JPH11326250A - Test method for thermal conductivity - Google Patents

Test method for thermal conductivity

Info

Publication number
JPH11326250A
JPH11326250A JP13642998A JP13642998A JPH11326250A JP H11326250 A JPH11326250 A JP H11326250A JP 13642998 A JP13642998 A JP 13642998A JP 13642998 A JP13642998 A JP 13642998A JP H11326250 A JPH11326250 A JP H11326250A
Authority
JP
Japan
Prior art keywords
thermocouple
test piece
thermal conductivity
hot wire
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13642998A
Other languages
Japanese (ja)
Inventor
Hideo Asakura
朝倉秀夫
Masayuki Nakamu
中務正幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP13642998A priority Critical patent/JPH11326250A/en
Publication of JPH11326250A publication Critical patent/JPH11326250A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a test method in which a precise temperature change can be measured by a thermocouple by a method wherein a test piece, a hot wire and the thermocouple are insulated completely, precise electric power is applied to the hot wire and heat is transmitted to the test piece from the hot wire without any loss. SOLUTION: In a test method, a hot wire 5 and a thermocouple 6 are buried, at a prescribed interval, in a test piece 1 and a test piece 2 which are placed in a prescribed high-temperature nonoxidizing atmosphere, and a temperature change is measured by the thermocouple 6 when the test pieces 1, 2 are heated locally by the hot wire 5. In this case, insulating materials 8, 8 which are heat- resistant and whose thermal conductivity is high are executed around the hot wire 5 and the thermocouple 6 which are buried in the test pieces 1, 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、導電性を有する耐
火物の熱伝導率を熱線と熱電対を用いて試験する方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for testing the thermal conductivity of a conductive refractory using a hot wire and a thermocouple.

【0002】[0002]

【従来の技術】耐火物の熱伝導率は、築炉設計における
炉材選定のため、或いは研究開発における熱的スポーリ
ング性を評価する等の重要なデータとなる。しかし、炭
素を主体とした導電性を有する耐火物(MgO−C質、
Al2 3 −C質、SiC質等)、あるいは高温で導電
性が生じるZrO2 質耐火物等は生産量が増加したにも
かかわらず好適な熱伝導率試験方法は確立されていな
い。
2. Description of the Related Art The thermal conductivity of refractories is important data for selecting furnace materials in furnace design or for evaluating thermal spalling properties in research and development. However, conductive refractories mainly composed of carbon (MgO-C material,
Al 2 O 3 -C quality, SiC quality, etc.), or high temperature despite ZrO 2 quality refractory conductive arises such production volume is increased with a suitable thermal conductivity testing method has not been established.

【0003】耐火物の熱伝導率試験方法としては、熱流
法、熱線法、レーザフラッシュ法等があり、これらの試
験方法のうち熱線法が一般に用いられている。この熱線
法による好適な試験規格としては、日本工業規格JIS
R2618(耐火断熱れんがの熱線法による熱伝導率
の試験方法)、国際規格ISO 8894−1〜2(耐
火物の熱伝導率試験方法)等がある。しかし、これらの
好適な熱線法による試験規格は絶縁性を有する耐火物に
対して適用されるものである。
As a method for testing the thermal conductivity of refractories, there are a heat flow method, a hot wire method, a laser flash method, and the like, and among these test methods, the hot wire method is generally used. As a suitable test standard by this hot wire method, Japanese Industrial Standard JIS
R2618 (a test method for the thermal conductivity of a refractory insulating brick by the hot wire method), and International Standard ISO 8894-1-2 (a test method for the thermal conductivity of refractory). However, these preferred hot wire test standards apply to refractories having insulating properties.

