JPH11326530A - Earthquake disaster counter measure supporting device - Google Patents

Earthquake disaster counter measure supporting device

Info

Publication number
JPH11326530A
JPH11326530A JP12455498A JP12455498A JPH11326530A JP H11326530 A JPH11326530 A JP H11326530A JP 12455498 A JP12455498 A JP 12455498A JP 12455498 A JP12455498 A JP 12455498A JP H11326530 A JPH11326530 A JP H11326530A
Authority
JP
Japan
Prior art keywords
seismic intensity
intensity distribution
earthquake
damage
seismic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12455498A
Other languages
Japanese (ja)
Inventor
Seishi Suzuki
聖之 鈴木
Tomio Yamada
富美夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12455498A priority Critical patent/JPH11326530A/en
Publication of JPH11326530A publication Critical patent/JPH11326530A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce processing time from the occurrence of an earthquake to the output support information and to establish an initial system, by estimating a disaster condition in a region according to the distribution of seismic intensity in the region from a seismic intensity distribution estimation means, and displaying the estimated disaster condition. SOLUTION: A device is installed at a plurality of locations such as each self-governing body; consists of an earthquake observation device 1 that records earthquake data such as speed and acceleration, and calculates a measured seismic intensity (g) when an earthquake occurs; a seismic intensity estimation part 11; a disaster estimation part 12; a support information display device 13; and also consists of a support device body 10 for performing processing after the estimation of the distribution of seismic intensity, based on the measured seismic intensity being transmitted from the earthquake observation device 1. The seismic intensity estimation part 11 estimates a seismic intensity distribution (h) from the measured seismic intensity being transmitted from the earthquake observation device 1. The disaster estimation part 12 calculates a disaster estimation result (i) in a region from the seismic intensity distribution. The support information display device 13 displays a disaster estimation result (i) and support information (j) such as the presence/absence of the need for installing disaster measure headquarters and initial personnel, thus enabling disaster personnel to establish an initial system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地方,国を含む行
政の緊急対策本部等に設置される防災システムに適用さ
れる地震被害対策支援装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an earthquake damage countermeasure support device applied to a disaster prevention system installed in an emergency response headquarters of a local or national government.

【0002】[0002]

【従来の技術】地震の発生時、その地震の震度の大きさ
によって家屋倒壊,火災発生、津波の発生などの被害状
況が大きくなってくるが、地震の発生に伴なう災害が発
生(以下、発災と指称する)から緊急対策本部の設置や
消防・警察の待機・動員など初動態勢を確立するまでの
間の被害状況の情報収集が重要となってくる。
2. Description of the Related Art When an earthquake occurs, damage such as house collapse, fire, and tsunami increases depending on the magnitude of the seismic intensity of the earthquake. It is important to collect information on the damage status from the establishment of the emergency response headquarters to the establishment of the first dynamics such as firefighting, police standby and mobilization.

【0003】防災担当者にとっては、地震による被害が
何処でどれくらいの規模で生じているかが分からない
と、限られた本部職員や消防・警察の隊員を何処にどけ
だけ配置してよいか判断できない。さらに、被害の大き
さに応じた職員・隊員の招集や緊急対策本部の設置の必
要性も判断できない。
If the person in charge of disaster prevention does not know where and on what scale the damage caused by the earthquake has occurred, it is impossible to judge where to place limited headquarters staff or fire and police personnel. . Furthermore, it is not possible to judge the necessity of recruiting staff and members or establishing an emergency response headquarters according to the magnitude of the damage.

【0004】従来、被害状況の情報収集は、被災者から
の通報や警察・消防からの部分的な連絡に依存している
ことから、早期に広範囲の被害状況を把握するのが困難
である。
[0004] Conventionally, information gathering on the damage situation has relied on reports from the victims and partial communication from police and fire departments, making it difficult to grasp the damage situation over a wide area at an early stage.

【0005】ところで、最近では、自治体自体が独自で
管轄地域内の複数個所に地震計を設置し、地震発生時に
地震計からの地震波形を解析し、当該地域内の地震動の
大きさ(震度)から建物、道路などの構造物の倒壊被害
やこれによる死傷者の被害を自動的に推定計算する地震
被害対策支援装置を導入する自治体が増えてきている。
In recent years, local governments themselves have installed seismometers at a plurality of locations in their own jurisdiction, analyzed the seismic waveforms from the seismometers at the time of the occurrence of an earthquake, and determined the magnitude of the seismic motion in the area (intensity). More and more local governments are introducing seismic damage countermeasure support devices that automatically estimate and calculate the collapse damage of buildings and roads, and the resulting damage to casualties.

【0006】図4は従来の地震被害対策支援装置のブロ
ック構成図である。この支援装置は、地震計で観測され
た速度或いは加速度などの地震データaから自己回帰モ
デルと赤池情報量規準(AIC:Akaike Information C
riterion、赤池弘次・赤川源四郎編、赤池弘次監修、時
系列解析の実際I、発行所朝倉書店参照)とを用いて地
震波中のP波およびS波初動時刻bを算出する位相検出
部51およびこのP波およびS波初動bの両者の時刻差
として、走時曲線と呼ばれる震源および観測点の間の距
離とその間の伝搬時間とを表す関数に照らし合わせて震
源情報(震源位置、発震時刻、マグニチュード)cを算
出する震源情報算出部52の他、震度分布推定部53、
被害推定部54および支援情報表示装置55が設けられ
ている。
FIG. 4 is a block diagram of a conventional earthquake damage countermeasure support device. This support device uses an autoregressive model and Akaike Information C (AIC) based on seismic data a such as velocity or acceleration observed by a seismometer.
riterion, edited by Koji Akaike / Genshiro Akakawa, supervised by Koji Akaike, Practical I of time series analysis, see Asakura Shoten Publishing Office) The time difference between both the P wave and the S wave initial b is compared with a function called a travel time curve, which represents the distance between the epicenter and the observation point and the propagation time between them. ) In addition to the epicenter information calculation unit 52 for calculating c, a seismic intensity distribution estimation unit 53,
A damage estimation unit 54 and a support information display device 55 are provided.

