合一してトナー粒子を形
成する(以下「融合工程」と称することがある)。
Hereinafter, the toner for developing an electrostatic image of the present invention will be described in accordance with the manufacturing procedure. The method for producing a toner for developing an electrostatic image of the present invention is characterized in that a dispersion of resin fine particles obtained by dispersing at least resin fine particles and a dispersion of a colorant obtained by dispersing a colorant are mixed and colored with resin fine particles. To prepare a dispersion of aggregated particles for dispersing the aggregated particles (hereinafter sometimes referred to as “aggregation step of mother aggregated particles”). Is added and mixed, and the release agent is attached to the surface of the aggregated particles to form a release agent layer (hereinafter referred to as a “release agent attachment step”). Further, a dispersion liquid of resin fine particles or the like is added to adhere the resin fine particles for resin coating on the surface of the adhered particles (hereinafter, may be referred to as “adhesion step of resin fine particles for resin coating”). The dispersion of the obtained aggregated particles is subjected to glass transition of the resin fine particles. And coalescence of the adhered particles by heating at a temperature above to form toner particles (hereinafter sometimes referred to as "fusion step").

【0034】前記の静電荷像現像用トナーの製造方法で
は、前記の母凝集粒子工程に離型剤の分散液を添加して
母凝集粒子中に離型剤を配合してもい。前記の離型剤の
付着工程と樹脂被膜用樹脂微粒子の付着工程を繰り返し
て離型剤層をトナー中に複数層配置してもよい。また、
前記の付着層を形成するときに分散する微粒子の配合割
合を変化させながら凝集粒子分散液に添加して、該層の
組成を連続的に変化させることも可能である。
In the above-described method for producing a toner for developing an electrostatic image, a releasing agent dispersion may be added to the mother aggregated particle step to incorporate the release agent into the mother aggregated particles. A plurality of release agent layers may be arranged in the toner by repeating the above-described step of attaching the release agent and the step of attaching the resin fine particles for the resin film. Also,
It is also possible to change the composition of the layer by adding it to the aggregated particle dispersion while changing the mixing ratio of the fine particles dispersed when forming the adhesion layer.

【0035】前記母凝集粒子の凝集工程及び/又は各種
微粒子の付着工程においては、分散液の極性を調整する
イオン性界面活性剤の種類と量を選択して凝集及び/又
は付着の程度を制御することができる。例えば、アニオ
ン性界面活性剤を含有する溶液に樹脂微粒子を分散さ
せ、カチオン性界面活性剤を含有する溶液に着色剤を分
散させ、そして、両者を混合することにより、樹脂微粒
子と着色剤を凝集させることができる。
In the step of aggregating the mother agglomerated particles and / or the step of adhering various fine particles, the type and amount of the ionic surfactant for adjusting the polarity of the dispersion liquid are selected to control the degree of agglutination and / or adhesion. can do. For example, by dispersing resin fine particles in a solution containing an anionic surfactant, dispersing a colorant in a solution containing a cationic surfactant, and by mixing both, the resin fine particles and the colorant are aggregated. Can be done.

【0036】また、混合される分散液に含まれるイオン
性界面活性剤の極性及び配合量のバランスを予めずらし
ておき、そのバランスのずれを補填するような極性及び
量のイオン性界面活性剤を添加することにより凝集及び
/又は付着を行うことも可能である。
The balance between the polarity and the amount of the ionic surfactant contained in the dispersion to be mixed is shifted in advance, and an ionic surfactant having a polarity and an amount that compensates for the shift in the balance is used. Aggregation and / or adhesion can also be performed by adding.

【0037】母凝集粒子の凝集は、極性の異なる樹脂微
粒子分散液と着色剤分散液とを混合して凝集粒子を形成
する方法や、樹脂微粒子及び着色剤を混合してなる分散
液に対し、該分散液とは異なる極性を有する界面活性剤
を添加して凝集粒子を形成する方法などを採用すること
ができる。
The aggregation of the mother aggregated particles is performed by a method in which a dispersion of resin fine particles having different polarities and a colorant dispersion are mixed to form aggregated particles, or a dispersion obtained by mixing resin fine particles and a colorant. A method of adding a surfactant having a polarity different from that of the dispersion to form aggregated particles can be employed.

【0038】離型剤等の微粒子を母凝集粒子に付着する
には、樹脂微粒子と着色剤からなる母凝集粒子の分散液
に対し、該分散液とは異なる極性に予め調整した離型剤
微粒子分散液を添加混合して母凝集粒子表面に離型剤等
の微粒子を付着し、その後の融合工程を経て微粒子成分
の層を形成することができる。
In order to attach fine particles such as a release agent to the mother aggregated particles, the release agent fine particles previously adjusted to have a different polarity from the dispersion liquid of the mother aggregated particles composed of the resin fine particles and the colorant are used. Fine particles such as a release agent can be attached to the surface of the mother aggregated particles by adding and mixing the dispersion liquid, and a layer of the fine particle component can be formed through a subsequent fusion step.

【0039】前記融合工程においては、最終的な付着粒
子中の樹脂及び離型剤が溶融するものの、前記樹脂粒子
と離型剤はそれぞれ相溶性が低いか全くないため、前記
付着粒子内で別々に融合し、前記付着粒子内において表
面近傍に存在した離型剤微粒子層は該微粒子同士が融合
し、トナー内で離型剤層を形成する。その際、前記着色
剤粒子は母凝集粒子中の樹脂微粒子の融合体中に取り込
まれ、静電荷像現像用トナー粒子が形成される。
In the fusion step, although the resin and the release agent in the final adhered particles are melted, the resin particles and the release agent have low or no compatibility with each other. The release agent fine particle layer existing near the surface in the adhered particles fuses with each other to form a release agent layer in the toner. At that time, the colorant particles are taken into the fused body of the resin fine particles in the mother aggregated particles to form toner particles for electrostatic image development.

【0040】前記付着工程は、母凝集粒子分散液に離型
剤等の微粒子分散液を追加し、必要に応じて2回以上繰
り返して追加して母凝集粒子の表面に前記微粒子を均一
に付着させ、さらに、樹脂被膜用の樹脂微粒子分散液を
追加混合して前記付着粒子表面に樹脂微粒子を付着する
ものであり、前記微粒子の付着はヘテロ凝集等により形
成される。融合工程では付着粒子中の樹脂微粒子と離型
剤はともに溶融するが、一般に樹脂微粒子と離型剤は相
溶性が低いか全く相溶しないため、樹脂と離型剤が別々
に融合し、母凝集粒子に相当する樹脂と着色剤からなる
コア部分の表面に離型剤層が形成され、さらにその上に
樹脂被膜が形成されて、全体として静電荷像現像用トナ
ー粒子となる。
In the attaching step, a fine particle dispersion such as a release agent is added to the mother aggregated particle dispersion, and if necessary, repeated two or more times to add the fine particles uniformly to the surface of the mother aggregated particles. Further, a resin fine particle dispersion for a resin coating is additionally mixed to adhere resin fine particles to the surface of the adhered particles, and the adhesion of the fine particles is formed by hetero-aggregation or the like. In the fusion step, the resin fine particles and the release agent in the adhered particles are both melted, but generally the resin fine particles and the release agent have low compatibility or are not compatible at all. A release agent layer is formed on the surface of a core portion composed of a resin and a coloring agent corresponding to the aggregated particles, and a resin film is further formed thereon, thereby forming toner particles for electrostatic image development as a whole.

【0041】本発明のもう1つの静電荷像現像用トナー
の製造方法は、前記の静電荷像現像用トナー製造方法の
母凝集粒子凝集工程において、凝集手段として、2価以
上の電荷を有する無機金属塩の重合体を用いることを特
徴とし、その他の工程は前記の静電荷像現像用トナー製
造方法と同じものを採用してトナー粒子を形成する方法
である。この方法によれば、凝集粒子の調製が容易とな
り、界面活性剤の使用量を大幅に低下できるため、界面
活性剤がトナー中に混入することによるトナーの帯電性
への影響を防止することができ、トナーの帯電制御が容
易でかつ確実に行うことが可能になった。また、融合工
程で得たトナー粒子から界面活性剤を除去するための洗
浄工程を大幅に短縮できるようになった。
Another method for producing a toner for developing an electrostatic image of the present invention is the method of producing a toner for developing an electrostatic image described above, wherein, in the step of aggregating the mother aggregated particles, an inorganic material having at least two charges is used as an aggregating means. The method is characterized in that a polymer of a metal salt is used, and the other steps are a method for forming toner particles by employing the same method as the above-mentioned method for producing a toner for developing an electrostatic image. According to this method, the preparation of the aggregated particles is facilitated, and the amount of the surfactant used can be significantly reduced. Therefore, it is possible to prevent the influence of the surfactant from being mixed into the toner on the chargeability of the toner. As a result, the charge control of the toner can be easily and reliably performed. Further, the washing step for removing the surfactant from the toner particles obtained in the fusing step can be greatly shortened.

【0042】前記樹脂微粒子分散液に用いる樹脂として
は、例えば、熱可塑性樹脂などを挙げることができ、具
体的には、スチレン、パラクロロスチレン、α−メチル
スチレン等のスチレン類の単独重合体又は共重合体(ス
チレン系樹脂);アクリル酸メチル、アクリル酸エチ
ル、アクリル酸n−プロピル、アクリル酸n−ブチル、
アクリル酸ラウリル、アクリル酸2−エチルヘキシル、
メタクリル酸メチル、メタクリル酸エチル、メタクリル
酸n−プロピル、メタクリル酸ラウリル、メタクリル酸
2−エチルヘキシル等のビニル基を有するエステル類の
単独重合体又は共重合体(ビニル系樹脂);アクリロニ
トリル、メタクリロニトリル等のビニルニトリル類の単
独重合体又は共重合体(ビニル系樹脂);ビニルメチル
エーテル、ビニルイソブチルエーテル等のビニルエーテ
ル類の単独重合体又は共重合体(ビニル系樹脂);ビニ
ルメチルケトン、ビニルエチルケトン、ビニルイソプロ
ペニルケトン類の単独重合体又は共重合体(ビニル系樹
脂);エチレン、プロピレン、ブタジエン、イソプレン
等のオレフィン類の単独重合体又は共重合体(オレフィ
ン系樹脂);エポキシ樹脂、ポリエステル樹脂、ポリウ
レタン樹脂、ポリアミド樹脂、セルロース樹脂、ポリエ
ーテル樹脂等の非ビニル縮合系樹脂、及びこれらの非ビ
ニル縮合系樹脂とビニル系モノマーとのグラフト重合体
などが挙げられる。これらの樹脂は1種単独で用いても
良いし、2種以上を併用しても良い。
Examples of the resin used in the resin fine particle dispersion include thermoplastic resins, and specifically, homopolymers of styrenes such as styrene, parachlorostyrene, α-methylstyrene, and the like. Copolymer (styrene-based resin); methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate,
Lauryl acrylate, 2-ethylhexyl acrylate,
Methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, lauryl methacrylate, 2-ethylhexyl methacrylate, and other homopolymers or copolymers (vinyl resins) of esters having a vinyl group; acrylonitrile, methacrylonitrile Homopolymers or copolymers of vinyl nitriles such as vinyl (vinyl resin); Homopolymers or copolymers of vinyl ethers such as vinyl methyl ether and vinyl isobutyl ether (vinyl resin); vinyl methyl ketone, vinyl ethyl Homopolymers or copolymers of ketones and vinyl isopropenyl ketones (vinyl resins); Homopolymers or copolymers of olefins such as ethylene, propylene, butadiene and isoprene (olefin resins); epoxy resins and polyesters Resin, polyurethane resin, poly Bromide resin, cellulose resin, non-vinyl condensation resin of polyether resin and the like, and the like graft polymer of these non-vinyl condensation resin and a vinyl monomer and the like. These resins may be used alone or in combination of two or more.

【0043】これらの樹脂の中でもビニル系樹脂が特に
好ましい。ビニル系樹脂の場合、イオン性界面活性剤な
どを用いて乳化重合やシード重合により樹脂粒子分散液
を容易に調整できる点で有利である。前記ビニル系モノ
マーとしては、例えば、アクリル酸、メタクリル酸、マ
レイン酸、ケイ皮酸、フマル酸、ビニルスルフォン酸、
エチレンイミン、ビニルピリジン、ビニルアミンなどの
ビニル系高分子酸やビニル系高分子塩基の原料となるモ
ノマーが挙げられる。本発明においては、前記樹脂微粒
子が、前記ビニル系モノマーをモノマー成分として含有
するのが好ましい。本発明においては、これらのビニル
系モノマーの中でも、ビニル系樹脂の形成反応の容易性
の点でビニル系高分子酸がより好ましく、具体的にはア
クリル酸、メタクリル酸、マレイン酸、ケイ皮酸、フマ
ル酸などのカルボキシル基を解離基として有する解離性
ビニル系モノマーが、重合度やガラス転移点の制御の点
で特に好ましい。
Of these resins, vinyl resins are particularly preferred. A vinyl resin is advantageous in that a resin particle dispersion can be easily adjusted by emulsion polymerization or seed polymerization using an ionic surfactant or the like. Examples of the vinyl monomer include acrylic acid, methacrylic acid, maleic acid, cinnamic acid, fumaric acid, vinylsulfonic acid,
Examples of the monomer include a raw material for a vinyl polymer acid or a vinyl polymer base such as ethyleneimine, vinylpyridine, and vinylamine. In the present invention, the resin fine particles preferably contain the vinyl monomer as a monomer component. In the present invention, among these vinyl monomers, a vinyl polymer acid is more preferable in terms of easiness of a reaction for forming a vinyl resin, and specific examples thereof include acrylic acid, methacrylic acid, maleic acid, and cinnamic acid. And a dissociable vinyl monomer having a carboxyl group as a dissociating group, such as fumaric acid, is particularly preferred in terms of controlling the degree of polymerization and the glass transition point.

【0044】なお、前記解離性ビニル系モノマーにおけ
る解離基の濃度は、例えば、高分子ラテックスの化学
(高分子刊行会)に記載されているような、トナー粒子
等の粒子を表面から溶解して定量する方法などにより決
定することができる。なお、前記方法等により、粒子表
面から内部にかけての樹脂の分子量やガラス転移点を決
定することもできる。
The concentration of the dissociating group in the dissociable vinyl monomer is determined, for example, by dissolving particles such as toner particles from the surface as described in Polymer Latex Chemistry (Polymer Publishing Association). It can be determined by a quantification method or the like. In addition, the molecular weight and glass transition point of the resin from the particle surface to the inside can also be determined by the above method and the like.

【0045】前記分散液中の樹脂微粒子の平均粒径は1
μm以下、好ましくは0.01〜1μmの範囲が適当で
ある。平均粒径が1μmを越えると、凝集融合して得る
トナー粒子の粒度分布が広くなったり、遊離粒子が発生
してトナーの性能や信頼性の低下を招きやすい。本発明
では平均粒径を前記の範囲に調整することにより、凝集
粒子中への樹脂微粒子の分散を良好にし、トナー粒子間
の組成の偏在を抑制することができ、トナーの性能や信
頼性のバラツキを低く抑えることができるという利点が
ある。なお、前記平均粒径は、例えばレーザー回折式粒
度分布測定機やコールターカウンターなどで測定するこ
とができる。
The average particle size of the fine resin particles in the dispersion is 1
μm or less, preferably in the range of 0.01 to 1 μm is appropriate. When the average particle size exceeds 1 μm, the particle size distribution of toner particles obtained by aggregation and fusion is widened, or free particles are generated, which tends to cause deterioration in toner performance and reliability. In the present invention, by adjusting the average particle size to the above range, the dispersion of the resin fine particles in the aggregated particles can be improved, and the uneven distribution of the composition between the toner particles can be suppressed. There is an advantage that variation can be kept low. The average particle size can be measured by, for example, a laser diffraction type particle size distribution analyzer or a Coulter counter.

【0046】前記着色剤としては、例えば、カーボンブ
ラック、クロムイエロー、ハンザイエロー、ベンジジン
イエロー、スレンイエロー、キノリンイエロー、パーマ
ネントオレンジGTR,ピラゾロンオレンジ、バルカン
オレンジ、ウオッチヤングレッド、パーマネントレッ
ド、ブリリアントカーミン3B、ブリリアントカーミン
6B、デュポンオイルレッド、ピラゾロンレッド、リソ
ールレッド、ローダミンBレーキ、レーキレッドC、ロ
ーズベンガル、アニリンブルー、ウルトラマリンブル
ー、カルコオイルブルー、メチレンブルークロライド、
フタロシアニンブルー、フタロシアニングリーン、マラ
カイトグリーンオキサレートなどの種々の顔料;アクリ
ジン系、キサンテン系、アゾ系、ベンゾキノン系、アジ
ン系、アントラキノン系、ジオキサジン系、チアジン
系、アゾメチン系、インジゴ系、チオインジゴ系、フタ
ロシアニン系、アニリンブラック系、ポリメチン系、ト
リフェニルメタン系、ジフェニルメタン系、チアゾール
系、キサンテン系などの各種染料などを挙げることがで
きる。これらの着色剤は1種単独で使用しても良いし、
2種以上を併用しても良い。
Examples of the coloring agent include carbon black, chrome yellow, Hansa yellow, benzidine yellow, slen yellow, quinoline yellow, permanent orange GTR, pyrazolone orange, vulcan orange, watch young red, permanent red, brilliant carmine 3B, Brilliant Carmine 6B, Dupont Oil Red, Pyrazolone Red, Risor Red, Rhodamine B Lake, Lake Red C, Rose Bengal, Aniline Blue, Ultramarine Blue, Calco Oil Blue, Methylene Blue Chloride,
Various pigments such as phthalocyanine blue, phthalocyanine green, malachite green oxalate; acridine, xanthene, azo, benzoquinone, azine, anthraquinone, dioxazine, thiazine, azomethine, indigo, thioindigo, phthalocyanine And aniline black, polymethine, triphenylmethane, diphenylmethane, thiazole and xanthene dyes. These colorants may be used alone or
Two or more kinds may be used in combination.

【0047】前記着色剤の平均粒径は1μm以下、好ま
しくは0.5μm、より好ましく0.01〜0.5μm
の範囲が適当である。平均粒径が1μmを越えると、最
終的に得られる静電荷像現像用トナーの粒度分布が広く
なったり、遊離粒子が発生し易くなり、トナーの性能や
信頼性の低下を招きやすい。本発明では平均粒径を前記
の範囲に調整することにより、凝集粒子中への着色剤の
分散を良好にし、トナー粒子間の組成の偏在を抑制する
ことができ、トナーの性能や信頼性のバラツキを小さく
できるという利点がある。そして、平均粒径を0.5μ
m以下することにより、トナーの発色性、色再現性、O
HP透過性等を一層向上させることができる。なお、前
記平均粒径は、例えばレーザー回折式粒度分布測定機な
どを用いて測定することができる。前記凝集粒子におけ
る着色剤の含有量は、50重量%以下、好ましくは2〜
40重量%の範囲が適当である。
The colorant has an average particle size of 1 μm or less, preferably 0.5 μm, more preferably 0.01 to 0.5 μm.
Is appropriate. If the average particle size exceeds 1 μm, the particle size distribution of the finally obtained toner for developing an electrostatic charge image is widened, or free particles are easily generated, and the performance and reliability of the toner are liable to be reduced. In the present invention, by adjusting the average particle diameter to the above range, the dispersion of the colorant in the aggregated particles is improved, and the uneven distribution of the composition among the toner particles can be suppressed, and the performance and reliability of the toner can be improved. There is an advantage that variation can be reduced. And the average particle size is 0.5μ
m or less, the color developability, color reproducibility, O
HP permeability and the like can be further improved. The average particle size can be measured using, for example, a laser diffraction type particle size distribution analyzer. The content of the colorant in the aggregated particles is 50% by weight or less, preferably 2 to
A range of 40% by weight is suitable.

【0048】前記離型剤は、一般にトナーの結着樹脂と
の相溶性に乏しいものが好ましい。結着樹脂と相溶性に
富む離型剤を用いると、離型剤が結着樹脂と溶け込み結
着樹脂の可塑化を促し、高温定着時におけるトナーの粘
度を低下させて、オフセットが生じ易くなる。そして、
結着樹脂の可塑化によってトナー表面近傍に存在してい
た離型剤粒子の一部がトナー中央(コア部分)の樹脂側
に移動し、表面近傍に存在してはじめて発揮できる離型
剤の効果を低減させたり、トナー表面に存在する樹脂粒
子と可塑化することによって、トナー表面の樹脂層のガ
ラス転移点を低下させ、トナーの流動性を悪化させたり
する。前記の離型効果は、トナー粒子内に含まれる離型
剤の分散単位とトナー表面からの距離に相関し、一般に
離型剤の分散単位が大きいほど、また離型剤のトナー表
面からの距離は小さいほどその効果は大きい。
It is preferable that the release agent generally has poor compatibility with the binder resin of the toner. If a release agent having high compatibility with the binder resin is used, the release agent dissolves into the binder resin and promotes plasticization of the binder resin, lowers the viscosity of the toner during high-temperature fixing, and easily causes offset. . And
Part of the release agent particles existing near the toner surface due to plasticization of the binder resin move to the resin side of the toner center (core portion), and the effect of the release agent that can be exhibited only when present near the surface Or by plasticizing with the resin particles present on the toner surface, the glass transition point of the resin layer on the toner surface is lowered, and the fluidity of the toner is deteriorated. The release effect is related to the distance between the dispersion unit of the release agent contained in the toner particles and the distance from the toner surface. In general, the larger the dispersion unit of the release agent is, the longer the distance of the release agent is from the toner surface. The smaller the is, the greater the effect.

【0049】本発明の静電荷像現像用トナーの製造法の
場合、微粒子を凝集させて凝集粒子を作製するため、離
型剤層の存在位置の制御は比較的容易であり、凝集粒子
の凝集時、凝集粒子の粒径成長時においても、小さいス
トレス下にあるため、凝集時においても凝集粒子表面近
傍に存在する離型剤の位置は、変わらずに維持される。
また、前記ストレス下においては、樹脂と離型剤の相溶
性が大きい材料同士であったとしても、相溶は進みにく
いため、本発明の静電荷像現像用トナーの製造法により
得られるトナーにおいては、その中に含まれる離型剤
は、前記樹脂粒子との相溶性に富むものであっても、十
分な離型効果を示すことができる。このように本発明の
製造法は、溶融混練法などに比べて、はらるかにストレ
スが小さいため、溶融混練法などに適用できない材料を
使用できるので特に有利である。
In the method for producing a toner for developing an electrostatic image of the present invention, since the aggregated particles are produced by aggregating the fine particles, the position of the release agent layer can be relatively easily controlled. At this time, even during the growth of the particle diameter of the aggregated particles, the position of the release agent present in the vicinity of the surface of the aggregated particles is maintained unchanged even during the aggregation because of the small stress.
Further, under the stress, even if the materials having high compatibility between the resin and the release agent are mutually compatible, the compatibility does not easily progress, so that the toner obtained by the method for producing the electrostatic image developing toner of the present invention may Can exhibit a sufficient release effect even if the release agent contained therein is highly compatible with the resin particles. As described above, the production method of the present invention is particularly advantageous because it can use a material that cannot be applied to the melt kneading method or the like since the stress is much smaller than the melt kneading method or the like.

【0050】前記離型剤の具体例としては、ポリエチレ
ン、ポリプロピレン、ポリブテン等の低分子量ポリオレ
フィン類;加熱により軟化点を示すシリコーン類;オレ
イン酸アミド、エルカ酸アミド、リシノール酸アミド、
ステアリン酸アミド等の脂肪酸アミド類;カルナウバワ
ックス、ライスワックス、キャンデリラワックス、木ロ
ウ、ホホバ油等の植物系ワックス;ミツロウ等の動物系
ワックス;モンタンワックス、オゾケライト、セレシ
ン、パラフィンワックス、マイクロクリスタリンワック
ス、フィッシャートロプシュワックス等の鉱物・石油系
ワックス;ステアリン酸ステアリル、ベヘン酸ベヘニル
等の高級脂肪酸と高級アルコールとのエステルワックス
類;ステアリン酸ブチル、オレイン酸プロピル、モノス
テアリン酸グリセリド、ジステアリン酸グリセリド、ペ
ンタエリスリトールテトラベヘネート等の高級脂肪酸と
単価又は多価低級アルコールとのエステルワックス類;
ジエチレングリコールモノステアレート、ジプロピレン
グリコールジステアレート、ジステアリン酸ジグリセリ
ド、テトラステアリン酸トリグリセリド等の高級脂肪酸
と多価アルコール多量体とからなるエステルワックス
類;ソルビタンモノステアレート等のソルビタン高級脂
肪酸エステルワックス類;コレステリルステアレート等
のコレステロール高級脂肪酸エステルワックス類などを
挙げることができる。また、これらの離型剤は1種単独
で用いてもよく、2種以上を併用して用いてもよい。
Specific examples of the release agent include low molecular weight polyolefins such as polyethylene, polypropylene, and polybutene; silicones having a softening point upon heating; oleamide, erucamide, ricinoleamide, and the like.
Fatty acid amides such as stearic acid amide; plant waxes such as carnauba wax, rice wax, candelilla wax, wood wax, jojoba oil; animal waxes such as beeswax; montan wax, ozokerite, ceresin, paraffin wax, microcrystalline Mineral and petroleum waxes such as wax and Fischer-Tropsch wax; ester waxes of higher fatty acids such as stearyl stearate and behenyl behenate and higher alcohols; butyl stearate, propyl oleate, monostearate glyceride, glyceride distearate; Ester waxes of higher fatty acids such as pentaerythritol tetrabehenate and unit prices or polyhydric lower alcohols;
Ester waxes comprising higher fatty acids such as diethylene glycol monostearate, dipropylene glycol distearate, diglyceride distearate, triglyceride tetrastearate and polyhydric alcohols; sorbitan higher fatty acid ester waxes such as sorbitan monostearate; Cholesteryl stearate and other cholesterol higher fatty acid ester waxes can be mentioned. These release agents may be used alone or in combination of two or more.

【0051】前記離型剤の融点は、トナーの保存性を確
保する観点から、30℃以上が好ましく、40℃以上が
より好ましく、50℃以上が特に好ましい。また、トナ
ー定着性を確保する観点から、150℃以下が好まし
く、140℃以下がより好ましく、130℃以下が特に
好ましい。融点が30℃を下回ると、定着像表面へのワ
ックスの染み出しが生じ易くなり、定着画像のべたつき
感が生ずる。また、150℃を超えると、トナー中で離
型剤が溶解し難くなるために、離型効果が小さくなる。
The melting point of the release agent is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, and particularly preferably 50 ° C. or higher, from the viewpoint of ensuring the storage stability of the toner. In addition, from the viewpoint of securing the toner fixing property, the temperature is preferably 150 ° C. or lower, more preferably 140 ° C. or lower, and particularly preferably 130 ° C. or lower. When the melting point is lower than 30 ° C., the exudation of wax on the surface of the fixed image is liable to occur, and the fixed image becomes sticky. On the other hand, when the temperature exceeds 150 ° C., the release agent is hardly dissolved in the toner, so that the release effect is reduced.

【0052】本発明では、離型剤の存在位置をトナーの
表面近傍に制御されているため、トナーにおける離型剤
の含有量を少量に抑えることができ、また少量であって
も離型剤の効果を十分に発揮させることができるのであ
る。トナー中の離型剤の含有量は、0.1〜50重量%
の範囲が好ましく、0.5〜40重量%の範囲がより好
ましく、1〜30重量%の範囲が特に好ましい。離型剤
の含有量が0.1重量%を下回ると、離型効果が十分で
なく、高温定着時にトナーが定着ロールに付着する、い
わゆるオフセットが生じやすくなり、50重量%を超え
ると、凝集時に遊離する離型剤が増加したりトナーが脆
くなり、現像機内で攪拌されてトナー粒子が粉砕され易
くなる。
In the present invention, since the location of the release agent is controlled near the surface of the toner, the content of the release agent in the toner can be suppressed to a small amount. The effect of can be fully exhibited. The content of the release agent in the toner is 0.1 to 50% by weight.
Is preferable, the range of 0.5 to 40% by weight is more preferable, and the range of 1 to 30% by weight is particularly preferable. When the content of the release agent is less than 0.1% by weight, the releasing effect is not sufficient, so that the toner adheres to the fixing roll at the time of high-temperature fixing, so-called offset tends to occur. The release agent sometimes released increases or the toner becomes brittle, and the toner particles are easily stirred by being stirred in the developing machine.

【0053】分散液中の離型剤の平均粒径は2μm以下
が好ましく、0.1〜2μmの範囲がより好ましい。平
均粒径が2μmを超えると、最終的に得られる静電荷像
現像用トナーの粒度分布が広くなったり、遊離粒子が発
生し易くなり、トナーの性能や信頼性の低下を招き易く
なる。平均粒径を前記範囲内に調整することにより、ト
ナー粒子間の組成の偏在を抑制することができ、トナー
の性能や信頼性のバラツキを小さくできるという利点が
ある。なお、前記平均粒径は、例えばレーザー回折式粒
度分布測定機や、遠心式粒度分布測定機などを用いて測
定することができる。
The average particle size of the release agent in the dispersion is preferably 2 μm or less, more preferably 0.1 to 2 μm. When the average particle size exceeds 2 μm, the particle size distribution of the finally obtained toner for developing an electrostatic image is widened, or free particles are easily generated, and the performance and reliability of the toner are easily reduced. By adjusting the average particle diameter within the above range, uneven distribution of the composition between toner particles can be suppressed, and there is an advantage that variations in toner performance and reliability can be reduced. The average particle size can be measured using, for example, a laser diffraction type particle size distribution measuring device, a centrifugal type particle size distribution measuring device, or the like.

【0054】なお、離型剤として用いるワックス類は、
水等の水系媒体中にイオン性界面活性剤、高分子酸、高
分子塩基等の高分子電解質と共に分散させ、融点以上に
加熱し、強い煎断力を印加可能なホモジナイザーや圧力
吐出型分散機を用いて処理すると、容易に2μm以下の
離型剤微粒子に分散させることができる。なお、樹脂微
粒子の樹脂と着色剤と離型剤の組み合わせに特別な制限
はなく、目的に応じて適宜自由に選択して用いることが
できる。
The waxes used as the release agent include:
A homogenizer or a pressure discharge type disperser that can be dispersed in an aqueous medium such as water with a polymer electrolyte such as an ionic surfactant, a polymer acid, or a polymer base and heated to a temperature equal to or higher than the melting point to apply a strong shearing force. Can be easily dispersed in release agent fine particles of 2 μm or less. There is no particular limitation on the combination of the resin of the resin fine particles, the colorant, and the release agent, and they can be appropriately selected and used depending on the purpose.

【0055】本発明では、樹脂微粒子分散液、着色剤分
散液、離型剤分散液などに必要に応じて、内添剤、帯電
制御剤、無機微粒子、有機微粒子、滑剤、研磨材などの
微粒子を添加することが可能である。添加方法は、樹脂
微粒子分散液、着色剤分散液、離型剤分散液中に前記微
粒子を分散させてもよいし、樹脂微粒子分散液、着色剤
分散液、離型剤分散液などを混合してなる混合液中に、
前記微粒子を分散させてなる分散液を添加して混合して
もよい。
In the present invention, if necessary, fine particles such as an internal additive, a charge controlling agent, inorganic fine particles, organic fine particles, a lubricant, and an abrasive may be added to the resin fine particle dispersion, the colorant dispersion, and the release agent dispersion. Can be added. The addition method may be such that the fine particles may be dispersed in a fine resin particle dispersion, a colorant dispersion, or a release agent dispersion, or a resin fine particle dispersion, a colorant dispersion, a release agent dispersion, or the like may be mixed. In the mixture consisting of
A dispersion obtained by dispersing the fine particles may be added and mixed.

【0056】前記内添剤としては、例えば、フェライ
ト、マグネタイト、還元鉄、コバルト、マンガン、ニッ
ケル等の金属、合金、又はこれら金属を含有する化合物
などの磁性体などを挙げることができる。
Examples of the internal additives include metals such as ferrite, magnetite, reduced iron, cobalt, manganese, and nickel, alloys, and magnetic substances such as compounds containing these metals.

【0057】前記帯電制御剤としては、例えば、4級ア
ンモニウム塩化合物、ニグロシン系化合物や、アルミニ
ウム、鉄、クロムなどの錯体からなる染料、トリフェニ
ルメタン系顔料などを挙げることができる。なお、本発
明における帯電制御剤の添加は、凝集時、付着時、融合
時などの安定性に影響するイオン強度を制御する目的
や、廃水汚染を減少する目的で添加される。この帯電制
御剤は水に溶解し難い素材のものが好ましい。
Examples of the charge control agent include a quaternary ammonium salt compound, a nigrosine compound, a dye composed of a complex of aluminum, iron, chromium and the like, and a triphenylmethane pigment. In the present invention, the charge control agent is added for the purpose of controlling the ionic strength which affects the stability at the time of aggregation, adhesion, fusion, and the like, and for the purpose of reducing wastewater contamination. The charge control agent is preferably of a material that is hardly soluble in water.

【0058】前記無機微粒子としては、例えば、シリ
カ、チタニア、炭酸カルシウム、炭酸マグネシウム、リ
ン酸三カルシウム、酸化セリウム等、通常トナー表面の
外添剤を使用することができる。前記有機微粒子として
は、例えば、ビニル系樹脂、ポリエステル樹脂、シリコ
ーン樹脂等、通常トナー表面の外添剤を使用することが
できる。なお、これらの無機微粒子や有機微粒子は、流
動性助剤、クリーニング助剤等として使用することがで
きる。
As the inorganic fine particles, for example, external additives on the surface of the toner, such as silica, titania, calcium carbonate, magnesium carbonate, tricalcium phosphate, and cerium oxide, can be used. As the organic fine particles, for example, an external additive on the surface of the toner, such as a vinyl resin, a polyester resin, and a silicone resin, can be used. In addition, these inorganic fine particles and organic fine particles can be used as a flow aid, a cleaning aid, and the like.

【0059】前記滑剤としては、例えば、エチレンビス
ステアリン酸アミド、オレイン酸アミド等の脂肪酸アミ
ド、ステアリン酸亜鉛、ステアリン酸カルシウムなどの
脂肪酸金属塩等を挙げることができる。前記研磨剤とし
ては、例えば、シリカ、アルミナ、酸化セリウムなどを
挙げることができる。
Examples of the lubricant include fatty acid amides such as ethylene bisstearic acid amide and oleic acid amide, and fatty acid metal salts such as zinc stearate and calcium stearate. Examples of the abrasive include silica, alumina, cerium oxide, and the like.