【0004】そこで、導電性を有する耐火物の熱伝導率
試験方法として暫定的に前述の熱線法による熱伝導率試
験方法が試みられており、熱線と熱電対に雲母板により
絶縁を施した方法、或いは特開昭64−66553号公
報に開示されているような溝に測温用熱電対を埋め込
み、電気絶縁性のよい絶縁層のコーティングにセラミッ
ク基材を用いた方法、その他の方法として、炭素含有耐
火物を空気中で加熱し、表面のみを薄く脱炭した方法等
が行われていた。しかし、これらの試験方法は後述する
ように試験精度に問題がある等十分な試験方法ではなか
った。
Therefore, as a method for testing the thermal conductivity of a refractory having conductivity, the thermal conductivity test method by the above-mentioned hot wire method has been tentatively attempted, and a method in which a hot wire and a thermocouple are insulated by a mica plate. Alternatively, a thermocouple for temperature measurement is buried in a groove as disclosed in JP-A-64-66553, and a method of using a ceramic base material for coating an insulating layer having good electrical insulation, and other methods, A method of heating a carbon-containing refractory in air and thinly decarburizing only the surface has been performed. However, these test methods were not sufficient test methods, such as having a problem in test accuracy as described later.

【0005】従来の導電性を有する耐火物の熱伝導率試
験方法の一例として、図6(斜視図)により国際規格I
SO8894−2耐火物の熱伝導率試験法、熱線法(平
行配列法)を応用した試験方法(熱線と熱電対の絶縁に
雲母板を使用)について説明する。この試験方法は、8
00℃までの温度で熱伝導率が25W/(m・K)以下
の材質に適用される。図6は試験片にセットされた熱線
および熱電対の配置状態を示している(セット状態を示
す分解図)。図示のように2個の試験片1、2の間に2
枚の雲母板3、4を配設し、この雲母板3、4の間に直
線的に配置された熱線5から所定の距離をおいて熱電対
6を配置する。これら熱線5および熱電対6は雲母板
3、4を介して試験片1、2に密着されるように配置さ
れる。緻密質または熱伝導率が5W/m・K以上の耐火
物では熱線5と熱電対6を試験片に埋設するための溝7
が設けられる。
FIG. 6 (perspective view) shows an example of a conventional method for testing the thermal conductivity of a conductive refractory according to International Standard I.
A description will be given of a thermal conductivity test method for SO8894-2 refractories and a test method to which a hot wire method (parallel arrangement method) is applied (a mica plate is used for insulating a hot wire and a thermocouple). This test method is 8
Applies to materials with a thermal conductivity of 25 W / (m · K) or less at temperatures up to 00 ° C. FIG. 6 shows an arrangement state of the heating wire and the thermocouple set on the test piece (an exploded view showing the setting state). As shown in FIG.
A plurality of mica plates 3 and 4 are arranged, and a thermocouple 6 is arranged at a predetermined distance from a heating wire 5 linearly arranged between the mica plates 3 and 4. The heating wire 5 and the thermocouple 6 are arranged so as to be in close contact with the test pieces 1 and 2 via the mica plates 3 and 4. In the case of dense materials or refractories having a thermal conductivity of 5 W / m · K or more, a groove 7 for embedding the heating wire 5 and the thermocouple 6 in the test piece.
Is provided.

【0006】次に、熱線5および熱電対6が配置された
試験片を無酸化雰囲気中で所定の試験温度に加熱昇温し
その温度で保持する。試験片温度が一定温度で安定した
後、熱線5に所定時間試験片の長さにわたって一定であ
る既知電力の電流を流すことによって、試験片はさらに
局所的に加熱される。試験片の温度変化は熱線に平行に
所定の間隔で配置された熱電対6により熱線5に加熱電
流を流した時から計測される。熱線5に加える電力は印
加電圧(V)と電流(A)から求められる。
Next, the test piece on which the heating wire 5 and the thermocouple 6 are arranged is heated to a predetermined test temperature in a non-oxidizing atmosphere and is kept at that temperature. After the specimen temperature stabilizes at a constant temperature, the specimen is further locally heated by passing a current of known power that is constant over the length of the specimen for a predetermined time through the heating wire 5. The temperature change of the test piece is measured from the time when a heating current is applied to the hot wire 5 by the thermocouples 6 arranged at predetermined intervals in parallel with the hot wire. The power applied to the heating wire 5 is obtained from the applied voltage (V) and the current (A).