【0007】この震度分布推定部53は、震源情報算出
部52により得られる震源情報cから地域内の地盤構造
(減衰特性)を考慮した距離減衰式等で広域の震度分布
dを推定する機能をもっている。前記被害推定部54
は、地震被害が震度に比例して大きくなると考えられる
いるので、震度分布dから地域内の被害推定結果e(例
えば死傷者数や建物倒壊数など)を算出する機能をもっ
ている。前記支援情報表示装置55では、被害推定結果
eや災害対策本部設置の必要性の有無や初動人員等の支
援情報fを出力する。従って、防災担当者は、かかる支
援情報fに基づいて初動態勢を確立する。
The seismic intensity distribution estimating unit 53 has a function of estimating a wide area seismic intensity distribution d from the epicenter information c obtained by the epicenter information calculating unit 52 by a distance attenuation formula in consideration of the ground structure (attenuation characteristics) in the area. I have. The damage estimation unit 54
Since it is considered that the earthquake damage increases in proportion to the seismic intensity, it has a function of calculating a damage estimation result e (for example, the number of casualties or the number of building collapses) in the area from the seismic intensity distribution d. The support information display device 55 outputs the damage estimation result e, the support information f such as the necessity of the establishment of the disaster countermeasure headquarters, and the number of initial workers. Therefore, the person in charge of disaster prevention establishes an initial dynamic based on the support information f.

【0008】[0008]

【発明が解決しようとする課題】従って、以上のような
地震被害対策支援装置では、地震発生から支援情報を出
力するまでに多くの処理時間を要する問題がある。その
原因は、正確な震源情報(震源位置、発信時刻、マグニ
チュード)を算出することを前提とした伝統的な位相検
出部51、震源情報算出部52および震度分布推定部5
3を採用していることから、計算アルゴリズムが複雑で
あることに起因する。例えば位相検出部51では、自己
回帰モデルのような統計的手法を用い、また震源情報算
出部52では震源情報を算出するために収束計算により
連立方程式を解く必要があること。さらに、震度分布推
定部53では、データベースを参照しながら地域内の地
盤特性(減衰特性)を計算するので、非常に多くの時間
を必要とする。
Accordingly, the above-mentioned earthquake damage countermeasure support device has a problem that it takes a lot of processing time from the occurrence of an earthquake to the output of support information. The causes are the traditional phase detection section 51, hypocenter information calculation section 52, and seismic intensity distribution estimation section 5 which are premised on calculating accurate epicenter information (epicenter location, transmission time, magnitude).
3, the calculation algorithm is complicated. For example, the phase detection unit 51 needs to use a statistical method such as an autoregressive model, and the epicenter information calculation unit 52 needs to solve simultaneous equations by convergence calculation in order to calculate epicenter information. Further, since the seismic intensity distribution estimating unit 53 calculates the ground characteristics (attenuation characteristics) in the area while referring to the database, it takes a very long time.

【0009】ところで、行政の防災担当者にとって重要
なことは、正確な震源情報ではなく、あくまでも即座に
得られる被害推定結果であると言える。被害推定のアル
ゴリズムは、過去の地震被害から統計的に得られる関数
式で表されることが多い。その結果、過去のある地震の
被害推定式を当てているので、他の地震の被害に当ては
まりにくいこと。つまり、いくら震源情報を正確に算出
しても、被害推定結果を正確に算出することが難しい。
By the way, it can be said that what is important for the administrative disaster prevention staff is not the accurate epicenter information but the damage estimation result obtained immediately. The algorithm for damage estimation is often represented by a function formula statistically obtained from past earthquake damage. As a result, the formula for estimating the damage of a certain earthquake in the past is used, so it is unlikely to apply to the damage of other earthquakes. In other words, no matter how accurate the hypocenter information is, it is difficult to accurately calculate the damage estimation result.

【0010】よって、正確に震源情報を算出するために
処理時間を費やすことは得策でなく、むしろ多少の誤差
を許容しつつ、一刻も早く被害推定結果を出し、初動態
勢を確立することが行政の防災担当者にとって重要であ
る。
[0010] Therefore, it is not advisable to spend processing time to accurately calculate the epicenter information. Rather, it is necessary to obtain damage estimation results as soon as possible while allowing some errors, and to establish the initial dynamics. It is important for disaster prevention officers.