【0060】前記の内添剤、帯電制御剤、無機微粒子、
有機微粒子、滑剤、研磨材などの微粒子の平均粒径は1
μm以下、好ましく0.01〜1μmの範囲が適当であ
る。平均粒径が1μmを超えると、最終的に得られる静
電荷像現像用トナーの粒度分布が広くなったり、遊離粒
子が発生してトナーの性能や信頼性の低下を招き易くな
る。平均粒径を前記の範囲内に調整することにより、ト
ナー間の成分の偏在が減少し、トナーにおける分散が良
好になり、トナーの性能や信頼性のバラツキを抑制する
ことができる。なお、前記平均粒径は、例えばレーザー
回折式粒度分布測定機や、遠心式粒度分布測定機等を用
いて測定することが可能である。上記のその他の微粒子
は、本発明の目的を阻害しない範囲であれば適宜に添加
することができるが、一般的には極少量であり、具体的
には0.01〜5重量%の範囲、好ましくは0.5〜2
重量%の範囲が適当である。
The above-mentioned internal additives, charge controlling agents, inorganic fine particles,
The average particle size of fine particles such as organic fine particles, lubricants and abrasives is 1
μm or less, preferably in the range of 0.01 to 1 μm. If the average particle size exceeds 1 μm, the particle size distribution of the toner for developing an electrostatic image finally obtained becomes wide, or free particles are generated, and the performance and reliability of the toner tend to be deteriorated. By adjusting the average particle diameter within the above range, uneven distribution of components between toners is reduced, the dispersion in the toner is improved, and variations in the performance and reliability of the toner can be suppressed. The average particle size can be measured using, for example, a laser diffraction type particle size distribution measuring device, a centrifugal type particle size distribution measuring device, or the like. The above-mentioned other fine particles can be appropriately added as long as the object of the present invention is not impaired, but is generally very small, specifically in the range of 0.01 to 5% by weight, Preferably 0.5 to 2
A weight percent range is appropriate.

【0061】樹脂微粒子の分散液、着色剤分散液、離型
剤分散液及びその他の微粒子分散液に用いる分散媒は、
例えば水系媒体などを挙げることができる。水系媒体と
しては、例えば、蒸留水、イオン交換水等の水、アルコ
ールなどが挙げられる。これらは、1種単独で使用して
もよいし、2種以上を併用してもよい。
The dispersion medium used for the dispersion liquid of the resin fine particles, the colorant dispersion liquid, the release agent dispersion liquid and the other fine particle dispersion liquids is as follows.
For example, an aqueous medium can be used. Examples of the aqueous medium include water such as distilled water and ion-exchanged water, and alcohol. These may be used alone or in combination of two or more.

【0062】前記水系媒体は界面活性剤を予め添加混合
して使用することが好ましい。この界面活性剤は、樹脂
微粒子、着色剤、離型剤微粒子などを水系媒体中で安定
化させ、分散液の保存性を向上させるとともに、凝集工
程における凝集粒子の安定性や、付着工程における付着
粒子の安定性にも寄与する。
The aqueous medium is preferably used by adding and mixing a surfactant in advance. This surfactant stabilizes the resin fine particles, the colorant, the release agent fine particles, etc. in an aqueous medium, improves the storage stability of the dispersion, and stabilizes the aggregated particles in the aggregation step and the adhesion in the adhesion step. It also contributes to the stability of the particles.

【0063】前記界面活性剤としては、例えば、硫酸エ
ステル系、スルホン酸塩系、リン酸エステル系、せっけ
ん系等のアニオン界面活性剤;アミン塩型、4級アンモ
ニウム塩型等のカチオン界面活性剤;ポリエチレングリ
コール系、アルキルフェノールエチレンオキサイド付加
物系、多価アルコール系等の非イオン系界面活性剤など
が挙げられる。これらの中でもイオン性界面活性剤が好
ましく、アニオン性界面活性剤、カチオン性界面活性剤
がより好ましい。
Examples of the surfactant include anionic surfactants such as sulfate ester type, sulfonate type, phosphate ester type and soap type; and cationic surfactants such as amine salt type and quaternary ammonium salt type. Nonionic surfactants such as polyethylene glycol-based, alkylphenol-ethylene oxide adduct-based and polyhydric alcohol-based surfactants. Of these, ionic surfactants are preferred, and anionic surfactants and cationic surfactants are more preferred.

【0064】本発明の静電荷像現像用トナーの製造方法
において、樹脂微粒子分散液、着色剤分散液及び離型剤
分散液に用いる前記界面活性剤の極性は同一であっても
問題はないが、前記樹脂微粒子分散液と前記着色剤分散
液とに含有される界面活性剤の極性と前記離型剤分散液
に含有される界面活性剤の極性を異ならせることによ
り、遊離離型剤を減少させることができ、また、その後
の付着工程における遊離粒子を減少させることができる
ので有利である。
In the method for producing a toner for developing an electrostatic image of the present invention, there is no problem even if the polarities of the surfactants used in the resin fine particle dispersion, the colorant dispersion and the release agent dispersion are the same. By reducing the polarity of the surfactant contained in the resin fine particle dispersion and the colorant dispersion and the polarity of the surfactant contained in the release agent dispersion, the free release agent is reduced. And it is advantageous because free particles can be reduced in the subsequent deposition step.

【0065】一般的にはアニオン性界面活性剤は分散力
が強く、樹脂微粒子及び着色剤を分散させるのに優れて
いるため、離型剤を分散させる界面活性剤はカチオン性
界面活性剤を用いる方が有利である。前記アニオン性界
面活性剤又はカチオン性界面活性剤は非イオン性界面活
性剤を併用することが好ましい。前記界面活性剤は1種
単独で使用してもよいし、2種以上を併用してもよい。
In general, an anionic surfactant has a strong dispersing power and is excellent in dispersing resin fine particles and a colorant. Therefore, a cationic surfactant is used as a surfactant for dispersing a release agent. Is more advantageous. The anionic surfactant or the cationic surfactant is preferably used in combination with a nonionic surfactant. The surfactants may be used alone or in combination of two or more.

【0066】前記アニオン性界面活性剤の具体例として
は、ラウリン酸カリウム、オレイン酸ナトリウム、ヒマ
シ油ナトリウム等の脂肪酸セッケン類;オクチルサルフ
ェート、ラウリルサルフェート、ラウリルエーテルサル
フェート、ノニルフェニルエーテルサルフェート等の硫
酸エステル類;ラウリルスルホネート、ドデシルベンゼ
ンスルホネート、トリイソプロピルナフタレンスルホネ
ート、ジブチルナフタレンスルホネートなどのアルキル
ナフタレンスルホン酸ナトリウム、ナフタレンスルホネ
ートホルマリン縮合物、モノオクチルスルホサクシネー
ト、ジオクチルスルホサクシネート、ラウリン酸アミド
スルホネート、オレイン酸アミドスルホネート等のスル
ホン酸塩類;ラウリルホスフェート、イソプロピルホス
フェート、ノニルフェニルエーテルホスフェート等のリ
ン酸エステル類;ジオクチルスルホコハク酸ナトリウム
などのジアルキルスルホコハク酸塩類、スルホコハク酸
ラウリル2ナトリウム等のスルホコハク酸塩類などが挙
げられる。
Specific examples of the anionic surfactant include fatty acid soaps such as potassium laurate, sodium oleate and castor oil sodium; and sulfate esters such as octyl sulfate, lauryl sulfate, lauryl ether sulfate and nonylphenyl ether sulfate. , Sodium alkylnaphthalenesulfonate such as laurylsulfonate, dodecylbenzenesulfonate, triisopropylnaphthalenesulfonate, dibutylnaphthalenesulfonate, naphthalenesulfonate formalin condensate, monooctyl sulfosuccinate, dioctyl sulfosuccinate, lauric amide sulfonate, oleic acid amide Sulfonates such as sulfonates; lauryl phosphate, isopropyl phosphate, nonyl Phosphoric acid esters such as E alkenyl ether phosphates; dialkyl sulfosuccinate salts such as sodium dioctyl sulfosuccinate, such as sulfosuccinate salts such as sodium lauryl sulfosuccinate 2.

【0067】前記カチオン性界面活性剤の具体例として
は、ラウリルアミン塩酸塩、ステアリルアミン塩酸塩、
オレイルアミン酢酸塩、ステアリルアミン酢酸塩、ステ
アリルアミノプロピルアミン酢酸塩等のアミン塩類;ラ
ウリルトリメチルアンモニウムクロライド、ジラウリル
ジメチルアンモニウムクロライド、ジステアリルアンモ
ニウムクロライド、ジステアリルジメチルアンモニウム
クロライド、ラウリルジヒドロキシエチルメチルアンモ
ニウムクロライド、オレイルビスポリオキシエチレンメ
チルアンモニウムクロライド、ラウロイルアミノプロピ
ルジメチルエチルアンモニウムエトサルフェート、ラウ
ロイルアミノプロピルジメチルヒドロキシエチルアンモ
ニウムパークロレート、アルキルベンゼンジメチルアン
モニウムクロライド、アルキルトリメチルアンモニウム
クロライド等の4級アンモニウム塩類などが挙げられ
る。
Specific examples of the cationic surfactant include laurylamine hydrochloride, stearylamine hydrochloride,
Amine salts such as oleylamine acetate, stearylamine acetate, stearylaminopropylamine acetate; lauryltrimethylammonium chloride, dilauryldimethylammonium chloride, distearylammonium chloride, distearyldimethylammonium chloride, lauryldihydroxyethylmethylammonium chloride, oleyl Quaternary ammonium salts such as bispolyoxyethylene methylammonium chloride, lauroylaminopropyldimethylethylammonium ethosulfate, lauroylaminopropyldimethylhydroxyethylammonium perchlorate, alkylbenzenedimethylammonium chloride and alkyltrimethylammonium chloride.

【0068】前記非イオン性界面活性剤の具体例として
は、ポリオキシエチレンオクチルエーテル、ポリオキシ
エチレンラウリルエーテル、ポリオキシエチレンステア
リルエーテル、ポリオキシエチレンオレイルエーテル等
のアルキルエーテル類;ポリオキシエチレンオクチルフ
ェニルエーテル、ポリオキシエチレンノニルフェニルエ
ーテル等のアルキルフェニルエーテル類;ポリオキシエ
チレンラウレート、ポリオキシエチレンステアレート、
ポリオキシエチレンオレート等のアルキルエステル類;
ポリオキシエチレンラウリルアミノエーテル、ポリオキ
シエチレンステアリルアミノエーテル、ポリオキシエチ
レンオレイルアミノエーテル、ポリオキシエチレン大豆
アミノエーテル、ポリオキシエチレン牛脂アミノエーテ
ル等のアルキルアミン類;ポリオキシエチレンラウリン
酸アミド、ポリオキシエチレンステアリン酸アミド、ポ
リオキシエチレンオレイン酸アミド等のアルキルアミド
類;ポリオキシエチレンヒマシ油エーテル、ポリオキシ
エチレンナタネ油エーテル等の植物油エーテル類;ラウ
リン酸ジエタノールアミド、ステアリン酸ジエタノール
アミド、オレイン酸ジエタノールアミド等のアルカノー
ルアミド類;ポリオキシエチレンソルビタンモノラウレ
ート、ポリオキシエチレンソルビタンモノパルミエー
ト、ポリオキシエチレンソルビタンモノステアレート、
ポリオキシエチレンソルビタンモノオレエート等のソル
ビタンエステルエーテル類などが挙げられる。
Specific examples of the nonionic surfactant include alkyl ethers such as polyoxyethylene octyl ether, polyoxyethylene lauryl ether, polyoxyethylene stearyl ether and polyoxyethylene oleyl ether; polyoxyethylene octyl phenyl Ethers, alkylphenyl ethers such as polyoxyethylene nonylphenyl ether; polyoxyethylene laurate, polyoxyethylene stearate,
Alkyl esters such as polyoxyethylene oleate;
Alkyl amines such as polyoxyethylene lauryl amino ether, polyoxyethylene stearyl amino ether, polyoxyethylene oleyl amino ether, polyoxyethylene soybean amino ether, polyoxyethylene tallow amino ether; polyoxyethylene lauric amide, polyoxyethylene Alkyl amides such as stearic acid amide and polyoxyethylene oleic acid amide; vegetable oil ethers such as polyoxyethylene castor oil ether and polyoxyethylene rapeseed oil ether; lauric acid diethanolamide, stearic acid diethanolamide, oleic acid diethanolamide and the like Alkanolamides: polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmiate, polyoxyethylene Nso sorbitan monostearate,
And sorbitan ester ethers such as polyoxyethylene sorbitan monooleate.

【0069】各分散液における前記界面活性剤の含有量
は、本発明を阻害しない範囲であれば適宜に選択するこ
とができるが一般的には少量である。具体的には0.0
1〜10重量%の範囲、好ましくは0.05〜5重量%
の範囲、より好ましくは0.1〜2重量%の範囲が適当
である。含有量が0.01重量%を下回ると、樹脂微粒
子分散液、着色剤分散液、離型剤分散液などの分散が安
定性を失い、凝集を生じたり、また凝集時に各粒子間の
安定性が異なるため、特定粒子の遊離が生ずるなどの問
題がある。また、10重量%を超えると、粒子の粒度分
布が広くなったり、また粒径の制御が困難になるなどの
理由から好ましくない。
The content of the surfactant in each dispersion can be appropriately selected as long as it does not impair the present invention, but is generally small. Specifically 0.0
1 to 10% by weight, preferably 0.05 to 5% by weight
And more preferably in the range of 0.1 to 2% by weight. If the content is less than 0.01% by weight, the dispersion of the resin fine particle dispersion, the colorant dispersion, and the release agent dispersion loses the stability and causes agglomeration. Therefore, there is a problem that release of specific particles occurs. On the other hand, if the content exceeds 10% by weight, the particle size distribution of the particles becomes wide, and the control of the particle size becomes unfavorable.

【0070】前記樹脂微粒子分散液は、その調製方法に
ついて特に制限はなく、目的に応じて適宜選択すること
ができる。例えば以下のように調製する。前記樹脂微粒
子を構成する樹脂が、ビニル基を有するエステル類、ビ
ニルニトリル類、ビニルエーテル類、ビニルケトン類等
のビニル単量体の単独重合体又は共重合体(ビニル系樹
脂)である場合には、ビニル系単量体をイオン性界面活
性剤中で乳化重合やシード重合等を行なうことによっ
て、ビニル単量体の単独重合体又は共重合体(ビニル系
樹脂)の樹脂微粒子をイオン性界面活性剤に分散してな
る分散液を調製することができる。
The method for preparing the resin fine particle dispersion is not particularly limited, and can be appropriately selected according to the purpose. For example, it is prepared as follows. When the resin constituting the resin fine particles is a homopolymer or a copolymer (vinyl resin) of a vinyl monomer such as an ester having a vinyl group, a vinyl nitrile, a vinyl ether, or a vinyl ketone, Emulsion polymerization or seed polymerization of a vinyl monomer in an ionic surfactant can be used to convert resin particles of a homopolymer or copolymer (vinyl resin) of the vinyl monomer into an ionic surfactant. Can be prepared.

【0071】前記樹脂微粒子を構成する樹脂が、ビニル
単量体の単独重合体又は共重合体以外の樹脂である場合
には、前記樹脂が水への溶解度が比較的低い油性溶剤に
溶解するものであればその油性溶媒に溶解し、その溶解
物を前記イオン性界面活性剤や高分子電解質とともに水
中に添加して、ホモジナイザー等の分散機を用いて微粒
子分散させた後、加熱ないし減圧して前記油性溶剤を蒸
散させ、樹脂微粒子分散液を調製することができる。
When the resin constituting the resin fine particles is a resin other than a homopolymer or a copolymer of a vinyl monomer, the resin is soluble in an oily solvent having a relatively low solubility in water. If it is dissolved in the oily solvent, the dissolved product is added to water together with the ionic surfactant and the polymer electrolyte, and dispersed in fine particles using a disperser such as a homogenizer, and then heated or reduced in pressure. The oily solvent is evaporated to prepare a resin fine particle dispersion.

【0072】前記着色剤分散液は、例えば、着色剤を前
記界面活性剤等の水系媒体に分散させることにより調製
することができる。前記離型剤分散液は、例えば、離型
剤を前記イオン性界面活性剤、高分子酸、高分子塩基等
の高分子電解質と共に水中に分散させ、これを融点以上
に加熱しながら、ホモジナイザーや圧力吐出型分散機を
用いて強い剪断力をかけることにより、離型剤を微粒子
化させて分散液を調製することができる。前記その他の
成分の微粒子を分散させてなる分散液は、例えば、前記
微粒子を前記界面活性剤等の水系媒体に分散させること
により調製することができる。
The colorant dispersion can be prepared, for example, by dispersing the colorant in an aqueous medium such as the surfactant. The release agent dispersion, for example, the release agent is dispersed in water together with the ionic surfactant, a polymer acid, a polymer electrolyte such as a polymer base, and while heating this above the melting point, a homogenizer or By applying a strong shearing force using a pressure discharge type dispersing machine, the release agent can be finely divided to prepare a dispersion. The dispersion obtained by dispersing the fine particles of the other components can be prepared, for example, by dispersing the fine particles in an aqueous medium such as the surfactant.

【0073】前記樹脂微粒子分散液、前記着色剤分散
液、前記離型剤分散液などに、その他の成分の微粒子を
添加して複合粒子の分散液を調製するときには、例え
ば、複合粒子の成分を溶剤中に溶解分散した後、適当な
分散剤と共に水中に分散し、加熱ないし減圧して前記溶
剤を蒸散させる方法や、乳化重合やシード重合により作
製されたラテックス表面に機械的剪断力や電気的吸引力
で固定化して複合粒子を調製することができる。これら
の方法は、着色剤等の遊離を抑制したり、静電荷像現像
用トナーの帯電性の着色剤依存性を改善することに有効
である。
When preparing a dispersion of composite particles by adding fine particles of other components to the resin fine particle dispersion, the colorant dispersion, the release agent dispersion, etc., for example, the components of the composite particles are added After dissolving and dispersing in a solvent, it is dispersed in water together with an appropriate dispersant, and a method of evaporating the solvent by heating or depressurizing, or applying a mechanical shearing force or electric force to a latex surface produced by emulsion polymerization or seed polymerization. The composite particles can be prepared by immobilization with a suction force. These methods are effective in suppressing the release of the colorant and the like, and in improving the colorant dependence of the chargeability of the electrostatic image developing toner.

【0074】前記分散手段は特に制限されることはない
が、例えば、回転剪断型ホモジナイザーやメディアを有
するボールミル、サンドミル、ダイノミルなど公知の分
散装置を使用することができる。
The dispersing means is not particularly limited. For example, a known dispersing apparatus such as a rotary shearing homogenizer, a ball mill having a medium, a sand mill, and a dyno mill can be used.

【0075】本件の請求項3の発明にかかる凝集粒子
は、例えば、次のようにして調製される。 イオン性界面活性剤を添加混合した水系媒体を含む第
一分散液(樹脂微粒子分散液及び着色剤分散液、必要に
応じて、離型剤分散液を少なくとも1種)に、前記イオ
ン性界面活性剤と反対極性のイオン性界面活性剤を添加
して凝集させる方法、上記の方法において、反対極
性のイオン性界面活性剤を溶液として添加して凝集させ
る方法、アニオン性、カチオン性それぞれの溶液中に
樹脂微粒子と着色剤を分散させて凝集させる方法であ
る。この混合液を攪拌手段を用いて攪拌すると、イオン
性界面活性剤の作用により、分散液中で樹脂微粒子など
が凝集して凝集粒子が形成され、凝集粒子分散液が得ら
れる。なお、前記攪拌手段は特に制限されず、目的に応
じて公知の攪拌装置の中から適宜選択することができ
る。
The aggregated particles according to the third aspect of the present invention are prepared, for example, as follows. A first dispersion (a resin fine particle dispersion and a colorant dispersion, and if necessary, at least one kind of release agent dispersion) containing an aqueous medium to which an ionic surfactant is added and mixed, is mixed with the ionic surfactant. A method of adding and aggregating an ionic surfactant of the opposite polarity to the agent, in the above method, a method of adding and aggregating an ionic surfactant of the opposite polarity as a solution, anionic and cationic in each solution In this method, resin fine particles and a colorant are dispersed and aggregated. When this mixed liquid is stirred using a stirring means, resin particles and the like are aggregated in the dispersion liquid by the action of the ionic surfactant to form aggregated particles, and an aggregated particle dispersion liquid is obtained. In addition, the said stirring means is not specifically limited, It can select suitably from well-known stirring apparatuses according to the objective.

【0076】この凝集粒子分散液中に、離型剤分散液、
又は、離型剤及び樹脂微粒子を含有する分散液を添加す
ると、離型剤微粒子層、又は離型剤微粒子を含有する樹
脂微粒子層が前記凝集粒子の表面に形成される。この離
型剤を含有する分散液のイオン性界面活性剤は、反対極
性のイオン性界面活性剤を用いる。
In this aggregated particle dispersion, a release agent dispersion,
Alternatively, when a dispersion containing a release agent and resin fine particles is added, a release agent fine particle layer or a resin fine particle layer containing release agent fine particles is formed on the surface of the aggregated particles. As the ionic surfactant of the dispersion containing the release agent, an ionic surfactant having an opposite polarity is used.

【0077】凝集粒子を形成する場合は、添加される側
の分散液に含まれるイオン性界面活性剤と、添加する側
に含まれるイオン性界面活性剤とを反対の極性にし、か
つ、その極性のバランスを予めずらしておき、このバラ
ンスのずれを補填して凝集させることが好ましい。一般
に、樹脂微粒子を構成する樹脂、着色剤、離型剤などの
種類、その極性などによっては、凝集や付着が困難にな
る場合があり、凝集時や付着時に特定の材料粒子が遊離
して、所望のトナー組成が得られないこともある。
When forming aggregated particles, the polarity of the ionic surfactant contained in the dispersion to be added and the polarity of the ionic surfactant contained in the dispersion to be added are set to be opposite to each other, and It is preferable to shift the balance in advance, and to compensate for this shift in balance to cause aggregation. In general, depending on the type of the resin constituting the resin fine particles, the colorant, the release agent, the polarity, and the like, aggregation and adhesion may be difficult, and specific material particles may be released at the time of aggregation or adhesion, A desired toner composition may not be obtained.

【0078】具体的には、通常のトナーに使用されるポ
リエチレン、ポリプロピレン等のポリオレフィン系の離
型剤は、極性が小さく、かつ樹脂微粒子の樹脂との相溶
性が極めて乏しいため、凝集粒子に離型剤微粒子を付着
する時に、離型剤微粒子が遊離しやすい。遊離した離型
剤の量が多くなると、トナー本来の諸特性が損なわれる
上、遊離した離型剤が現像時に現像機から溢れて、現像
機内を汚染したり、遊離した離型剤が現像機内で機械的
ストレスを受けて破壊されたり、現像スリーブにフィル
ミングしてしまう等の問題が生ずるおそれがある。
More specifically, polyolefin-based release agents such as polyethylene and polypropylene used in ordinary toners have low polarity and extremely poor compatibility with fine resin particles. When the mold agent particles adhere, the release agent particles are easily released. If the amount of the released release agent is increased, the inherent properties of the toner are impaired, and the released release agent overflows from the developing machine during development, thereby contaminating the inside of the developing machine, or causing the released release agent inside the developing machine. Therefore, there is a possibility that a problem such as breakage due to mechanical stress or filming of the developing sleeve may occur.

【0079】しかし、凝集は界面活性剤の極性(アニオ
ン/カチオン)の差により生ずるので、極性の差がなく
なると、後から追加した微粒子を付着させることはでき
ない。それ故、凝集の段階では極性のバランスをずらす
ことにより、後から追加した粒子の付着を円滑にする。
このように凝集粒子を形成し、追加微粒子を付着するこ
とにより、上記の問題を回避することができる。例え
ば、樹脂微粒子分散液と着色剤分散液の極性が同じであ
っても、反対極性の界面活性剤を加えることにより、樹
脂微粒子と着色剤を均一に含有する凝集粒子を得ること
ができる。
However, since aggregation occurs due to the difference in polarity (anion / cation) of the surfactant, if the difference in polarity disappears, it is not possible to attach fine particles added later. Therefore, in the aggregation stage, the polarity balance is shifted, thereby facilitating the attachment of the particles added later.
The above problem can be avoided by forming the aggregated particles and attaching the additional fine particles as described above. For example, even if the polarity of the resin fine particle dispersion and the colorant dispersion is the same, aggregated particles containing the resin fine particles and the colorant uniformly can be obtained by adding a surfactant of the opposite polarity.

【0080】本件の請求項4の発明にかかる凝集粒子
は、例えば、次のようにして調製される。即ち、イオン
性界面活性剤を添加混合した水系媒体を含む第一分散液
(樹脂微粒子分散液及び着色剤分散液、必要に応じて、
離型剤分散液を少なくとも1種)に、2価以上の電荷を
有する無機金属塩を添加して凝集させ、凝集粒子分散液
を得る方法である。
The aggregated particles according to the fourth aspect of the present invention are prepared, for example, as follows. That is, a first dispersion containing a water-based medium to which an ionic surfactant is added and mixed (a resin fine particle dispersion and a colorant dispersion, if necessary,
This is a method in which an inorganic metal salt having a charge of at least two valences is added to at least one type of release agent dispersion liquid) to cause aggregation to obtain an aggregated particle dispersion liquid.

【0081】前記凝集工程で用いる凝集剤は、2価以上
の電荷を有する無機金属塩の重合体であって、前記凝集
工程の分散液に溶解するものを使用することができる。
前記無機金属塩を構成する金属元素は、周期律表(長周
期律表)における2A,3A,4A,5A,6A,7
A,8,1B,2B,3B族に属する2価以上の電荷を
有するものである。具体的には、塩化カルシウム、硝酸
カルシウム、塩化バリウム、塩化マグネシウム、塩化亜
鉛、塩化アルミニウム、硫酸アルミニウムなどの金属
塩、及び、ポリ塩化アルミニウム、ポリ水酸化アルミニ
ウム、多硫化カルシウム等の無機金属重合体などを上げ
ることができる。その中でも、アルミニウム塩おらびそ
の重合体が好適である。一般的に、よりシャープな粒度
分布を得るためには、無機金属塩の価数が1価より2
価、2価より3価以上で、同じ価数のときにも重合タイ
プの無機金属塩重合体の方がより適している。
The aggregating agent used in the aggregating step may be a polymer of an inorganic metal salt having a charge of 2 or more, which can be dissolved in the dispersion of the aggregating step.
The metal elements constituting the inorganic metal salt are 2A, 3A, 4A, 5A, 6A, 7A in the periodic table (long-period table).
It has two or more valence charges belonging to groups A, 8, 1B, 2B, and 3B. Specifically, metal salts such as calcium chloride, calcium nitrate, barium chloride, magnesium chloride, zinc chloride, aluminum chloride, and aluminum sulfate; and inorganic metal polymers such as polyaluminum chloride, polyaluminum hydroxide, and calcium polysulfide And so on. Among them, aluminum salts and their polymers are preferred. Generally, in order to obtain a sharper particle size distribution, the valency of the inorganic metal salt is 2 or more than monovalent.
The polymerization type inorganic metal salt polymer is more suitable when the valence is trivalent or more than divalent and the same valence.

【0082】前記凝集剤の添加量は、本発明を阻害しな
い範囲であれば特に限定されるものではないが、具体的
には、分散液に対して0.01〜10重量%、好ましく
は0.05〜5重量%、より好ましくは0.1〜2重量
%の範囲である。添加量が0.01重量%を下回ると、
樹脂微粒子分散液、着色剤分散液、離型剤分散液等の分
散液が不安定になり、その結果、凝集を生じたり、ま
た、凝集時に各粒子間の安定性が異なるため、特定粒子
の遊離が生ずるなどの問題がある。また、10重量%を
超えると、凝集粒子の粒度分布が広くなったり、粒子径
の制御が困難になる。
The amount of the coagulant to be added is not particularly limited as long as it does not impair the present invention. 0.05 to 5% by weight, more preferably 0.1 to 2% by weight. When the amount added is less than 0.01% by weight,
Dispersions such as resin fine particle dispersions, colorant dispersions, and release agent dispersions become unstable. There are problems such as liberation. On the other hand, if it exceeds 10% by weight, the particle size distribution of the agglomerated particles becomes wide, and it becomes difficult to control the particle size.

【0083】前記の凝集工程で形成される凝集粒子の平
均粒径は、特に限定されないが、通常は最終品である静
電荷像現像用トナーの平均粒径と同じ程度になるように
制御するのがよい。この粒径制御は、例えば、凝集温度
と前記重合・攪拌の条件とを適宜選択することにより容
易に行なうことができる。このようにして静電荷像現像
用トナーとほぼ同じ平均粒径を有する凝集粒子が形成さ
れ、該凝集粒子を分散させてなる凝集粒子分散液が得ら
れる。この凝集粒子分散液中の凝集粒子の含有量は40
重量%以下が適当である。なお、この凝集粒子を「母凝
集粒子」と呼ぶこともある。
The average particle size of the aggregated particles formed in the above-mentioned aggregation step is not particularly limited, but is usually controlled so as to be approximately the same as the average particle size of the final toner for developing an electrostatic image. Is good. This particle size control can be easily performed, for example, by appropriately selecting the aggregation temperature and the polymerization and stirring conditions. In this way, aggregated particles having substantially the same average particle size as the toner for developing an electrostatic image are formed, and an aggregated particle dispersion obtained by dispersing the aggregated particles is obtained. The content of the aggregated particles in the aggregated particle dispersion is 40.
% By weight or less is appropriate. Note that the aggregated particles may be referred to as “parent aggregated particles”.

【0084】離型剤微粒子等の付着工程は、凝集粒子分
散液中に、離型剤微粒子を分散させてなる離型剤分散
液、及び/又は、前記離型剤分散液と種々の微粒子を分
散させてなる微粒子分散液とを添加混合して、凝集粒子
表面に離型剤微粒子、種々の微粒子などを付着させる離
型剤層の形成する付着工程である。前記微粒子として
は、例えば、前記樹脂微粒子、前記着色剤微粒子及びそ
の他の微粒子を挙げることができ、これらの微粒子を分
散した分散液は1種単独で使用してもよく、2種以上を
併用して用いてもよい。
In the step of adhering the release agent fine particles and the like, the release agent dispersion liquid obtained by dispersing the release agent fine particles in the aggregated particle dispersion liquid and / or the release agent dispersion liquid and various fine particles are mixed. This is an adhesion step in which a release agent layer is formed by adding and mixing the dispersed fine particle dispersion and adhering release agent fine particles, various fine particles, and the like to the surface of the aggregated particles. Examples of the fine particles include the resin fine particles, the colorant fine particles, and other fine particles, and a dispersion in which these fine particles are dispersed may be used alone or in combination of two or more. May be used.

【0085】離型剤微粒子等の凝集粒子表面への付着
は、凝集粒子分散液に前記微粒子分散液を添加混合して
行うが、添加混合方法は特に制限されることはなく、例
えば、徐々に連続的に添加混合してもよく、複数回に分
割して段階的に行ってもよい。このように前記微粒子を
追加的に添加混合することは、微小な粒子の発生を抑制
するだけでなく、既に添加されている離型剤微粒子のう
ち、遊離している微粒子をも同時に凝集粒子表面に付着
させる効果があり、得られるトナーの粒度分布をシャー
プにすることができる。また、トナー表面から内部に向
けて組成や物性を段階的に変化させることも可能であ
り、特に、トナー内部における離型剤層の位置や層厚な
どを変化させることもでき、トナーの構造を容易に制御
することができる。
The adhesion of the release agent fine particles to the surface of the aggregated particles is carried out by adding and mixing the fine particle dispersion to the aggregated particle dispersion. The method of addition and mixing is not particularly limited. It may be added and mixed continuously, or may be divided into a plurality of steps and performed stepwise. The additional addition and mixing of the fine particles as described above not only suppresses the generation of fine particles, but also simultaneously releases the released fine particles among the already added release agent fine particles on the surface of the aggregated particles. And the particle size distribution of the obtained toner can be sharpened. It is also possible to change the composition and physical properties stepwise from the toner surface toward the inside. In particular, it is also possible to change the position and layer thickness of the release agent layer inside the toner, and to change the structure of the toner. Can be easily controlled.

【0086】また、離型剤層は、ワックス等の離型剤を
分散させてなる離型剤分散液を凝集粒子分散液に少なく
とも1回添加混合し、凝集粒子表面に離型剤微粒子を付
着させた後、樹脂微粒子分散液を添加混合して樹脂被膜
用の樹脂微粒子を付着させて樹脂被膜の下に離型剤層を
1層形成するが、離型剤分散液及び樹脂微粒子分散液を
交互に添加混合することにより、2層以上の離型剤微粒
子層を凝集粒子表面に付着することも可能であり、これ
らの付着粒子を後述の加熱融合すると、トナーの樹脂被
膜の下に1層又は2層以上の離型剤層を形成することが
できる。その結果、トナー表面への離型剤の露出を抑制
し、定着時には有効に離型機能を発揮させることができ
る。
The release agent layer is formed by adding a release agent dispersion obtained by dispersing a release agent such as wax to the aggregated particle dispersion at least once and mixing the release agent fine particles on the aggregated particle surface. After that, a resin fine particle dispersion is added and mixed to adhere resin fine particles for a resin coating to form a release agent layer under the resin coating, and the release agent dispersion and the resin fine particle dispersion are mixed. By alternately adding and mixing, it is also possible to adhere two or more layers of the release agent fine particle layer to the surface of the aggregated particles. Alternatively, two or more release agent layers can be formed. As a result, exposure of the release agent to the toner surface can be suppressed, and the release function can be effectively exerted at the time of fixing.

【0087】融合工程を経たトナーの離型剤層の厚み
は、添加する離型剤微粒子の粒径、添加量等に依存し、
おおよそ添加時に形成される理論上の離型剤微粒子層の
1/2程度の厚さになる。この厚みは透過型電子顕微鏡
(TEM)等のトナーの断面分析より、容易に測定する
ことが可能である。離型剤層の厚みは、0.01〜2μ
mの範囲、好ましくは0.05〜1μmの範囲、より好
ましくは0.1〜0.5μmの範囲が本発明の効果を引
き出す点で有効である。離型剤層が0.01μmより薄
いと、定着時に定着像表面に染み出す離型剤量が不足し
て離型効果を十分に発揮させることができない。また、
2μmを超えると、離型剤を凝集粒子に付着させるとき
の付着量が大量になるため、凝集粒子表面への付着が不
十分となり、遊離する離型剤の量が増加する。また、ト
ナー中に含有される離型剤量が多くなりすぎるため、定
着像の保存性、耐久性等に問題を生じるため好ましくな
い。
The thickness of the release agent layer of the toner that has undergone the fusing step depends on the particle size and amount of the release agent fine particles to be added.
The thickness is approximately の of the theoretical release agent fine particle layer formed at the time of addition. This thickness can be easily measured by cross-sectional analysis of the toner using a transmission electron microscope (TEM) or the like. The thickness of the release agent layer is 0.01 to 2 μm.
The range of m, preferably in the range of 0.05 to 1 μm, more preferably in the range of 0.1 to 0.5 μm is effective in achieving the effects of the present invention. If the thickness of the release agent layer is less than 0.01 μm, the amount of the release agent that oozes onto the surface of the fixed image during fixing is insufficient, and the release effect cannot be sufficiently exerted. Also,
If it exceeds 2 μm, the amount of the release agent attached to the aggregated particles becomes large, so that the adhesion to the surface of the aggregated particles becomes insufficient, and the amount of the released release agent increases. Further, since the amount of the release agent contained in the toner becomes too large, there is a problem in the storability, durability and the like of the fixed image, which is not preferable.