【0007】前記試験片の熱伝導率λ(W/m・K)は
次式で計算される。 V:印加電圧(V) I:加熱電流(A) 1:熱線の長さ(m) r:熱線と測定用熱電対の間隔(m) a:熱拡散係数(m2 /s) t:加熱回路の開閉時間(s) Δθ(t):時間tにおける熱電対の温度変化(K)
The thermal conductivity λ (W / m · K) of the test piece is calculated by the following equation. V: applied voltage (V) I: heating current (A) 1: length of heating wire (m) r: distance between the hot wire and the measuring thermocouple (m) a: thermal diffusion coefficient (m 2 / s) t: opening and closing time of the heating circuit (s) Δθ (t): temperature change of the thermocouple at time t (K)

【0008】[0008]

【発明が解決しようとする課題】前記計算式から明らか
なように、精度の高い熱伝導率試験を実施するには熱線
に加えられる正確な電力とその計測、熱線からのロスの
少ない試験片への熱伝達、そして、試験片の熱電対によ
る正確な温度変化の測定が重要なファクターとなる。し
かし、導電性を有する耐火物に関する従来の試験方法に
おいて、試験片と熱線および熱電対の間の絶縁に雲母板
を使用した場合、以下のような問題があった。 (1)雲母板の耐熱温度は800℃が限度で、それ以上
の温度になると雲母板が劣化して、電熱線および熱電対
と試験片間の絶縁が低下して正確な測定ができない。 (2)雲母板の熱伝導率が低いため、0.7W/m・K
(400℃)の測定誤差を生じる。 (3)雲母板は可撓性がないため、800℃以下の温度
で使用する場合においても試験片に溝を設けた場合に次
の問題がある。 雲母板に割れが生じて試験片と熱線および熱電対との
間の絶縁が低下する場合が生じ、安定した試験ができな
い。 熱線と雲母板の間、雲母板と試験片の間の密着が悪
く、熱線から試験片への熱伝達が不十分で測定誤差を生
じる。 熱電対と雲母の間、雲母板と試験片の間の密着が悪
く、正確な測温ができず、測定誤差が生じる。 (4)熱線および熱電対の周辺に介在するCOガスのた
め、熱線および熱電対に浸炭し、特性を劣化させる。さ
らに空気中で加熱し、表面のみを薄く脱炭した方法で
は、絶縁性を確保し、かつ熱伝導率に影響を及ぼさない
程度の表面の酸化処理は難しく測定値にバラツキが生じ
る。また、特開昭64−66553号公報記載のものは
溝に測温用熱電対を埋め込み、電気絶縁性のよい絶縁層
の充填材にセラミック基材を用いている。しかし、この
方法によると本願の対称とする耐火材料は、種類も多
く、試験頻度も高いためこのような製作手段は煩雑であ
ると共に所定の試験精度が得られにくく、さらに測定物
体は絶縁性を有するものを対象としたもので、測定物体
と熱電対との間は絶縁材を介在させておらず、絶縁は熱
電対とヒータとの間のみであり、また絶縁コーティング
材についての詳細な記載もなく、試験温度も800〜1
000℃に対して本願では1500℃まで測定が可能で
あり、十分な手段ではない。
As is apparent from the above formula, in order to carry out a high-precision thermal conductivity test, accurate power applied to a hot wire and its measurement, and a test piece with little loss from the hot wire are used. The important factors are the heat transfer of the sample and the accurate measurement of the temperature change by the thermocouple of the test piece. However, in a conventional test method for a refractory having conductivity, when a mica plate is used for insulation between a test piece, a heating wire, and a thermocouple, there are the following problems. (1) The heat-resistant temperature of the mica plate is limited to 800 ° C. If the temperature exceeds the limit, the mica plate is deteriorated, and the insulation between the heating wire and the thermocouple and the test piece is reduced, so that accurate measurement cannot be performed. (2) 0.7 W / m · K due to low thermal conductivity of mica plate
(400 ° C.) measurement error occurs. (3) Since the mica plate is not flexible, the following problem arises when the test piece is provided with a groove even when used at a temperature of 800 ° C. or less. In some cases, cracks occur in the mica plate and the insulation between the test piece and the heating wire or thermocouple decreases, and a stable test cannot be performed. Poor adhesion between the hot wire and the mica plate, and between the mica plate and the test piece, resulting in insufficient heat transfer from the hot wire to the test piece, causing measurement errors. Poor adhesion between the thermocouple and the mica, and between the mica plate and the test piece, making accurate temperature measurement impossible, resulting in measurement errors. (4) Because of the CO gas present around the hot wire and the thermocouple, the hot wire and the thermocouple are carburized and deteriorate the characteristics. Further, in the method of heating in air and thinly decarburizing only the surface, it is difficult to oxidize the surface to such an extent that the insulating property is secured and the thermal conductivity is not affected, and the measured values vary. Japanese Unexamined Patent Publication (Kokai) No. 64-66553 discloses a thermocouple for temperature measurement embedded in a groove, and a ceramic base material is used as a filler for an insulating layer having good electrical insulation. However, according to this method, the refractory material to be symmetrical in the present application has many types and the test frequency is high, so that such a manufacturing means is complicated, and it is difficult to obtain a predetermined test accuracy. Insulation is not interposed between the measurement object and the thermocouple, insulation is only between the thermocouple and the heater, and detailed description of the insulation coating material is also provided. No, test temperature is 800 ~ 1
In the present application, it is possible to measure up to 1500 ° C. against 000 ° C., which is not a sufficient means.