【0011】本発明は上記事情に鑑みてなされたもの
で、地震発生から支援情報出力までの処理時間を短縮
し、地震発生後の初動態勢を即座に確立できる地震被害
対策支援装置を提供することにある。
The present invention has been made in view of the above circumstances, and provides an earthquake damage countermeasure support device capable of shortening the processing time from the occurrence of an earthquake to outputting support information and immediately establishing the initial dynamics after the occurrence of an earthquake. It is in.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、複数の観測地点に地震観測装置を設置
し、加速度または速度から計測震度を算出し、この計測
震度、加速度または速度の何れかを支援装置本体に送出
する。この支援装置本体は、地震観測装置から計測震度
を受ける場合には、前記計測震度から例えばVoronoi 図
を用いて地域内の震度分布を推定する震度分布推定手段
と、この地域内の震度分布から地域内の被害状況を推定
する被害推定手段と、この被害推定手段により推定され
た地域内の被害状況を表示する支援情報表示装置とを設
け、一方、加速度または速度を受ける場合には、前記震
度分布推定手段の前段に加速度または速度から計測震度
を算出する計測震度算出手段を設け、前記震度分布推定
手段に送出する構成である。
In order to solve the above problems, the present invention provides seismic observation devices at a plurality of observation points, calculates a measured seismic intensity from acceleration or speed, and calculates the measured seismic intensity, acceleration or speed. Is sent to the support apparatus main body. When receiving the measured seismic intensity from the seismic observation device, the main body of the supporting device is a seismic intensity distribution estimating means for estimating the seismic intensity distribution in the area from the measured seismic intensity using, for example, Voronoi diagram, and Estimation means for estimating the damage situation in the area, and a support information display device for displaying the damage situation in the area estimated by the damage estimation means, while, when receiving acceleration or speed, the seismic intensity distribution A configuration is provided in front of the estimating means that a measured seismic intensity calculating means for calculating a measured seismic intensity from acceleration or velocity is provided to the seismic intensity distribution estimating means.

【0013】従って、以上のような手段を講じたことに
より、自治体等で設置される複数の観測地点の地震観測
装置によって計測震度を算出し、防災センター等の支援
装置本体に送出し、ここで、震度分布推定手段が例えば
Voronoi 図を用いて地域内の震度分布を推定するので、
従来のような複雑な計算処理を行う位相検出部や震源情
報算出部等を削除でき、地震発生から支援情報出力まで
の処理時間を大幅に短縮でき、地震発生後の初動態勢を
速やかに確立でき、ひいては災害の拡大を未然に防止で
きる。
Therefore, by taking the above measures, the seismic intensity measured by the seismic observation devices at a plurality of observation points installed in the local government and the like is calculated and transmitted to the main body of the support device such as a disaster prevention center. , The seismic intensity distribution estimation means
Since the seismic intensity distribution in the area is estimated using Voronoi diagrams,
The phase detection unit and hypocenter calculation unit that perform complicated calculation processing like the conventional one can be deleted, the processing time from the occurrence of an earthquake to the output of support information can be significantly reduced, and the initial dynamics after an earthquake can be quickly established. Thus, it is possible to prevent disasters from spreading.

【0014】[0014]

【発明の実施の形態】近年、地震観測網の整備が急速に
進められており、自治体独自で地震観測装置を設置する
ところが多くなってきている。従って、大部分の自治体
は、複数個所に設置される地震観測装置から震度値を得
ることが可能となっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In recent years, the maintenance of seismic observation networks has been rapidly advanced, and the number of places where seismic observation devices are installed by local governments has increased. Therefore, most local governments can obtain seismic intensity values from seismic observation devices installed at a plurality of locations.

【0015】そこで、これら地震観測装置を有効に利用
すれば従来のように震源位置を算出し、その後に震度分
布を推定するような計算が必要なくなり、しかも地震観
測装置の震度値はその地点の震度を的確に表しているの
で、従来のような推定計算による震度値よりも確かなも
のである。
Therefore, if these seismic observation devices are used effectively, it is not necessary to calculate the hypocenter location as in the past and then to estimate the seismic intensity distribution, and the seismic intensity value of the seismic observation device can be calculated at that point. Because the seismic intensity is accurately expressed, it is more accurate than the seismic intensity value by the conventional estimation calculation.

【0016】従って、地震観測装置を有効に活用し、震
源位置や震源情報の計算を省略し、初動態勢を速やかに
確立するために、本発明装置を実現したものである。図
1は本発明に係わる地震被害対策支援装置の一実施の形
態を示す構成図である。
Therefore, the apparatus of the present invention is realized in order to effectively utilize the earthquake observation apparatus, omit the calculation of the epicenter and the epicenter information, and quickly establish the initial dynamics. FIG. 1 is a configuration diagram showing one embodiment of an earthquake damage countermeasure support device according to the present invention.

【0017】この支援装置は、各自治体などで複数個所
に設置され、地震発生時,速度または加速度などの地震
データを収録し計測震度gを算出する地震観測装置1
と、防災センター或いはこれに類するセンターに設けら
れ、震度分布推定部11、被害推定部12および支援情
報表示装置13からなり、前記地震観測装置1から送信
されてくる計測震度に基づいて震度分布の推定以降の処
理を行う支援装置本体10とによって構成されている。
This support device is installed at a plurality of places in each local government, etc., and records an earthquake data such as a velocity or an acceleration when an earthquake occurs, and calculates a measured seismic intensity g.
A seismic intensity distribution estimating unit 11, a damage estimating unit 12, and a support information display device 13, which are provided in a disaster prevention center or a similar center. The seismic intensity distribution is calculated based on the measured seismic intensity transmitted from the earthquake observation device 1. The support apparatus main body 10 performs processing after the estimation.