【0088】離型剤層のトナー粒子表面からの深さ(離
型剤層の最外側表面までの深さ)は、トナー粒子表面の
樹脂被膜の厚さにより決まる。樹脂被膜を形成するため
に添加する樹脂微粒子の粒径が大きいほど、また添加量
が多いほど樹脂被膜の厚さが増し、離型剤層の深さも深
くなる。この深さの測定は、透過型電子顕微鏡(TE
M)等の断面観察により容易に測定することができる。
離型剤層は、トナー表面から0.01〜3μm、好まし
くは0.05〜1μm、より好ましくは0.1〜0.7
μmの範囲にあることが、本発明の効果を発揮させるた
めに有効である。0.01μmより浅くなると、流動性
付与剤等の外添剤がトナー表面近傍の離型剤中に埋め込
まれ、トナーの流動性等の外添剤の機能を低下させてし
まう。また、3μmを超えると、定着時に離型剤がトナ
ー表面に染みだしにくくなり、特に高温時にオフセット
が生じ易くなる。なお、離型剤の深さは透過型電子顕微
鏡(TEM)等の断面観察で求めた値の平均値を用い
る。
The depth of the release agent layer from the toner particle surface (the depth to the outermost surface of the release agent layer) is determined by the thickness of the resin film on the toner particle surface. As the particle size of the resin fine particles added to form the resin film increases and as the amount of addition increases, the thickness of the resin film increases and the depth of the release agent layer also increases. The measurement of the depth is performed by a transmission electron microscope (TE
M) can be easily measured by cross-sectional observation.
The release agent layer is 0.01 to 3 μm from the toner surface, preferably 0.05 to 1 μm, more preferably 0.1 to 0.7 μm.
The range of μm is effective for exhibiting the effects of the present invention. If the thickness is less than 0.01 μm, an external additive such as a fluidity-imparting agent is embedded in the release agent near the toner surface, and the function of the external additive such as the fluidity of the toner is reduced. On the other hand, when the thickness exceeds 3 μm, the release agent hardly seeps into the toner surface during fixing, and offset tends to occur particularly at high temperatures. In addition, the average value of the values obtained by cross-sectional observation using a transmission electron microscope (TEM) or the like is used as the depth of the release agent.

【0089】樹脂被膜形成用の樹脂微粒子の付着工程
は、離型剤微粒子等を凝集粒子表面に付着して離型剤層
を形成した後に、付着粒子(離型剤層を形成した凝集粒
子)分散液中に樹脂微粒子分散液を添加混合して付着粒
子表面に樹脂微粒子をさらに付着させるものであり、後
述の融合工程において加熱融合して、トナー粒子表面に
樹脂被膜(シエル)を形成するものである。前記添加混
合の方法は、特に制限されることはないが、例えば、徐
々に連続的に行ってもよいし、複数回に分割して段階的
に行ってもよい。このように添加混合することにより、
微小な粒子の発生を抑制し、既に添加されている粒度分
布粒子のうち、遊離している離型剤粒子をも同時に凝集
粒子の離型剤層表面に付着させる効果をも有するため、
トナーの粒度分布をシャープにすることができる。ま
た、得られる静電荷像現像用トナーは、表面から内部に
かけての組成や物性を段階的に変化させることも可能で
ある。特に、トナー内部の離型剤層の位置や層厚を変化
させることができ、トナーの構造を容易に制御すること
ができる。
In the step of attaching the resin fine particles for forming the resin film, the release agent fine particles and the like are attached to the surface of the aggregated particles to form a release agent layer, and then the adhered particles (aggregated particles having the release agent layer formed thereon) A resin fine particle dispersion is added to and mixed with the dispersion liquid to further adhere the resin fine particles to the surface of the adhered particles, and is formed by heating and fusing in a later-described fusing step to form a resin film (shell) on the toner particle surfaces. It is. The method of the addition and mixing is not particularly limited. For example, the addition and mixing may be performed gradually and continuously, or may be performed in a plurality of divided steps. By adding and mixing in this way,
Suppressing the generation of fine particles, among the particle size distribution particles already added, also has the effect of simultaneously adhering free release agent particles to the release agent layer surface of the aggregated particles,
The particle size distribution of the toner can be sharpened. Further, in the obtained electrostatic image developing toner, the composition and physical properties from the surface to the inside can be changed stepwise. In particular, the position and thickness of the release agent layer inside the toner can be changed, and the structure of the toner can be easily controlled.

【0090】この樹脂被膜は着色剤や離型剤等がトナー
粒子表面に露出することを防止できる。その結果、離型
剤は定着時にトナー表面に染みだし、離型機能を有効に
発揮させることができる。また、着色剤は帯電性に影響
を及ぼすが、樹脂被膜によりトナー粒子表面への露出が
防止され、実質的には凝集粒子中に配置されるため、着
色剤による帯電変動を抑制することができる。このこと
は、多色の静電荷像現像用トナーを製造するときに、着
色剤の種類によりトナーの帯電特性に違いが生ずること
を防止できる。また、この樹脂被膜を構成する樹脂とし
て、ガラス転移点の高い樹脂を選択することにより、ト
ナーの熱保存性と定着性とを両立させ、かつ帯電性に優
れた静電荷像現像用トナーを製造することができる。
This resin film can prevent the colorant, the release agent and the like from being exposed on the surface of the toner particles. As a result, the release agent seeps out of the toner surface at the time of fixing, and the release function can be effectively exhibited. Further, although the colorant affects the chargeability, the resin film prevents exposure to the surface of the toner particles and is substantially disposed in the aggregated particles, so that the charge fluctuation due to the colorant can be suppressed. . This can prevent a difference in the charging characteristics of the toner depending on the type of the colorant when the multicolor electrostatic image developing toner is manufactured. In addition, by selecting a resin having a high glass transition point as a resin constituting the resin film, it is possible to produce a toner for developing an electrostatic charge image having both excellent heat preservability and fixability and excellent chargeability. can do.

【0091】前記の樹脂被膜形成用樹脂微粒子の平均粒
径は1μm以下、好ましくは0.01〜1μmの範囲が
適当である。平均粒径が1μmを超えると、最終的に得
られる静電荷像現像用トナーの粒度分布が広くなり、遊
離粒子が発生し、信頼性や性能低下を招きやすい。前記
の平均粒径の範囲内の微粒子は、前記欠点がない上、微
粒子による層構造の形成に遊離である。なお、前記平均
粒径はマイクロトラックなどで測定することができる。
The average particle diameter of the resin fine particles for forming a resin film is 1 μm or less, and preferably in the range of 0.01 to 1 μm. When the average particle size exceeds 1 μm, the particle size distribution of the toner for developing an electrostatic image finally obtained is widened, free particles are generated, and reliability and performance are likely to be deteriorated. Fine particles within the above-mentioned range of the average particle size do not have the above-mentioned drawbacks and are free to form a layer structure by the fine particles. The average particle size can be measured with a microtrack or the like.

【0092】前記の樹脂被膜形成用樹脂微粒子がトナー
に占める割合(体積)は、トナーの体積分率に依存し、
得られる静電荷像現像トナーの体積の50%以下である
ことが好ましい。50%を超えると、離型剤層を備えた
凝集粒子に付着せず、前記微粒子による新たな凝集粒子
が生成するため、トナーの組成分布及び粒度分布の変動
が著しくなり、所望の性能を得ることができない。
The proportion (volume) of the resin fine particles for forming the resin film in the toner depends on the volume fraction of the toner.
The volume is preferably 50% or less of the volume of the obtained electrostatic image developing toner. If it exceeds 50%, the particles do not adhere to the aggregated particles provided with the release agent layer, and new aggregated particles are generated by the fine particles, so that the composition distribution and the particle size distribution of the toner significantly fluctuate, and desired performance is obtained. Can not do.

【0093】前記の樹脂被膜形成用樹脂微粒子の分散液
において、樹脂微粒子を1種単独で分散させた分散液で
もよいし、2種以上の微粒子を併用して分散させた分散
液でもよい。樹脂微粒子は、母凝集粒子を生成するとき
に用いた樹脂微粒子を用いてもよい。併用する微粒子
は、特に制限されることはないが、目的に応じて適宜選
択することができる。前記微粒子の分散媒としては、例
えば上記の水系媒体などを用いることができ、上記と同
様に界面活性剤を1種以上添加しておくことが好まし
い。
In the above-mentioned dispersion of resin fine particles for forming a resin film, a dispersion in which one kind of resin fine particles are dispersed alone or a dispersion in which two or more kinds of fine particles are dispersed in combination may be used. As the resin fine particles, the resin fine particles used when generating the mother aggregated particles may be used. The fine particles used in combination are not particularly limited, but can be appropriately selected according to the purpose. As the dispersion medium of the fine particles, for example, the above-mentioned aqueous medium can be used, and it is preferable to add one or more surfactants in the same manner as described above.

【0094】前記分散液における前記微粒子の含有量
は、5〜60重量%、好ましくは10〜40重量%の範
囲が適当である。5〜60重量%の範囲を外れると、静
電荷像現像トナーの内部から表面にかけての構造及び組
成の制御が困難になることがある。前記分散液は、例え
ば、イオン界面活性剤等を添加混合して水系媒体に前記
微粒子の少なくとも1種を分散させることにより調整す
る。また、乳化重合やシード重合により作製されたラテ
ックス表面に機械的剪断や電気的吸着により固定化して
調整することができる。
The content of the fine particles in the dispersion is suitably in the range of 5 to 60% by weight, preferably 10 to 40% by weight. If the content is out of the range of 5 to 60% by weight, it may be difficult to control the structure and composition from the inside to the surface of the electrostatic image developing toner. The dispersion is prepared, for example, by adding and mixing an ionic surfactant or the like and dispersing at least one of the fine particles in an aqueous medium. Further, it can be adjusted by immobilizing it on the surface of a latex prepared by emulsion polymerization or seed polymerization by mechanical shearing or electric adsorption.

【0095】トナー表面の樹脂被膜を構成する樹脂のガ
ラス転移点が、トナー内部に存在する樹脂のガラス転移
点と比較して高くなるように選択すると、トナーの保存
性や流動性と、最低定着温度とを両立させることが可能
になる。また、高分子側の樹脂被膜の樹脂の分子量を大
きくし、溶融状態の弾性を高めると、高温時におけるヒ
ートロールへのオフセットを防止することが可能とな
る。したがって、特にヒートロールへのオイル塗布を行
なわない定着システムにおいて極めて有効な手段であ
る。
If the glass transition point of the resin constituting the resin film on the toner surface is selected to be higher than the glass transition point of the resin existing inside the toner, the storage stability and fluidity of the toner and the minimum fixing It is possible to balance both temperature and temperature. In addition, when the molecular weight of the resin of the resin coating on the polymer side is increased and the elasticity in the molten state is increased, it is possible to prevent offset to the heat roll at a high temperature. Therefore, this is an extremely effective means particularly in a fixing system in which oil is not applied to a heat roll.

【0096】また、トナー粒子表面被膜(最外殻)の樹
脂の分子量を、凝集粒子中の樹脂の分子量よりも小さく
すると、得られるトナー粒子の表面の平滑性が高まるた
め、流動性、転写性の向上に有利である。なお、前記微
粒子を2種類以上併用する場合はそれらの樹脂の分子量
の平均値を意味する。
When the molecular weight of the resin in the toner particle surface coating (outermost shell) is smaller than the molecular weight of the resin in the aggregated particles, the smoothness of the surface of the obtained toner particles is increased, and the fluidity and transferability are improved. This is advantageous in improving the quality. When two or more kinds of the fine particles are used in combination, it means the average value of the molecular weights of those resins.

【0097】トナー表面被膜の樹脂の分子量と、トナー
内部の凝集粒子の樹脂の分子量とが極端に異なる場合
は、コア部の樹脂と被膜の樹脂との接着力が低くなるこ
とがある。離型剤層を貫通してコア部の樹脂と被膜の樹
脂を直接接着させる場合は上記の接着力について考慮す
る必要がある。一般にトナーは現像機内で攪拌された
り、キャリアと混合されて機械的ストレスを受けると破
壊され易い。そこで、トナーのコア部の樹脂と樹脂被膜
の樹脂の中間程度の分子量及び/又はガラス転移点を有
する樹脂微粒子を、凝集粒子にまず付着させ、次に、樹
脂被膜用の樹脂微粒子を付着させることによってトナー
粒子の破壊を防止することができる。
When the molecular weight of the resin of the toner surface coating and the molecular weight of the resin of the agglomerated particles inside the toner are extremely different, the adhesive strength between the core resin and the coating resin may be low. When penetrating the release agent layer and directly bonding the resin of the core portion and the resin of the coating film, it is necessary to consider the above-mentioned adhesive force. Generally, toner is easily broken when it is agitated in a developing machine or mixed with a carrier and subjected to mechanical stress. Therefore, first, resin particles having a molecular weight and / or a glass transition point which are intermediate between the resin of the toner core portion and the resin of the resin film are attached to the aggregated particles, and then the resin particles for the resin film are attached. Accordingly, the destruction of the toner particles can be prevented.

【0098】なお、離型剤を含めた微粒子分散液を複数
回に分割して段階的に添加混合すると、凝集粒子表面に
前記微粒子による層が段階的に積層され、トナーの内部
から外部にかけてトナー構造を変化させたり、組成勾配
を持たせることができる。しかも、微粒子分散液を複数
回にわたり添加混合すると、融合時に粒度分布をシャー
プに維持することができ、粒径の変動を抑制できる。ま
た、融合時の粒子の安定性を高めるための界面活性剤
や、塩基又は酸等の安定剤の添加を不要にしたり、それ
らの添加量を最小限度に抑制することができ、品質の改
善やコストの削減を可能とする。
When the fine particle dispersion including the release agent is divided into a plurality of portions and added stepwise, the layer of the fine particles is layered stepwise on the surface of the aggregated particles. The structure can be changed or a composition gradient can be provided. Moreover, when the fine particle dispersion is added and mixed a plurality of times, the particle size distribution can be kept sharp at the time of fusion, and the fluctuation of the particle size can be suppressed. In addition, it is possible to eliminate the need to add a surfactant such as a surfactant or a stabilizer such as a base or an acid to enhance the stability of the particles at the time of fusing, or to minimize the amount of these additives, thereby improving quality and Enables cost reduction.

【0099】凝集粒子に前記微粒子を付着させる条件
は、以下の通りである。付着温度は、凝集粒子中の樹脂
のガラス転移点より低く室温までの温度範囲が好まし
い。ガラス転移点より低い温度に加熱すると、凝集粒子
と微粒子とが付着し易くなり、形成される付着粒子が安
定しやすくなる。
The conditions for attaching the fine particles to the aggregated particles are as follows. The adhesion temperature is preferably lower than the glass transition point of the resin in the aggregated particles and up to room temperature. When heated to a temperature lower than the glass transition point, the aggregated particles and the fine particles are more likely to adhere, and the formed adhered particles are more easily stabilized.

【0100】付着処理時間は、付着温度に依存するため
一概に規定することはできないが、通常5分から2時間
程度である。なお、付着操作は、凝集粒子と前記微粒子
とを含有する分散液は静置されていてもよいし、ミキサ
ー等により穏やかに攪拌されていても良い。後者の方が
均一な付着粒子を形成できるので有利である。
The time for the adhesion treatment depends on the adhesion temperature and cannot be specified unconditionally, but is usually about 5 minutes to 2 hours. In the attaching operation, the dispersion containing the aggregated particles and the fine particles may be left standing, or may be gently stirred by a mixer or the like. The latter is advantageous because uniform adhered particles can be formed.

【0101】本発明において、付着工程は一回でもよい
し、複数回であってもよい。前者の場合は前記凝集粒子
の表面に前記微粒子(追加粒子)による層が1層のみ形
成されるのに対し、後者の場合は微粒子分散液を2種類
以上用意しておけば、前記凝集粒子の表面にこれらの微
粒子分散液に含まれる追加粒子による層を積層すること
ができ、複雑でかつ精密な階層構造を有する静電荷像現
像用トナーを得ることができ、該トナーに所望の機能を
付与することができる。
In the present invention, the attaching step may be performed once or plural times. In the former case, only one layer of the fine particles (additional particles) is formed on the surface of the aggregated particles, whereas in the latter case, if two or more types of fine particle dispersions are prepared, A layer of additional particles contained in these fine particle dispersions can be laminated on the surface, and a toner for developing an electrostatic image having a complicated and precise hierarchical structure can be obtained, and the toner has a desired function. can do.

【0102】付着工程を複数回行う場合は、前記の母凝
集粒子に対して最初に付着させる微粒子(追加粒子)
と、その後に付着させる微粒子(追加粒子)とは、いか
なる組み合わせであってもよく、静電荷像現像用トナー
の用途に応じて適宜選択することができる。付着工程を
複数回行う場合は、前記微粒子分散液を添加混合する毎
に、凝集粒子中の樹脂のガラス転移温度より低い温度で
加熱することが好ましく、加熱温度は段階的に上昇させ
ることが好ましい。この加熱によって付着粒子を安定化
させることができ、遊離微粒子の発生を抑制することが
できる。
When the adhering step is performed a plurality of times, fine particles (additional particles) to be first adhered to the above-mentioned mother aggregated particles
And the fine particles (additional particles) to be adhered thereafter may be in any combination, and can be appropriately selected according to the use of the toner for developing an electrostatic image. When the adhesion step is performed a plurality of times, each time the fine particle dispersion is added and mixed, heating is preferably performed at a temperature lower than the glass transition temperature of the resin in the aggregated particles, and the heating temperature is preferably increased stepwise. . By this heating, the attached particles can be stabilized, and the generation of free fine particles can be suppressed.

【0103】以上の付着工程において、前記微粒子を適
宜選択することにより、所望の特性を有する静電荷像現
像用トナーを自由に設計し、製造することができる。な
お、この付着粒子中における着色剤の分布は、最終的に
トナー粒子における着色剤の分布となるため、付着粒子
における着色剤の分散を細かくしかつ均一にすることが
トナーの発色性を向上させるために好ましい。そのため
には、着色剤を凝集粒子中に添加するだけではなく、離
型剤層へも添加することが望ましい。
In the above adhering step, by appropriately selecting the fine particles, a toner for developing an electrostatic image having desired characteristics can be freely designed and manufactured. Note that the distribution of the colorant in the attached particles eventually becomes the distribution of the colorant in the toner particles. Therefore, the fine and uniform dispersion of the colorant in the attached particles improves the color development of the toner. Preferred for. For that purpose, it is desirable to add the coloring agent not only to the aggregated particles but also to the release agent layer.

【0104】前記融合工程は、前記付着粒子を加熱して
融合・合一してトナー粒子を形成する工程である。前記
融合工程の加熱温度は、凝集粒子中の樹脂、及び付着工
程で添加される被膜用樹脂のガラス転移点以上の温度が
必要であり、かつ離型剤が融合する温度で加熱する必要
がある。具体的には、この加熱温度は離型剤の融点より
20℃低い温度を基準としてその温度以上に加熱する必
要があり、好ましくは離型剤の融点より10℃低い温度
以上、より好ましくは離型剤の融点以上の温度で付着粒
子を加熱することが望ましい。加熱温度が離型剤の融点
より20℃以上低い温度で加熱すると、離型剤粒子同士
を効果的に融合させることができず、離型剤層を形成す
ることができない。なお、加熱温度の上限は、前記樹脂
の分解温度を下回ればよい。したがって、前記加熱温度
は樹脂の種類に応じて異なり、一概に規定することはで
きないが、樹脂のガラス転移点温度又は離型剤融点より
20℃低い温度から180℃の範囲の温度が適当であ
る。前記加熱温度の選択により、得られるトナー粒子の
形状を不定形から球形まで任意に制御することができ
る。なお、前記加熱はそれ自体公知の加熱装置・器具を
用いて行なうことができる。前記融合時間は、加熱温度
が高ければ短時間で足り、加熱温度が低ければ長時間が
必要になるが、一般的には30分〜10時間程度であ
る。
The fusing step is a step of fusing and coalescing the adhered particles to form toner particles. The heating temperature in the fusion step needs to be a temperature higher than the glass transition point of the resin in the aggregated particles and the resin for the coating film added in the adhesion step, and it is necessary to heat at a temperature at which the release agent fuses. . Specifically, it is necessary to heat this heating temperature to a temperature lower than the melting point of the release agent by 20 ° C. or more, preferably to a temperature lower by 10 ° C. than the melting point of the release agent, more preferably It is desirable to heat the adhered particles at a temperature equal to or higher than the melting point of the molding agent. If the heating temperature is lower than the melting point of the release agent by 20 ° C. or more, the release agent particles cannot be effectively fused with each other, and a release agent layer cannot be formed. The upper limit of the heating temperature may be lower than the decomposition temperature of the resin. Therefore, the heating temperature varies depending on the type of the resin and cannot be specified unconditionally, but a temperature in a range from 20 ° C. lower than the glass transition temperature of the resin or the melting point of the release agent to 180 ° C. is appropriate. . By selecting the heating temperature, the shape of the obtained toner particles can be arbitrarily controlled from an irregular shape to a spherical shape. The heating can be performed using a heating device / apparatus known per se. The fusion time is short if the heating temperature is high, and long if the heating temperature is low, but is generally about 30 minutes to 10 hours.

【0105】本発明の融合工程を終了したトナー粒子は
適宜の条件で洗浄、乾燥することができる。なお、得ら
れたトナー表面には、必要に応じてシリカ、アルミナ、
チタニア、炭酸カルシウム等の無機微粒子や、ビニル系
樹脂、ポリエステル樹脂、シリコーン樹脂等の樹脂微粒
子を乾燥状態で剪断力を印加して添加してもよい。これ
らの無機微粒子や樹脂微粒子は流動性助剤やクリーニン
グ助剤等の外添剤として機能する。
The toner particles having undergone the fusion step of the present invention can be washed and dried under appropriate conditions. In addition, on the obtained toner surface, silica, alumina,
Inorganic fine particles such as titania and calcium carbonate, and fine resin particles such as a vinyl resin, a polyester resin and a silicone resin may be added by applying a shearing force in a dry state. These inorganic fine particles and resin fine particles function as external additives such as a flow aid and a cleaning aid.

【0106】本発明の静電荷像現像用トナーの製造方法
によれば、トナーの製造中に微粉が発生しないため、混
練粉砕法や懸濁重合法における微粉除去操作を不要と
し、製造工程を簡素化する利点がある。また、樹脂粒
子、着色剤及び離型剤を均一に分散した状態で凝集し、
付着し、融合できるため、静電荷像現像用トナーの組成
を均一に制御することが可能である。また、離型剤のよ
うに疎水性の高い材料をトナー粒子の内部に選択的に存
在させることが可能となるため、トナー粒子表面に露出
する離型剤量を大幅に減少させることができる。
According to the method for producing a toner for developing an electrostatic image of the present invention, fine powder is not generated during the production of the toner. Therefore, the operation of removing the fine powder in the kneading and pulverizing method or the suspension polymerization method is unnecessary, and the production process is simplified. Has the advantage of Also, the resin particles, the colorant and the release agent are aggregated in a uniformly dispersed state,
Since the toner can be attached and fused, the composition of the toner for developing an electrostatic image can be uniformly controlled. Further, since a highly hydrophobic material such as a release agent can be selectively present inside the toner particles, the amount of the release agent exposed on the surface of the toner particles can be significantly reduced.

【0107】本発明で用いる樹脂の重量平均分子量(M
w)と数平均分子量(Mn)はゲルパーミエーションク
ロマトグラフィーで測定した。重量平均分子量(Mw)
と数平均分子量(Mn)との比(Mw/Mn)で表され
る分子量分布は、2〜30が好ましく、2〜20がより
好ましく、2〜15が特に好ましい。前記比(Mw/M
n)で表される分子量分布が30を越えると、定着画像
の透明性、平滑性、混色性を十分に確保できなくなり、
特にフィルム上に静電荷像現像用トナーを現像・定着さ
せたときに、光の透過により映し出される画像が不鮮明
で暗い画像になるか、不透明で発色しない投影画像とな
る。また、前記比(Mw/Mn)が2未満であると、高
温定着時におけるトナーの粘度低下が顕著になり、オフ
セットが発生し易くなる。一方、前記比(Mw/Mn)
で表される分子量分布を前記数値範囲内に調整すると、
定着画像の透明性、平滑性、混色性を確保できる上、高
温定着時におけるトナーの粘度低下を抑制し、オフセッ
トの発生を効果的に防止することができる。
The resin used in the present invention has a weight average molecular weight (M
w) and the number average molecular weight (Mn) were measured by gel permeation chromatography. Weight average molecular weight (Mw)
The molecular weight distribution represented by the ratio (Mw / Mn) of the number average molecular weight (Mn) is preferably 2 to 30, more preferably 2 to 20, and particularly preferably 2 to 15. The ratio (Mw / M
If the molecular weight distribution represented by n) exceeds 30, the transparency, smoothness and color mixing of the fixed image cannot be sufficiently ensured,
In particular, when a toner for developing an electrostatic image is developed and fixed on a film, an image projected by transmission of light becomes an unclear and dark image or an opaque and non-colored projected image. On the other hand, when the ratio (Mw / Mn) is less than 2, the viscosity of the toner at the time of high-temperature fixing is remarkably reduced, and offset tends to occur. On the other hand, the ratio (Mw / Mn)
When the molecular weight distribution represented by is adjusted within the above numerical range,
The transparency, smoothness, and color mixing of the fixed image can be ensured, and a decrease in the viscosity of the toner during high-temperature fixing can be suppressed, and the occurrence of offset can be effectively prevented.

【0108】本発明のトナーの体積平均粒径D50は2〜
9μm、好ましく3〜8μmが適当である。平均粒径が
2μmを下回ると、帯電性が不十分になり易く、現像性
が低下するおそれがある。平均粒径が9μmを超える
と、画像の解像性が低下する場合がある。
The volume average particle diameter D 50 of the toner of the present invention is 2 to 2.
9 μm, preferably 3 to 8 μm is suitable. When the average particle size is less than 2 μm, the chargeability tends to be insufficient, and the developability may be reduced. When the average particle size exceeds 9 μm, the resolution of an image may be reduced.

【0109】本発明の静電荷像現像用トナーの帯電量は
10〜40μC/gの範囲、好ましく15〜35μC/
gの範囲が適当である。10μC/gを下回ると、背景
部汚れが発生し易くなり、40μC/gを超えると、画
像濃度が低下し易くなる。夏場(30℃、90%RH)
における帯電量と冬場(10℃、10%RH)における
帯電量との比率は0.5〜1.5の範囲が好ましく、
0.7〜1.3の範囲がより好ましい。この比率が前記
の範囲を外れると、トナーの環境依存性が強くなり、帯
電性の不安定になり、実用上好ましくない。
The charge amount of the toner for developing an electrostatic image of the present invention is in the range of 10 to 40 μC / g, preferably 15 to 35 μC / g.
The range of g is appropriate. If it is less than 10 μC / g, background stains are likely to occur, and if it is more than 40 μC / g, the image density tends to decrease. Summer (30 ° C, 90% RH)
Is preferably in the range of 0.5 to 1.5, and the ratio of the charge amount in winter to the charge amount in winter (10 ° C., 10% RH),
The range of 0.7 to 1.3 is more preferable. If this ratio is out of the above range, the toner becomes more environmentally dependent and the charging property becomes unstable, which is not practically preferable.

【0110】このようにして得た静電荷像現像用トナー
は、帯電性、現像性、転写性、定着性、クリーニング性
などの諸特性、特に画像における平滑性、透明性、混色
性、発色性が優れており、また、環境条件の影響が少な
く、前記諸特性を安定して発揮できるので信頼性が高
い。また、前記静電荷像現像用トナーは、混練粉砕法等
により製造される場合と異なり、凝集融合法で製造され
るため、平均粒径を小さくすることができ、しかもその
粒度分布をシャープにすることができる。
The toner for developing an electrostatic image obtained in this way has various properties such as chargeability, developability, transferability, fixability, and cleaning property, particularly smoothness, transparency, color mixing, and color development in an image. Is excellent, the influence of environmental conditions is small, and the above-mentioned characteristics can be exhibited stably, so that the reliability is high. Also, unlike the case where the toner for developing an electrostatic image is manufactured by a kneading and pulverizing method, it is manufactured by an agglomeration and fusion method, so that the average particle size can be reduced and the particle size distribution is sharpened. be able to.

【0111】本発明の静電荷像現像剤は、前記の静電荷
像現像用トナーを含有することの外は特に制限はなく、
目的に応じて任意に成分組成を選択することができる。
単独で用いて一成分系の静電荷像現像剤として調製して
もよいし、キャリアと組み合わせて二成分系の静電荷像
現像剤として調製してもよい。ここで用いるキャリアは
特に制限されることはなく、それ自体公知のキャリアを
用いることができる。例えば、特開昭62−39879
号公報、特開昭56−11461号公報等に記載された
樹脂被覆キャリア等の公知のキャリアを使用することが
できる。
The electrostatic image developer of the present invention is not particularly limited except that it contains the toner for developing an electrostatic image.
The component composition can be arbitrarily selected according to the purpose.
It may be used alone, and may be prepared as a one-component electrostatic image developer, or may be prepared as a two-component electrostatic image developer in combination with a carrier. The carrier used here is not particularly limited, and a carrier known per se can be used. For example, JP-A-62-39879
A known carrier such as a resin-coated carrier described in JP-A-56-11461 and the like can be used.

【0112】前記キャリアの具体例として樹脂被覆キャ
リアを次に説明する。キャリアの核体粒子としては、通
常の鉄粉、フェライト、マグネタイト造型物などを使用
でき、その体積平均粒径D50は30〜200μmの範囲
が適当である。
Next, a resin-coated carrier will be described as a specific example of the carrier. The core particles of the carrier, usual iron powder, ferrite, can be used, such as magnetite molding material, a volume average particle size D 50 is preferably in the range of 30 to 200 [mu] m.

【0113】核体粒子の被覆樹脂としては、例えば、ス
チレン、パラクロロスチレン、α―メチルスチレン等の
スチレン類、アクリル酸メチル、アクリル酸エチル、ア
クリル酸n―プロピル、アクリル酸ラウリル、アクリル
酸2―エチルヘキシル、メタクリル酸メチル、メタクリ
ル酸、n―プロピルメタクリル酸ラウリルメタクリル酸
2―エチルヘキシル等のα―メチレン脂肪酸モノカルボ
ン酸類、ジメチルアミノエチルメタクリレート等の含窒
素アクリル類、アクリロニトリル、メタクリロニトリル
等のビニルニトリル類、2−ビニルピリジン、4−ビニ
ルピリジン等のビニルピリジン類、ビニルメチルエーテ
ル、ビニルイソブチルエーテル等のビニルエーテル類、
ビニルメチルケトン、ビニルエチルケトン、ビニルイソ
プロベニルケトン等のビニルケトン類、エチレン、プロ
ピレン等のオレフィン類、弗化ビニリデン、テトラフル
オロエチレン、ヘキサフルオロエチレン等のビニル系フ
ッ素含有モノマー等の単独重合体、又は2種類以上のモ
ノマーからなる共重合体、メチルシリコーン、メチルフ
ェニルシリコーン等のシリコーン類、ビスフェノール、
グリコール等を含有するポリエステル類、エポキシ樹
脂、ポリウレタン樹脂、ポリアミド樹脂、セルロース樹
脂、ポリエーテル樹脂、ポリカーボネート樹脂等が挙げ
られる。これらの樹脂は1種単独で用いてもよいし、2
種以上併用してもよい。被覆樹脂の使用量は、核体粒子
100重量部に対して0.1〜10重量部の範囲、好ま
しくは0.5〜3.0重量部の範囲が適当である。
Examples of the coating resin for the core particles include styrenes such as styrene, parachlorostyrene and α-methylstyrene, methyl acrylate, ethyl acrylate, n-propyl acrylate, lauryl acrylate, acrylic acid 2 -Α-methylene fatty acid monocarboxylic acids such as ethylhexyl, methyl methacrylate, methacrylic acid, 2-ethylhexyl n-propyl methacrylate lauryl methacrylate; nitrogen-containing acrylics such as dimethylaminoethyl methacrylate; vinyl such as acrylonitrile and methacrylonitrile Nitriles, vinyl pyridines such as 2-vinyl pyridine and 4-vinyl pyridine; vinyl ethers such as vinyl methyl ether and vinyl isobutyl ether;
Vinyl methyl ketone, vinyl ethyl ketone, vinyl ketones such as vinyl isopropenyl ketone, olefins such as ethylene and propylene, vinylidene fluoride, tetrafluoroethylene, homopolymers such as vinyl fluorine-containing monomers such as hexafluoroethylene, Or a copolymer comprising two or more monomers, methyl silicone, silicones such as methyl phenyl silicone, bisphenol,
Examples include polyesters containing glycol and the like, epoxy resins, polyurethane resins, polyamide resins, cellulose resins, polyether resins, polycarbonate resins, and the like. These resins may be used singly or may be used alone.
More than one species may be used in combination. The amount of the coating resin used is in the range of 0.1 to 10 parts by weight, preferably 0.5 to 3.0 parts by weight, based on 100 parts by weight of the core particles.

【0114】キャリアの製造には、加熱型ニーダー、加
熱型ヘンシェルミキサー、UMミキサーなどを使用する
ことができ、被覆樹脂の量によっては、加熱型流動転動
床、加熱型キルンなどを使用することができる。本発明
の静電荷像現像剤におけるトナーとキャリアとの混合比
は、特に制限はなく、目的に応じて適宜選択することが
できる。
For the production of the carrier, a heating type kneader, a heating type Henschel mixer, a UM mixer and the like can be used. Can be. The mixing ratio of the toner and the carrier in the electrostatic image developer of the present invention is not particularly limited, and can be appropriately selected depending on the purpose.

【0115】本発明の画像形成方法は、静電潜像形成工
程、トナー画像形成工程、転写工程、及びクリーニング
工程を含み、必要に応じて、さらにリサイクル工程を付
加することができる。リサイクル工程はクリーニング工
程で回収したトナーをトナー画像形成工程に戻すもので
ある。このリサイクル工程を含む画像形成方法は、トナ
ーリサイクルシステムタイプのコピー機、ファクシミリ
機等の画像形成装置を用いて実施することができる。ま
た、クリーニング工程を省略し、現像と同時にトナーを
回収するリサイクルシステムにも適用することができ
る。前記の各工程はそれ自体一般的な工程であり、例え
ば特開昭56−40868号公報、特開昭49−912
31号公報等に記載されている。なお、本発明の画像形
成方法は公知のコピー機、ファクシミリ機等の画像形成
装置に適用することができる。
The image forming method of the present invention includes an electrostatic latent image forming step, a toner image forming step, a transfer step, and a cleaning step, and can further add a recycling step as needed. The recycling step is to return the toner collected in the cleaning step to the toner image forming step. The image forming method including the recycling step can be carried out using an image forming apparatus such as a toner recycling system type copying machine or facsimile machine. Further, the present invention can be applied to a recycling system in which the cleaning step is omitted and the toner is collected simultaneously with the development. Each of the above steps is a general step per se, for example, as described in JP-A-56-40868 and JP-A-49-912.
No. 31, for example. The image forming method of the present invention can be applied to known image forming apparatuses such as a copying machine and a facsimile machine.