【0009】本発明は上記課題を解決するためのもの
で、導電性を有する耐火物の熱伝導率試験において、試
験片と熱線および熱電対の絶縁を完全にし、正確な電力
が熱線に加わるようにするとともに、熱線から試験片へ
ロスなく熱伝達され、熱電対による正確な温度変化の測
定を可能にして高精度で安定した熱伝導率試験を可能に
することである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. In a thermal conductivity test of a refractory having conductivity, insulation between a test piece, a heating wire and a thermocouple is completed so that accurate power is applied to the heating wire. In addition, heat is transferred from the hot wire to the test piece without any loss, and accurate measurement of temperature change by the thermocouple is enabled, thereby enabling a highly accurate and stable thermal conductivity test.

【0010】[0010]

【課題を解決するための手段】そのために本発明の請求
項1の発明は、所定の高温無酸化雰囲気中に置かれた試
験片に熱線と熱電対とを所定間隔で埋設し、試験片を熱
線で局部的に加熱したときの温度変化を熱電対で測定す
る熱伝導率試験方法において、前記試験片に埋設される
熱線と熱電対の周囲に耐熱性の高熱伝導性を有する絶縁
材を施したことを特徴とする。請求項2の発明は、前記
絶縁材は刷毛塗りのできる粘性、付着性及び硬化後高気
密性を有する塗布材からなり、該塗布材の骨材は、アル
ミナまたはムライトまたはマグネシアまたはチタニアと
バインダ及び複合アルコキシド部分加水分解物からなる
ことを特徴とする。請求項3の発明は、前記絶縁材は高
気密性を有する中空状の焼成物からなり、該中空状の焼
成物は、主成分がアルミナまたはムライトまたはマグネ
シアまたはチタニアからなることを特徴とする。請求項
4の発明は、前記試験片を2分割してその片面または両
面に表面から溝を掘削し、骨材がアルミナまたはムライ
トまたはマグネシアまたはチタニアとバインダ及び複合
アルコキシド部分加水分解物からなり、刷毛塗りのでき
る粘性、付着性及び硬化後高気密性を有する塗布材を前
記熱線及び熱電対に塗布して硬化させた後前記溝に配設
したことを特徴とする。請求項5の発明は、前記試験片
を2分割してその片面に表面から溝を掘削し、骨材がア
ルミナまたはムライトまたはマグネシアまたはチタニア
とバインダ及び複合アルコキシド部分加水分解物からな
り、刷毛塗りのできる粘性、付着性及び硬化後高気密性
を有する塗布材を前記溝に塗布して硬化させた後、前記
熱線及び熱電対を前記溝に配設し、さらに熱線及び熱電
対と溝との隙間に前記塗布材を充填したことを特徴とす
る。請求項6の発明は、前記試験片を2分割してその片
面または両面に表面から掘削した溝に配設される前記熱
線及び熱電対は、主成分がアルミナまたはムライトまた
はマグネシアまたはチタニアからなる絶縁材から形成し
た高気密性を有する中空状の焼成物に挿設したことを特
徴とする。請求項7の発明は、前記中空状の焼成物と熱
線及び熱電対の隙間に、骨材がアルミナまたはムライト
またはマグネシアまたはチタニアとバインダ及び複合ア
ルコキシド部分加水分解物からなり、刷毛塗りのできる
粘性、付着性及び硬化後高気密性を有する塗布材を充填
したことを特徴とする。請求項8の発明は、前記中空状
の焼成物と試験片の隙間に、骨材がアルミナまたはムラ
イトまたはマグネシアまたはチタニアとバインダ及び複
合アルコキシド部分加水分解物からなり、刷毛塗りので
きる粘性、付着性及び硬化後高気密性を有する塗布材を
充填したことを特徴とする。
According to a first aspect of the present invention, a test wire placed in a predetermined high-temperature, non-oxidizing atmosphere is provided with a hot wire and a thermocouple embedded at a predetermined interval, and the test bar is inserted. In a thermal conductivity test method in which a temperature change when locally heated by a hot wire is measured by a thermocouple, an insulating material having heat resistance and high thermal conductivity is provided around the hot wire embedded in the test piece and the thermocouple. It is characterized by having done. The invention according to claim 2 is characterized in that the insulating material is made of a coating material having viscosity, adhesion and high airtightness after curing which can be applied with a brush, and the aggregate of the coating material is made of alumina or mullite or magnesia or titania and a binder. It is characterized by comprising a complex alkoxide partial hydrolyzate. The invention according to claim 3 is characterized in that the insulating material is formed of a hollow fired material having high airtightness, and the hollow fired material is mainly composed of alumina, mullite, magnesia, or titania. According to a fourth aspect of the present invention, the test piece is divided into two parts and a groove is excavated from one or both surfaces thereof, and the aggregate is made of alumina or mullite or magnesia or titania and a binder and a composite alkoxide partial hydrolyzate. A coating material having