【0018】前記震度分布推定部11は、地震観測装置
1から送信されてくる計測震度gから地域内の地盤構造
(減衰特性)を考慮した距離減衰式等を用いて広域の震
度分布hを推定する機能をもっている。この被害推定部
12は、地震被害が計測震度に比例して大きくなると考
えられているので、震度分布hから地域内の被害推定結
果i(例えば死傷者数や建物倒壊数など)を算出する機
能をもっている。前記支援情報表示装置13は、被害推
定結果iや災害対策本部設置の必要性の有無や初動人員
等の支援情報jを表示し、防災担当者が初動態勢を確立
可能にするものである。
The seismic intensity distribution estimating section 11 estimates a wide area seismic intensity h from the measured seismic intensity g transmitted from the seismic observation device 1 by using a distance attenuation formula or the like in consideration of the ground structure (attenuation characteristic) in the area. Has the ability to Since the damage estimation unit 12 is considered to increase the earthquake damage in proportion to the measured seismic intensity, a function for calculating the estimated damage i in the area (for example, the number of casualties and the number of collapsed buildings) from the seismic intensity distribution h. Have. The support information display device 13 displays the damage estimation result i, support information j such as the necessity of the establishment of the disaster response headquarters, and the number of initial workers, so that the person in charge of disaster prevention can establish the initial dynamics.

【0019】次に、以上のように構成された装置の動作
を説明する。先ず、地震発生時,地震観測装置1では、
速度または加速度などの地震データを収録し計測震度g
を算出する。この計測震度の算出は、例えば気象庁によ
って公開されている手法である旧算出方法およびこの旧
算出方法を改良した新算出方法が用いられる。因みに、
旧算出方法で得られた結果を震度と呼び、新算出方法で
得られた結果を旧と区別する意味から震度に代えて計測
震度と呼んでいる。
Next, the operation of the apparatus configured as described above will be described. First, when an earthquake occurs, the earthquake observation device 1
Measured seismic intensity g by recording seismic data such as speed or acceleration
Is calculated. For the calculation of the measured seismic intensity, for example, an old calculation method disclosed by the Japan Meteorological Agency and a new calculation method which is an improvement of the old calculation method are used. By the way,
The result obtained by the old calculation method is called seismic intensity, and the result obtained by the new calculation method is called measured seismic intensity instead of seismic intensity to distinguish it from the old one.

【0020】震度の旧算出方法は、 I=2・log(a)+0.7+log(k・T) …(1) で表す。ここで、I:震度(四捨五入して整数値とす
る。但し、右辺が0.5未満のときはI=0.5以上の
ときはI=6とする)、a:加速度(gal=cm/s
ec2 )、T:周期(sec、暫定的に0.1〜1se
cの範囲)、k:係数である。
The old calculation method of the seismic intensity is represented by I = 2 · log (a) + 0.7 + log (k · T) (1) Here, I: seismic intensity (rounded to an integer value. However, when the right side is less than 0.5, I = 6 when I = 0.5 or more), a: acceleration (gal = cm / s
ec 2 ), T: cycle (sec, tentatively 0.1 to 1 sec)
c), k: coefficient.

【0021】この旧算出方法の特徴は、なるべく体感に
一致するように作られていること、算出される震度は整
数部分しか意味をもたないこと、震度7は算出されない
ことおよび水平動のみを使用し、上下動は考慮していな
いこと等である。
The features of this old calculation method are that it is made to match the bodily sensation as much as possible, that the calculated seismic intensity has meaning only in the integer part, that the seismic intensity 7 is not calculated, and that only the horizontal movement It does not consider vertical movement.

【0022】これに対し、計測震度の新算出方法は、 I=2・log(a)+logT+(0.7+logk) …(2) で表される。これは、建物被害との相関を考慮し、震度
算出に用いる地震動の周期の範囲を長周期側へ広げたこ
と。また、計測震度の値が連続量で扱えるように継続時
間を考慮したこと、旧では各成分毎に震度を算出した
が、これをベクトル量で扱うこと等である。
On the other hand, a new calculation method of the measured seismic intensity is represented by I = 2 · log (a) + logT + (0.7 + logk) (2) This is because the range of the period of the seismic motion used for calculating the seismic intensity was extended to the longer period side in consideration of the correlation with the building damage. In addition, the duration is considered so that the value of the measured seismic intensity can be handled in a continuous amount. In the past, the seismic intensity was calculated for each component, but this is handled in a vector amount.

【0023】前記(2)式による計測震度は、加速度記
録3成分(水平動2成分、上下動1成分)について、そ
れぞれ以下のような手順で算出する。 (a).フーリエ変換処理:前記各成分ごとに得られる
加速度をフーリエ変換し、スペクトルを計算する。 (b).フィルター処理:前記(a)により得られるス
ペクトルに対し、次の3種類のフィルター処理1,2,
3を実行する。
The seismic intensity measured by the above equation (2) is calculated for each of the three acceleration recording components (two horizontal movement components and one vertical movement component) in the following procedure. (A). Fourier transform processing: Fourier transform is performed on the acceleration obtained for each component to calculate a spectrum. (B). Filter processing: The following three types of filter processing 1, 2, 2,
Execute 3.