【0116】[0116]

【実施例】以下、本発明を実施例により詳述するが、本
発明はこれらの実施例により限定されるものではない。
なお、以下の記載において、「部」は重量部を意味す
る。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
In the following description, “parts” means parts by weight.

【0117】トナーの平均粒径D50及び体積平均粒度分
布指標GSDv(D84V/D16V )はコールターカウンター
(コールター社製、TA2型)を用いて測定した。ま
た、樹脂微粒子、着色剤微粒子及び離型剤微粒子の平均
粒径は、レーザー回折式粒度分布測定装置(堀場製作所
社製、LA−700)で測定した。凝集粒子中の樹脂及
び樹脂被膜用の樹脂分子量及び分子量分布は、ゲルパー
ミエションクロマトグラフ(東ソー社製、HLC−81
20GPC)を用いて測定した。
The average particle size D 50 and the volume average particle size distribution index GSDv (D 84 V / D 16 V ) of the toner were measured using a Coulter counter (TA2 type, manufactured by Coulter Co., Ltd.). The average particle size of the resin fine particles, the colorant fine particles, and the release agent fine particles was measured by a laser diffraction particle size distribution analyzer (LA-700, manufactured by Horiba, Ltd.). The resin in the aggregated particles and the molecular weight and molecular weight distribution of the resin for the resin coating were measured by gel permeation chromatography (HLC-81, manufactured by Tosoh Corporation).
20 GPC).

【0118】樹脂微粒子のガラス転移点は、示差走査熱
量計(島津製作所社製、DSC−50)を用い、昇温速
度3℃/分の条件下で測定した。トナー断面の評価は、
透過型電子顕微鏡TEM装置(日本電子(株)製、JE
OL1010)を用いて、その倍率により離型剤層の層
厚、離型剤層のトナー表面からの深さを測定した。ま
た、トナーの形状係数SF1はルーゼックス画像解析装
置(ニコレ社製、LUZEXIII)を用いて測定した。
The glass transition point of the fine resin particles was measured using a differential scanning calorimeter (DSC-50, manufactured by Shimadzu Corporation) at a temperature rising rate of 3 ° C./min. Evaluation of toner cross section
Transmission electron microscope TEM (JEOL Ltd., JE
OL1010), the thickness of the release agent layer and the depth of the release agent layer from the toner surface were measured based on the magnification. The shape factor SF1 of the toner was measured using a Luzex image analyzer (LUZEXIII, manufactured by Nicole).

【0119】さらに、静電荷像現像剤の評価は、富士ゼ
ロックス社製VIVACE400改造機を用いて画像形
成を行い、得られた画像の画質(画像の混色性に関す
る)、背景部の汚れ、発色性(画像の平滑性に関係す
る)及び透明性について目視で評価した。なお、前記の
発色性はシアントナーによる紙への定着画像の原稿に対
する色を評価したものであり、前記の透明性はシアント
ナーによる透明フィルム上の定着像の原稿に対する色を
評価したものである。これらの評価結果は表1にまとめ
て示した。
Further, the evaluation of the electrostatic image developer was carried out by forming an image using a modified VIVACE400 manufactured by Fuji Xerox Co., Ltd., and determining the image quality of the obtained image (related to the color mixing of the image), the background stain, (Related to the smoothness of the image) and transparency were visually evaluated. Note that the above-described color developability is obtained by evaluating the color of an image fixed on paper with cyan toner on a document, and the transparency is obtained by evaluating the color of an image fixed on a transparent film with cyan toner with respect to an original. . These evaluation results are summarized in Table 1.

【0120】 −樹脂微粒子分散液(1)の調製― スチレン 360部 アクリル酸ブチル 40部 アクリル酸 8部 ドデシルメルカプタン 10部 四臭化炭素 4部 前記成分(いずれも和光純薬社製)を予め混合して溶解
し、溶液を調整しておき、非イオン性界面活性剤(三洋
化成社製、ノニポール8.5)8部及びアニオン性界面
活性剤(第一工業製薬社製、ネオゲンSC)7部をイオ
ン交換水585部に溶解した界面活性剤溶液をフラスコ
に収容し、前記溶液をフラスコに投入し、分散させて乳
化し10分間ゆっくりと混合しながら、さらに過硫酸ア
ンモニウム(和光純薬社製)3部を溶解したイオン交換
水50部を投入し、窒素置換を行なった後、フラスコ内
を攪拌しながら内容物が70℃になるまでオイルバスで
加熱し、6時間そのまま乳化重合を継続した。その後、
この反応液を室温まで冷却して樹脂微粒子分散液(1)
を調製した。次いで、この樹脂微粒子分散液(1)の一
部を80℃のオーブン上に放置して水分を除去し、残留
物の特性を測定したところ、平均粒径は150nm、ガ
ラス転移点は58℃、重量平均分子量は23,000で
あった。
—Preparation of Resin Fine Particle Dispersion (1) — Styrene 360 parts Butyl acrylate 40 parts Acrylic acid 8 parts Dodecylmercaptan 10 parts Carbon tetrabromide 4 parts The above components (all manufactured by Wako Pure Chemical Industries, Ltd.) are mixed in advance. 8 parts of a nonionic surfactant (manufactured by Sanyo Chemical Co., Nonipol 8.5) and 7 parts of an anionic surfactant (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Neogen SC) Is dissolved in 585 parts of ion-exchanged water in a flask, and the solution is charged into the flask, dispersed, emulsified, and slowly mixed for 10 minutes while further mixing with ammonium persulfate (manufactured by Wako Pure Chemical Industries, Ltd.). 50 parts of ion-exchanged water in which 3 parts were dissolved was added, and after purging with nitrogen, the contents were heated in an oil bath until the temperature of the flask reached 70 ° C. while stirring the inside of the flask. The reduction polymerization was continued. afterwards,
The reaction solution is cooled to room temperature, and the resin fine particle dispersion (1)
Was prepared. Next, a part of the resin fine particle dispersion (1) was left in an oven at 80 ° C. to remove water, and the properties of the residue were measured. The average particle diameter was 150 nm, the glass transition point was 58 ° C. The weight average molecular weight was 23,000.

【0121】 −樹脂微粒子分散液(2)の調製― スチレン 340部 アクリル酸ブチル 40部 アクリル酸メチル 20部 アクリル酸 8部 ドデシルメルカプタン 8部 四臭化炭素 4部 前記成分(いずれも和光純薬社製)を予め混合して溶解
し、溶液を調整しておき、非イオン性界面活性剤(三洋
化成社製、ノニポール8.5)2部及びアニオン性界面
活性剤(第一工業製薬社製、ネオゲンRK)2部をイオ
ン交換水586部に溶解した界面活性剤溶液をフラスコ
に収容し、前記溶液をフラスコに投入し、分散させて乳
化し、10分間ゆっくりと混合しながら、さらに過硫酸
アンモニウム(和光純薬社製)2.5部を溶解したイオ
ン交換水50部を投入し、窒素置換を行なった後、フラ
スコ内を攪拌しながら内容物が70℃になるまでオイル
バスで加熱し、6時間そのまま乳化重合を継続した。そ
の後、この反応液を室温まで冷却して樹脂微粒子分散液
(2)を調製した。次いで、この樹脂微粒子分散液
(1)の一部を80℃のオーブン上に放置して水分を除
去し、残留物の特性を測定したところ、平均粒径は51
0nm、ガラス転移点は60℃、重量平均分子量は2
7,000であった。
—Preparation of Resin Fine Particle Dispersion (2) — Styrene 340 parts Butyl acrylate 40 parts Methyl acrylate 20 parts Acrylic acid 8 parts Dodecylmercaptan 8 parts Carbon tetrabromide 4 parts The above components (all were Wako Pure Chemical Industries, Ltd.) Was previously mixed and dissolved to prepare a solution, and 2 parts of a nonionic surfactant (manufactured by Sanyo Chemical Co., Nonipol 8.5) and an anionic surfactant (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) Neogen RK) was placed in a flask containing a surfactant solution in which 2 parts of neogen RK were dissolved in 586 parts of ion-exchanged water. The solution was poured into the flask, dispersed and emulsified, and slowly mixed with ammonium persulfate (10 minutes). 50 parts of ion-exchanged water in which 2.5 parts of Wako Pure Chemical Co., Ltd. were dissolved, nitrogen replacement was carried out, and then the contents of the flask were stirred until the contents reached 70 ° C. Heated in vinegar, and emulsion polymerization is continued for 6 hours. Thereafter, the reaction liquid was cooled to room temperature to prepare a resin fine particle dispersion liquid (2). Next, a part of the resin fine particle dispersion (1) was left in an oven at 80 ° C. to remove water, and the characteristics of the residue were measured.
0 nm, glass transition point is 60 ° C., weight average molecular weight is 2
It was 7,000.

【0122】 −樹脂微粒子分散液(3)の調製― スチレン 330部 アクリル酸ブチル 70部 アクリル酸 8部 ドデシルメルカプタン 4部 四臭化炭素 4部 前記成分(いずれも和光純薬社製)を予め混合して溶解
し、溶液を調整しておき、非イオン性界面活性剤(花王
社製、エマルゲン840)8部及びアニオン性界面活性
剤(日本油脂社製、ニューレックスペーストH)7部を
イオン交換水585部に溶解した界面活性剤溶液をフラ
スコに収容し、前記溶液をフラスコに投入し、分散させ
て乳化し、10分間ゆっくりと混合しながら、さらに過
硫酸アンモニウム(和光純薬社製)1部を溶解したイオ
ン交換水50部を投入し、窒素置換を行なった後、フラ
スコ内を攪拌しながら内容物が70℃になるまでオイル
バスで加熱し、6時間そのまま乳化重合を継続した。そ
の後、この反応液を室温まで冷却して樹脂微粒子分散液
(3)を調製した。次いで、この樹脂微粒子分散液
(3)の一部を80℃のオーブン上に放置して水分を除
去し、残留物の特性を測定したところ、平均粒径は15
0nm、ガラス転移点は55℃、重量平均分子量は4
4,000であった。
—Preparation of Resin Fine Particle Dispersion (3) — 330 parts of styrene 70 parts of butyl acrylate 8 parts of dodecyl mercaptan 4 parts of carbon tetrabromide 4 parts The above components (all manufactured by Wako Pure Chemical Industries, Ltd.) are mixed in advance. Then, the solution was adjusted, and 8 parts of a nonionic surfactant (Emulgen 840, manufactured by Kao Corporation) and 7 parts of an anionic surfactant (Nurex Paste H, manufactured by NOF Corporation) were ion-exchanged. A surfactant solution dissolved in 585 parts of water is placed in a flask, and the solution is poured into the flask, dispersed and emulsified, and slowly mixed for 10 minutes, and further mixed with 1 part of ammonium persulfate (manufactured by Wako Pure Chemical Industries, Ltd.). 50 parts of ion-exchanged water in which was dissolved was added, and after purging with nitrogen, the contents were heated in an oil bath until the temperature of the flask reached 70 ° C. while stirring the inside of the flask. Between emulsion polymerization was continued. Thereafter, the reaction solution was cooled to room temperature to prepare a resin fine particle dispersion (3). Then, a part of the resin fine particle dispersion (3) was left in an oven at 80 ° C. to remove water, and the characteristics of the residue were measured.
0 nm, glass transition point 55 ° C, weight average molecular weight 4
It was 4,000.

【0123】 −樹脂微粒子分散液(4)の調製― ポリエステル 200部 (ガラス転移点61℃、分子量26,000、三洋化成社製) テトラヒドロフラン(和光純薬社製) 400部 ポリエチレングリコール(和光純薬社製、#5000) 20部 イオン交換水 500部 前記成分を混合して溶解し、溶液を調整し、ローター・
ステーター・タイプ・ホモジナイザー(IKA社製、ウ
ルトラタラックス)により15分間分散させ、その後昇
温して80℃で4時間放置した後、冷却し、平均粒径2
20nmの樹脂微粒子を分散させてなる樹脂微粒子分散
液(4)を調製した。
—Preparation of Resin Fine Particle Dispersion (4) — Polyester 200 parts (Glass transition point 61 ° C., molecular weight 26,000, manufactured by Sanyo Chemical Co., Ltd.) Tetrahydrofuran (manufactured by Wako Pure Chemical Industries) 400 parts Polyethylene glycol (Wako Pure Chemical Industries, Ltd.) 20 parts Ion-exchanged water 500 parts The above components were mixed and dissolved, and the solution was adjusted.
Dispersed by a stator type homogenizer (Ultra Turrax, manufactured by IKA) for 15 minutes, then heated and left at 80 ° C. for 4 hours, cooled, and cooled to an average particle size of 2
A resin fine particle dispersion (4) was prepared by dispersing 20 nm of resin fine particles.

【0124】 ―着色剤分散液(1)の調製― フタロシアニン顔料(大日精化社製、PVFASTBLUE) 60部 アニオン界面活性剤(和光純薬社製) 2部 イオン交換水 300部 上記成分を混合して溶解させた後、ホモジナイザー(I
KA社製、ウルトラタラックス)を用いて分散させ、平
均粒径150nmの着色剤(フタロシアニン顔料)を分
散させてなる着色剤分散液(1)を調製した。
—Preparation of Colorant Dispersion (1) — Phthalocyanine Pigment (PVFASTBLUE, manufactured by Dainichi Seika Co., Ltd.) 60 parts Anionic surfactant (manufactured by Wako Pure Chemical Industries, Ltd.) 2 parts Ion-exchanged water 300 parts After dissolving in a homogenizer (I
(Ultra Turrax, manufactured by KA Corporation) to prepare a colorant dispersion (1) in which a colorant (phthalocyanine pigment) having an average particle size of 150 nm is dispersed.

【0125】 −離型剤微粒子分散液(1)の調製― パラフィンワックス 100部 (日本精蝋社製、HNP0190、融点90℃) アニオン界面活性剤(ライオン社製、リパール860K) 3部 イオン交換水 500部 上記成分を混合して溶解させた後、ホモジナイザー(I
KA社製、ウルトラタラックス)を用いて分散させた
後、圧力吐出型ホモジナイザーで分散処理し、平均粒径
190nmの離型剤微粒子(パラフィンワックス)を分
散させてなる離型剤微粒子分散液(1)を調製した。
—Preparation of Release Agent Particle Dispersion Solution (1) — 100 parts of paraffin wax (HNP0190, manufactured by Nippon Seiro, melting point 90 ° C.) Anion surfactant (Ripearl 860K, manufactured by Lion Corporation) 3 parts Ion-exchanged water After mixing and dissolving 500 parts of the above components, a homogenizer (I
After dispersing using an Ultra Turrax (manufactured by KA Co., Ltd.), dispersion treatment is performed with a pressure discharge type homogenizer, and release agent fine particle dispersion liquid (paraffin wax) having an average particle diameter of 190 nm is dispersed. 1) was prepared.

【0126】 −離型剤微粒子分散液(2)の調製― ポリエチレンワックス 100部 (東洋ペトロライト社製、Polywax655、融点93℃) アニオン界面活性剤(竹本油脂社製、パイオニンA−45−D) 2部 イオン交換水 500部 上記成分を混合して溶解させた後、ホモジナイザー(I
KA社製、ウルトラタラックス)を用いて分散させた
後、圧力吐出型ホモジナイザーで分散処理し、平均粒径
320nmの離型剤微粒子(ポリエチレンワックス)を
分散させてなる離型剤微粒子分散液(2)を調製した。
—Preparation of Release Agent Fine Particle Dispersion (2) — 100 parts of polyethylene wax (Polywax 655, melting point 93 ° C., manufactured by Toyo Petrolite Co.) Anionic surfactant (Pionin A-45-D, manufactured by Takemoto Yushi Co., Ltd.) 2 parts 500 parts of ion-exchanged water After mixing and dissolving the above components, a homogenizer (I
(Ultra Turrax manufactured by KA Co., Ltd.), and then subjected to dispersion treatment with a pressure discharge type homogenizer to disperse release agent fine particles (polyethylene wax) having an average particle size of 320 nm (polyethylene wax). 2) was prepared.

【0127】 −離型剤微粒子分散液(3)の調製― グリセリンモノステアレート(日光ケミカルズ社製、融点75℃)100部 アニオン界面活性剤(第一工業製薬社製、ネオゲンSC) 3部 イオン交換水 500部 上記成分を混合して溶解させた後、ホモジナイザー(I
KA社製、ウルトラタラックス)を用いて分散した後、
圧力吐出型ホモジナイザーで分散処理し、平均粒径が4
00nmの離型剤微粒子(グリセリンモノステアレート
エステルワックス)を分散させてなる離型剤微粒子分散
液(3)を調製した。
—Preparation of Release Agent Particle Dispersion (3) — 100 parts of glycerin monostearate (manufactured by Nikko Chemicals Co., melting point: 75 ° C.) 3 parts of anionic surfactant (manufactured by Daiichi Kogyo Seiyaku, Neogen SC) 500 parts of exchanged water After mixing and dissolving the above components, a homogenizer (I
After dispersing using KA company, Ultra Turrax),
Dispersion treatment with a pressure discharge type homogenizer, average particle size of 4
A release agent fine particle dispersion (3) prepared by dispersing release agent fine particles (glycerin monostearate ester wax) of 00 nm was prepared.

【0128】 (実施例1) −凝集粒子の調製― 樹脂微粒子分散液(1) 300部 着色剤分散液(1) 15部 カチオン性界面活性剤(花王社製、サニゾールB50) 3部 イオン交換水 500部 上記成分を丸型ステンレス製フラスコ中に収容し、ホモ
ジナイザー(IKA社製、ウルトラタラックスT50)
を用いて分散した後、加熱用オイルバスで47℃まで攪
拌しながら加熱し、47℃で30分間保持して凝集粒子
を形成した。得られた凝集粒子の一部を光学顕微鏡で観
察したところ、凝集粒子の平均粒径は約4.4μmであ
った。
(Example 1) -Preparation of agglomerated particles- Resin fine particle dispersion (1) 300 parts Colorant dispersion (1) 15 parts Cationic surfactant (Sanisol B50, manufactured by Kao Corporation) 3 parts Ion-exchanged water 500 parts The above components were placed in a round stainless steel flask and homogenized (Ultra Turrax T50, manufactured by IKA).
Then, the mixture was dispersed in a heating oil bath while being heated to 47 ° C. with stirring, and kept at 47 ° C. for 30 minutes to form aggregated particles. When a part of the obtained aggregated particles was observed with an optical microscope, the average particle size of the aggregated particles was about 4.4 μm.

【0129】−離型剤微粒子の付着― 前記凝集粒子分散液中に、離型剤微粒子分散液(1)を
緩やかに30部追加し、さらに47℃で30分間加熱攪
拌して凝集粒子表面に離型剤微粒子を付着させた。得ら
れた付着粒子の一部を光学顕微鏡で観察したところ、平
均粒径が約4.8μmの離型剤付着粒子が形成されてい
た。
-Attachment of release agent fine particles-30 parts of a release agent fine particle dispersion (1) is gently added to the aggregated particle dispersion, and the mixture is heated and stirred at 47 ° C for 30 minutes to form a surface of the aggregated particles. Release agent fine particles were adhered. When a part of the obtained adhered particles was observed with an optical microscope, the release agent-adhered particles having an average particle size of about 4.8 μm were formed.

【0130】−表面被膜用樹脂微粒子の付着― 前記離型剤付着粒子分散液中に、樹脂微粒子分散液
(1)を穏やかに70部追加し、加熱用オイルバスの温
度を上げて48℃で1時間保持して前記の離型剤付着粒
子表面に樹脂微粒子を付着させた。得られた付着粒子の
一部を光学顕微鏡で観察したところ、平均粒径が約5.
4μmの樹脂微粒子付着粒子が形成されていた。
-Attachment of Resin Fine Particles for Surface Coating-To the release agent-attached particle dispersion, gently add 70 parts of the resin fine particle dispersion (1), and raise the temperature of the heating oil bath to 48 ° C. After holding for 1 hour, resin fine particles were adhered to the surface of the release agent-adhered particles. When a part of the obtained adhered particles was observed with an optical microscope, the average particle diameter was about 5.0.
Resin fine particle-adhered particles of 4 μm were formed.

【0131】−付着粒子の融合− アニオン性界面活性剤(第一工業製薬社製、ネオゲンS
C)6部をイオン交換水24部に溶解させたアニオン性
界面活性剤水溶液を調整し、前記樹脂微粒子付着粒子分
散液に該界面活性剤水溶液を穏やかに添加した後、攪拌
を継続しながら92℃まで加熱して5時間保持し、前記
付着粒子を融合させた。その後、反応生成物をろ過し、
イオン交換水で十分に洗浄した後、真空乾燥機を用いて
乾燥させ、トナー粒子を得た。
-Fusion of adhered particles- Anionic surfactant (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Neogen S)
C) An aqueous solution of an anionic surfactant in which 6 parts were dissolved in 24 parts of ion-exchanged water was prepared, and the aqueous solution of the surfactant was gently added to the dispersion liquid of fine resin particle-adhered particles. C. and maintained for 5 hours to fuse the adhered particles. Then, the reaction product is filtered,
After being sufficiently washed with ion-exchanged water, it was dried using a vacuum drier to obtain toner particles.

【0132】得られたトナー粒子の平均粒径D50は5.
4μmであり、トナー中の離型剤の含有量は3.3重量
%であった。また、TEMによりトナー粒子断面を観察
したところ、平均でトナー表面から0.2μm付近の深
さに、平均の厚みが0.1μmの離型剤層が形成されて
いた。また、トナーの体積平均粒度分布指標GSDv
(D84V/D16V )が1.23であり、形状係数SF1は1
28であった。さらに、このトナー粒子を外添剤を添加
せずに高温高湿環境(28℃、85%RH)、及び低温
低湿環境(10℃、30%RH)にそれぞれ12時間放
置した後、帯電量(μC/g)を測定したところ、高温
高湿環境の帯電量(Q/M)は−24μC/g、低温低
湿環境の帯電量は−28μC/gと良好な帯電特性を示
した。得られたトナー粒子100部に対して、コロイダ
ルシリカ(日本アエロジル社製、R972)1部を添加
し、ヘンシェルミキサーを用いて混合することにより静
電荷像現像用トナーを得た。
The average particle size D 50 of the obtained toner particles is 5.
4 μm, and the release agent content in the toner was 3.3% by weight. Further, when the cross section of the toner particles was observed by TEM, a release agent layer having an average thickness of 0.1 μm was formed at a depth of about 0.2 μm from the toner surface on average. In addition, the volume average particle size distribution index GSDv of the toner
( D84V / D16V ) is 1.23, and the shape factor SF1 is 1
28. Further, the toner particles were left in a high-temperature and high-humidity environment (28 ° C., 85% RH) and a low-temperature and low-humidity environment (10 ° C., 30% RH) for 12 hours without adding an external additive. As a result, the charge amount (Q / M) in a high-temperature and high-humidity environment was −24 μC / g, and the charge amount in a low-temperature and low-humidity environment was −28 μC / g. One part of colloidal silica (R972, manufactured by Nippon Aerosil Co., Ltd.) was added to 100 parts of the obtained toner particles, and mixed with a Henschel mixer to obtain a toner for developing an electrostatic image.

【0133】−静電荷像現像剤の作成― フェライト粒子(パウダーテック社製、平均粒径50μ
m)100部とメチルメタクリレート樹脂(三菱レイヨ
ン社製、分子量95000)1.5部を、トルエン50
0部と共に加圧式ニーダーに入れ、常温で15分間攪拌
混合した後、減圧混合しながら70℃まで昇温してトル
エンを留去し、その後冷却し、105μmの篩を用いて
分級して樹脂被覆フェライトキャリアを得た。この樹脂
被覆フェライトキャリアと、前記静電荷像現像用トナー
とを混合し、トナー濃度が7重量%の二成分系静電荷像
現像剤を作製した。この静電荷像現像剤を用いて前記の
通り画像を形成して画質の評価を行った。結果は表1に
記載した。
-Preparation of an electrostatic image developer- Ferrite particles (manufactured by Powder Tech, average particle size 50 μm)
m) 100 parts of methyl methacrylate resin (manufactured by Mitsubishi Rayon Co., Ltd., molecular weight 95,000) was mixed with 1.5 parts of toluene 50
0 parts together with a pressure-type kneader, stirred and mixed at room temperature for 15 minutes, heated to 70 ° C. while mixing under reduced pressure to distill off toluene, then cooled and classified using a 105 μm sieve to coat the resin. A ferrite carrier was obtained. This resin-coated ferrite carrier and the toner for developing an electrostatic image were mixed to prepare a two-component electrostatic image developer having a toner concentration of 7% by weight. An image was formed using the electrostatic image developer as described above, and the image quality was evaluated. The results are shown in Table 1.

【0134】 (実施例2) −凝集粒子の調製― 樹脂微粒子分散液(1) 150部 着色剤分散液(1) 15部 カチオン性界面活性剤(花王社製、サニゾールB50) 2部 イオン交換水 500部 前記成分を丸型ステンレス製フラスコ中に収容し、ホモ
ジナイザー(IKA社製、ウルトラタラックスT50)
を用いて分散させた後、加熱用オイルバス中で49℃ま
で攪拌しながら加熱し、49℃で30分間保持して凝集
粒子を形成した。その凝集粒子の一部を光学顕微鏡で観
察したところ、凝集粒子の平均粒径は約4.6μmであ
った。
(Example 2) -Preparation of aggregated particles- Resin fine particle dispersion (1) 150 parts Colorant dispersion (1) 15 parts Cationic surfactant (Sanisol B50, manufactured by Kao Corporation) 2 parts Ion-exchanged water 500 parts The above-mentioned components were placed in a round stainless steel flask, and a homogenizer (Ultra Turrax T50, manufactured by IKA) was used.
Then, the mixture was dispersed in a heating oil bath while being heated to 49 ° C. with stirring, and kept at 49 ° C. for 30 minutes to form aggregated particles. When a part of the aggregated particles was observed with an optical microscope, the average particle size of the aggregated particles was about 4.6 μm.

【0135】−離型剤微粒子の付着− 前記の凝集粒子分散液に離型剤微粒子分散液(1)を緩
やかに80部追加し、さらに49℃で30分間加熱攪拌
を保持して凝集粒子表面に離型剤微粒子を付着させた。
その付着粒子の一部を光学顕微鏡で観察したところ、平
均粒径が約5.2μmの離型剤付着粒子が形成されてい
た。
-Attachment of release agent fine particles-80 parts of the release agent fine particle dispersion (1) is gently added to the above-mentioned aggregated particle dispersion, and the mixture is further heated and stirred at 49 ° C for 30 minutes, and the surface of the aggregated particles is maintained. The release agent fine particles were adhered to the sample.
Observation of a part of the adhered particles with an optical microscope revealed that the release agent-adhered particles having an average particle size of about 5.2 μm were formed.

【0136】−表面被膜用樹脂微粒子の付着― 得られた離型剤付着粒子分散液中に、さらに樹脂微粒子
分散液(1)を穏やかに150部追加し、加熱用オイル
バスの温度を51℃に上げて2時間保持し、前記離型剤
付着粒子表面に樹脂微粒子を付着させた。得られた付着
粒子を光学顕微鏡で観察してところ、平均粒径が約5.
7μmの樹脂微粒子付着粒子が形成されていた。
-Attachment of Resin Fine Particles for Surface Coating-To the obtained release agent-attached particle dispersion, 150 parts of the resin fine particle dispersion (1) was gently added, and the temperature of the heating oil bath was set at 51 ° C. And kept for 2 hours to adhere resin fine particles to the surface of the release agent-adhered particles. Observation of the obtained adhered particles with an optical microscope revealed that the average particle size was about 5.
7 μm resin adhered particles were formed.

【0137】−付着粒子の融合− アニオン性界面活性剤(第一工業製薬社製、ネオゲンS
C)10部をイオン交換水40部に溶解させたアニオン
性界面活性剤水溶液を調整し、前記付着粒子分散液に該
界面活性剤水溶液を穏やかに添加し、攪拌を継続させな
がら92℃まで加熱して5時間保持し、前記付着粒子を
融合させた。その後、反応生成物をろ過し、イオン交換
水で十分に洗浄した後、真空乾燥機を用いて乾燥させて
トナー粒子を得た。
-Fusion of adhered particles- Anionic surfactant (Neogen S, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
C) An aqueous solution of an anionic surfactant in which 10 parts were dissolved in 40 parts of ion-exchanged water was prepared, and the aqueous solution of the surfactant was gently added to the adhered particle dispersion, and heated to 92 ° C. while stirring was continued. And held for 5 hours to fuse the adhered particles. Thereafter, the reaction product was filtered, sufficiently washed with ion-exchanged water, and dried using a vacuum dryer to obtain toner particles.

【0138】得られたトナー粒子の平均粒径D50は6.
0μmであり、トナー中の離型剤の含有量は9.0重量
%であった。また、TEMによりトナー粒子断面を観察
したところ、平均でトナー表面から1.1μm付近の深
さに、平均の厚みが0.8μmの離型剤層が形成されて
いた。また、トナーの体積平均粒度分布指標GSDv
(D84V/D16V )が1.24であり、形状係数SF1は1
04であった。さらに、このトナー粒子を外添剤を添加
せずに高温高湿環境(28℃、85%RH)、及び低温
低湿環境(10℃、30%RH)にそれぞれ12時間放
置した後、帯電量(μC/g)を測定したところ、高温
高湿環境の帯電量(Q/M)は−22μC/g、低温低
湿環境の帯電量は−24μC/gと良好な帯電特性を示
した。得られたトナー粒子100部に対して、コロイダ
ルシリカ(日本アエロジル社製、R972)1部を添加
し、ヘンシェルミキサーを用いて混合することにより静
電荷像現像用トナーを得た。
The average particle size D 50 of the obtained toner particles is 6.
0 μm, and the content of the release agent in the toner was 9.0% by weight. Further, when the cross section of the toner particles was observed by TEM, a release agent layer having an average thickness of 0.8 μm was formed at a depth of about 1.1 μm from the toner surface on average. In addition, the volume average particle size distribution index GSDv of the toner
( D84V / D16V ) is 1.24 and the shape factor SF1 is 1
04. Further, the toner particles were left in a high-temperature and high-humidity environment (28 ° C., 85% RH) and a low-temperature and low-humidity environment (10 ° C., 30% RH) for 12 hours without adding an external additive. As a result, the charge amount (Q / M) in a high-temperature and high-humidity environment was −22 μC / g, and the charge amount in a low-temperature and low-humidity environment was −24 μC / g. One part of colloidal silica (R972, manufactured by Nippon Aerosil Co., Ltd.) was added to 100 parts of the obtained toner particles, and mixed with a Henschel mixer to obtain a toner for developing an electrostatic image.

【0139】−静電荷像現像剤の作成― 前記静電荷像現像用トナーを用い、実施例1と同様にし
て二成分系静電荷像現像剤を作製した。この静電荷像現
像剤を用いて実施例1と同様に画質の評価を行い、結果
を表1に記載した。
-Preparation of Electrostatic Image Developer- A two-component electrostatic image developer was prepared in the same manner as in Example 1 using the electrostatic image developing toner. The image quality was evaluated in the same manner as in Example 1 using this electrostatic image developer, and the results are shown in Table 1.

【0140】 (実施例3) −凝集粒子の調製― 樹脂微粒子分散液(1) 280部 着色剤分散液(1) 15部 カチオン性界面活性剤(花王(株)社製、サニゾールB50) 4部 イオン交換水 500部 前記成分を丸型ステンレス製フラスコ中に収容し、ホモ
ジナイザー(IKA社製、ウルトラタラックスT50)
を用いて分散させた後、加熱用オイルバス中で44℃ま
で攪拌しながら加熱し44℃で40分間保持して凝集粒
子を形成した。得られた凝集粒子の一部を光学顕微鏡で
観察したところ、凝集粒子の平均粒径は約5.0μmで
あった。
(Example 3) -Preparation of agglomerated particles- Resin fine particle dispersion (1) 280 parts Colorant dispersion (1) 15 parts Cationic surfactant (Sanisol B50, manufactured by Kao Corporation) 4 parts 500 parts of ion-exchanged water The above-mentioned components were accommodated in a round stainless steel flask, and a homogenizer (Ultra Turrax T50, manufactured by IKA) was used.
Then, the mixture was dispersed in a heating oil bath while being heated to 44 ° C. with stirring, and kept at 44 ° C. for 40 minutes to form aggregated particles. When a part of the obtained aggregated particles was observed with an optical microscope, the average particle size of the aggregated particles was about 5.0 μm.

【0141】−離型剤微粒子の付着− 前記凝集粒子分散液に離型剤微粒子分散液(1)を緩や
かに40部追加し、さらに44℃で30分間加熱攪拌を
保持して、凝集粒子表面に離型剤微粒子を付着させた。
得られた付着粒子の一部を光学顕微鏡で観察したとこ
ろ、平均粒径が約5.6μmの離型剤付着粒子が形成さ
れていた。
-Attachment of release agent fine particles-To the aggregated particle dispersion, gently add 40 parts of the release agent fine particle dispersion (1), and further heat and stir at 44 ° C for 30 minutes to obtain a surface of the aggregated particle. The release agent fine particles were adhered to the sample.
When a part of the obtained adhered particles was observed with an optical microscope, the release agent adhered particles having an average particle size of about 5.6 μm were formed.

【0142】−表面被膜用樹脂微粒子の付着― 得られた離型剤付着粒子分散液中に、さらに樹脂微粒子
分散液(2)を穏やかに50部追加し、加熱用オイルバ
スの温度を45℃に上げて1時間保持し、前記離型剤付
着粒子表面に樹脂微粒子を付着させた。得られた付着粒
子を光学顕微鏡で観察してところ、平均粒径が約5.6
μmの樹脂微粒子付着粒子が形成されていた。
-Attachment of Resin Fine Particles for Surface Coating-To the obtained release agent-attached particle dispersion, 50 parts of a resin fine particle dispersion (2) was gently added, and the temperature of the heating oil bath was raised to 45 ° C. And held for 1 hour to adhere resin fine particles to the surface of the release agent-adhered particles. Observation of the obtained adhered particles with an optical microscope revealed that the average particle size was about 5.6.
Resin fine particle-adhered particles of μm were formed.