viscosity, adhesion, and high airtightness after coating is applied to the hot wire and the thermocouple, cured, and then disposed in the groove. The invention according to claim 5 is that the test piece is divided into two and a groove is excavated from the surface on one side, and the aggregate is composed of alumina or mullite or magnesia or titania and a binder and a composite alkoxide partial hydrolyzate. After applying a coating material having possible viscosity, adhesion and high airtightness after curing to the groove and curing the same, the hot wire and the thermocouple are arranged in the groove, and further the gap between the hot wire and the thermocouple and the groove. Characterized by being filled with the coating material. According to a sixth aspect of the present invention, the test wire is divided into two parts, and the hot wire and the thermocouple disposed on a groove excavated from the surface on one or both sides thereof are made of an insulating material mainly composed of alumina, mullite, magnesia, or titania. It is characterized by being inserted into a hollow fired product having high airtightness formed from a material. The invention according to claim 7 is characterized in that, in the gap between the hollow fired product, the heat wire and the thermocouple, the aggregate is composed of alumina or mullite or magnesia or titania and a binder and a composite alkoxide partial hydrolyzate, It is characterized by being filled with a coating material having adhesiveness and high airtightness after curing. The invention according to claim 8 is that the aggregate is made of alumina or mullite or magnesia or titania and a binder and a partially hydrolyzed composite alkoxide in a gap between the hollow fired product and the test piece, and is a viscous and adhesive material that can be brush-coated. And a filling material having high airtightness after curing is filled.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。図1は本発明の熱伝導率試験方法の基本的
構成を説明する図である。図1において、試験片1、2
は導電性を有する耐火物からなる1つの試験片を2分割
したものであり、分割したそれぞれの面に表面から所定
深さの溝7を掘削し、この溝に熱線5および熱電対6を
埋設して重ね合わせたものであり、熱線5および熱電対
6の周囲に耐熱性、高熱伝導率を有する絶縁材8を施す
ことにより低温から1500℃の高温に至るまで試験片
1、2と熱線5および熱電対6の絶縁を完全にし、正確
な電力が熱線に加わるとともに、熱線5から試験片1、
2へロスなく熱伝達され、かつ、熱電対6による正確な
温度変化の測定を可能にしたものであり、これにより高
精度で安定した熱伝導率試験が可能になった。
Embodiments of the present invention will be described below. FIG. 1 is a diagram for explaining the basic configuration of the thermal conductivity test method of the present invention. In FIG. 1, test pieces 1, 2
Is a test piece made of a conductive refractory, which is divided into two parts. A groove 7 having a predetermined depth is excavated from the surface of each of the divided surfaces, and a heating wire 5 and a thermocouple 6 are embedded in the grooves. The test pieces 1 and 2 and the hot wire 5 are applied from a low temperature to a high temperature of 1500 ° C. by applying an insulating material 8 having heat resistance and high thermal conductivity around the hot wire 5 and the thermocouple 6. And complete insulation of the thermocouple 6 so that accurate power is applied to the hot wire and the test piece 1,
The heat transfer to the thermocouple 2 is performed without loss, and the temperature change can be accurately measured by the thermocouple 6, thereby enabling a highly accurate and stable thermal conductivity test.