【0024】 ア.前記(2)式の右辺第2項に対応するフィルター処理1 フィルター処理1:(1/F)1/2 …(3) イ.ハイカットフィルター処理2 フィルター処理2:1/(1+0.694・y2 +0.241・y4 +0.0557・y6 +0.009664・y8 +0.0013 4・y10+0.000155・y121/2 …(4) ウ.ローパスフィルター処理3 フィルター処理3:[1−exp{−(F/0.5)3 }]1/2 …(5) 上式においてF:周波数[Hz]、y=F/10であ
る。 (c).逆フーリエ変換処理:前記フィルター処理で得
られたスペクトルを逆フーリエ変換を実施し、フィルタ
ー処理された加速度波形を求める。 (d).ベクトル合成処理:得られたフィルター処理済
み記録3成分の加速度波形をベクトル的に合成する。 (e).振幅の決定処理:ベクトル合成波形の絶対値が
ある値x以上となる時間の合計を計算したとき、これが
丁度0.3secとなるようなxを求める。 (f).計測震度の算出:以上のようなxを用いて、計
測震度Iを求める。すなわち、 I=2log x+0.94 …(6) から計測震度を求めた後、この計測震度を支援装置本体
10に送信する。
A. Filter processing 1 corresponding to the second term on the right side of the above equation (2) Filter processing 1: (1 / F) 1/2 (3) b. High cut filter processing 2 Filter processing 2: 1 / (1 + 0.694 · y 2 + 0.241 · y 4 + 0.0557 · y 6 + 0.009664 · y 8 +0.0013 4 · y 10 + 0.000155 · y 12 ) 1 / 2 … (4) c. Low-pass filter processing 3 Filter processing 3: [1-exp {-(F / 0.5) 3 }] 1/2 (5) In the above equation, F: frequency [Hz], and y = F / 10. (C). Inverse Fourier transform processing: The spectrum obtained by the filter processing is subjected to inverse Fourier transform to obtain a filtered acceleration waveform. (D). Vector synthesis processing: The obtained acceleration waveforms of the three filtered recording components are synthesized vectorwise. (E). Amplitude determination processing: When the total time during which the absolute value of the vector composite waveform is equal to or greater than a certain value x is calculated, x is calculated such that the sum becomes just 0.3 sec. (F). Calculation of measured seismic intensity: Measured seismic intensity I is obtained using x as described above. That is, after calculating the measured seismic intensity from I = 2 log x + 0.94 (6), the measured seismic intensity is transmitted to the support apparatus main body 10.

【0025】ここで、支援装置本体10の震度分布推定
部11は、地震観測装置1から送信されてくる計測震度
gから地域内の地盤構造(減衰特性)を考慮した距離減
衰式等を用いて広域の震度分布hを推定する。
Here, the seismic intensity distribution estimating unit 11 of the support apparatus main body 10 uses a distance attenuation formula or the like in consideration of the ground structure (attenuation characteristic) in the area from the measured seismic intensity g transmitted from the earthquake observation device 1. Estimate the seismic intensity distribution h over a wide area.

【0026】この震度分布の推定は、Voronoi 図(アド
バンスト エレクトロニクスシリーズII−2,計算幾何
工学,杉原厚吉著15頁〜20頁参照,培風館発行)を
用いて推定する。
The seismic intensity distribution is estimated using a Voronoi diagram (Advanced Electronics Series II-2, Computational Geometry, pp. 15-20 by Atsuyoshi Sugihara, published by Baifukan).

【0027】このVoronoi 図は各震度の地域を確定する
ための幾何的問題を定義づけたものである。具体的に
は、Rを実数全体の集合とする。2個の実数の対(x,
y)を平面上の点の座標とみなし、このような対の全体
がなす集合R2 を平面と同一視する。平面上に指定され
た有限個の点の集合をP={p1,p2,…,pn}とする。2
点p,q のユークリッド(Euclid)距離をd(p,q )とす
れば、領域V(pi)は次の式で表される。
This Voronoi diagram defines a geometric problem for determining the area of each seismic intensity. Specifically, R is a set of all real numbers. Two real pairs (x,
The y) is regarded as a coordinate on a plane, equate the plane a set R 2 of the whole of such pair form. A set of a finite number of points specified on the plane is defined as P = {p1, p2,..., Pn}. 2
Assuming that the Euclid distance of the point p, q is d (p, q), the area V (pi) is represented by the following equation.

【0028】[0028]

【数1】 (Equation 1)

【0029】但し、V(pi)は、平面上の点で「piまでの
距離がPに属す他の点までの距離より小さい」という性
質をもつもの全体がなす領域である。そこで、前記
(7)式は以下のように書き換えることができる。
However, V (pi) is a region formed by all points on the plane having the property that "the distance to pi is smaller than the distance to other points belonging to P". Therefore, the above equation (7) can be rewritten as follows.

【0030】[0030]

【数2】 (Equation 2)

【0031】上式の右辺の中括弧は線分pi−pjの垂直二
等分線を境界とする半空間であるから、それらの共通部
分であるV(pi)は凸多角形である。{V(p1), V(p2),
……,V(pn)}は平面の分割を与える。この分割をPに
対するVoronoi 図と呼び、Vor(p) で表す。また、Pに
属する点をVoronoi 図の母点と呼ぶ。
Since the curly braces on the right side of the above equation are half spaces bounded by the perpendicular bisector of the line segment pi-pj, their common part, V (pi), is a convex polygon. {V (p1), V (p2),
.., V (pn)} gives the division of the plane. This division is called a Voronoi diagram for P, and is represented by Voor (p). A point belonging to P is called a Voronoi diagram generating point.

【0032】このVoronoi 図は、近いところほど影響力
が大であると考えて平面を影響力が最大の母点へ分配し
たものであり、いわば母点の勢力分布を表す図と解釈す
ることができる。
This Voronoi diagram is obtained by distributing the plane to the generating point having the greatest influence, considering that the closer the position is, the greater the influence is. It can be interpreted as a diagram showing the distribution of power at the generating point. it can.

【0033】今、前記(8)式で表す平面R2 を地震観
測地域、p,pi,pj を地震観測装置1の設置点と考えれ
ば、凸多角形で表されるVoronoi 領域V(pi)は、地震観
測装置1(i )の勢力範囲を示すことになる。
Now, assuming that the plane R 2 expressed by the above equation (8) is an earthquake observation area and p, pi, pj are installation points of the earthquake observation apparatus 1, the Voronoi region V (pi) represented by a convex polygon Indicates the range of influence of the earthquake observation device 1 (i).