【0143】−付着粒子の融合− アニオン性界面活性剤(第一工業製薬社製、ネオゲンS
C)10部をイオン交換水40部に溶解させたアニオン
性界面活性剤水溶液を調整し、前記付着粒子分散液に該
界面活性剤水溶液を穏やかに添加し、攪拌を継続させな
がら85℃まで加熱して9時間保持し、前記付着粒子を
融合させた。その後、反応生成物をろ過し、イオン交換
水で十分に洗浄した後、真空乾燥機を用いて乾燥させて
トナー粒子を得た。
-Fusion of adhered particles- Anionic surfactant (Neogen S, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
C) An aqueous solution of an anionic surfactant in which 10 parts were dissolved in 40 parts of ion-exchanged water was prepared, and the aqueous solution of the surfactant was gently added to the adhered particle dispersion, and heated to 85 ° C. while stirring was continued. And held for 9 hours to fuse the adhered particles. Thereafter, the reaction product was filtered, sufficiently washed with ion-exchanged water, and dried using a vacuum dryer to obtain toner particles.

【0144】得られたトナー粒子の平均粒径D50は3.
4μmであり、トナー中の離型剤の含有量は4.5重量
%であった。また、TEMによりトナー粒子断面を観察
したところ、平均でトナー表面から0.5μm付近の深
さに、平均の厚みが0.8μmの離型剤層が形成されて
いた。また、トナーの体積平均粒度分布指標GSDv
(D84V/D16V )が1.20であり、形状係数SF1は1
31であった。さらに、このトナー粒子を外添剤を添加
せずに高温高湿環境(28℃、85%RH)、及び低温
低湿環境(10℃、30%RH)にそれぞれ12時間放
置した後、帯電量(μC/g)を測定したところ、高温
高湿環境の帯電量(Q/M)は−18μC/g、低温低
湿環境の帯電量は−21μC/gと良好な帯電特性を示
した。得られたトナー粒子100部に対して、コロイダ
ルシリカ(日本アエロジル社製、R972)1部を添加
し、ヘンシェルミキサーを用いて混合して静電荷像現像
用トナーを得た。
The average particle size D 50 of the obtained toner particles is 3.
4 μm, and the content of the release agent in the toner was 4.5% by weight. Further, when the cross section of the toner particles was observed by TEM, a release agent layer having an average thickness of 0.8 μm was formed at a depth of about 0.5 μm from the toner surface on average. In addition, the volume average particle size distribution index GSDv of the toner
( D84V / D16V ) is 1.20 and the shape factor SF1 is 1
It was 31. Further, the toner particles were left in a high-temperature and high-humidity environment (28 ° C., 85% RH) and a low-temperature and low-humidity environment (10 ° C., 30% RH) for 12 hours without adding an external additive. As a result, the charge amount (Q / M) in a high-temperature and high-humidity environment was −18 μC / g, and the charge amount in a low-temperature and low-humidity environment was −21 μC / g. To 100 parts of the obtained toner particles, 1 part of colloidal silica (R972, manufactured by Nippon Aerosil Co., Ltd.) was added and mixed using a Henschel mixer to obtain a toner for developing an electrostatic image.

【0145】−静電荷像現像剤の作成― 前記静電荷像現像用トナーを用い、実施例1と同様にし
て二成分系静電荷像現像剤を作製した。この静電荷像現
像剤を用いて実施例1と同様に画質の評価を行い、結果
を表1に記載した。
-Preparation of Electrostatic Image Developer- A two-component electrostatic image developer was prepared in the same manner as in Example 1 using the electrostatic image developing toner. The image quality was evaluated in the same manner as in Example 1 using this electrostatic image developer, and the results are shown in Table 1.

【0146】 (実施例4) −凝集粒子の調製― 樹脂微粒子分散液(1) 260部 着色剤分散液(1) 15部 カチオン性界面活性剤(東邦化学社製、カチナールLTC−35A) 4部 イオン交換水 500部 前記成分を丸型ステンレス製フラスコ中に収容し、ホモ
ジナイザー(IKA社製、ウルトラタラックスT50)
を用いて分散させた後、加熱用オイルバス中で52℃ま
で攪拌しながら加熱し52℃で40分間保持して凝集粒
子を形成した。得られた凝集粒子の一部を光学顕微鏡で
観察したところ、凝集粒子の平均粒径が約4.9μmで
あった。
(Example 4) -Preparation of aggregated particles- Resin fine particle dispersion (1) 260 parts Colorant dispersion (1) 15 parts Cationic surfactant (Catinal LTC-35A, manufactured by Toho Chemical Co., Ltd.) 4 parts 500 parts of ion-exchanged water The above-mentioned components were accommodated in a round stainless steel flask, and a homogenizer (Ultra Turrax T50, manufactured by IKA) was used.
Then, the mixture was dispersed in a heating oil bath while stirring to 52 ° C., and kept at 52 ° C. for 40 minutes to form aggregated particles. When a part of the obtained aggregated particles was observed with an optical microscope, the average particle size of the aggregated particles was about 4.9 μm.

【0147】−離型剤微粒子の付着− 前記凝集粒子分散液に離型剤微粒子分散液(2)を緩や
かに10部追加し、さらに49℃で60分間加熱攪拌を
保持して凝集粒子表面に離型剤微粒子を付着させた。得
られた付着粒子の一部を光学顕微鏡で観察したところ、
平均粒径が約5.7μmの離型剤付着粒子が形成されて
いた。
-Attachment of release agent fine particles-To the agglomerated particle dispersion, slowly add 10 parts of a release agent fine particle dispersion (2), and further stir at 49 ° C for 60 minutes while heating and stirring the surface of the agglomerated particles. Release agent fine particles were adhered. When a part of the obtained adhered particles was observed with an optical microscope,
Release agent-adhered particles having an average particle size of about 5.7 μm were formed.

【0148】−表面被膜用樹脂微粒子の付着― 得られた離型剤付着粒子分散液中に、さらに樹脂微粒子
分散液(1)を穏やかに135部追加し、加熱用オイル
バスの温度を53℃に上げて2時間保持し、前記離型剤
付着粒子表面に樹脂微粒子を付着させた。得られた付着
粒子を光学顕微鏡で観察してところ、平均粒径が約6.
2μmの樹脂微粒子付着粒子が形成されていた。
—Adhesion of Resin Fine Particles for Surface Coating— 135 parts of resin fine particle dispersion (1) was gently added to the obtained release agent-adhered particle dispersion, and the temperature of the heating oil bath was set to 53 ° C. And kept for 2 hours to adhere resin fine particles to the surface of the release agent-adhered particles. Observation of the obtained adhered particles with an optical microscope revealed that the average particle size was about 6.
Resin fine particle-adhered particles of 2 μm were formed.

【0149】−付着粒子の融合− アニオン性界面活性剤(日本油脂社製、ニューレックス
R)10部をイオン交換水40部に溶解させたアニオン
性界面活性剤水溶液を調整し、前記付着粒子分散液に該
界面活性剤水溶液を穏やかに添加し、攪拌を継続させな
がら90℃まで加熱して7時間保持し、前記付着粒子を
融合させた。その後、反応生成物をろ過し、イオン交換
水で十分に洗浄した後、真空乾燥機を用いて乾燥させて
トナー粒子を得た。
-Fusion of Adhered Particles- An aqueous solution of anionic surfactant in which 10 parts of an anionic surfactant (manufactured by NOF CORPORATION, NUREX®) was dissolved in 40 parts of ion-exchanged water was prepared, and the dispersion of the adhered particles was performed The surfactant aqueous solution was gently added to the solution, and the solution was heated to 90 ° C. and kept for 7 hours while continuing stirring to fuse the adhered particles. Thereafter, the reaction product was filtered, sufficiently washed with ion-exchanged water, and dried using a vacuum dryer to obtain toner particles.

【0150】得られたトナー粒子の平均粒径D50は7.
8μmであり、トナー中の離型剤の含有量は1.1重量
%であり、界面活性剤の含有量は 重量%であった。
また、TEMによりトナー粒子断面を観察したところ、
平均でトナー表面から2.8μm付近の深さに、平均の
厚みが0.12μmの離型剤層が形成されていた。ま
た、トナーの体積平均粒度分布指標GSDv(D84V/D
16V )が1.19であり、形状係数SF1は132であ
った。さらに、このトナー粒子を外添剤を添加せずに高
温高湿環境(28℃、85%RH)、及び低温低湿環境
(10℃、30%RH)にそれぞれ12時間放置した
後、帯電量(μC/g)を測定したところ、高温高湿環
境の帯電量(Q/M)は─26μC/g、低温低湿環境
の帯電量は−29μC/gと良好な帯電特性を示した。
得られたトナー粒子100部に対して、コロイダルシリ
カ(日本アエロジル社製、R972)1部を添加し、ヘ
ンシェルミキサーを用いて混合して静電荷像現像用トナ
ーを得た。
The average particle size D 50 of the obtained toner particles is 7.
The toner had a release agent content of 1.1% by weight and a surfactant content of 1% by weight.
When the cross section of the toner particles was observed by TEM,
A release agent layer having an average thickness of 0.12 μm was formed at a depth of about 2.8 μm from the toner surface on average. In addition, the volume average particle size distribution index GSDv (D 84V / D
16V ) was 1.19 and the shape factor SF1 was 132. Further, the toner particles were left in a high-temperature and high-humidity environment (28 ° C., 85% RH) and a low-temperature and low-humidity environment (10 ° C., 30% RH) for 12 hours without adding an external additive. As a result, the charge amount (Q / M) in a high-temperature and high-humidity environment was ─26 μC / g, and the charge amount in a low-temperature and low-humidity environment was -29 μC / g.
To 100 parts of the obtained toner particles, 1 part of colloidal silica (R972, manufactured by Nippon Aerosil Co., Ltd.) was added and mixed using a Henschel mixer to obtain a toner for developing an electrostatic image.

【0151】−静電荷像現像剤の作成― 前記静電荷像現像用トナーを用い、実施例1と同様にし
て二成分系静電荷像現像剤を作製した。この静電荷像現
像剤を用いて実施例1と同様に画質の評価を行い、結果
を表1に記載した。
-Preparation of Electrostatic Image Developer- A two-component electrostatic image developer was prepared in the same manner as in Example 1 using the electrostatic image developing toner. The image quality was evaluated in the same manner as in Example 1 using this electrostatic image developer, and the results are shown in Table 1.

【0152】 (実施例5) −凝集粒子の調製― 樹脂微粒子分散液(2) 260部 着色剤分散液(1) 20部 カチオン性界面活性剤(花王社製、サニゾールB50) 3部 イオン交換水 500部 前記成分を丸型ステンレス製フラスコ中に収容し、ホモ
ジナイザー(IKA社製、ウルトラタラックスT50)
を用いて分散させた後、加熱用オイルバス中で44℃ま
で攪拌しながら加熱し44℃で60分間保持して凝集粒
子を形成した。得られた凝集粒子の一部を光学顕微鏡で
観察したところ、凝集粒子の平均粒径が約3.9μmで
あった。
(Example 5) -Preparation of agglomerated particles- Resin fine particle dispersion (2) 260 parts Colorant dispersion (1) 20 parts Cationic surfactant (Sanisol B50, manufactured by Kao Corporation) 3 parts Ion-exchanged water 500 parts The above-mentioned components were placed in a round stainless steel flask, and a homogenizer (Ultra Turrax T50, manufactured by IKA) was used.
Then, the mixture was dispersed in a heating oil bath while being heated to 44 ° C. with stirring, and kept at 44 ° C. for 60 minutes to form aggregated particles. When a part of the obtained aggregated particles was observed with an optical microscope, the average particle size of the aggregated particles was about 3.9 μm.

【0153】−離型剤微粒子の付着− 前記凝集粒子分散液に離型剤微粒子分散液(3)を緩や
かに80部追加し、さらに44℃で80分間加熱攪拌を
保持して凝集粒子表面に離型剤微粒子を付着させた。得
られた付着粒子の一部を光学顕微鏡で観察したところ、
平均粒径が約4.2μmの離型剤付着粒子が形成されて
いた。
-Attachment of release agent fine particles-80 parts of a release agent fine particle dispersion (3) is gently added to the aggregated particle dispersion, and the mixture is further heated and stirred at 44 ° C for 80 minutes to form a surface of the aggregated particles. Release agent fine particles were adhered. When a part of the obtained adhered particles was observed with an optical microscope,
Release agent-adhered particles having an average particle size of about 4.2 μm were formed.

【0154】−表面被膜用樹脂微粒子の付着― 得られた離型剤付着粒子分散液中に、さらに樹脂微粒子
分散液(2)を穏やかに80部追加し、加熱用オイルバ
スの温度を45℃に上げて1時間保持し、前記離型剤付
着粒子表面に樹脂微粒子を付着させた。得られた付着粒
子を光学顕微鏡で観察してところ、平均粒径が約4.8
μmの樹脂微粒子付着粒子が形成されていた。
-Attachment of Resin Fine Particles for Surface Coating-To the obtained release agent-attached particle dispersion, 80 parts of a resin fine particle dispersion (2) was gently added, and the temperature of the heating oil bath was raised to 45 ° C. And held for 1 hour to adhere resin fine particles to the surface of the release agent-adhered particles. Observation of the obtained adhered particles with an optical microscope revealed that the average particle size was about 4.8.
Resin fine particle-adhered particles of μm were formed.

【0155】−付着粒子の融合− アニオン性界面活性剤(第一工業製薬社製、ネオゲンS
C)10部をイオン交換水30部に溶解させたアニオン
性界面活性剤水溶液を調整し、前記付着粒子分散液に該
界面活性剤水溶液を穏やかに添加し、攪拌を継続させな
がら88℃まで加熱して6時間保持し、前記付着粒子を
融合させた。その後、反応生成物をろ過し、イオン交換
水で十分に洗浄した後、真空乾燥機を用いて乾燥させて
トナー粒子を得た。
-Fusion of adhered particles- Anionic surfactant (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Neogen S
C) An aqueous solution of an anionic surfactant in which 10 parts were dissolved in 30 parts of ion-exchanged water was prepared, and the aqueous solution of the surfactant was gently added to the adhered particle dispersion, and heated to 88 ° C. while stirring was continued. And held for 6 hours to fuse the adhered particles. Thereafter, the reaction product was filtered, sufficiently washed with ion-exchanged water, and dried using a vacuum dryer to obtain toner particles.

【0156】得られたトナー粒子の平均粒径D50は5.
5μmであり、トナー中の離型剤の含有量は9.2重量
%であった。また、TEMによりトナー粒子断面を観測
したところ、平均でトナー表面から0.5μm付近の深
さに、平均の厚みが2.8μmの離型剤層が形成されて
いた。また、トナーの体積平均粒度分布指標GSDv
(D84V/D16V )が1.26であり、形状係数SF1は1
40であった。さらに、このトナー粒子を外添剤を添加
せずに高温高湿環境(28℃、85%RH)、及び低温
低湿環境(10℃、30%RH)にそれぞれ12時間放
置した後、帯電量(μC/g)を測定したところ、高温
高湿環境の帯電量(Q/M)は−31μC/g、低温低
湿環境の帯電量は−38μC/gと良好な帯電特性を示
した。得られたトナー粒子100部に対して、コロイダ
ルシリカ(日本アエロジル社製、R972)1部を添加
し、ヘンシェルミキサーを用いて混合して静電荷像現像
用トナーを得た。
The average particle size D 50 of the obtained toner particles is 5.
5 μm, and the content of the release agent in the toner was 9.2% by weight. Further, when the cross section of the toner particles was observed by TEM, a release agent layer having an average thickness of 2.8 μm was formed at a depth of about 0.5 μm from the toner surface on average. In addition, the volume average particle size distribution index GSDv of the toner
( D84V / D16V ) is 1.26 and the shape factor SF1 is 1
It was 40. Further, the toner particles were left in a high-temperature and high-humidity environment (28 ° C., 85% RH) and a low-temperature and low-humidity environment (10 ° C., 30% RH) for 12 hours without adding an external additive. As a result, the charge amount (Q / M) in a high-temperature and high-humidity environment was −31 μC / g, and the charge amount in a low-temperature and low-humidity environment was −38 μC / g. To 100 parts of the obtained toner particles, 1 part of colloidal silica (R972, manufactured by Nippon Aerosil Co., Ltd.) was added and mixed using a Henschel mixer to obtain a toner for developing an electrostatic image.

【0157】−静電荷像現像剤の作成― フェライト粒子(パウダーテック社製、平均粒径50μ
m)100部及びシリコーン樹脂(東レダウコーニング
シリコーン(株)製、SR2411、固形分20%)2
0部をトルエン500部と共に加圧式ニーダーに入れ、
常温で15分間攪拌混合した後、減圧混合しながら70
℃まで昇温してトルエンを留去した。その後、再度ニー
ダーに入れて150℃で5時間攪拌しながら保持し、そ
の後冷却し、105μmの篩を用いて分級して樹脂被覆
フェライトキャリアを作製した。この樹脂被覆フェライ
トキャリアと前記静電荷像現像用トナーとを混合してト
ナー濃度が7重量%の二成分系静電荷像現像剤を作製し
た。この静電荷像現像剤を用いて実施例1と同様に画質
の評価を行い、結果を表1に記載した。
-Preparation of electrostatic image developer- Ferrite particles (manufactured by Powder Tech, average particle size 50 μm)
m) 100 parts and a silicone resin (SR2411, manufactured by Toray Dow Corning Silicone Co., Ltd., solid content 20%) 2
0 parts together with 500 parts of toluene in a pressure kneader,
After stirring and mixing at room temperature for 15 minutes, 70
The temperature was raised to ° C, and toluene was distilled off. Then, it was again placed in a kneader while stirring at 150 ° C. for 5 hours, cooled, and then classified using a 105 μm sieve to produce a resin-coated ferrite carrier. This resin-coated ferrite carrier and the toner for developing an electrostatic image were mixed to prepare a two-component electrostatic image developer having a toner concentration of 7% by weight. The image quality was evaluated in the same manner as in Example 1 using this electrostatic image developer, and the results are shown in Table 1.

【0158】 (実施例6) −凝集粒子の調製― 樹脂微粒子分散液(1) 100部 着色剤分散液(1) 15部 カチオン性界面活性剤(花王社製、サニゾールB50) 4部 イオン交換水 500部 前記成分を丸型ステンレス製フラスコ中に収容し、ホモ
ジナイザー(IKA社製、ウルトラタラックスT50)
を用いて分散させた後加熱用オイルバス中で50℃まで
攪拌しながら加熱し、50℃で40分間保持して凝集粒
子を形成した。得られた凝集粒子の一部を光学顕微鏡で
観察したところ、凝集粒子の平均粒径が約3.8μmで
あった。
(Example 6) -Preparation of aggregated particles- Resin fine particle dispersion (1) 100 parts Colorant dispersion (1) 15 parts Cationic surfactant (Sanisol B50, manufactured by Kao Corporation) 4 parts Ion-exchanged water 500 parts The above-mentioned components were placed in a round stainless steel flask, and a homogenizer (Ultra Turrax T50, manufactured by IKA) was used.
Then, the mixture was dispersed and heated in an oil bath for heating with stirring to 50 ° C., and kept at 50 ° C. for 40 minutes to form aggregated particles. When a part of the obtained aggregated particles was observed with an optical microscope, the average particle size of the aggregated particles was about 3.8 μm.

【0159】−離型剤微粒子の第1回目の付着− 前記の凝集粒子分散液に離型剤微粒子分散液(1)を緩
やかに30部追加し、さらに48℃で60分間加熱攪拌
を保持して凝集粒子表面に離型剤微粒子を付着させた。
得られた付着粒子の一部を光学顕微鏡で観察したとこ
ろ、平均粒径が約4.0μmの離型剤付着粒子が形成さ
れていた。
First Adhesion of Release Agent Particles First, gently add 30 parts of the release agent particle dispersion (1) to the above-mentioned aggregated particle dispersion, and further heat and stir at 48 ° C. for 60 minutes. The release agent fine particles were adhered to the surface of the aggregated particles.
When a part of the obtained adhered particles was observed with an optical microscope, the release agent-adhered particles having an average particle size of about 4.0 μm were formed.

【0160】−樹脂微粒子の付着― この付着粒子分散液中に、さらに樹脂微粒子分散液
(1)を穏やかに50部追加し、さらに48℃で1時間
保持し、前記離型剤付着粒子表面に樹脂微粒子を付着さ
せた。得られた付着粒子を光学顕微鏡で観察してとこ
ろ、平均粒径が約4.2μmの樹脂微粒子付着粒子が形
成されていた。
-Attachment of Resin Fine Particles-To the adhered particle dispersion, 50 parts of the resin fine particle dispersion (1) was gently added, and the mixture was further kept at 48 ° C for 1 hour. Resin fine particles were adhered. Observation of the obtained adhered particles with an optical microscope revealed that resin fine particle adhered particles having an average particle size of about 4.2 μm were formed.

【0161】−離型剤微粒子の第2回目の付着− 得られた樹脂微粒子付着粒子分散液に離型剤微粒子分散
液(1)を緩やかに20部追加し、さらに48℃で30
分間加熱攪拌を保持して樹脂微粒子付着粒子表面に離型
剤微粒子を付着させた。その付着粒子の一部を光学顕微
鏡で観察したところ、平均粒径が約4.3μmの離型剤
付着粒子が形成されていた。
Second Adhesion of Release Agent Fine Particles To the obtained resin fine particle adhered particle dispersion, gently add 20 parts of the release agent fine particle dispersion (1).
The release agent particles were adhered to the surface of the resin particle adhered particles while maintaining the heating and stirring for minutes. Observation of a part of the adhered particles with an optical microscope revealed that the release agent-adhered particles having an average particle diameter of about 4.3 μm were formed.

【0162】−表面被膜用樹脂微粒子の付着― この離型剤付着粒子分散液中に、さらに樹脂微粒子分散
液(1)を穏やかに70部追加し、さらにオイルバスを
加熱して50℃で2時間保持し、前記離型剤付着粒子表
面に樹脂微粒子を付着させた。得られた付着粒子を光学
顕微鏡で観察してところ、平均粒径が約5.1μmの樹
脂微粒子付着粒子が形成されていた。
-Attachment of Resin Fine Particles for Surface Coating-To the release agent-attached particle dispersion, 70 parts of a resin fine particle dispersion (1) was gently added, and the oil bath was heated at 50 ° C to 2 parts. After holding for a time, resin fine particles were adhered to the surface of the release agent-adhered particles. Observation of the obtained adhered particles with an optical microscope revealed that resin fine particle adhered particles having an average particle size of about 5.1 μm were formed.

【0163】−付着粒子の融合− アニオン性界面活性剤(第一工業製薬社製、ネオゲンS
C)10部をイオン交換水40部に溶解させたアニオン
性界面活性剤水溶液を調整し、前記付着粒子分散液に該
界面活性剤水溶液を穏やかに添加し、攪拌を継続させな
がら85℃まで加熱して9時間保持し、前記付着粒子を
融合させた。その後、反応生成物をろ過し、イオン交換
水で十分に洗浄した後、真空乾燥機を用いて乾燥させて
トナー粒子を得た。
-Fusion of adhered particles- Anionic surfactant (Neogen S, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
C) An aqueous solution of an anionic surfactant in which 10 parts were dissolved in 40 parts of ion-exchanged water was prepared, and the aqueous solution of the surfactant was gently added to the adhered particle dispersion, and heated to 85 ° C. while stirring was continued. And held for 9 hours to fuse the adhered particles. Thereafter, the reaction product was filtered, sufficiently washed with ion-exchanged water, and dried using a vacuum dryer to obtain toner particles.

【0164】得られたトナー粒子の平均粒径D50は5.
5μmであり、トナー中の離型剤の含有量は6.0重量
%であった。また、TEMによりトナー粒子断面を観測
したところ、平均でトナー表面から0.2μm付近の深
さに、平均の厚みが0.4μmの離型剤層と、平均でト
ナー表面から0.5μm付近の深さに、平均の厚みが
0.1μmの離型剤層が形成されていた。また、トナー
の体積平均粒度分布指標GSDv(D84V/D16V )が1.
22であり、形状係数SF1は138であった。さら
に、このトナー粒子を外添剤を添加せずに高温高湿環境
(28℃、85%RH)、及び低温低湿環境(10℃、
30%RH)にそれぞれ12時間放置した後、帯電量
(μC/g)を測定したところ、高温高湿環境の帯電量
(Q/M)は−33μC/g、低温低湿環境の帯電量は
−36μC/gと良好な帯電特性を示した。得られたト
ナー粒子100部に対して、コロイダルシリカ(日本ア
エロジル社製、R972)1部を添加し、ヘンシェルミ
キサーを用いて混合して静電荷像現像用トナーを得た。
The average particle size D 50 of the obtained toner particles is 5.
5 μm, and the content of the release agent in the toner was 6.0% by weight. Further, when the cross section of the toner particles was observed by TEM, a release agent layer having an average thickness of 0.4 μm at a depth of about 0.2 μm from the toner surface and an average of about 0.5 μm from the toner surface were obtained. A release agent layer having an average thickness of 0.1 μm was formed at the depth. The volume average particle size distribution index GSDv ( D84V / D16V ) of the toner is 1.
22, and the shape factor SF1 was 138. Further, the toner particles were added to a high temperature and high humidity environment (28 ° C., 85% RH) and a low temperature and low humidity environment (10 ° C.
After being left at 30% RH for 12 hours, respectively, the charge amount (μC / g) was measured. The charge amount (Q / M) in a high temperature and high humidity environment was −33 μC / g, and the charge amount in a low temperature and low humidity environment was −. A good charging characteristic of 36 μC / g was exhibited. To 100 parts of the obtained toner particles, 1 part of colloidal silica (R972, manufactured by Nippon Aerosil Co., Ltd.) was added and mixed using a Henschel mixer to obtain a toner for developing an electrostatic image.

【0165】−静電荷像現像剤の作成― 前記静電荷像現像用トナーを用い、実施例5と同様にし
て二成分系静電荷像現像剤を作製した。この静電荷像現
像剤を用いて実施例5と同様に画質の評価を行い、結果
を表1に記載した。
-Preparation of Electrostatic Image Developer- A two-component electrostatic image developer was prepared in the same manner as in Example 5 using the electrostatic image developing toner. The image quality was evaluated in the same manner as in Example 5 using this electrostatic image developer, and the results are shown in Table 1.

【0166】 (実施例7) −凝集粒子の調製― 樹脂微粒子分散液(2) 280部 着色剤分散液(1) 15部 カチオン性界面活性剤(花王社製、サニゾールB50) 2部 イオン交換水 500部 前記成分を丸型ステンレス製フラスコ中に収容し、ホモ
ジナイザー(IKA社製、ウルトラタラックスT50)
を用いて分散させた後、加熱用オイルバス中で55℃ま
で攪拌しながら加熱し55℃で30分間保持して凝集粒
子を形成した。得られた凝集粒子の一部を光学顕微鏡で
観察したところ、凝集粒子の平均粒径は約4.9μmで
あった。
(Example 7) -Preparation of aggregated particles- Resin fine particle dispersion (2) 280 parts Colorant dispersion (1) 15 parts Cationic surfactant (Sanisol B50, manufactured by Kao Corporation) 2 parts Ion-exchanged water 500 parts The above-mentioned components were placed in a round stainless steel flask, and a homogenizer (Ultra Turrax T50, manufactured by IKA) was used.
Then, the mixture was dispersed in a heating oil bath while being heated to 55 ° C. with stirring, and kept at 55 ° C. for 30 minutes to form aggregated particles. When a part of the obtained aggregated particles was observed with an optical microscope, the average particle size of the aggregated particles was about 4.9 μm.

【0167】−離型剤微粒子の付着− 前記の凝集粒子分散液に離型剤微粒子分散液(2)を緩
やかに70部追加し、さらに55℃で30分間加熱攪拌
を保持して凝集粒子表面に離型剤微粒子を付着させた。
その付着粒子の一部を光学顕微鏡で観察したところ、平
均粒径が約5.9μmの離型剤付着粒子が形成されてい
た。
-Attachment of release agent fine particles-The release agent fine particle dispersion liquid (2) is gently added to the above-mentioned aggregated particle dispersion liquid by 70 parts, and further heated and stirred at 55 ° C for 30 minutes, and the surface of the aggregated particle surface is maintained. The release agent fine particles were adhered to the sample.
Observation of a part of the adhered particles with an optical microscope revealed that the release agent-adhered particles having an average particle size of about 5.9 μm were formed.

【0168】−表面被膜用樹脂微粒子の付着― 得られた離型剤付着粒子分散液中に、さらに樹脂微粒子
分散液(2)を穏やかに50部追加し、さらにオイルバ
スを加熱して58℃で2時間保持し、前記離型剤付着粒
子表面に樹脂微粒子を付着させた。得られた付着粒子を
光学顕微鏡で観察してところ、平均粒径が約6.1μm
の樹脂微粒子付着粒子が形成されていた。
-Attachment of Resin Fine Particles for Surface Coating-To the obtained release agent-attached particle dispersion, gently add 50 parts of resin fine particle dispersion (2), and further heat the oil bath to 58 ° C. For 2 hours to adhere resin fine particles to the surface of the release agent-adhered particles. Observation of the obtained adhered particles with an optical microscope revealed that the average particle size was about 6.1 μm.
Was formed.

【0169】−付着粒子の融合− アニオン性界面活性剤(第一工業製薬社製、ネオゲンS
C)15部をイオン交換水50部に溶解させたアニオン
性界面活性剤水溶液を調整し、前記付着粒子分散液に該
界面活性剤水溶液を穏やかに添加し、攪拌を継続させな
がら80℃まで加熱して20時間保持し、前記付着粒子
を融合させた。その後、反応生成物をろ過し、イオン交
換水で十分に洗浄した後、真空乾燥機を用いて乾燥させ
てトナー粒子を得た。
-Fusion of adhered particles- Anionic surfactant (Neogen S, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
C) An aqueous solution of an anionic surfactant in which 15 parts were dissolved in 50 parts of ion-exchanged water was prepared, and the aqueous solution of the surfactant was gently added to the adhered particle dispersion, and heated to 80 ° C. while stirring was continued. And held for 20 hours to fuse the adhered particles. Thereafter, the reaction product was filtered, sufficiently washed with ion-exchanged water, and dried using a vacuum dryer to obtain toner particles.

【0170】得られたトナー粒子の平均粒径D50は6.
5μmであり、トナー中の離型剤の含有量は8.0重量
%であった。また、TEMによりトナー粒子断面を観測
したところ、平均でトナー表面から0.6μm付近の深
さに、平均の厚みが0.6μmの離型剤層が形成されて
いた。また、トナーの体積平均粒度分布指標GSDv
(D84V/D16V )が1.21であり、形状係数SF1は1
34であった。さらに、このトナー粒子を外添剤を添加
せずに高温高湿環境(28℃、85%RH)、及び低温
低湿環境(10℃、30%RH)にそれぞれ12時間放
置した後、帯電量(μC/g)を測定したところ、高温
高湿環境の帯電量(Q/M)は−29μC/g、低温低
湿環境の帯電量は−27μC/gと良好な帯電特性を示
した。得られたトナー粒子100部に対して、コロイダ
ルシリカ(日本アエロジル社製、R972)1.5部を
添加し、ヘンシェルミキサーを用いて混合して静電荷像
現像用トナーを得た。
The average particle size D 50 of the obtained toner particles is 6.
5 μm, and the release agent content in the toner was 8.0% by weight. Further, when the cross section of the toner particles was observed by TEM, a release agent layer having an average thickness of 0.6 μm was formed at a depth of about 0.6 μm from the toner surface on average. In addition, the volume average particle size distribution index GSDv of the toner
( D84V / D16V ) is 1.21 and the shape factor SF1 is 1
34. Further, the toner particles were left in a high-temperature and high-humidity environment (28 ° C., 85% RH) and a low-temperature and low-humidity environment (10 ° C., 30% RH) for 12 hours without adding an external additive. As a result, the charge amount (Q / M) in a high-temperature and high-humidity environment was -29 μC / g, and the charge amount in a low-temperature and low-humidity environment was -27 μC / g, indicating good charging characteristics. To 100 parts of the obtained toner particles, 1.5 parts of colloidal silica (R972, manufactured by Nippon Aerosil Co., Ltd.) was added and mixed using a Henschel mixer to obtain a toner for developing an electrostatic image.

【0171】−静電荷像現像剤の作成― 前記静電荷像現像用トナーを用い、実施例5と同様にし
て二成分系静電荷像現像剤を作製した。この静電荷像現
像剤を用いて実施例5と同様に画質の評価を行い、結果
を表1に記載した。
-Preparation of Electrostatic Image Developer- A two-component electrostatic image developer was prepared in the same manner as in Example 5 using the electrostatic image developing toner. The image quality was evaluated in the same manner as in Example 5 using this electrostatic image developer, and the results are shown in Table 1.

【0172】 (比較例1) −凝集粒子の調製― 樹脂微粒子分散液(1) 300部 離型剤微粒子分散液(1) 30部 着色剤分散液(1) 15部 カチオン性界面活性剤(花王社製、サニゾールB50) 3部 イオン交換水 500部 前記成分を丸型ステンレス製フラスコ中に収容し、ホモ
ジナイザー(IKA社製、ウルトラタラックスT50)
を用いて分散させた後、加熱用オイルバス中で47℃ま
で攪拌しながら加熱し47℃で30分間保持して凝集粒
子を形成した。得られた凝集粒子の一部を光学顕微鏡で
観察したところ、凝集粒子の平均粒径は約4.6μmで
あった。
(Comparative Example 1) -Preparation of agglomerated particles- Resin fine particle dispersion liquid (1) 300 parts Release agent fine particle dispersion liquid (1) 30 parts Colorant dispersion liquid (1) 15 parts Cationic surfactant (Kao 3 parts Ion-exchanged water 500 parts The above-mentioned components were stored in a round stainless steel flask, and were homogenized (IKA, Ultra Turrax T50).
Then, the mixture was dispersed in a heating oil bath while stirring to 47 ° C., and kept at 47 ° C. for 30 minutes to form aggregated particles. When a part of the obtained aggregated particles was observed with an optical microscope, the average particle size of the aggregated particles was about 4.6 μm.

【0173】−表面被膜用樹脂微粒子の付着― この凝集粒子分散液中に、さらに樹脂微粒子分散液
(1)を穏やかに70部追加し、さらにオイルバスを加
熱して48℃で1時間保持し、前記凝集粒子表面に樹脂
微粒子を付着させた。得られた付着粒子を光学顕微鏡で
観察してところ、平均粒径が約5.0μmの樹脂微粒子
付着粒子が形成されていた。
-Attachment of Resin Fine Particles for Surface Coating-To this aggregated particle dispersion, 70 parts of resin fine particle dispersion (1) was gently added, and the oil bath was heated and kept at 48 ° C for 1 hour. Then, fine resin particles were attached to the surface of the aggregated particles. Observation of the obtained adhered particles with an optical microscope revealed that resin fine particle adhered particles having an average particle size of about 5.0 μm were formed.