【0012】〔実施例1〕図2は実施例1を説明する図
である。導電性を有する耐火物から切り出された試験片
230mm×115mm×65mmを図2(a)に示す
如く2分割し、試験片1上面および試験片2下面をあら
かじめ平滑に加工した後、試験片1上面の中央部に間隔
X(=15mm)で側部から平行に幅Y(=1mm)お
よび深さZ(=1mm)の溝7を掘削し、溝7にあらか
じめ線径0.5mmのPR13%熱線(ロジウム13%
を含む白金ロジウム合金で構成された熱線)5と線径
0.5mmのR熱電対(−脚に白金、+脚にロジウム1
3%を含む白金ロジウム合金)6の外周に塗布材9を厚
さ150μm塗布した後、200℃で加熱硬化させたも
のを配設する。さらに、試験片1の溝7、および試験片
2との隙間には塗布材9を充填する。次に、このような
熱線5と熱電対6がセットされた試験片1、2を無酸化
雰囲気中の電気炉中に置き、1200℃の温度に昇温し
た後、常法により熱伝導率の測定を行う。なお、図2
(b)に示す如く、溝7は試験片1上面および試験片2
下面に渡って掘削し、この中に図2(a)の場合と同様
の態様で熱線、熱電対を配設するようにしてもよい。な
お、上記塗布材9は、刷毛塗りのできる適度の粘性と付
着性および硬化後高気密性と耐熱性と絶縁性と高熱伝導
性を有する骨材に電融アルミナの超微粉100重量%
を、バインダに複合アルコキシド部分加水分解物を外掛
で70重量%加え混合したものを用いる。
[First Embodiment] FIG. 2 is a view for explaining a first embodiment. A test piece 230 mm × 115 mm × 65 mm cut from a conductive refractory was divided into two parts as shown in FIG. 2 (a), and the upper surface of the test piece 1 and the lower surface of the test piece 2 were smoothed beforehand. A groove 7 having a width Y (= 1 mm) and a depth Z (= 1 mm) is dug in the center of the upper surface at an interval X (= 15 mm) in parallel from the side, and a PR 13% having a wire diameter of 0.5 mm is previously formed in the groove 7. Hot wire (rhodium 13%
And a R thermocouple with a wire diameter of 0.5 mm (platinum on the-leg, rhodium 1 on the + leg)
A coating material 9 is applied to the outer periphery of a platinum-rhodium alloy (containing 3%) 6 having a thickness of 150 μm, and then heated and cured at 200 ° C. is provided. Further, a coating material 9 is filled in the groove 7 of the test piece 1 and the gap between the test piece 2 and the groove 7. Next, the test pieces 1 and 2 on which such a heating wire 5 and a thermocouple 6 are set are placed in an electric furnace in a non-oxidizing atmosphere, and the temperature is increased to 1200 ° C .; Perform the measurement. Note that FIG.
As shown in (b), the groove 7 is formed on the upper surface of the test piece 1 and on the
Excavation may be performed over the lower surface, and a heating wire and a thermocouple may be disposed in the same manner as in the case of FIG. The coating material 9 is made of an aggregate having a suitable viscosity and adhesion that can be applied with a brush and having high airtightness, heat resistance, insulation and high thermal conductivity after curing, and 100% by weight of ultra-fine fused alumina.
And a binder in which 70% by weight of a composite alkoxide partial hydrolyzate is added externally and mixed.