【0034】従って、Voronoi 図による震度分布は、以
下のような算出方法となり、イメージ的には図2に示す
ようになる。すなわち、算出方法は、 (1) 隣接する地震観測装置1を直線で例えば図示点
線により結び、その垂直2等分線を引くことにより、平
面上の各地域を分割確定することができる。 (2) 垂直2等分線に囲まれる実線の領域は、そこに
含まれる地震観測装置の計測震度と同一であるとみな
す。
Therefore, the seismic intensity distribution based on the Voronoi diagram is calculated as follows, and is conceptually shown in FIG. That is, the calculation method is as follows: (1) By connecting the adjacent earthquake observation devices 1 with a straight line, for example, by a dotted line in the drawing, and drawing a perpendicular bisector, each area on the plane can be divided and determined. (2) The area of the solid line surrounded by the perpendicular bisector is considered to be the same as the seismic intensity measured by the seismic observation device included therein.

【0035】これによって各地域内の震度分布hを推定
できる。但し、この推定は原則であって、例えば各地域
内の状況を考慮し後述するように重み付けにより震度分
布を変えることができる。
Thus, the seismic intensity distribution h in each area can be estimated. However, this estimation is a principle, and the seismic intensity distribution can be changed by weighting, for example, in consideration of the situation in each area as described later.

【0036】しかして、以上のようにして震度分布hを
推定した後、被害推定部12では、地震被害が計測震度
に比例すると考え、推定された震度分布hから地域内の
被害推定結果iを算出する。この地域内の被害推定結果
iは、地域の建物の密集状態,土地の地盤の状態、木造
家屋の多少等を考慮しつつ、例えば震度分布hごとに死
傷者数や建物倒壊数の他、災害対策本部設置の必要性の
有無、どの程度の人員を必要とするか、さらに消防車の
台数等が記憶され、各震度分布hに対する地域内の被害
推定結果iとする。
After the seismic intensity distribution h is estimated as described above, the damage estimating unit 12 considers that the seismic damage is proportional to the measured seismic intensity, and calculates the damage estimation result i in the area from the estimated seismic intensity distribution h. calculate. The damage estimation result i in this area is calculated based on the density of buildings in the area, the state of the ground of the land, the number of wooden houses, etc. Whether or not it is necessary to set up a countermeasure headquarters, how many personnel are required, the number of fire trucks, and the like are stored, and the result i of estimated damage in the area for each seismic intensity distribution h.

【0037】よって、震度分布推定部11にて震度分布
hが推定されると、その震度分布hに基づいて被害推定
部12が地域内の被害推定結果iを取り出し、支援情報
表示装置13に表示する。
Therefore, when the seismic intensity distribution estimating unit 11 estimates the seismic intensity distribution h, the damage estimating unit 12 extracts the damage estimation result i in the area based on the seismic intensity distribution h and displays it on the support information display device 13. I do.

【0038】従って、以上のような実施の形態によれ
ば、従来装置の位相検出部51や震源情報算出部52を
削除でき、地震観測装置1から送信される計測震度gに
基づいて震度分布推定部11がVoronoi 図を用いて地域
内の震度分布hを推定計算するので、地震発生から支援
情報を出力するまでの処理時間を大幅に短縮でき、行政
の初動態勢を即座に確立できる。
Therefore, according to the above-described embodiment, the phase detector 51 and the epicenter information calculator 52 of the conventional device can be deleted, and the seismic intensity distribution can be estimated based on the measured seismic intensity g transmitted from the seismic observation device 1. Since the unit 11 estimates and calculates the seismic intensity distribution h in the area using the Voronoi diagram, the processing time from the occurrence of the earthquake to the output of the support information can be greatly reduced, and the initial dynamics of the government can be immediately established.

【0039】次に、本発明装置の他の実施の形態につい
て説明する。 (1) 過去の測定結果や地域の地盤の強弱等に基づ
き、予め各地震観測装置1ごとに重みを設定すれば、Vo
ronoi 図を用いて地域内の震度分布hを推定する際の領
域分割のための垂直2等分線を前記重みづけにより平行
移動させるようにすれば、図2に示すA〜Fの震度分布
を変えることができる。
Next, another embodiment of the apparatus of the present invention will be described. (1) If the weight is set in advance for each seismic observation device 1 based on the past measurement results and the strength of the local ground, Vo
If the vertical bisector for region division when estimating the seismic intensity distribution h in the area using the ronoi diagram is translated by the weighting, the seismic intensity distributions of A to F shown in FIG. Can be changed.

【0040】例えば地震観測点Aの重みを1.0、地震
観測点Bの重みを0.5とすれば、これら2地震観測点
間の領域分割は図2のように2等分ではなくなり、重み
の比,すなわち2:1の比の関係で領域を分割するの
で、この場合には震度Aの領域が震度Bの領域側に拡大
することになる。
For example, if the weight of the earthquake observation point A is set to 1.0 and the weight of the earthquake observation point B is set to 0.5, the area division between these two earthquake observation points will not be bisected as shown in FIG. Since the area is divided according to the weight ratio, that is, the ratio of 2: 1, in this case, the area of the seismic intensity A expands to the area of the seismic intensity B.