【0174】−付着粒子の融合− アニオン性界面活性剤(第一工業製薬社製、ネオゲンS
C)6部をイオン交換水24部に溶解させたアニオン性
界面活性剤水溶液を調整し、前記付着粒子分散液に該界
面活性剤水溶液を穏やかに添加し、攪拌を継続させなが
ら92℃まで加熱して5時間保持し、前記付着粒子を融
合させた。その後、反応生成物をろ過し、イオン交換水
で十分に洗浄した後、真空乾燥機を用いて乾燥させてト
ナー粒子を得た。
-Fusion of adhered particles- Anionic surfactant (Neogen S, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
C) An aqueous solution of an anionic surfactant in which 6 parts were dissolved in 24 parts of ion-exchanged water was prepared, and the aqueous solution of the surfactant was gently added to the adhered particle dispersion, and heated to 92 ° C. while stirring was continued. And held for 5 hours to fuse the adhered particles. Thereafter, the reaction product was filtered, sufficiently washed with ion-exchanged water, and dried using a vacuum dryer to obtain toner particles.

【0175】得られたトナーの平均粒径は5.1μmで
あった。また、TEMによりトナー粒子断面を観測した
ところ、トナー断面に無秩序に離型剤微粒子が分散され
ていることが確認された。得られたトナー粒子の平均粒
径D50は5.1μmであり、トナー中の離型剤の含有量
は3.4重量%であった。また、SEMによりトナー粒
子断面を観測したところ、トナー断面に無秩序に離型剤
微粒子が分散していた。また、トナーの体積平均粒度分
布指標GSDv(D84V/D16V )が1.26であり、形状
係数SF1は127であった。さらに、このトナー粒子
を外添剤を添加せずに高温高湿環境(28℃、85%R
H)、及び低温低湿環境(10℃、30%RH)にそれ
ぞれ12時間放置した後、帯電量(μC/g)を測定し
たところ、高温高湿環境の帯電量(Q/M)は−22μ
C/g、低温低湿環境の帯電量は−27μC/gであっ
た。得られたトナー粒子100部に対して、コロイダル
シリカ(日本アエロジル社製、R972)1部を添加
し、ヘンシェルミキサーを用いて混合して静電荷像現像
用トナーを得た。
The average particle size of the obtained toner was 5.1 μm. When the cross section of the toner particles was observed by TEM, it was confirmed that the release agent fine particles were randomly dispersed in the cross section of the toner. The average particle diameter D 50 of the obtained toner particles was 5.1 μm, and the content of the release agent in the toner was 3.4% by weight. When the cross section of the toner particles was observed by SEM, the release agent fine particles were randomly dispersed in the cross section of the toner. In addition, the volume average particle size distribution index GSDv ( D84V / D16V ) of the toner was 1.26, and the shape factor SF1 was 127. Further, the toner particles were added to a high-temperature and high-humidity environment (28 ° C, 85% R) without adding an external additive.
H) and a low-temperature and low-humidity environment (10 ° C., 30% RH) for 12 hours each, and the charge amount (μC / g) was measured. The charge amount (Q / M) in the high-temperature and high-humidity environment was −22 μm.
C / g, the charge amount in a low-temperature and low-humidity environment was -27 μC / g. To 100 parts of the obtained toner particles, 1 part of colloidal silica (R972, manufactured by Nippon Aerosil Co., Ltd.) was added and mixed using a Henschel mixer to obtain a toner for developing an electrostatic image.

【0176】−静電荷像現像剤の作成― 前記静電荷像現像用トナーを用い、実施例1と同様にし
て二成分系静電荷像現像剤を作製した。この静電荷像現
像剤を用いて実施例1と同様に画質の評価を行い、結果
を表1に記載した。
-Preparation of Electrostatic Image Developer- A two-component electrostatic image developer was prepared in the same manner as in Example 1 using the electrostatic image developing toner. The image quality was evaluated in the same manner as in Example 1 using this electrostatic image developer, and the results are shown in Table 1.

【0177】 (比較例2) −凝集粒子の調製― 樹脂微粒子分散液(1) 300部 着色剤分散液(1) 15部 カチオン性界面活性剤(花王社製、サニゾールB50) 3部 イオン交換水 500部 前記成分を丸型ステンレス製フラスコ中に収容し、ホモ
ジナイザー(IKA社製、ウルトラタラックスT50)
を用いて分散させた後、加熱用オイルバス中で47℃ま
で攪拌しながら加熱し47℃で30分間保持して凝集粒
子を形成した。得られた凝集粒子の一部を光学顕微鏡で
観察したところ、凝集粒子の平均粒径は約4.0μmで
あった。
(Comparative Example 2) -Preparation of aggregated particles- Resin fine particle dispersion liquid (1) 300 parts Colorant dispersion liquid (1) 15 parts Cationic surfactant (Sanisol B50, manufactured by Kao Corporation) 3 parts Ion-exchanged water 500 parts The above-mentioned components were placed in a round stainless steel flask, and a homogenizer (Ultra Turrax T50, manufactured by IKA) was used.
Then, the mixture was dispersed in a heating oil bath while stirring to 47 ° C., and kept at 47 ° C. for 30 minutes to form aggregated particles. When a part of the obtained aggregated particles was observed with an optical microscope, the average particle size of the aggregated particles was about 4.0 μm.

【0178】−離型剤微粒子の付着− 前記の凝集粒子分散液に離型剤微粒子分散液(1)を緩
やかに3部追加し、さらに47℃で30分間加熱攪拌を
保持して凝集粒子表面に離型剤微粒子を付着させた。得
られた付着粒子の一部を光学顕微鏡で観察したところ、
平均粒径が約4.5μmの離型剤付着粒子が形成されて
いた。
-Attachment of release agent fine particles-The release agent fine particle dispersion liquid (1) is gently added to the above-mentioned aggregated particle dispersion liquid by 3 parts, and the mixture is further heated and stirred at 47 ° C for 30 minutes, and the surface of the aggregated particle surface is maintained. The release agent fine particles were adhered to the sample. When a part of the obtained adhered particles was observed with an optical microscope,
Release agent-adhered particles having an average particle size of about 4.5 μm were formed.

【0179】−表面被膜用樹脂微粒子の付着― 得られた離型剤付着粒子分散液中に、さらに樹脂微粒子
分散液(1)を穏やかに70部追加し、さらにオイルバ
スを加熱して48℃で1時間保持し、前記離型剤付着粒
子表面に樹脂微粒子を付着させた。得られた付着粒子を
光学顕微鏡で観察してところ、平均粒径が約5.2μm
の樹脂微粒子付着粒子が形成されていた。
-Attachment of Resin Fine Particles for Surface Coating-To the obtained release agent-adhered particle dispersion, gently add 70 parts of the resin fine particle dispersion (1), and further heat the oil bath to 48 ° C. For 1 hour to adhere resin fine particles to the surface of the release agent-adhered particles. Observation of the obtained adhered particles with an optical microscope revealed that the average particle size was about 5.2 μm.
Was formed.

【0180】−付着粒子の融合− アニオン性界面活性剤(第一工業製薬社製、ネオゲンS
C)6部をイオン交換水24部に溶解させたアニオン性
界面活性剤水溶液を調整し、前記付着粒子分散液に該界
面活性剤水溶液を穏やかに添加し、攪拌を継続させなが
ら97℃まで加熱して10時間保持し、前記付着粒子を
融合させた。その後、反応生成物をろ過し、イオン交換
水で十分に洗浄した後、真空乾燥機を用いて乾燥させて
トナー粒子を得た。
-Fusion of adhering particles- Anionic surfactant (Neogen S, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
C) Prepare an aqueous solution of an anionic surfactant in which 6 parts are dissolved in 24 parts of ion-exchanged water, gently add the aqueous solution of the surfactant to the adhered particle dispersion, and heat to 97 ° C. while continuing stirring. And held for 10 hours to fuse the adhered particles. Thereafter, the reaction product was filtered, sufficiently washed with ion-exchanged water, and dried using a vacuum dryer to obtain toner particles.

【0181】得られたトナー粒子の平均粒径D50は5.
4μmであり、トナー中の離型剤の含有量は0.33重
量%であった。また、TEMによりトナー粒子断面を観
測したところ、平均でトナー表面から0.01μm付近
の深さに、平均の厚みが0.008μmの離型剤層が形
成されていた。また、トナーの体積平均粒度分布指標G
SDv(D84V/D16V )が1.23であり、形状係数SF
1は138であった。さらに、このトナー粒子を外添剤
を添加せずに高温高湿環境(28℃、85%RH)、及
び低温低湿環境(10℃、30%RH)にそれぞれ12
時間放置した後、帯電量(μC/g)を測定したとこ
ろ、高温高湿環境の帯電量(Q/M)は−9μC/g、
低温低湿環境の帯電量は−18μC/gであった。得ら
れたトナー粒子100部に対して、コロイダルシリカ
(日本アエロジル社製、R972)1部を添加し、ヘン
シェルミキサーを用いて混合して静電荷像現像用トナー
を得た。
The average particle size D 50 of the obtained toner particles is 5.
4 μm, and the release agent content in the toner was 0.33% by weight. When the cross section of the toner particles was observed by TEM, a release agent layer having an average thickness of 0.008 μm was formed at a depth of about 0.01 μm from the toner surface on average. Further, the volume average particle size distribution index G of the toner
SDv (D 84V / D 16V) is 1.23, a shape factor SF
1 was 138. Further, the toner particles are added to a high-temperature and high-humidity environment (28 ° C., 85% RH) and a low-temperature and low-humidity environment (10 ° C., 30% RH) without adding an external additive.
After standing for a period of time, the charge amount (μC / g) was measured. The charge amount (Q / M) in a high-temperature and high-humidity environment was −9 μC / g.
The charge amount in a low-temperature and low-humidity environment was −18 μC / g. To 100 parts of the obtained toner particles, 1 part of colloidal silica (R972, manufactured by Nippon Aerosil Co., Ltd.) was added and mixed using a Henschel mixer to obtain a toner for developing an electrostatic image.

【0182】−静電荷像現像剤の作成― 前記静電荷像現像用トナーを用い、実施例1と同様にし
て二成分系静電荷像現像剤を作製した。この静電荷像現
像剤を用いて実施例1と同様に画質の評価を行い、結果
を表1に記載した。
-Preparation of Electrostatic Image Developer- A two-component electrostatic image developer was prepared in the same manner as in Example 1 using the electrostatic image developing toner. The image quality was evaluated in the same manner as in Example 1 using this electrostatic image developer, and the results are shown in Table 1.

【0183】 (比較例3) −凝集粒子の調製― 樹脂微粒子分散液(2) 360部 着色剤分散液(1) 15部 カチオン性界面活性剤(花王社製、サニゾールB50) 3部 イオン交換水 500部 前記成分を丸型ステンレス製フラスコ中に収容し、ホモ
ジナイザー(IKA社製、ウルトラタラックスT50)
を用いて分散させた後、加熱用オイルバス中で47℃ま
で攪拌しながら加熱し47℃で30分間保持して凝集粒
子を形成した。得られた凝集粒子の一部を光学顕微鏡で
観察したところ、凝集粒子の平均粒径は約4.6μmで
あった。
(Comparative Example 3) -Preparation of aggregated particles- Resin fine particle dispersion (2) 360 parts Colorant dispersion (1) 15 parts Cationic surfactant (Sanisol B50, manufactured by Kao Corporation) 3 parts Ion-exchanged water 500 parts The above-mentioned components were placed in a round stainless steel flask, and a homogenizer (Ultra Turrax T50, manufactured by IKA) was used.
Then, the mixture was dispersed in a heating oil bath while stirring to 47 ° C., and kept at 47 ° C. for 30 minutes to form aggregated particles. When a part of the obtained aggregated particles was observed with an optical microscope, the average particle size of the aggregated particles was about 4.6 μm.

【0184】−離型剤微粒子の付着− 前記の凝集粒子分散液に離型剤微粒子分散液(3)を緩
やかに3部追加し、さらに47℃で30分間加熱攪拌を
保持して、凝集粒子表面に離型剤微粒子を付着させた。
得られた付着粒子の一部を光学顕微鏡で観察したとこ
ろ、平均粒径が約4.9μmの離型剤付着粒子が形成さ
れていた。
-Attachment of release agent fine particles-To the above aggregated particle dispersion, gently add 3 parts of the release agent fine particle dispersion (3), and further, while heating and stirring at 47 ° C for 30 minutes, to obtain aggregated particles. Release agent fine particles were adhered to the surface.
When a part of the obtained adhered particles was observed with an optical microscope, the release agent adhered particles having an average particle size of about 4.9 μm were formed.

【0185】−表面被膜用樹脂微粒子の付着― 得られた離型剤付着粒子分散液中に、さらに樹脂微粒子
分散液(1)を穏やかに10部追加し、さらにオイルバ
スを加熱して48℃で1時間保持し、前記離型剤付着粒
子表面に樹脂微粒子を付着させた。得られた付着粒子を
光学顕微鏡で観察してところ、平均粒径が約5.0μm
の樹脂微粒子付着粒子が形成されていた。
-Attachment of Resin Fine Particles for Surface Coating-To the obtained release agent-attached particle dispersion, gently add 10 parts of resin fine particle dispersion (1), and further heat the oil bath to 48 ° C. For 1 hour to adhere resin fine particles to the surface of the release agent-adhered particles. Observation of the obtained adhered particles with an optical microscope revealed that the average particle size was about 5.0 μm.
Was formed.

【0186】−付着粒子の融合− アニオン性界面活性剤(第一工業製薬社製、ネオゲンS
C)22部をイオン交換水24部に溶解させたアニオン
性界面活性剤水溶液を調整し、前記付着粒子分散液に該
界面活性剤水溶液を穏やかに添加し、攪拌を継続させな
がら88℃まで加熱して5時間保持し、前記付着粒子を
融合させた。その後、反応生成物をろ過し、イオン交換
水で十分に洗浄した後、真空乾燥機を用いて乾燥させて
トナー粒子を得た。
-Fusion of adhered particles- Anionic surfactant (Neogen S manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
C) An aqueous solution of an anionic surfactant in which 22 parts were dissolved in 24 parts of ion-exchanged water was prepared, and the aqueous solution of the surfactant was gently added to the adhered particle dispersion, and heated to 88 ° C. while stirring was continued. And held for 5 hours to fuse the adhered particles. Thereafter, the reaction product was filtered, sufficiently washed with ion-exchanged water, and dried using a vacuum dryer to obtain toner particles.

【0187】得られたトナー粒子の平均粒径D50は6.
5μmであり、トナー中の離型剤の含有量は0.33重
量%であった。また、TEMによりトナー粒子断面を観
測したところ、トナー表面に離型剤が一部露出し、トナ
ー表面近傍に平均の厚みが0.3μmの離型剤層が形成
されていた。また、トナーの体積平均粒度分布指標GS
Dv(D84V/D16V )が1.25であり、形状係数SF1
は145であった。さらに、このトナー粒子を外添剤を
添加せずに高温高湿環境(28℃、85%RH)、及び
低温低湿環境(10℃、30%RH)にそれぞれ12時
間放置した後、帯電量(μC/g)を測定したところ、
高温高湿環境の帯電量(Q/M)は−8μC/g、低温
低湿環境の帯電量は−11μC/gであった。得られた
トナー粒子100部に対して、コロイダルシリカ(日本
アエロジル社製、R972)1部を添加し、ヘンシェル
ミキサーを用いて混合して静電荷像現像用トナーを得
た。
The average particle size D 50 of the obtained toner particles is 6.
5 μm, and the content of the release agent in the toner was 0.33% by weight. Further, when the cross section of the toner particles was observed by TEM, a part of the release agent was exposed on the toner surface, and a release agent layer having an average thickness of 0.3 μm was formed near the toner surface. Further, the volume average particle size distribution index GS of the toner
Dv ( D84V / D16V ) is 1.25, and the shape factor SF1
Was 145. Further, the toner particles were left in a high-temperature and high-humidity environment (28 ° C., 85% RH) and a low-temperature and low-humidity environment (10 ° C., 30% RH) for 12 hours without adding an external additive. μC / g)
The charge (Q / M) in a high-temperature and high-humidity environment was −8 μC / g, and the charge in a low-temperature and low-humidity environment was −11 μC / g. To 100 parts of the obtained toner particles, 1 part of colloidal silica (R972, manufactured by Nippon Aerosil Co., Ltd.) was added and mixed using a Henschel mixer to obtain a toner for developing an electrostatic image.

【0188】−静電荷像現像剤の作成― 前記静電荷像現像用トナーを用い、実施例1と同様にし
て二成分系静電荷像現像剤を作製した。この静電荷像現
像剤を用いて実施例1と同様に画質の評価を行い、結果
を表1に記載した。
-Preparation of Electrostatic Image Developer- A two-component electrostatic image developer was prepared in the same manner as in Example 1 using the electrostatic image developing toner. The image quality was evaluated in the same manner as in Example 1 using this electrostatic image developer, and the results are shown in Table 1.

【0189】 (比較例4) −凝集粒子の調製― 樹脂微粒子分散液(1) 300部 着色剤分散液(1) 15部 カチオン性界面活性剤(花王社製、サニゾールB50) 3部 イオン交換水 500部 前記成分を丸型ステンレス製フラスコ中に収容し、ホモ
ジナイザー(IKA社製、ウルトラタラックスT50)
を用いて分散させた後、加熱用オイルバス中で47℃ま
で攪拌しながら加熱し47℃で30分間保持して凝集粒
子を形成した。得られた凝集粒子の一部を光学顕微鏡で
観察したところ、凝集粒子の平均粒径は約4.6μmで
あった。
(Comparative Example 4) -Preparation of aggregated particles- Resin fine particle dispersion (1) 300 parts Colorant dispersion (1) 15 parts Cationic surfactant (Sanisol B50, manufactured by Kao Corporation) 3 parts Ion-exchanged water 500 parts The above-mentioned components were placed in a round stainless steel flask, and a homogenizer (Ultra Turrax T50, manufactured by IKA) was used.
Then, the mixture was dispersed in a heating oil bath while stirring to 47 ° C., and kept at 47 ° C. for 30 minutes to form aggregated particles. When a part of the obtained aggregated particles was observed with an optical microscope, the average particle size of the aggregated particles was about 4.6 μm.

【0190】−離型剤微粒子の付着− 前記の凝集粒子分散液に離型剤微粒子分散液(1)を緩
やかに30部追加し、さらに47℃で30分間加熱攪拌
を保持して凝集粒子表面に離型剤微粒子を付着させた。
得られた付着粒子の一部を光学顕微鏡で観察したとこ
ろ、平均粒径が約4.9μmの離型剤付着粒子が形成さ
れていた。
-Attachment of release agent fine particles-To the above aggregated particle dispersion, gently add 30 parts of the release agent fine particle dispersion (1), and further, while heating and stirring at 47 ° C for 30 minutes, keep the aggregated particle surface. The release agent fine particles were adhered to the sample.
When a part of the obtained adhered particles was observed with an optical microscope, the release agent adhered particles having an average particle size of about 4.9 μm were formed.

【0191】−表面被膜用樹脂微粒子の付着― 得られた離型剤付着粒子分散液中に、さらに樹脂微粒子
分散液(1)を穏やかに70部追加し、さらにオイルバ
スを加熱して48℃で1時間保持し、前記離型剤付着粒
子表面に樹脂微粒子を付着させた。得られた付着粒子を
光学顕微鏡で観察してところ、平均粒径が約5.1μm
の樹脂微粒子付着粒子が形成されていた。
-Attachment of Resin Fine Particles for Surface Coating-To the obtained release agent-attached particle dispersion, gently add 70 parts of the resin fine particle dispersion (1), and further heat the oil bath to 48 ° C. For 1 hour to adhere resin fine particles to the surface of the release agent-adhered particles. Observation of the obtained adhered particles with an optical microscope revealed that the average particle size was about 5.1 μm.
Was formed.

【0192】−付着粒子の融合− アニオン性界面活性剤(第一工業製薬社製、ネオゲンS
C)6部をイオン交換水24部に溶解させたアニオン性
界面活性剤水溶液を調整し、前記付着粒子分散液に該界
面活性剤水溶液を穏やかに添加し、攪拌を継続させなが
ら66℃まで加熱して30時間保持し、前記付着粒子を
融合させた。その後、反応生成物をろ過し、イオン交換
水で十分に洗浄した後、真空乾燥機を用いて乾燥させて
トナー粒子を得た。
-Fusion of attached particles- Anionic surfactant (Neogen S, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
C) An aqueous solution of an anionic surfactant in which 6 parts were dissolved in 24 parts of ion-exchanged water was prepared, and the aqueous solution of the surfactant was gently added to the adhered particle dispersion, and heated to 66 ° C. while stirring was continued. And held for 30 hours to fuse the adhered particles. Thereafter, the reaction product was filtered, sufficiently washed with ion-exchanged water, and dried using a vacuum dryer to obtain toner particles.

【0193】得られたトナー粒子の平均粒径D50は5.
5μmであり、トナー中の離型剤の含有量は3.3重量
%であった。また、TEMによりトナー粒子断面を観測
したところ、平均でトナー表面から0.2μm付近の深
さに、平均の厚みが0.2μmの離型剤層が形成されて
いた。また、トナーの体積平均粒度分布指標GSDv
(D84V/D16V )が1.27であり、形状係数SF1は1
41であった。さらに、このトナー粒子を外添剤を添加
せずに高温高湿環境(28℃、85%RH)、及び低温
低湿環境(10℃、30%RH)にそれぞれ12時間放
置した後、帯電量(μC/g)を測定したところ、高温
高湿環境の帯電量(Q/M)は−19μC/g、低温低
湿環境の帯電量は−23μC/gと良好な帯電特性を示
した。得られたトナー粒子100部に対して、コロイダ
ルシリカ(日本アエロジル社製、R972)1部を添加
し、ヘンシェルミキサーを用いて混合して静電荷像現像
用トナーを得た。
The average particle size D 50 of the obtained toner particles is 5.
5 μm, and the release agent content in the toner was 3.3% by weight. When the cross section of the toner particles was observed by TEM, a release agent layer having an average thickness of 0.2 μm was formed at a depth of about 0.2 μm from the toner surface on average. In addition, the volume average particle size distribution index GSDv of the toner
( D84V / D16V ) is 1.27 and the shape factor SF1 is 1
41. Further, the toner particles were left in a high-temperature and high-humidity environment (28 ° C., 85% RH) and a low-temperature and low-humidity environment (10 ° C., 30% RH) for 12 hours without adding an external additive. As a result, the charge amount (Q / M) in a high-temperature and high-humidity environment was −19 μC / g, and the charge amount in a low-temperature and low-humidity environment was −23 μC / g. To 100 parts of the obtained toner particles, 1 part of colloidal silica (R972, manufactured by Nippon Aerosil Co., Ltd.) was added and mixed using a Henschel mixer to obtain a toner for developing an electrostatic image.

【0194】−静電荷像現像剤の作成― 前記静電荷像現像用トナーを用い、実施例1と同様にし
て二成分系静電荷像現像剤を作製した。この静電荷像現
像剤を用いて実施例1と同様に画質の評価を行い、結果
を表1に記載した。
-Preparation of Electrostatic Image Developer- A two-component electrostatic image developer was prepared in the same manner as in Example 1 using the toner for developing an electrostatic image. The image quality was evaluated in the same manner as in Example 1 using this electrostatic image developer, and the results are shown in Table 1.

【0195】(実施例8)実施例1で画質の評価に用い
た富士ゼロックス社製VIVACE400改造機のクリ
ーナー部よりトナーを回収し、回収トナー10部と、実
施例1で用いたトナー90部を混合して新たなトナーを
調製し、実施例1と同様に二成分系の静電荷像現像剤を
作製した。この静電荷像現像剤を、実施例1と同様にし
て画像形成を行い、画質の評価を行った。結果は表1に
記載した。
(Embodiment 8) The toner was recovered from the cleaner section of a modified model of Fuji Xerox's VIVACE 400 used for evaluating the image quality in Example 1, and 10 parts of the recovered toner and 90 parts of the toner used in Example 1 were collected. The mixture was mixed to prepare a new toner, and a two-component electrostatic image developer was prepared in the same manner as in Example 1. An image was formed from this electrostatic image developer in the same manner as in Example 1, and the image quality was evaluated. The results are shown in Table 1.

【0196】(実施例9)実施例1で画質の評価に用い
た富士ゼロックス社製VIVACE400改造機のクリ
ーナー部のうち、クリーナーブラシとクリーニングブレ
ードを取り外し、実施例1と同様に二成分系の静電荷像
現像剤を作製し、この静電荷像現像剤について、実施例
1と同様にして画像形成を行い、画質の評価を行った。
結果は表1に記載した。
Example 9 A cleaner brush and a cleaning blade were removed from the cleaner part of the modified model of VIVACE 400 manufactured by Fuji Xerox Co., Ltd. used for evaluating the image quality in Example 1, and the two-component static electricity was removed in the same manner as in Example 1. A charge image developer was prepared, an image was formed on the electrostatic image developer in the same manner as in Example 1, and the image quality was evaluated.
The results are shown in Table 1.

【0197】 (実施例10) −凝集粒子の調製― 樹脂微粒子分散液(1) 300部 着色剤分散液(1) 15部 塩化亜鉛 1部 イオン交換水 500部 上記成分を丸型ステンレス製フラスコ中に収容し、ホモ
ジナイザー(IKA社製、ウルトラタラックスT50)
を用いて分散した後、加熱用オイルバスで43℃まで攪
拌しながら加熱し、43℃で30分間保持して凝集粒子
を形成した
(Example 10) -Preparation of aggregated particles- Resin fine particle dispersion liquid (1) 300 parts Colorant dispersion liquid (1) 15 parts Zinc chloride 1 part Ion-exchanged water 500 parts The above components were placed in a round stainless steel flask. And a homogenizer (IKA, Ultra Turrax T50)
And then heated to 43 ° C. while stirring in an oil bath for heating, and kept at 43 ° C. for 30 minutes to form aggregated particles.

【0198】−離型剤微粒子の付着― 前記凝集粒子分散液中に、離型剤微粒子分散液(2)を
緩やかに390部追加し、さらに43℃で30分間加熱
攪拌して凝集粒子表面に離型剤微粒子を付着させた。得
られた付着粒子の一部を光学顕微鏡で観察したところ、
平均粒径が約4.8μmの離型剤付着粒子が形成されて
いた。
-Attachment of release agent fine particles-To the aggregated particle dispersion, 390 parts of a release agent fine particle dispersion (2) is gently added, and the mixture is further heated and stirred at 43 ° C for 30 minutes to form a surface of the aggregated particles. Release agent fine particles were adhered. When a part of the obtained adhered particles was observed with an optical microscope,
Release agent-adhered particles having an average particle size of about 4.8 μm were formed.

【0199】−表面被膜用樹脂微粒子の付着― 前記離型剤付着粒子分散液中に、樹脂微粒子分散液
(1)を穏やかに90部追加し、加熱用オイルバスの温
度を上げて45℃で1時間保持して前記の離型剤付着粒
子表面に樹脂微粒子を付着させた。得られた付着粒子の
一部を光学顕微鏡で観察したところ、平均粒径が約5.
4μmの樹脂微粒子付着粒子が形成されていた。
-Attachment of resin fine particles for surface coating-90 parts of resin fine particle dispersion liquid (1) was gently added to the release agent-adhered particle dispersion liquid, and the temperature of the heating oil bath was increased to 45 ° C. After holding for 1 hour, resin fine particles were adhered to the surface of the release agent-adhered particles. When a part of the obtained adhered particles was observed with an optical microscope, the average particle diameter was about 5.0.
Resin fine particle-adhered particles of 4 μm were formed.

【0200】−付着粒子の融合− アニオン性界面活性剤(第一工業製薬社製、ネオゲンS
C)6部をイオン交換水24部に溶解させたアニオン性
界面活性剤水溶液を調整し、前記樹脂微粒子付着粒子分
散液に該界面活性剤水溶液を穏やかに添加した後、攪拌
を継続しながら92℃まで加熱して5時間保持し、前記
付着粒子を融合させた。その後、反応生成物をろ過し、
イオン交換水で十分に洗浄した後、真空乾燥機を用いて
乾燥させ、トナー粒子を得た。
-Fusion of adhered particles- Anionic surfactant (Neogen S, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
C) An aqueous solution of an anionic surfactant in which 6 parts were dissolved in 24 parts of ion-exchanged water was prepared, and the aqueous solution of the surfactant was gently added to the dispersion liquid of fine resin particle-adhered particles. C. and maintained for 5 hours to fuse the adhered particles. Then, the reaction product is filtered,
After being sufficiently washed with ion-exchanged water, it was dried using a vacuum drier to obtain toner particles.

【0201】得られたトナー粒子の平均粒径D50は5.
4μmであり、トナー中の離型剤の含有量は42.9重
量%であった。また、TEMによりトナー粒子断面を観
察したところ、平均でトナー表面から0.01μm付近
の深さに、平均の厚みが2.0μmの離型剤層が形成さ
れていた。また、トナーの体積平均粒度分布指標GSD
v(D84V/D16V )が1.26であり、形状係数SF1は
140であった。さらに、このトナー粒子を外添剤を添
加せずに高温高湿環境(28℃、85%RH)、及び低
温低湿環境(10℃、30%RH)にそれぞれ12時間
放置した後、帯電量(μC/g)を測定したところ、高
温高湿環境の帯電量(Q/M)は18μC/g、低温低
湿環境の帯電量は24μC/gと良好な帯電特性を示し
た。得られたトナー粒子100部に対して、コロイダル
シリカ(日本アエロジル社製、R972)1部を添加
し、ヘンシェルミキサーを用いて混合することにより静
電荷像現像用トナーを得た。
The average particle size D 50 of the obtained toner particles is 5.
4 μm, and the content of the release agent in the toner was 42.9% by weight. When the cross section of the toner particles was observed by TEM, a release agent layer having an average thickness of 2.0 μm was formed at a depth of about 0.01 μm from the toner surface on average. Further, the volume average particle size distribution index GSD of the toner
v ( D84V / D16V ) was 1.26, and the shape factor SF1 was 140. Further, the toner particles were left in a high-temperature and high-humidity environment (28 ° C., 85% RH) and a low-temperature and low-humidity environment (10 ° C., 30% RH) for 12 hours without adding an external additive. As a result, the charge amount (Q / M) in a high-temperature and high-humidity environment was 18 μC / g, and the charge amount in a low-temperature and low-humidity environment was 24 μC / g. One part of colloidal silica (R972, manufactured by Nippon Aerosil Co., Ltd.) was added to 100 parts of the obtained toner particles, and mixed with a Henschel mixer to obtain a toner for developing an electrostatic image.

【0202】−静電荷像現像剤の作成― フェライト粒子(パウダーテック社製、平均粒径50μ
m)100部とメチルメタクリレート樹脂(三菱レイヨ
ン社製、分子量95000)1.5部を、トルエン50
0部と共に加圧式ニーダーに入れ、常温で15分間攪拌
混合した後、減圧混合しながら70℃まで昇温してトル
エンを留去し、その後冷却し、105μmの篩を用いて
分級して樹脂被覆フェライトキャリアを得た。この樹脂
被覆フェライトキャリアと、前記静電荷像現像用トナー
とを混合し、トナー濃度が7重量%の二成分系静電荷像
現像剤を作製した。この静電荷像現像剤を用いて前記の
通り画像を形成して画質の評価を行った。結果は表1に
記載した。
-Preparation of electrostatic image developer- Ferrite particles (manufactured by Powder Tech, average particle size 50 μm)
m) 100 parts of methyl methacrylate resin (manufactured by Mitsubishi Rayon Co., Ltd., molecular weight 95,000) was mixed with 1.5 parts of toluene 50
0 parts together with a pressure-type kneader, stirred and mixed at room temperature for 15 minutes, heated to 70 ° C. while mixing under reduced pressure to distill off toluene, then cooled and classified using a 105 μm sieve to coat the resin. A ferrite carrier was obtained. This resin-coated ferrite carrier and the toner for developing an electrostatic image were mixed to prepare a two-component electrostatic image developer having a toner concentration of 7% by weight. An image was formed using the electrostatic image developer as described above, and the image quality was evaluated. The results are shown in Table 1.

【0203】(実施例11) −凝集粒子の調製― 樹脂微粒子分散液(1) 150部 着色剤分散液(1) 15部 塩化亜鉛 0.3部 イオン交換水 500部 前記成分を丸型ステンレス製フラスコ中に収容し、ホモ
ジナイザー(IKA社製、ウルトラタラックスT50)
を用いて分散させた後、加熱用オイルバス中で49℃ま
で攪拌しながら加熱し、49℃で30分間保持して凝集
粒子を形成した。
(Example 11) -Preparation of agglomerated particles- Resin fine particle dispersion liquid (1) 150 parts Colorant dispersion liquid (1) 15 parts Zinc chloride 0.3 parts Deionized water 500 parts The above components were made of round stainless steel. Stored in a flask and homogenized (Ultra Turrax T50, manufactured by IKA)
Then, the mixture was dispersed in a heating oil bath while being heated to 49 ° C. with stirring, and kept at 49 ° C. for 30 minutes to form aggregated particles.

【0204】−離型剤微粒子の付着− 前記の凝集粒子分散液に離型剤微粒子分散液(1)を緩
やかに80部追加し、さらに49℃で30分間加熱攪拌
を保持して凝集粒子表面に離型剤微粒子を付着させた。
その付着粒子の一部を光学顕微鏡で観察したところ、平
均粒径が約5.2μmの離型剤付着粒子が形成されてい
た。
-Attachment of release agent fine particles-80 parts of the release agent fine particle dispersion (1) is gently added to the above-mentioned aggregated particle dispersion, and the mixture is further heated and stirred at 49 ° C for 30 minutes, and the surface of the aggregated particles is maintained. The release agent fine particles were adhered to the sample.
Observation of a part of the adhered particles with an optical microscope revealed that the release agent-adhered particles having an average particle size of about 5.2 μm were formed.

【0205】−表面被膜用樹脂微粒子の付着― 得られた離型剤付着粒子分散液中に、さらに樹脂微粒子
分散液(1)を穏やかに380部追加し、加熱用オイル
バスの温度を51℃に上げて2時間保持し、前記離型剤
付着粒子表面に樹脂微粒子を付着させた。得られた付着
粒子を光学顕微鏡で観察してところ、平均粒径が約5.
7μmの樹脂微粒子付着粒子が形成されていた。
-Attachment of Resin Fine Particles for Surface Coating-To the obtained release agent-attached particle dispersion, 380 parts of the resin fine particle dispersion (1) was gently added, and the temperature of the heating oil bath was set at 51 ° C. And kept for 2 hours to adhere resin fine particles to the surface of the release agent-adhered particles. Observation of the obtained adhered particles with an optical microscope revealed that the average particle size was about 5.
7 μm resin adhered particles were formed.

【0206】−付着粒子の融合− 51℃における前記樹脂微粒子付着粒子分散液のpHを
測定したところ3.5であった。この分散液に1NのN
aOH水溶液を添加して51℃におけるpHを6に調整
し、前記付着粒子を安定化した後、攪拌を継続させなが
ら92℃まで加熱して5時間保持し、前記付着粒子を融
合させた。その後、反応生成物をろ過し、イオン交換水
で十分に洗浄した後、真空乾燥機を用いて乾燥させてト
ナー粒子を得た。
—Fusing of Adhered Particles— The pH of the dispersion liquid of resin fine particle adhered particles at 51 ° C. was measured to be 3.5. 1N N
After adjusting the pH at 51 ° C. to 6 by adding an aOH aqueous solution to stabilize the adhered particles, the mixture was heated to 92 ° C. while maintaining stirring and maintained for 5 hours to fuse the adhered particles. Thereafter, the reaction product was filtered, sufficiently washed with ion-exchanged water, and dried using a vacuum dryer to obtain toner particles.