【0013】〔実施例2〕図3は実施例2を説明する図
である。導電性を有する耐火物から切り出された試験片
230mm×115mm×65mmを図3に示すように
2分割し、試験片1上面および試験片2下面をあらかじ
め平滑に加工した後、図示のごとく試験片1上面の中央
部に間隔15mmで側部から平行に幅および深さ1mm
の溝7を掘削し、溝7に実施例1の塗布材9を硬化後の
厚さが150μmになるように塗布して塗布層10を形
成した後200℃で加熱硬化させる。次に、塗布層10
を形成した溝に線径0.5mmのPR13%熱線5と線
径0.5mmのR熱電対6をそれぞれの溝にはめ込み、
溝7との隙間に塗布材9を試験片2の下面と面一となる
ように塗布した後、200℃で加熱硬化させる。次に、
上記の熱線5と熱電対6がセットされた試験片1、2を
無酸化雰囲気の電気炉中におき、1200℃の温度に昇
温した後、常法により熱伝導率を測定する。
Second Embodiment FIG. 3 is a diagram for explaining a second embodiment. A test piece 230 mm × 115 mm × 65 mm cut out of a conductive refractory is divided into two as shown in FIG. 3, and the upper surface of the test piece 1 and the lower surface of the test piece 2 are smoothed in advance, and then the test piece as shown in the drawing. 1 Width and depth 1 mm parallel to the side at a distance of 15 mm at the center of the upper surface
The coating material 9 of Example 1 is applied to the groove 7 so as to have a cured thickness of 150 μm to form a coating layer 10, and then heated and cured at 200 ° C. Next, the coating layer 10
The PR 13% hot wire 5 having a wire diameter of 0.5 mm and the R thermocouple 6 having a wire diameter of 0.5 mm are fitted into the respective grooves.
The coating material 9 is applied to the gap between the groove 7 and the surface of the test piece 2 so as to be flush with the lower surface of the test piece 2, and then heated and cured at 200 ° C. next,
The test pieces 1 and 2 on which the above-mentioned heating wire 5 and the thermocouple 6 are set are placed in an electric furnace in a non-oxidizing atmosphere, heated to a temperature of 1200 ° C., and then the thermal conductivity is measured by an ordinary method.

【0014】〔実施例3〕図4は実施例3を説明する図
である。導電性を有する耐火物から切り出された試験片
230mm×115mm×65mmを2分割し、試験片
1上面および試験片2下面をあらかじめ平滑に加工した
後、図4(a)に示すごとく試験片1上面の中央部に間
隔15mmで側部から平行に幅および深さ1.5mmの
溝7を掘削する。次に、線径0.5mmのニクロム線に
よる熱線5と線径0.5mmR熱電対6に高気密性と耐
熱性および絶縁性を有する外径1mm、内径0.7m
m、肉厚150μmのアルミナ性中空状の焼成物(絶縁
スリーブ)11を挿通する。次に、スリーブに挿通され
た熱線5およびR熱電対6を試験片1上面の溝7にそれ
ぞれ嵌め込み、さらに試験片1、2と熱線5およびR熱
電対6の間の絶縁性および熱伝導を高めるため溝7とア
ルミナ性中空状の焼成物11との隙間に、塗布材9とし
て電融マグネシアの超微粉を60重量%、バインダに複
合アルコキシド部分加水分解物を外掛けで60重量%加
え、混合したものを試験片2下面と面一となるように塗
布したのち、200℃で加熱硬化させる。なお、図4
(b)に示す如く、溝9は試験片1上面および試験片2
下面に渡って掘削し、同様の態様で熱線および熱電対を
埋設するようにしてもよい。
Third Embodiment FIG. 4 is a view for explaining a third embodiment. A test piece 230 mm × 115 mm × 65 mm cut from a conductive refractory was divided into two parts, and the upper surface of the test piece 1 and the lower surface of the test piece 2 were smoothed in advance, and then, as shown in FIG. A groove 7 having a width and a depth of 1.5 mm is excavated in the center of the upper surface at a distance of 15 mm in parallel from the side. Next, a hot wire 5 made of a nichrome wire having a wire diameter of 0.5 mm and a thermocouple 6 having a wire diameter of 0.5 mm and an outer diameter of 1 mm and an inner diameter of 0.7 m having high airtightness, heat resistance and insulation properties are provided.
m, an alumina-based hollow fired product (insulating sleeve) 11 having a thickness of 150 μm is inserted. Next, the heat wire 5 and the R thermocouple 6 inserted into the sleeve are fitted into the grooves 7 on the upper surface of the test piece 1 respectively, and the insulation and heat conduction between the test pieces 1 and 2 and the heat wire 5 and the R thermocouple 6 are further improved. To increase the height, 60% by weight of ultra-fine powder of electrofused magnesia as a coating material 9 and 60% by weight of a composite alkoxide partial hydrolyzate are added to the binder in the gap between the groove 7 and the alumina-based hollow fired product 11, The mixture is applied so as to be flush with the lower surface of the test piece 2, and then cured by heating at 200 ° C. FIG.
As shown in (b), the groove 9 is formed on the upper surface of the test piece 1 and on the
The excavation may be performed over the lower surface, and the heating wire and the thermocouple may be embedded in a similar manner.