【0041】これにより、各地震観測点の信号の信頼性
や地盤の違い等による影響を間接的に考慮しつつ震度分
布を推定できる。 (2) また、本発明装置においては、例えば図3に示
すように防災センター内の支援装置本体10に計測震度
算出部14を新たに追加し、地震観測装置1′で観測さ
れる加速度aに基づいて計測震度gの計算を実施し、得
られた計測震度gを震度分布推定部11に送出する構成
であってもよい。 (3) さらに、本発明装置においては、例えば図3に
示すように防災センター内の支援装置本体10に計測震
度算出部14を新たに追加し、地震観測装置1′で観測
される速度を時間微分して加速度aに変換し、この加速
度aから計測震度gの計算を実施し、得られた計測震度
gを震度分布推定部11に送出する構成であってもよ
い。
Thus, the seismic intensity distribution can be estimated while indirectly considering the influence of the reliability of the signal of each earthquake observation point, the difference in ground, and the like. (2) In the apparatus of the present invention, as shown in FIG. 3, for example, a measurement seismic intensity calculator 14 is newly added to the support device main body 10 in the disaster prevention center, and the acceleration a observed by the earthquake observation device 1 'is added. The calculated seismic intensity g may be calculated based on the calculated seismic intensity g, and the obtained measured seismic intensity g may be sent to the seismic intensity distribution estimating unit 11. (3) Further, in the apparatus of the present invention, for example, as shown in FIG. Differentiation may be converted into acceleration a, the measured seismic intensity g may be calculated from the acceleration a, and the obtained measured seismic intensity g may be sent to the seismic intensity distribution estimating unit 11.

【0042】このような図3の構成とする理由は、例え
ば既に設置されている地震観測装置1′が加速度aまた
は速度を計測する構成となっている場合、既存の地震観
測装置1′を有効に理由できるメリットがある。
The reason for adopting the configuration shown in FIG. 3 is that, for example, when the already installed earthquake observation device 1 ′ is configured to measure the acceleration a or the speed, the existing earthquake observation device 1 ′ is effective. There are advantages that can be reasoned.

【0043】[0043]

【発明の効果】以上説明したように本発明によれば、地
震波に基づいて地震観測装置で得られる計測震度から地
域内の震度分布を推定するので、地震発生から支援情報
出力までの処理時間を大幅に短縮でき、これにより行政
の初動態勢を即座に確立でき、ひいて地震による被害を
最小限に止めることができる。
As described above, according to the present invention, the seismic intensity distribution in the area is estimated from the seismic intensity measured by the seismic observation device based on the seismic wave, so that the processing time from the occurrence of the earthquake to the output of the support information is reduced. Significant reductions can be made to quickly establish the initial dynamics of the government, thus minimizing earthquake damage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係わる地震被害対策支援装置の一実
施の形態を示す構成図。
FIG. 1 is a configuration diagram showing an embodiment of an earthquake damage countermeasure support device according to the present invention.

【図2】 計測震度からVoronoi 図を用いて地域内の震
度分布を推定するための説明図。
FIG. 2 is an explanatory diagram for estimating a seismic intensity distribution in an area from a measured seismic intensity using a Voronoi diagram.

【図3】 本発明装置の他の実施の形態を示す構成図。FIG. 3 is a configuration diagram showing another embodiment of the device of the present invention.

【図4】 従来の地震被害対策支援装置の構成図。FIG. 4 is a configuration diagram of a conventional earthquake damage countermeasure support device.

【符号の説明】[Explanation of symbols]

1,1′…地震観測装置 10…支援装置本体 11…震度分布推定部 12…被害推定部 13…支援情報表示装置 14…計測震度算出部 1, 1 '... seismic observation device 10 ... support device body 11 ... seismic intensity distribution estimating unit 12 ... damage estimating unit 13 ... support information display device 14 ... measured seismic intensity calculating unit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数の観測地点に設置され地震データ
から計測震度を算出する地震観測装置と、防災を目的と
するセンター側に設置され前記地震観測装置から送信さ
れてくる計測震度を取り込む支援装置本体とを有し、 この支援装置本体は、前記計測震度から震度分布を推定
する震度分布推定手段と、この震度分布から地域内の被
害状況を推定する被害推定手段と、この被害推定手段に
より推定された地域内の被害状況を表示する支援情報表
示装置とを備えたことを特徴とする地震被害対策支援装
置。
1. A seismic observation device which is installed at a plurality of observation points and calculates a measured seismic intensity from earthquake data, and a support device which is installed at a center side for disaster prevention and takes in a measured seismic intensity transmitted from the earthquake observation device. A main body, the main body of the support device, a seismic intensity distribution estimating means for estimating a seismic intensity distribution from the measured seismic intensity, a damage estimating means for estimating a damage situation in the area from the seismic intensity distribution, and an estimating means using the damage estimating means. And a support information display device for displaying a damage situation in a designated area.
【請求項2】 複数の観測地点に設置され加速度データ
または速度データを送信する地震観測装置と、防災を目
的とするセンター側に設置され前記地震観測装置から送
信されてくる加速度または速度を取り込む支援装置本体
とを有し、 この支援装置本体は、加速度または速度から計測震度を
算出する計測震度算出手段と、この計測震度算出手段で
算出される計測震度から震度分布を推定する震度分布推
定手段と、この震度分布から地域内の被害状況を推定す
る被害推定手段と、この被害推定手段により推定された
地域内の被害状況を表示する支援情報表示装置とを備え
たことを特徴とする地震被害対策支援装置。
2. A seismic observation device installed at a plurality of observation points and transmitting acceleration data or velocity data, and a support installed at a center for disaster prevention to capture acceleration or velocity transmitted from the earthquake observation device. A main body of the support apparatus, the main body of the support apparatus has a seismic intensity calculating means for calculating a measured seismic intensity from the acceleration or the velocity, and a seismic intensity distribution estimating means for estimating a seismic intensity distribution from the measured seismic intensity calculated by the measured seismic intensity calculating means. And a damage estimating means for estimating a damage situation in the area from the seismic intensity distribution, and a support information display device for displaying the damage situation in the area estimated by the damage estimating means. Support equipment.
【請求項3】 前記震度分布推定手段は、Voronoi 図
を用いて地域内の震度分布を推定することを特徴とする
請求項1または請求項2に記載の地震被害対策支援装
置。
3. The earthquake damage countermeasure support device according to claim 1, wherein the seismic intensity distribution estimating means estimates a seismic intensity distribution in the area using a Voronoi diagram.
【請求項4】 前記震度分布推定手段は、予め震度観
測装置ごとに重みが設定され、Voronoi 図を用いて地域
内の震度分布を推定する際の領域分割のための垂直2等
分線を前記重みの比に応じて平行移動させて地域内の震
度分布を推定することを特徴とする請求項1または請求
項2に記載の地震被害対策支援装置。
4. The seismic intensity distribution estimating means sets a weight in advance for each seismic intensity observation device, and generates a vertical bisector for area division when estimating an intra-regional seismic intensity distribution using a Voronoi diagram. The earthquake damage countermeasure support device according to claim 1 or 2, wherein the seismic intensity distribution in the area is estimated by performing parallel movement according to the weight ratio.
JP12455498A 1998-05-07 1998-05-07 Earthquake disaster counter measure supporting device Pending JPH11326530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12455498A JPH11326530A (en) 1998-05-07 1998-05-07 Earthquake disaster counter measure supporting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12455498A JPH11326530A (en) 1998-05-07 1998-05-07 Earthquake disaster counter measure supporting device