【0207】得られたトナー粒子の平均粒径D50は6.
0μmであり、トナー中の離型剤の含有量は9重量%で
あった。また、TEMによりトナー粒子断面を観察した
ところ、平均でトナー表面から1.1μm付近の深さ
に、平均の厚みが0.8μmの離型剤層が形成されてい
た。また、トナーの体積平均粒度分布指標GSDv(D8
4V/D16V )が1.24であり、形状係数SF1は124
であった。さらに、このトナー粒子を外添剤を添加せず
に高温高湿環境(28℃、85%RH)、及び低温低湿
環境(10℃、30%RH)にそれぞれ12時間放置し
た後、帯電量(μC/g)を測定したところ、高温高湿
環境の帯電量(Q/M)は19μC/g、低温低湿環境
の帯電量は26μC/gと良好な帯電特性を示した。得
られたトナー粒子100部に対して、コロイダルシリカ
(日本アエロジル社製、R972)1部を添加し、ヘン
シェルミキサーを用いて混合することにより静電荷像現
像用トナーを得た。
The average particle size D 50 of the obtained toner particles is 6.
0 μm, and the content of the release agent in the toner was 9% by weight. Further, when the cross section of the toner particles was observed by TEM, a release agent layer having an average thickness of 0.8 μm was formed at a depth of about 1.1 μm from the toner surface on average. Further, the volume average particle size distribution index GSDv (D 8
4V / D16V ) is 1.24 and the shape factor SF1 is 124
Met. Further, the toner particles were left in a high-temperature and high-humidity environment (28 ° C., 85% RH) and a low-temperature and low-humidity environment (10 ° C., 30% RH) for 12 hours without adding an external additive. As a result, the charge amount (Q / M) in a high-temperature and high-humidity environment was 19 μC / g, and the charge amount in a low-temperature and low-humidity environment was 26 μC / g. One part of colloidal silica (R972, manufactured by Nippon Aerosil Co., Ltd.) was added to 100 parts of the obtained toner particles, and mixed with a Henschel mixer to obtain a toner for developing an electrostatic image.

【0208】−静電荷像現像剤の作成― 前記静電荷像現像用トナーを用い、実施例1と同様にし
て二成分系静電荷像現像剤を作製した。この静電荷像現
像剤を用いて実施例10と同様に画質の評価を行い、結
果を表1に記載した。
-Preparation of Electrostatic Image Developer- A two-component electrostatic image developer was prepared in the same manner as in Example 1 using the electrostatic image developing toner. The image quality was evaluated in the same manner as in Example 10 using this electrostatic image developer, and the results are shown in Table 1.

【0209】 (実施例12) −凝集粒子の調製― 樹脂微粒子分散液(1) 280部 着色剤分散液(1) 15部 塩化亜鉛 0.1部 イオン交換水 500部 前記成分を丸型ステンレス製フラスコ中に収容し、ホモ
ジナイザー(IKA社製、ウルトラタラックスT50)
を用いて分散させた後、加熱用オイルバス中で48℃ま
で攪拌しながら加熱し48℃で40分間保持して凝集粒
子を形成した。
(Example 12) -Preparation of agglomerated particles- Resin fine particle dispersion (1) 280 parts Colorant dispersion (1) 15 parts Zinc chloride 0.1 part Ion-exchanged water 500 parts The above components were made of round stainless steel. Stored in a flask and homogenized (Ultra Turrax T50, manufactured by IKA)
Then, the mixture was dispersed in a heating oil bath while being heated to 48 ° C. with stirring, and kept at 48 ° C. for 40 minutes to form aggregated particles.

【0210】−離型剤微粒子の付着− 前記凝集粒子分散液に離型剤微粒子分散液(1)を緩や
かに40部追加し、さらに48℃で30分間加熱攪拌を
保持して、凝集粒子表面に離型剤微粒子を付着させた。
得られた付着粒子の一部を光学顕微鏡で観察したとこ
ろ、平均粒径が約5.6μmの離型剤付着粒子が形成さ
れていた。
-Attachment of release agent fine particles-The release agent fine particle dispersion liquid (1) was gently added to the aggregated particle dispersion liquid by 40 parts, and the mixture was further heated and stirred at 48 ° C for 30 minutes. The release agent fine particles were adhered to the sample.
When a part of the obtained adhered particles was observed with an optical microscope, the release agent adhered particles having an average particle size of about 5.6 μm were formed.

【0211】−表面被膜用樹脂微粒子の付着― 得られた離型剤付着粒子分散液中に、さらに樹脂微粒子
分散液(1)を穏やかに50部追加し、加熱用オイルバ
スの温度を49℃に上げて1時間保持し、前記離型剤付
着粒子表面に樹脂微粒子を付着させた。得られた付着粒
子を光学顕微鏡で観察してところ、平均粒径が約5.6
μmの樹脂微粒子付着粒子が形成されていた。
-Attachment of Resin Fine Particles for Surface Coating-To the obtained release agent-attached particle dispersion, 50 parts of the resin fine particle dispersion (1) was gently added, and the temperature of the heating oil bath was set to 49 ° C. And held for 1 hour to adhere resin fine particles to the surface of the release agent-adhered particles. Observation of the obtained adhered particles with an optical microscope revealed that the average particle size was about 5.6.
Resin fine particle-adhered particles of μm were formed.

【0212】−付着粒子の融合− 49℃における前記樹脂微粒子付着粒子分散液のpHを
測定したところ3.5であった。この分散液に1NのN
aOH水溶液を添加して49℃におけるpHを10に調
整し、前記付着粒子を安定化した後、攪拌を継続させな
がら97℃まで加熱して7時間保持し、前記付着粒子を
融合させた。その後、反応生成物をろ過し、イオン交換
水で十分に洗浄した後、真空乾燥機を用いて乾燥させて
トナー粒子を得た。
-Fusion of Adhered Particles- The pH of the resin fine particle adhered particle dispersion at 49 ° C. was 3.5. 1N N
After adjusting the pH at 49 ° C. to 10 by adding an aOH aqueous solution and stabilizing the adhered particles, the mixture was heated to 97 ° C. and kept for 7 hours while continuing stirring to fuse the adhered particles. Thereafter, the reaction product was filtered, sufficiently washed with ion-exchanged water, and dried using a vacuum dryer to obtain toner particles.

【0213】得られたトナー粒子の平均粒径D50は5.
9μmであり、トナー中の離型剤の含有量は4.6重量
%であった。また、TEMによりトナー粒子断面を観察
したところ、平均でトナー表面から0.5μm付近の深
さに、平均の厚みが0.2μmの離型剤層が形成されて
いた。また、トナーの体積平均粒度分布指標GSDv
(D84V/D16V )が1.24であり、形状係数SF1は1
03であった。さらに、このトナー粒子を外添剤を添加
せずに高温高湿環境(28℃、85%RH)、及び低温
低湿環境(10℃、30%RH)にそれぞれ12時間放
置した後、帯電量(μC/g)を測定したところ、高温
高湿環境の帯電量(Q/M)は−15μC/g、低温低
湿環境の帯電量は−18μC/gと良好な帯電特性を示
した。得られたトナー粒子100部に対して、コロイダ
ルシリカ(日本アエロジル社製、R972)1部を添加
し、ヘンシェルミキサーを用いて混合することにより静
電荷像現像用トナーを得た。
The average particle size D 50 of the obtained toner particles is 5.
9 μm, and the content of the release agent in the toner was 4.6% by weight. When the cross section of the toner particles was observed by TEM, a release agent layer having an average thickness of 0.2 μm was formed at a depth of about 0.5 μm from the toner surface on average. In addition, the volume average particle size distribution index GSDv of the toner
( D84V / D16V ) is 1.24 and the shape factor SF1 is 1
03. Further, the toner particles were left in a high-temperature and high-humidity environment (28 ° C., 85% RH) and a low-temperature and low-humidity environment (10 ° C., 30% RH) for 12 hours without adding an external additive. As a result, the charge amount (Q / M) in a high-temperature and high-humidity environment was −15 μC / g, and the charge amount in a low-temperature and low-humidity environment was −18 μC / g. One part of colloidal silica (R972, manufactured by Nippon Aerosil Co., Ltd.) was added to 100 parts of the obtained toner particles, and mixed with a Henschel mixer to obtain a toner for developing an electrostatic image.

【0214】−静電荷像現像剤の作成― 前記静電荷像現像用トナーを用い、実施例10と同様に
して二成分系静電荷像現像剤を作製した。この静電荷像
現像剤を用いて実施例10と同様に画質の評価を行い、
結果を表1に記載した。
-Preparation of Electrostatic Image Developer- A two-component electrostatic image developer was prepared in the same manner as in Example 10, except that the toner for developing an electrostatic image was used. The image quality was evaluated in the same manner as in Example 10 using this electrostatic image developer.
The results are shown in Table 1.

【0215】 (実施例13) −凝集粒子の調製― 樹脂微粒子分散液(1) 260部 着色剤分散液(1) 15部 離型剤分散液(2) 20部 硫酸マグネシウム 0.2部 イオン交換水 500部 前記成分を丸型ステンレス製フラスコ中に収容し、ホモ
ジナイザー(IKA社製、ウルトラタラックスT50)
を用いて分散させた後、加熱用オイルバス中で52℃ま
で攪拌しながら加熱し52℃で40分間保持して凝集粒
子を形成した。
Example 13 Preparation of Aggregated Particles Resin Fine Particle Dispersion (1) 260 parts Colorant Dispersion (1) 15 parts Release Agent Dispersion (2) 20 parts Magnesium sulfate 0.2 part Ion exchange 500 parts of water The above-mentioned components are accommodated in a round stainless steel flask, and a homogenizer (IKA, Ultra Turrax T50) is used.
Then, the mixture was dispersed in a heating oil bath while stirring to 52 ° C., and kept at 52 ° C. for 40 minutes to form aggregated particles.

【0216】−離型剤微粒子の付着− 前記凝集粒子分散液に離型剤微粒子分散液(1)を緩や
かに30部追加し、さらに49℃で60分間加熱攪拌を
保持して凝集粒子表面に離型剤微粒子を付着させた。得
られた付着粒子の一部を光学顕微鏡で観察したところ、
平均粒径が約5.7μmの離型剤付着粒子が形成されて
いた。
-Attachment of Release Agent Fine Particles-To the aggregated particle dispersion, gently add 30 parts of the release agent fine particle dispersion (1), and further, while heating and stirring at 49 ° C for 60 minutes, to the surface of the aggregated particles. Release agent fine particles were adhered. When a part of the obtained adhered particles was observed with an optical microscope,
Release agent-adhered particles having an average particle size of about 5.7 μm were formed.

【0217】−表面被膜用樹脂微粒子の付着― 得られた離型剤付着粒子分散液中に、さらに樹脂微粒子
分散液(2)を穏やかに150部追加し、加熱用オイル
バスの温度を53℃に上げて2時間保持し、前記離型剤
付着粒子表面に樹脂微粒子を付着させた。得られた付着
粒子を光学顕微鏡で観察してところ、平均粒径が約6.
2μmの樹脂微粒子付着粒子が形成されていた。
-Attachment of Resin Fine Particles for Surface Coating-To the obtained release agent-attached particle dispersion, 150 parts of resin fine particle dispersion (2) was gently added, and the temperature of the oil bath for heating was set to 53 ° C. And kept for 2 hours to adhere resin fine particles to the surface of the release agent-adhered particles. Observation of the obtained adhered particles with an optical microscope revealed that the average particle size was about 6.
Resin fine particle-adhered particles of 2 μm were formed.

【0218】−付着粒子の融合− 53℃における前記樹脂微粒子付着粒子分散液のpHを
測定したところ3.5であった。この分散液に1NのN
aOH水溶液を添加して53℃におけるpHを10に調
整し、前記付着粒子を安定化した後、攪拌を継続させな
がら97℃まで加熱して7時間保持し、前記付着粒子を
融合させた。その後、反応生成物をろ過し、イオン交換
水で十分に洗浄した後、真空乾燥機を用いて乾燥させて
トナー粒子を得た。
-Fusion of Adhered Particles- The pH of the dispersion liquid of resin fine particle adhered particles at 53 ° C. was measured to be 3.5. 1N N
After adjusting the pH at 53 ° C. to 10 by adding an aOH aqueous solution to stabilize the adhered particles, the mixture was heated to 97 ° C. while maintaining stirring and maintained for 7 hours to fuse the adhered particles. Thereafter, the reaction product was filtered, sufficiently washed with ion-exchanged water, and dried using a vacuum dryer to obtain toner particles.

【0219】得られたトナー粒子の平均粒径D50は6.
5μmであり、トナー中の離型剤の含有量は3.3重量
%であった。また、TEMによりトナー粒子断面を観察
したところ、平均でトナー表面から0.4μm付近の深
さに、平均の厚みが0.09μmの離型剤層が形成され
ていた。また、トナーの体積平均粒度分布指標GSDv
(D84V/D16V )が1.23であり、形状係数SF1は1
17であった。さらに、このトナー粒子を外添剤を添加
せずに高温高湿環境(28℃、85%RH)、及び低温
低湿環境(10℃、30%RH)にそれぞれ12時間放
置した後、帯電量(μC/g)を測定したところ、高温
高湿環境の帯電量(Q/M)は−15μC/g、低温低
湿環境の帯電量は−19μC/gと良好な帯電特性を示
した。得られたトナー粒子100部に対して、コロイダ
ルシリカ(日本アエロジル社製、R972)1部を添加
し、ヘンシェルミキサーを用いて混合することにより静
電荷像現像用トナーを得た。
The average particle size D 50 of the obtained toner particles is 6.
5 μm, and the release agent content in the toner was 3.3% by weight. Further, when the cross section of the toner particles was observed by TEM, a release agent layer having an average thickness of 0.09 μm was formed at a depth of about 0.4 μm from the toner surface on average. In addition, the volume average particle size distribution index GSDv of the toner
( D84V / D16V ) is 1.23, and the shape factor SF1 is 1
It was 17. Further, the toner particles were left in a high-temperature and high-humidity environment (28 ° C., 85% RH) and a low-temperature and low-humidity environment (10 ° C., 30% RH) for 12 hours without adding an external additive. As a result, the charge amount (Q / M) in a high-temperature and high-humidity environment was −15 μC / g, and the charge amount in a low-temperature and low-humidity environment was −19 μC / g, indicating good charging characteristics. One part of colloidal silica (R972, manufactured by Nippon Aerosil Co., Ltd.) was added to 100 parts of the obtained toner particles, and mixed with a Henschel mixer to obtain a toner for developing an electrostatic image.

【0220】−静電荷像現像剤の作成― 前記静電荷像現像用トナーを用い、実施例10と同様に
して二成分系静電荷像現像剤を作製した。この静電荷像
現像剤を用いて実施例10と同様に画質の評価を行い、
結果を表1に記載した。
-Preparation of Electrostatic Image Developer- A two-component electrostatic image developer was prepared in the same manner as in Example 10 using the electrostatic image developing toner. The image quality was evaluated in the same manner as in Example 10 using this electrostatic image developer.
The results are shown in Table 1.

【0221】 (実施例14) −凝集粒子の調製― 樹脂微粒子分散液(1) 260部 着色剤分散液(1) 20部 塩化第二鉄 0.6部 イオン交換水 500部 前記成分を丸型ステンレス製フラスコ中に収容し、ホモ
ジナイザー(IKA社製、ウルトラタラックスT50)
を用いて分散させた後、加熱用オイルバス中で42℃ま
で攪拌しながら加熱し42℃で60分間保持して凝集粒
子を形成した。
(Example 14) -Preparation of aggregated particles- Resin fine particle dispersion (1) 260 parts Colorant dispersion (1) 20 parts Ferric chloride 0.6 parts Ion-exchanged water 500 parts Housed in a stainless steel flask and homogenized (IKA, Ultra Turrax T50)
And then heated in an oil bath for heating with stirring to 42 ° C. and kept at 42 ° C. for 60 minutes to form aggregated particles.

【0222】−離型剤微粒子の付着− 前記凝集粒子分散液に離型剤微粒子分散液(2)を緩や
かに50部追加し、さらに42℃で80分間加熱攪拌を
保持して凝集粒子表面に離型剤微粒子を付着させた。得
られた付着粒子の一部を光学顕微鏡で観察したところ、
平均粒径が約4.2μmの離型剤付着粒子が形成されて
いた。
-Attachment of Release Agent Fine Particles-To the aggregated particle dispersion, slowly add 50 parts of the release agent fine particle dispersion (2), and further, while heating and stirring at 42 ° C for 80 minutes, apply the mixture to the aggregated particle surface. Release agent fine particles were adhered. When a part of the obtained adhered particles was observed with an optical microscope,
Release agent-adhered particles having an average particle size of about 4.2 μm were formed.

【0223】−表面被膜用樹脂微粒子の付着― 得られた離型剤付着粒子分散液中に、さらに樹脂微粒子
分散液(1)を穏やかに80部追加し、加熱用オイルバ
スの温度を44℃に上げて1時間保持し、前記離型剤付
着粒子表面に樹脂微粒子を付着させた。得られた付着粒
子を光学顕微鏡で観察してところ、平均粒径が約4.8
μmの樹脂微粒子付着粒子が形成されていた。
-Attachment of Resin Fine Particles for Surface Coating-To the obtained release agent-attached particle dispersion, gently add 80 parts of the resin fine particle dispersion (1), and raise the temperature of the heating oil bath to 44 ° C. And held for 1 hour to adhere resin fine particles to the surface of the release agent-adhered particles. Observation of the obtained adhered particles with an optical microscope revealed that the average particle size was about 4.8.
Resin fine particle-adhered particles of μm were formed.

【0224】−付着粒子の融合− 45℃における前記樹脂微粒子付着粒子分散液のpHを
測定したところ3.5であった。この分散液に1NのN
aOH水溶液を添加して45℃におけるpHを10に調
整し、前記付着粒子を安定化した後、攪拌を継続させな
がら88℃まで加熱して10時間保持し、前記付着粒子
を融合させた。その後、反応生成物をろ過し、イオン交
換水で十分に洗浄した後、真空乾燥機を用いて乾燥させ
てトナー粒子を得た。
—Fusing of Adhered Particles— The pH of the dispersion liquid of resin fine particle adhered particles at 45 ° C. was measured to be 3.5. 1N N
After the pH at 45 ° C. was adjusted to 10 by adding an aOH aqueous solution to stabilize the adhered particles, the mixture was heated to 88 ° C. while stirring and maintained for 10 hours to fuse the adhered particles. Thereafter, the reaction product was filtered, sufficiently washed with ion-exchanged water, and dried using a vacuum dryer to obtain toner particles.

【0225】得られたトナー粒子の平均粒径D50は3.
5μmであり、トナー中の離型剤の含有量は5.6重量
%であった。また、TEMによりトナー粒子断面を観測
したところ、平均でトナー表面から0.5μm付近の深
さに、平均の厚みが0.2μmの離型剤層が形成されて
いた。また、トナーの体積平均粒度分布指標GSDv
(D84V/D16V )が1.25であり、形状係数SF1は1
23であった。さらに、このトナー粒子を外添剤を添加
せずに高温高湿環境(28℃、85%RH)、及び低温
低湿環境(10℃、30%RH)にそれぞれ12時間放
置した後、帯電量(μC/g)を測定したところ、高温
高湿環境の帯電量(Q/M)は−19μC/g、低温低
湿環境の帯電量は−24μC/gと良好な帯電特性を示
した。得られたトナー粒子100部に対して、コロイダ
ルシリカ(日本アエロジル社製、R972)1部を添加
し、ヘンシェルミキサーを用いて混合して静電荷像現像
用トナーを得た。
The average particle size D 50 of the obtained toner particles is 3.
5 μm, and the content of the release agent in the toner was 5.6% by weight. When the cross section of the toner particles was observed by TEM, a release agent layer having an average thickness of 0.2 μm was formed at an average depth of about 0.5 μm from the toner surface. In addition, the volume average particle size distribution index GSDv of the toner
( D84V / D16V ) is 1.25, and the shape factor SF1 is 1
23. Further, the toner particles were left in a high-temperature and high-humidity environment (28 ° C., 85% RH) and a low-temperature and low-humidity environment (10 ° C., 30% RH) for 12 hours without adding an external additive. As a result, the charge amount (Q / M) in a high-temperature and high-humidity environment was −19 μC / g, and the charge amount in a low-temperature and low-humidity environment was −24 μC / g. To 100 parts of the obtained toner particles, 1 part of colloidal silica (R972, manufactured by Nippon Aerosil Co., Ltd.) was added and mixed using a Henschel mixer to obtain a toner for developing an electrostatic image.

【0226】−静電荷像現像剤の作成― フェライト粒子(パウダーテック社製、平均粒径50μ
m)100部及びシリコーン樹脂(東レダウコーニング
シリコーン(株)製、SR2411、固形分20%)2
0部をトルエン500部と共に加圧式ニーダーに入れ、
常温で15分間攪拌混合した後、減圧混合しながら70
℃まで昇温してトルエンを留去した。その後、再度ニー
ダーに入れて150℃で5時間攪拌しながら保持し、そ
の後冷却し、105μmの篩を用いて分級して樹脂被覆
フェライトキャリアを作製した。この樹脂被覆フェライ
トキャリアと前記静電荷像現像用トナーとを混合してト
ナー濃度が7重量%の二成分系静電荷像現像剤を作製し
た。この静電荷像現像剤を用いて実施例10と同様に画
質の評価を行い、結果を表1に記載した。
-Preparation of electrostatic image developer- Ferrite particles (manufactured by Powder Tech, average particle size 50 μm)
m) 100 parts and a silicone resin (SR2411, manufactured by Toray Dow Corning Silicone Co., Ltd., solid content 20%) 2
0 parts together with 500 parts of toluene in a pressure kneader,
After stirring and mixing at room temperature for 15 minutes, 70
The temperature was raised to ° C, and toluene was distilled off. Then, it was again placed in a kneader while stirring at 150 ° C. for 5 hours, cooled, and then classified using a 105 μm sieve to produce a resin-coated ferrite carrier. This resin-coated ferrite carrier and the toner for developing an electrostatic image were mixed to prepare a two-component electrostatic image developer having a toner concentration of 7% by weight. The image quality was evaluated in the same manner as in Example 10 using this electrostatic image developer, and the results are shown in Table 1.

【0227】 (実施例15) −凝集粒子の調製― 樹脂微粒子分散液(1) 100部 着色剤分散液(1) 15部 硫酸アルミニウム 0.2部 イオン交換水 500部 前記成分を丸型ステンレス製フラスコ中に収容し、ホモ
ジナイザー(IKA社製、ウルトラタラックスT50)
を用いて分散させた後加熱用オイルバス中で50℃まで
攪拌しながら加熱し、50℃で40分間保持して凝集粒
子を形成した。
(Example 15) -Preparation of agglomerated particles- Resin fine particle dispersion (1) 100 parts Colorant dispersion (1) 15 parts Aluminum sulfate 0.2 part Ion-exchanged water 500 parts The above components were made of round stainless steel. Stored in a flask and homogenized (Ultra Turrax T50, manufactured by IKA)
Then, the mixture was dispersed and heated in an oil bath for heating with stirring to 50 ° C., and kept at 50 ° C. for 40 minutes to form aggregated particles.

【0228】−離型剤微粒子の第1回目の付着− 前記の凝集粒子分散液に離型剤微粒子分散液(3)を緩
やかに20部追加し、さらに48℃で30分間加熱攪拌
を保持して凝集粒子表面に離型剤微粒子を付着させた。
得られた付着粒子の一部を光学顕微鏡で観察したとこ
ろ、平均粒径が約4.0μmの離型剤付着粒子が形成さ
れていた。
First Adhesion of Release Agent Particles First, 20 parts of a release agent particle dispersion (3) was gently added to the above-mentioned aggregated particle dispersion, and the mixture was further heated and stirred at 48 ° C. for 30 minutes. The release agent fine particles were adhered to the surface of the aggregated particles.
When a part of the obtained adhered particles was observed with an optical microscope, the release agent-adhered particles having an average particle size of about 4.0 μm were formed.

【0229】−樹脂微粒子の付着― この付着粒子分散液中に、さらに樹脂微粒子分散液
(1)を穏やかに50部追加し、さらに48℃で1時間
保持し、前記離型剤付着粒子表面に樹脂微粒子を付着さ
せた。得られた付着粒子を光学顕微鏡で観察してとこ
ろ、平均粒径が約4.2μmの樹脂微粒子付着粒子が形
成されていた。
-Attachment of Resin Fine Particles-To the adhered particle dispersion, 50 parts of the resin fine particle dispersion (1) was gently added, and the mixture was further kept at 48 ° C for 1 hour. Resin fine particles were adhered. Observation of the obtained adhered particles with an optical microscope revealed that resin fine particle adhered particles having an average particle size of about 4.2 μm were formed.

【0230】−離型剤微粒子の第2回目の付着− 得られた樹脂微粒子付着粒子分散液に離型剤微粒子分散
液(2)を緩やかに20部追加し、さらに48℃で30
分間加熱攪拌を保持して樹脂微粒子付着粒子表面に離型
剤微粒子を付着させた。その付着粒子の一部を光学顕微
鏡で観察したところ、平均粒径が約4.3μmの離型剤
付着粒子が形成されていた。
-Second adhesion of release agent fine particles- Gently add 20 parts of release agent fine particle dispersion (2) to the obtained resin fine particle adhered particle dispersion, and further add 30 parts at 48 ° C.
The release agent particles were adhered to the surface of the resin particle adhered particles while maintaining the heating and stirring for minutes. Observation of a part of the adhered particles with an optical microscope revealed that the release agent-adhered particles having an average particle diameter of about 4.3 μm were formed.

【0231】−表面被膜用樹脂微粒子の付着― この離型剤付着粒子分散液中に、さらに樹脂微粒子分散
液(1)を穏やかに70部追加し、さらにオイルバスを
加熱して50℃で2時間保持し、前記離型剤付着粒子表
面に樹脂微粒子を付着させた。得られた付着粒子を光学
顕微鏡で観察してところ、平均粒径が約5.1μmの樹
脂微粒子付着粒子が形成されていた。
-Attachment of Resin Fine Particles for Surface Coating-To the release agent-attached particle dispersion, gently add 70 parts of the resin fine particle dispersion (1), and further heat the oil bath to 50 ° C at 2 ° C. After holding for a time, resin fine particles were adhered to the surface of the release agent-adhered particles. Observation of the obtained adhered particles with an optical microscope revealed that resin fine particle adhered particles having an average particle size of about 5.1 μm were formed.

【0232】−付着粒子の融合− 50℃における前記樹脂微粒子付着粒子分散液のpHを
測定したところ3.5であった。この分散液に1NのN
aOH水溶液を添加して50℃におけるpHを10に調
整し、前記付着粒子を安定化した後、攪拌を継続させな
がら85℃まで加熱して9時間保持し、前記付着粒子を
融合させた。その後、反応生成物をろ過し、イオン交換
水で十分に洗浄した後、真空乾燥機を用いて乾燥させて
トナー粒子を得た。
—Fusing of Adhered Particles— The pH of the dispersion liquid of resin-adhered particles at 50 ° C. was measured to be 3.5. 1N N
After the pH at 50 ° C. was adjusted to 10 by adding an aOH aqueous solution to stabilize the attached particles, the mixture was heated to 85 ° C. while maintaining stirring and held for 9 hours to fuse the attached particles. Thereafter, the reaction product was filtered, sufficiently washed with ion-exchanged water, and dried using a vacuum dryer to obtain toner particles.

【0233】得られたトナー粒子の平均粒径D50は5.
5μmであり、トナー中の離型剤の含有量は5重量%で
あった。また、TEMによりトナー粒子断面を観測した
ところ、平均でトナー表面から0.2μm付近の深さ
に、平均の厚みが0.1μmの離型剤層と、平均でトナ
ー表面から0.5μm付近の深さに、平均の厚みが0.
1μmの離型剤層が形成されていた。また、トナーの体
積平均粒度分布指標GSDv(D84V/D16V )が1.22
であり、形状係数SF1は126であった。さらに、こ
のトナー粒子を外添剤を添加せずに高温高湿環境(28
℃、85%RH)、及び低温低湿環境(10℃、30%
RH)にそれぞれ12時間放置した後、帯電量(μC/
g)を測定したところ、高温高湿環境の帯電量(Q/
M)は−16μC/g、低温低湿環境の帯電量は−26
μC/gと良好な帯電特性を示した。得られたトナー粒
子100部に対して、コロイダルシリカ(日本アエロジ
ル社製、R972)1部を添加し、ヘンシェルミキサー
を用いて混合して静電荷像現像用トナーを得た。
The average particle size D 50 of the obtained toner particles is 5.
It was 5 μm, and the content of the release agent in the toner was 5% by weight. Further, when the cross section of the toner particles was observed by TEM, a release agent layer having an average thickness of 0.1 μm at a depth of about 0.2 μm from the toner surface on average and a release agent layer having an average thickness of about 0.5 μm from the toner surface were obtained. The average thickness is 0.
A release agent layer of 1 μm was formed. Further, the volume average particle size distribution index GSDv ( D84V / D16V ) of the toner is 1.22.
And the shape factor SF1 was 126. Further, the toner particles are added to a high temperature and high humidity environment (28
° C, 85% RH) and low temperature and low humidity environment (10 ° C, 30%
RH) for 12 hours each, and then the charge amount (μC /
g), the charge amount (Q /
M) is −16 μC / g, and the charge amount in a low-temperature and low-humidity environment is −26.
A good charging characteristic of μC / g was exhibited. To 100 parts of the obtained toner particles, 1 part of colloidal silica (R972, manufactured by Nippon Aerosil Co., Ltd.) was added and mixed using a Henschel mixer to obtain a toner for developing an electrostatic image.

【0234】−静電荷像現像剤の作成― 前記静電荷像現像用トナーを用い、実施例14と同様に
して二成分系静電荷像現像剤を作製した。この静電荷像
現像剤を用いて実施例14と同様に画質の評価を行い、
結果を表1に記載した。
-Preparation of Electrostatic Image Developer- A two-component electrostatic image developer was prepared in the same manner as in Example 14 using the toner for developing an electrostatic image. Using this electrostatic image developer, image quality was evaluated in the same manner as in Example 14,
The results are shown in Table 1.

【0235】 (実施例16) −凝集粒子の調製― 樹脂微粒子分散液(1) 280部 着色剤分散液(1) 15部 ポリ水酸化アルミニウム 0.7部 イオン交換水 500部 前記成分を丸型ステンレス製フラスコ中に収容し、ホモ
ジナイザー(IKA社製、ウルトラタラックスT50)
を用いて分散させた後、加熱用オイルバス中で55℃ま
で攪拌しながら加熱し55℃で30分間保持して凝集粒
子を形成した。
(Example 16) -Preparation of aggregated particles- Resin fine particle dispersion (1) 280 parts Colorant dispersion (1) 15 parts Polyaluminum hydroxide 0.7 part Ion-exchanged water 500 parts Housed in a stainless steel flask and homogenized (IKA, Ultra Turrax T50)
Then, the mixture was dispersed in a heating oil bath while being heated to 55 ° C. with stirring, and kept at 55 ° C. for 30 minutes to form aggregated particles.

【0236】−離型剤微粒子の付着− 前記の凝集粒子分散液に離型剤微粒子分散液(1)を緩
やかに70部追加し、さらに55℃で30分間加熱攪拌
を保持して凝集粒子表面に離型剤微粒子を付着させた。
その付着粒子の一部を光学顕微鏡で観察したところ、平
均粒径が約5.9μmの離型剤付着粒子が形成されてい
た。
-Attachment of release agent fine particles-70 parts of a release agent fine particle dispersion (1) is gently added to the above-mentioned aggregated particle dispersion, and the mixture is further heated and stirred at 55 ° C for 30 minutes, and the surface of the aggregated particles is maintained. The release agent fine particles were adhered to the sample.
Observation of a part of the adhered particles with an optical microscope revealed that the release agent-adhered particles having an average particle size of about 5.9 μm were formed.

【0237】−表面被膜用樹脂微粒子の付着― 得られた離型剤付着粒子分散液中に、さらに樹脂微粒子
分散液(1)を穏やかに50部追加し、さらにオイルバ
スを加熱して58℃で2時間保持し、前記離型剤付着粒
子表面に樹脂微粒子を付着させた。得られた付着粒子を
光学顕微鏡で観察してところ、平均粒径が約6.1μm
の樹脂微粒子付着粒子が形成されていた。
-Attachment of Resin Fine Particles for Surface Coating-To the obtained release agent-attached particle dispersion, gently add 50 parts of the resin fine particle dispersion (1), and further heat the oil bath to 58 ° C. For 2 hours to adhere resin fine particles to the surface of the release agent-adhered particles. Observation of the obtained adhered particles with an optical microscope revealed that the average particle size was about 6.1 μm.
Was formed.

【0238】−付着粒子の融合− 58℃における前記樹脂微粒子付着粒子分散液のpHを
測定したところ3.5であった。この分散液に1NのN
aOH水溶液を添加して58℃におけるpHを10に調
整し、前記付着粒子を安定化した後、攪拌を継続させな
がら80℃まで加熱して20時間保持し、前記付着粒子
を融合させた。その後、反応生成物をろ過し、イオン交
換水で十分に洗浄した後、真空乾燥機を用いて乾燥させ
てトナー粒子を得た。
-Fusion of Adhered Particles- The pH of the dispersion liquid of resin fine particle adhered particles at 58 ° C. was measured to be 3.5. 1N N
After adjusting the pH at 58 ° C. to 10 by adding an aOH aqueous solution and stabilizing the adhered particles, the mixture was heated to 80 ° C. while maintaining stirring and maintained for 20 hours to fuse the adhered particles. Thereafter, the reaction product was filtered, sufficiently washed with ion-exchanged water, and dried using a vacuum dryer to obtain toner particles.

【0239】得られたトナー粒子の平均粒径D50は6.
5μmであり、トナー中の離型剤の含有量は7.8重量
%であった。また、TEMによりトナー粒子断面を観測
したところ、平均でトナー表面から0.6μm付近の深
さに、平均の厚みが0.6μmの離型剤層が形成されて
いた。また、トナーの体積平均粒度分布指標GSDv
(D84V/D16V )が1.21であり、形状係数SF1は1
25であった。さらに、このトナー粒子を外添剤を添加
せずに高温高湿環境(28℃、85%RH)、及び低温
低湿環境(10℃、30%RH)にそれぞれ12時間放
置した後、帯電量(μC/g)を測定したところ、高温
高湿環境の帯電量(Q/M)は−16μC/g、低温低
湿環境の帯電量は−25μC/gと良好な帯電特性を示
した。得られたトナー粒子100部に対して、コロイダ
ルシリカ(日本アエロジル社製、R972)1部を添加
し、ヘンシェルミキサーを用いて混合して静電荷像現像
用トナーを得た。
The average particle size D 50 of the obtained toner particles is 6.
5 μm, and the release agent content in the toner was 7.8% by weight. Further, when the cross section of the toner particles was observed by TEM, a release agent layer having an average thickness of 0.6 μm was formed at a depth of about 0.6 μm from the toner surface on average. In addition, the volume average particle size distribution index GSDv of the toner
( D84V / D16V ) is 1.21 and the shape factor SF1 is 1
25. Further, the toner particles were left in a high-temperature and high-humidity environment (28 ° C., 85% RH) and a low-temperature and low-humidity environment (10 ° C., 30% RH) for 12 hours without adding an external additive. As a result, the charge amount (Q / M) in a high-temperature and high-humidity environment was −16 μC / g, and the charge amount in a low-temperature and low-humidity environment was −25 μC / g. To 100 parts of the obtained toner particles, 1 part of colloidal silica (R972, manufactured by Nippon Aerosil Co., Ltd.) was added and mixed using a Henschel mixer to obtain a toner for developing an electrostatic image.

【0240】−静電荷像現像剤の作成― 前記静電荷像現像用トナーを用い、実施例14と同様に
して二成分系静電荷像現像剤を作製した。この静電荷像
現像剤を用いて実施例14と同様に画質の評価を行い、
結果を表1に記載した。
-Preparation of Electrostatic Image Developer- A two-component electrostatic image developer was prepared in the same manner as in Example 14, except that the toner for developing an electrostatic image was used. Using this electrostatic image developer, image quality was evaluated in the same manner as in Example 14,
The results are shown in Table 1.

【0241】 (比較例5) −凝集粒子の調製― 樹脂微粒子分散液(1) 300部 着色剤分散液(1) 15部 離型剤微粒子分散液(1) 30部 塩化亜鉛 1部 イオン交換水 500部 前記成分を丸型ステンレス製フラスコ中に収容し、ホモ
ジナイザー(IKA社製、ウルトラタラックスT50)
を用いて分散させた後、加熱用オイルバス中で47℃ま
で攪拌しながら加熱し47℃で30分間保持して凝集粒
子を形成した。得られた凝集粒子の一部を光学顕微鏡で
観察したところ、凝集粒子の平均粒径は約4.6μmで
あった。
Comparative Example 5 Preparation of Aggregated Particles Resin Fine Particle Dispersion (1) 300 parts Colorant Dispersion (1) 15 parts Release Agent Fine Particle Dispersion (1) 30 parts Zinc chloride 1 part Ion-exchanged water 500 parts The above-mentioned components were placed in a round stainless steel flask, and a homogenizer (Ultra Turrax T50, manufactured by IKA) was used.
Then, the mixture was dispersed in a heating oil bath while stirring to 47 ° C., and kept at 47 ° C. for 30 minutes to form aggregated particles. When a part of the obtained aggregated particles was observed with an optical microscope, the average particle size of the aggregated particles was about 4.6 μm.

【0242】−離型剤微粒子の付着− 前記の凝集粒子分散液に離型剤微粒子分散液(1)を緩
やかに400部追加し、さらに47℃で30分間加熱攪
拌を保持して凝集粒子表面に離型剤微粒子を付着させ
た。その付着粒子の一部を光学顕微鏡で観察したとこ
ろ、平均粒径が約5.9μmの離型剤付着粒子が形成さ
れていた。
-Attachment of release agent fine particles-400 parts of the release agent fine particle dispersion liquid (1) are gently added to the above-mentioned aggregated particle dispersion liquid, and the mixture is further heated and stirred at 47 ° C for 30 minutes, and the surface of the aggregated particle surface is maintained. The release agent fine particles were adhered to the sample. Observation of a part of the adhered particles with an optical microscope revealed that the release agent-adhered particles having an average particle size of about 5.9 μm were formed.

【0243】−表面被膜用樹脂微粒子の付着― この凝集粒子分散液中に、さらに樹脂微粒子分散液
(1)を穏やかに10部追加し、さらにオイルバスを加
熱して48℃で1時間保持し、前記凝集粒子表面に樹脂
微粒子を付着させた。得られた付着粒子を光学顕微鏡で
観察してところ、平均粒径が約5.0μmの樹脂微粒子
付着粒子が形成されていた。
-Attachment of Resin Fine Particles for Surface Coating-To the aggregated particle dispersion, 10 parts of resin fine particle dispersion (1) was gently added, and the oil bath was heated and kept at 48 ° C for 1 hour. Then, fine resin particles were attached to the surface of the aggregated particles. Observation of the obtained adhered particles with an optical microscope revealed that resin fine particle adhered particles having an average particle size of about 5.0 μm were formed.

【0244】−付着粒子の融合− アニオン性界面活性剤(第一工業製薬社製、ネオゲンS
C)6部をイオン交換水24部に溶解させたアニオン性
界面活性剤水溶液を調整し、前記付着粒子分散液に該界
面活性剤水溶液を穏やかに添加し、攪拌を継続させなが
ら92℃まで加熱して5時間保持し、前記付着粒子を融
合させた。その後、反応生成物をろ過し、イオン交換水
で十分に洗浄した後、真空乾燥機を用いて乾燥させてト
ナー粒子を得た。
-Fusion of attached particles- Anionic surfactant (Neogen S, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
C) An aqueous solution of an anionic surfactant in which 6 parts were dissolved in 24 parts of ion-exchanged water was prepared, and the aqueous solution of the surfactant was gently added to the adhered particle dispersion, and heated to 92 ° C. while stirring was continued. And held for 5 hours to fuse the adhered particles. Thereafter, the reaction product was filtered, sufficiently washed with ion-exchanged water, and dried using a vacuum dryer to obtain toner particles.

【0245】得られたトナー粒子の平均粒径D50は5.
9μmであり、トナー中の離型剤の含有量は45重量%
であった。また、TEMによりトナー粒子断面を観測し
たところ、トナー断面に対して無秩序に離型剤粒子が分
散されていることが確認された。また、トナーの体積平
均粒度分布指標GSDv(D84V/D16V )が1.41であ
り、形状係数SF1は147であった。さらに、このト
ナー粒子を外添剤を添加せずに高温高湿環境(28℃、
85%RH)、及び低温低湿環境(10℃、30%R
H)にそれぞれ12時間放置した後、帯電量(μC/
g)を測定したところ、高温高湿環境の帯電量(Q/
M)は−4μC/g、低温低湿環境の帯電量は−49μ
C/gであった。得られたトナー粒子100部に対し
て、コロイダルシリカ(日本アエロジル社製、R97
2)1部を添加し、ヘンシェルミキサーを用いて混合し
て静電荷像現像用トナーを得た。
The average particle size D 50 of the obtained toner particles is 5.
9 μm, and the content of the release agent in the toner is 45% by weight.
Met. Further, when the cross section of the toner particles was observed by TEM, it was confirmed that the release agent particles were randomly dispersed in the cross section of the toner. The volume average particle size distribution index GSDv ( D84V / D16V ) of the toner was 1.41 and the shape factor SF1 was 147. Further, the toner particles were added to a high temperature and high humidity environment (28 ° C.,
85% RH) and low-temperature, low-humidity environment (10 ° C, 30% R)
H) for 12 hours each, and then the charge amount (μC /
g), the charge amount (Q /
M) is -4 μC / g, and the charge in a low-temperature and low-humidity environment is -49 μC.
C / g. Colloidal silica (R97, manufactured by Nippon Aerosil Co., Ltd.) was used for 100 parts of the obtained toner particles.
2) 1 part was added and mixed using a Henschel mixer to obtain a toner for developing an electrostatic image.

【0246】−静電荷像現像剤の作成― 前記静電荷像現像用トナーを用い、実施例14と同様に
して二成分系静電荷像現像剤を作製した。この静電荷像
現像剤を用いて実施例14と同様に画質の評価を行い、
結果を表1に記載した。
-Preparation of Electrostatic Image Developer- A two-component electrostatic image developer was prepared in the same manner as in Example 14, except that the toner for developing an electrostatic image was used. Using this electrostatic image developer, image quality was evaluated in the same manner as in Example 14,
The results are shown in Table 1.

【0247】 (比較例6) −凝集粒子の調製― 樹脂微粒子分散液(1) 360部 着色剤分散液(1) 15部 塩化亜鉛 1部 イオン交換水 500部 前記成分を丸型ステンレス製フラスコ中に収容し、ホモ
ジナイザー(IKA社製、ウルトラタラックスT50)
を用いて分散させた後、加熱用オイルバス中で47℃ま
で攪拌しながら加熱し47℃で30分間保持して凝集粒
子を形成した。
(Comparative Example 6)-Preparation of aggregated particles-Resin fine particle dispersion liquid (1) 360 parts Colorant dispersion liquid (1) 15 parts Zinc chloride 1 part Ion-exchanged water 500 parts The above components were placed in a round stainless steel flask. And a homogenizer (IKA, Ultra Turrax T50)
Then, the mixture was dispersed in a heating oil bath while stirring to 47 ° C., and kept at 47 ° C. for 30 minutes to form aggregated particles.

【0248】−離型剤微粒子の付着− 前記の凝集粒子分散液に離型剤微粒子分散液(1)を緩
やかに4部追加し、さらに47℃で30分間加熱攪拌を
保持して、凝集粒子表面に離型剤微粒子を付着させた。
得られた付着粒子の一部を光学顕微鏡で観察したとこ
ろ、平均粒径が約4.9μmの離型剤付着粒子が形成さ
れていた。
-Attachment of release agent fine particles-To the above aggregated particle dispersion, gently add 4 parts of the release agent fine particle dispersion (1), and further heat and stir at 47 ° C for 30 minutes to obtain aggregated particles. Release agent fine particles were adhered to the surface.
When a part of the obtained adhered particles was observed with an optical microscope, the release agent adhered particles having an average particle size of about 4.9 μm were formed.

【0249】−表面被膜用樹脂微粒子の付着― 得られた離型剤付着粒子分散液中に、さらに樹脂微粒子
分散液(1)を穏やかに10部追加し、さらにオイルバ
スを加熱して48℃で1時間保持し、前記離型剤付着粒
子表面に樹脂微粒子を付着させた。得られた付着粒子を
光学顕微鏡で観察してところ、平均粒径が約5.0μm
の樹脂微粒子付着粒子が形成されていた。
-Attachment of Resin Fine Particles for Surface Coating-To the obtained release agent-attached particle dispersion, gently add 10 parts of resin fine particle dispersion (1), and further heat the oil bath to 48 ° C. For 1 hour to adhere resin fine particles to the surface of the release agent-adhered particles. Observation of the obtained adhered particles with an optical microscope revealed that the average particle size was about 5.0 μm.
Was formed.

【0250】−付着粒子の融合− アニオン性界面活性剤(第一工業製薬社製、ネオゲンS
C)22部をイオン交換水24部に溶解させたアニオン
性界面活性剤水溶液を調整し、前記付着粒子分散液に該
界面活性剤水溶液を穏やかに添加し、攪拌を継続させな
がら88℃まで加熱して5時間保持し、前記付着粒子を
融合させた。その後、反応生成物をろ過し、イオン交換
水で十分に洗浄した後、真空乾燥機を用いて乾燥させて
トナー粒子を得た。
-Fusion of adhered particles- Anionic surfactant (Neogen S, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
C) An aqueous solution of an anionic surfactant in which 22 parts were dissolved in 24 parts of ion-exchanged water was prepared, and the aqueous solution of the surfactant was gently added to the adhered particle dispersion, and heated to 88 ° C. while stirring was continued. And held for 5 hours to fuse the adhered particles. Thereafter, the reaction product was filtered, sufficiently washed with ion-exchanged water, and dried using a vacuum dryer to obtain toner particles.

【0251】得られたトナー粒子の平均粒径D50は6.
5μmであり、トナー中の離型剤の含有量は0.45重
量%であった。また、TEMによりトナー粒子断面を観
測したところ、平均でトナー表面から3.1μm付近の
深さに平均厚みが0.01μmの離型剤層が形成されて
いた。また、トナーの体積平均粒度分布指標GSDv
(D84V/D16V )が1.23であり、形状係数SF1は1
37であった。さらに、このトナー粒子を外添剤を添加
せずに高温高湿環境(28℃、85%RH)、及び低温
低湿環境(10℃、30%RH)にそれぞれ12時間放
置した後、帯電量(μC/g)を測定したところ、高温
高湿環境の帯電量(Q/M)は−11μC/g、低温低
湿環境の帯電量は−70μC/gであった。得られたト
ナー粒子100部に対して、コロイダルシリカ(日本ア
エロジル社製、R972)1部を添加し、ヘンシェルミ
キサーを用いて混合して静電荷像現像用トナーを得た。
The average particle size D 50 of the obtained toner particles is 6.
5 μm, and the content of the release agent in the toner was 0.45% by weight. In addition, when the cross section of the toner particles was observed by TEM, a release agent layer having an average thickness of 0.01 μm was formed at a depth of about 3.1 μm from the toner surface on average. In addition, the volume average particle size distribution index GSDv of the toner
( D84V / D16V ) is 1.23, and the shape factor SF1 is 1
37. Further, the toner particles were left in a high-temperature and high-humidity environment (28 ° C., 85% RH) and a low-temperature and low-humidity environment (10 ° C., 30% RH) for 12 hours without adding an external additive. As a result, the charge (Q / M) in a high-temperature and high-humidity environment was −11 μC / g, and the charge in a low-temperature and low-humidity environment was −70 μC / g. To 100 parts of the obtained toner particles, 1 part of colloidal silica (R972, manufactured by Nippon Aerosil Co., Ltd.) was added and mixed using a Henschel mixer to obtain a toner for developing an electrostatic image.

【0252】−静電荷像現像剤の作成― 前記静電荷像現像用トナーを用い、実施例14と同様に
して二成分系静電荷像現像剤を作製した。この静電荷像
現像剤を用いて実施例14と同様に画質の評価を行い、
結果を表1に記載した。
-Preparation of Electrostatic Image Developer- A two-component electrostatic image developer was prepared in the same manner as in Example 14 using the electrostatic image developing toner. Using this electrostatic image developer, image quality was evaluated in the same manner as in Example 14,
The results are shown in Table 1.

【0253】[0253]

【表1】 [Table 1]

【0254】表1から明らかなように、実施例1〜16
の静電荷像現像トナーを含む静電荷像現像剤は、比較例
1〜6の静電荷現像用トナーを含む静電荷像現像剤に比
較して、耐オフセット性に優れ、地かぶりが生じにくい
ことが分かる。さらに、カラートナーとして必要な発色
性及び透明性についても、実施例1〜16の静電荷現像
用トナーを含む静電荷像現像剤は比較例1〜6の静電荷
現像用トナーを含む静電荷像現像剤に比較して良好であ
ることが分かる。
As is clear from Table 1, Examples 1 to 16
The electrostatic image developer containing the electrostatic image developing toner of the present invention is superior in the anti-offset property and hardly causes the ground fogging compared to the electrostatic image developer containing the electrostatic developing toner of Comparative Examples 1 to 6. I understand. Further, with respect to the color developing properties and transparency required as color toners, the electrostatic image developers containing the electrostatic developing toners of Examples 1 to 16 are different from the electrostatic image developers containing the electrostatic developing toners of Comparative Examples 1 to 6. It can be seen that it is better than the developer.

【0255】[0255]

【発明の効果】本発明は、前記の構成を採用することに
より、トナーに含有させる離型剤量を減少させることが
でき、かつトナー表面が樹脂被膜で被覆されているた
め、離型剤の遊離を大幅に抑制することができ、その結
果、遊離した離型剤のトナー粒子表面への付着を防止す
ることができ、該付着による帯電不良に起因する地かぶ
りなどの不都合を防止できるだけでなく、離型剤の光散
乱による発色性及び透明性の低下を確実に防止できる。
また、カラー用途において離型剤の内添量を増加した場
合でも高画質の複写像を安定して形成することができる
ようになった。
According to the present invention, by adopting the above structure, the amount of the release agent contained in the toner can be reduced, and the toner surface is covered with the resin film. The release can be greatly suppressed, and as a result, the release of the release agent can be prevented from adhering to the surface of the toner particles. In addition, it is possible to reliably prevent a decrease in color development and transparency due to light scattering of the release agent.
Further, even when the amount of the release agent added in color applications is increased, a high-quality copy image can be stably formed.

【0256】本発明によると、転写効率が高くなり、ト
ナー消費量が少なく、しかも長寿命の二成分系静電荷現
像剤を提供できるようになった。また、本発明による
と、クリーニング機構を有しないクリーナーレスシステ
ムにおいても、また、クリーナーから回収されたトナー
を再使用する、いわゆるトナーリサイクルシステムにお
いても、高画質の画像形成が可能になった。特に、本発
明は、高画質で信頼性の高いフルカラー画像の形成に有
利である。
According to the present invention, it has become possible to provide a two-component electrostatic charge developer having a high transfer efficiency, a small toner consumption and a long service life. Further, according to the present invention, it is possible to form high-quality images in a cleanerless system having no cleaning mechanism and in a so-called toner recycling system in which toner collected from a cleaner is reused. In particular, the present invention is advantageous for forming a high-quality and reliable full-color image.

【0257】さらに、本発明によると、前記の諸特性に
優れた静電荷現像用トナーを容易にかつ簡便に製造する
方法を提供できるようになった。本発明の静電荷像現像
用トナーの製造において、凝集粒子を調製する工程で、
2価以上の電荷を有する無機金属塩を添加して凝集を行
うことにより、界面活性剤の使用量を大幅に低下させる
ことができ、かつ、凝集粒子の調製が簡便になり、融合
・合一工程で得たトナー粒子から界面活性剤を除去する
洗浄が大幅に短縮され、界面活性剤によるトナーの帯電
性への影響を防止できるため、トナーの帯電量の制御が
容易になった。
Further, according to the present invention, it is possible to provide a method for easily and simply producing a toner for electrostatic charge development excellent in the above-mentioned various properties. In the production of the electrostatic image developing toner of the present invention, in the step of preparing aggregated particles,
By adding an inorganic metal salt having a charge of at least two valences to perform aggregation, the amount of surfactant used can be significantly reduced, and the preparation of aggregated particles is simplified, and fusion and coalescence can be achieved. The washing for removing the surfactant from the toner particles obtained in the process is greatly shortened, and the influence of the surfactant on the chargeability of the toner can be prevented, so that the charge amount of the toner can be easily controlled.

【0258】このように、本発明は、前記の構成を採用
することにより、帯電性、現像性、転写性、粉体特性、
クリーニング性等の諸特性に優れた静電荷現像用トナー
及びそのトナーを用いた静電荷現像剤の提供を可能に
し、かつ、特に画像における平滑性、透明性、混色性、
発色性に優れた信頼性の高い静電荷像現像用トナー、及
び該静電荷像現像用トナーを用いた静電荷像現像剤を提
供することが可能になり、特にカラートナーに好適なで
ある。
As described above, according to the present invention, by adopting the above-mentioned constitution, the charging property, the developing property, the transferring property, the powder property,
It is possible to provide an electrostatic charge developing toner excellent in various properties such as cleaning properties and an electrostatic charge developer using the toner, and particularly, smoothness, transparency, color mixing property in an image,
This makes it possible to provide a highly reliable toner for developing an electrostatic image having excellent coloring properties and an electrostatic image developer using the toner for developing an electrostatic image, and is particularly suitable for a color toner.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 庄子 毅 神奈川県南足柄市竹松1600番地 富士ゼロ ックス株式会社内 (72)発明者 江口 敦彦 神奈川県南足柄市竹松1600番地 富士ゼロ ックス株式会社内 (72)発明者 前畑 英雄 神奈川県南足柄市竹松1600番地 富士ゼロ ックス株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takeshi Shoko 1600 Takematsu, Minamiashigara-shi, Kanagawa Prefecture Inside Fuji Xerox Co., Ltd. (72) Inventor Atsuhiko Eguchi 1600 Takematsu, Minamiashigara-shi, Kanagawa Prefecture Inside Fuji Xerox Co., Ltd. (72) Inventor Hideo Maehata 1600 Takematsu, Minamiashigara, Kanagawa Prefecture Inside Fuji Xerox Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 樹脂、着色剤及び離型剤を含有する静電
荷像現像用トナーにおいて、前記離型剤をトナー表面に
沿った離型剤層としてトナー中に配置してなることを特
徴とする静電荷像現像用トナー。
1. An electrostatic image developing toner containing a resin, a colorant and a release agent, wherein the release agent is arranged in the toner as a release agent layer along the toner surface. For developing electrostatic images.
【請求項2】 樹脂微粒子の分散液と、着色剤の分散液
とを混合し、前記樹脂微粒子及び前記着色剤を凝集させ
て凝集粒子を形成し、次いで、離型剤微粒子の分散液を
追加して混合し、前記凝集粒子の表面に離型剤微粒子を
付着させ、さらに、樹脂微粒子の分散液を追加して混合
し、前記凝集粒子の離型剤層表面に樹脂微粒子を付着さ
せた後、前記樹脂微粒子のガラス転移点以上の温度に加
熱して融合・合一させ、トナー粒子を形成することを特
徴とする請求項1記載の静電荷像現像用トナーの製造方
法。
2. A dispersion of resin fine particles and a dispersion of colorant are mixed, and the resin fine particles and the colorant are aggregated to form aggregated particles. Then, a dispersion of release agent fine particles is added. After mixing and releasing the release agent fine particles on the surface of the aggregated particles, further adding and mixing a dispersion of resin fine particles, after adhering the resin fine particles to the release agent layer surface of the aggregated particles 2. The method for producing a toner for developing an electrostatic image according to claim 1, wherein the resin particles are heated to a temperature equal to or higher than the glass transition point to fuse and coalesce to form toner particles.
【請求項3】 樹脂微粒子の分散液と、着色剤の分散液
とを混合し、2価以上の電荷を有する無機金属塩を用い
て前記樹脂微粒子及び前記着色剤を凝集させて凝集粒子
を形成し、次いで、離型剤微粒子の分散液を追加して混
合し、前記凝集粒子の表面に離型剤微粒子を付着させ、
さらに、樹脂微粒子の分散液を追加して混合し、前記凝
集粒子の離型剤層表面に樹脂微粒子を付着させた後、前
記樹脂微粒子のガラス転移点以上の温度に加熱して融合
・合一させ、トナー粒子を形成することを特徴とする請
求項1記載の静電荷像現像用トナーの製造方法。
3. A dispersion of resin fine particles and a dispersion of colorant are mixed, and the resin fine particles and the colorant are aggregated using an inorganic metal salt having a charge of two or more to form aggregated particles. Then, a dispersion liquid of the release agent particles is added and mixed, and the release agent particles are attached to the surface of the aggregated particles,
Further, a dispersion liquid of the resin fine particles is added and mixed, and the resin fine particles are adhered to the surface of the release agent layer of the agglomerated particles, and then heated to a temperature equal to or higher than the glass transition point of the resin fine particles to fuse and coalesce. 2. The method according to claim 1, wherein the toner particles are formed.
【請求項4】 キャリアとトナーとを含有する静電荷像
現像剤において、前記トナーが請求項記載の静電荷像現
像用トナーであることを特徴とする静電荷像現像剤。
4. An electrostatic image developer containing a carrier and a toner, wherein the toner is the toner for developing an electrostatic image according to claim 1.
【請求項5】 静電潜像担持体上に静電潜像を形成する
工程、現像剤担持体上の現像剤で前記静電潜像を現像し
てトナー画像を形成する工程、前記トナー画像を転写体
上に転写する転写工程、及び静電潜像担持体上に残留す
る静電荷像現像用トナーを除去するクリーニング工程を
含む画像形成方法において、前記現像剤として、請求項
4記載の静電荷像現像剤を用いることを特徴とする画像
形成方法。
5. A step of forming an electrostatic latent image on an electrostatic latent image carrier, a step of developing the electrostatic latent image with a developer on a developer carrier to form a toner image, and 5. The method according to claim 4, wherein the image forming method includes a transfer step of transferring the toner onto a transfer body, and a cleaning step of removing an electrostatic image developing toner remaining on the electrostatic latent image carrier. An image forming method using a charge image developer.
JP30565398A 1998-03-10 1998-10-27 Toner for developing electrostatic charge image, its reduction, electrostatic charge image developer and image forming method Pending JPH11327201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30565398A JPH11327201A (en) 1998-03-10 1998-10-27 Toner for developing electrostatic charge image, its reduction, electrostatic charge image developer and image forming method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-58100 1998-03-10
JP5810098 1998-03-10
JP30565398A JPH11327201A (en) 1998-03-10 1998-10-27 Toner for developing electrostatic charge image, its reduction, electrostatic charge image developer and image forming method

Publications (1)

Publication Number Publication Date
JPH11327201A true JPH11327201A (en) 1999-11-26

Family

ID=26399177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30565398A Pending JPH11327201A (en) 1998-03-10 1998-10-27 Toner for developing electrostatic charge image, its reduction, electrostatic charge image developer and image forming method

Country Status (1)

Country Link
JP (1) JPH11327201A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002196525A (en) * 2000-10-17 2002-07-12 Mitsubishi Chemicals Corp Electrostatic charge image developing toner and method for producing the same
JP2004184551A (en) * 2002-11-29 2004-07-02 Ricoh Co Ltd Electrostatic charge image developing toner, developer, and toner container
JP2006011462A (en) * 2004-06-28 2006-01-12 Xerox Corp Toner
JP2006058857A (en) * 2004-07-21 2006-03-02 Matsushita Electric Ind Co Ltd Toner, method for manufacturing toner, two-component developer and image forming apparatus
JP2008033139A (en) * 2006-07-31 2008-02-14 Kao Corp Release agent dispersion liquid
US7413841B2 (en) 2003-01-17 2008-08-19 Matsushita Electric Industrial Co., Ltd. Toner, process for producing the same, two-component developing agent and method of image formation
US7459254B2 (en) 2003-11-20 2008-12-02 Panasonic Corporation Toner and two-component developer
US7541128B2 (en) 2002-09-26 2009-06-02 Ricoh Company Limited Toner, developer including the toner, and method for fixing toner image
JP2010134024A (en) * 2008-12-02 2010-06-17 Ricoh Co Ltd Toner, and full-color image forming method and process cartridge, using the toner
JP2010204273A (en) * 2009-03-02 2010-09-16 Fuji Xerox Co Ltd Image forming apparatus
JP2013114263A (en) * 2011-11-28 2013-06-10 Toshiba Tec Corp Electrophotographic toner
JP2013120370A (en) * 2011-12-09 2013-06-17 Kao Corp Electrophotographic toner
JP2016062040A (en) * 2014-09-19 2016-04-25 富士ゼロックス株式会社 Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2016062043A (en) * 2014-09-19 2016-04-25 富士ゼロックス株式会社 Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2016061966A (en) * 2014-09-18 2016-04-25 富士ゼロックス株式会社 Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2016070986A (en) * 2014-09-26 2016-05-09 富士ゼロックス株式会社 Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2016070991A (en) * 2014-09-26 2016-05-09 富士ゼロックス株式会社 Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2016070983A (en) * 2014-09-26 2016-05-09 富士ゼロックス株式会社 Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2016070984A (en) * 2014-09-26 2016-05-09 富士ゼロックス株式会社 Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2016070990A (en) * 2014-09-26 2016-05-09 富士ゼロックス株式会社 Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
US9366983B2 (en) 2011-11-28 2016-06-14 Toshiba Tec Kabushiki Kaisha Decolorizable toner
CN106200285A (en) * 2015-05-27 2016-12-07 京瓷办公信息系统株式会社 Developing toner for electrostatic latent images
JP2016224249A (en) * 2015-05-29 2016-12-28 富士ゼロックス株式会社 Image forming apparatus and image forming method
JP2016224188A (en) * 2015-05-28 2016-12-28 富士ゼロックス株式会社 Image forming apparatus and image forming method
JP2016224250A (en) * 2015-05-29 2016-12-28 富士ゼロックス株式会社 Image forming apparatus and image forming method
JP2019124971A (en) * 2019-05-13 2019-07-25 富士ゼロックス株式会社 Electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002196525A (en) * 2000-10-17 2002-07-12 Mitsubishi Chemicals Corp Electrostatic charge image developing toner and method for producing the same
US7541128B2 (en) 2002-09-26 2009-06-02 Ricoh Company Limited Toner, developer including the toner, and method for fixing toner image
JP2004184551A (en) * 2002-11-29 2004-07-02 Ricoh Co Ltd Electrostatic charge image developing toner, developer, and toner container
US7413841B2 (en) 2003-01-17 2008-08-19 Matsushita Electric Industrial Co., Ltd. Toner, process for producing the same, two-component developing agent and method of image formation
US7459254B2 (en) 2003-11-20 2008-12-02 Panasonic Corporation Toner and two-component developer
JP2006011462A (en) * 2004-06-28 2006-01-12 Xerox Corp Toner
JP4508004B2 (en) * 2004-07-21 2010-07-21 パナソニック株式会社 Toner and toner production method
JP2006058857A (en) * 2004-07-21 2006-03-02 Matsushita Electric Ind Co Ltd Toner, method for manufacturing toner, two-component developer and image forming apparatus
JP2008033139A (en) * 2006-07-31 2008-02-14 Kao Corp Release agent dispersion liquid
JP2010134024A (en) * 2008-12-02 2010-06-17 Ricoh Co Ltd Toner, and full-color image forming method and process cartridge, using the toner
JP2010204273A (en) * 2009-03-02 2010-09-16 Fuji Xerox Co Ltd Image forming apparatus
JP2013114263A (en) * 2011-11-28 2013-06-10 Toshiba Tec Corp Electrophotographic toner
JP2015129966A (en) * 2011-11-28 2015-07-16 東芝テック株式会社 Electrophotographic toner
US9128394B2 (en) 2011-11-28 2015-09-08 Toshiba Tec Kabushiki Kaisha Electrophotographic toner and method for producing the same
US9798260B2 (en) 2011-11-28 2017-10-24 Toshiba Tec Kabushiki Kaisha Decolorizable toner
US9366983B2 (en) 2011-11-28 2016-06-14 Toshiba Tec Kabushiki Kaisha Decolorizable toner
JP2013120370A (en) * 2011-12-09 2013-06-17 Kao Corp Electrophotographic toner
JP2016061966A (en) * 2014-09-18 2016-04-25 富士ゼロックス株式会社 Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2016062043A (en) * 2014-09-19 2016-04-25 富士ゼロックス株式会社 Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2016062040A (en) * 2014-09-19 2016-04-25 富士ゼロックス株式会社 Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2016070983A (en) * 2014-09-26 2016-05-09 富士ゼロックス株式会社 Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2016070984A (en) * 2014-09-26 2016-05-09 富士ゼロックス株式会社 Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2016070990A (en) * 2014-09-26 2016-05-09 富士ゼロックス株式会社 Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2016070986A (en) * 2014-09-26 2016-05-09 富士ゼロックス株式会社 Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2016070991A (en) * 2014-09-26 2016-05-09 富士ゼロックス株式会社 Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
CN106200285A (en) * 2015-05-27 2016-12-07 京瓷办公信息系统株式会社 Developing toner for electrostatic latent images
JP2016224107A (en) * 2015-05-27 2016-12-28 京セラドキュメントソリューションズ株式会社 Toner for electrostatic latent image development and manufacturing method of the same
CN106200285B (en) * 2015-05-27 2019-09-10 京瓷办公信息系统株式会社 Developing toner for electrostatic latent images
JP2016224188A (en) * 2015-05-28 2016-12-28 富士ゼロックス株式会社 Image forming apparatus and image forming method
JP2016224249A (en) * 2015-05-29 2016-12-28 富士ゼロックス株式会社 Image forming apparatus and image forming method
JP2016224250A (en) * 2015-05-29 2016-12-28 富士ゼロックス株式会社 Image forming apparatus and image forming method
JP2019124971A (en) * 2019-05-13 2019-07-25 富士ゼロックス株式会社 Electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method

Similar Documents

Publication Publication Date Title
JP3141783B2 (en) Manufacturing method of electrostatic image developing toner, electrostatic image developing toner, electrostatic image developer, and image forming method
JPH11327201A (en) Toner for developing electrostatic charge image, its reduction, electrostatic charge image developer and image forming method
JP3399294B2 (en) Manufacturing method of electrostatic image developing toner, electrostatic image developing toner, electrostatic image developer, and image forming method
JP3241003B2 (en) Toner for electrostatic charge development, method for producing the same, developer, and image forming method
JP3871766B2 (en) Toner for developing electrostatic image, method for producing toner for developing electrostatic image, developer for developing electrostatic image, and image forming method
US7618761B2 (en) Toner for electrostatic image development, manufacturing method thereof, electrostatic image developer and image forming method
JP3871753B2 (en) Method for producing toner for developing electrostatic image, toner for developing electrostatic image, developer for electrostatic image, and image forming method
JP2001228647A (en) Electrostatic charge image developing toner, method of manufacturing the same, developer and method of forming image
JP2003057866A (en) Image forming method
JP3141795B2 (en) Manufacturing method of electrostatic image developing toner, electrostatic image developing toner, electrostatic image developer, and image forming method
JP2958416B2 (en) Method of manufacturing toner for developing electrostatic image, toner for developing electrostatic image, and image forming method
KR101389364B1 (en) Electrostatic-image-developing toner, electrostatic image developer, method of manufacturing electrostatic-image-developing toner, toner cartridge, process cartridge, method of image formation, and image forming apparatus
JP4654601B2 (en) Resin particles and production method thereof, electrostatic charge developing toner and production method thereof, electrostatic charge image developer, and image forming method.
JP2000267331A (en) Electrostatic charge image developing toner, its production, electrostatic charge image developer and method for formation of image
JP3428364B2 (en) Colorant dispersion, method for producing toner for developing electrostatic image, toner for developing electrostatic image, developer for electrostatic image, and image forming method
JP2005031275A (en) Electrostatic charge image developing magenta toner, its manufacturing method, developer, and method for forming image
JPH11143125A (en) Electrostatic charge image developing toner, production of electrostatic charge image developing toner, electrostatic charge image developer and image forming method
JP4285255B2 (en) Toner for electrostatic charge development and method for producing the same
JP3752877B2 (en) Toner for developing electrostatic image, method for producing the same, electrostatic image developer, and image forming method
JP3099776B2 (en) Method for producing electrostatic image developing toner, toner produced by the method, and image forming method using the toner
JP2004226726A (en) Image forming method, developer for replenishment, and developer cartridge for replenishment
JP2000131877A (en) Electrostatic charge image developing toner, its production, electrostatic charge image developer and image forming method
JP4665435B2 (en) Resin particles and production method thereof, electrostatic charge developing toner and production method thereof, electrostatic charge image developer, and image forming method.
JP2004287185A (en) Electrostatic latent image developing toner and its manufacturing method, electrostatic latent image developer and image forming method
JP3680661B2 (en) Image forming method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050927