Publications (1)

Publication Number Publication Date
JPH11326530A true JPH11326530A (en) 1999-11-26

Family

ID=14888363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12455498A Pending JPH11326530A (en) 1998-05-07 1998-05-07 Earthquake disaster counter measure supporting device

Country Status (1)

Country Link
JP (1) JPH11326530A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292589A (en) * 2005-04-12 2006-10-26 Nippon Telegr & Teleph Corp <Ntt> System and method for earthquake information management
JP2007024808A (en) * 2005-07-21 2007-02-01 Matsushita Electric Ind Co Ltd Gas meter disaster prevention system
JP2010218557A (en) * 2006-07-20 2010-09-30 Swiss Reinsurance Co Computer system and method for determining regional impact of earthquake event
JP2020176836A (en) * 2019-04-15 2020-10-29 旭化成ホームズ株式会社 Building earthquake damage estimation device, method of using building earthquake damage estimation device, building earthquake damage estimation method and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292589A (en) * 2005-04-12 2006-10-26 Nippon Telegr & Teleph Corp <Ntt> System and method for earthquake information management
JP4495634B2 (en) * 2005-04-12 2010-07-07 日本電信電話株式会社 Earthquake information management system
JP2007024808A (en) * 2005-07-21 2007-02-01 Matsushita Electric Ind Co Ltd Gas meter disaster prevention system
JP4508022B2 (en) * 2005-07-21 2010-07-21 パナソニック株式会社 Gas meter disaster prevention system
JP2010218557A (en) * 2006-07-20 2010-09-30 Swiss Reinsurance Co Computer system and method for determining regional impact of earthquake event
JP2020176836A (en) * 2019-04-15 2020-10-29 旭化成ホームズ株式会社 Building earthquake damage estimation device, method of using building earthquake damage estimation device, building earthquake damage estimation method and program

Similar Documents

Publication Publication Date Title
JP2873926B2 (en) Method and apparatus for observing electromagnetic field related to precursory phenomenon of earthquake
US20050125197A1 (en) Device and method for determining and detecting the onset of structural collapse
JP5009076B2 (en) Earthquake early warning system
JP2849297B2 (en) Seismic intensity prediction system
Liu et al. Visualized localization and tracking of debris flow movement based on infrasound monitoring
JP2007071707A (en) Earthquake motion intensity prediction method and disaster prevention system, using real-time earthquake information
JPH11326530A (en) Earthquake disaster counter measure supporting device
JP2023550091A (en) Vertical distance prediction of vibrations using distributed fiber optic sensing
KR101923166B1 (en) Method for correcting amplitude magnitude of seismic signal extracted from seismic ambient noise
Zulfikar et al. Istanbul natural gas network rapid response and risk mitigation system
Lockman et al. Magnitude-period scaling relations for Japan and the Pacific Northwest: Implications for earthquake early warning
Aytulun et al. Implementation and application of a SHM system for tall buildings in Turkey
KR102196534B1 (en) System and Method for Monitoring Realtime Ground Motion and Producing Shake Map using MEMS Network
JPH10508109A (en) Earthquake monitoring
CN116088050A (en) Rock burst prediction method based on microseismic monitoring of space-time strong parameters of fracture source
CN113536195B (en) Earthquake toughness calculation method and system for community system at earthquake disaster time
JP2000075040A (en) Seismic damage measure-supporting device
JPH11160447A (en) Earthquake alarm system
KR101520399B1 (en) System and Method for Reducing of Seismic Noise using Micro Site Stacking
Putra et al. Distributed sensor for earthquake identification system to activate tsunami shelter finding system
Luco et al. Probabilistic seismic demand analysis at a near-fault site using ground motion simulations based on a stochastic-kinematic earthquake source model
JP2003255052A (en) Estimating apparatus for measured seismic intensity
KR102468928B1 (en) A quick progress determination method and system using the initial angle of p wave
Lin et al. Predicting structural response with on-site earthquake early warning system using neural networks
EP1809999A1 (en) Method for detecting the onset of structural collapse of burning structures