【0015】次に、スリーブに挿通された熱線5および
R熱電対6を、試験片1上面の溝7にそれぞれ嵌め込
み、試験片2を被せた後、試験片1、2を無酸化雰囲気
中の電気炉中に置き、1000℃の温度に昇温した後、
常法により熱伝導率を測定する。
Next, the heat wire 5 and the R thermocouple 6 inserted into the sleeve are respectively fitted into the grooves 7 on the upper surface of the test piece 1 and covered with the test piece 2, and then the test pieces 1 and 2 are placed in a non-oxidizing atmosphere. After placing in an electric furnace and raising the temperature to 1000 ° C,
The thermal conductivity is measured by an ordinary method.

【0016】〔実施例4〕図5は実施例4を説明する図
である。実施例3において、さらに試験精度を高めるた
めに、図5に如く前記アルミナ性中空状の焼成物(絶縁
スリーブ)11と、これに挿通された熱線5およびR熱
電対6との隙間12に塗布材として電融マグネシアの超
微粉100重量%を、バインダに複合アルコキシド部分
加水分解物を外掛けで65重量%加え混合したもの等を
充填し、200℃で加熱硬化させる。なお、図5(b)
に示すごとく、溝7は試験片1上面および試験片2下面
に渡って掘削し、同様の態様で熱線および熱電対を埋設
するようにしてもよい。
Fourth Embodiment FIG. 5 is a view for explaining a fourth embodiment. In Example 3, in order to further improve the test accuracy, as shown in FIG. 5, the alumina-based hollow fired product (insulating sleeve) 11 was applied to the gap 12 between the hot wire 5 and the R thermocouple 6 inserted therein. As a material, a mixture of 100% by weight of electro-fused magnesia ultrafine powder and 65% by weight of a composite alkoxide partially hydrolyzed product in a binder is filled, and the mixture is heated and cured at 200 ° C. In addition, FIG.
As shown in (1), the groove 7 may be excavated over the upper surface of the test piece 1 and the lower surface of the test piece 2 so as to embed a hot wire and a thermocouple in a similar manner.

【0017】上記各実施例における望ましい熱線、熱電
対、溝、絶縁材、絶縁スリーブを挙げると次の通りであ
る。 (1)熱線および測温用熱電対は、線径0.5mm以下
で熱電対(白金/白金ロジウム)の接点は同一線径の先
端レス品が好ましい。 (2)熱線および測温熱電対の埋設用溝は、試験片の片
面または両面に溝を掘削する。溝の幅深さは0.6mm
〜2mmが好ましい。 (3)熱線および測温熱電対の埋設用絶縁材は、 塗布、充填性があり、耐熱性、絶縁性、高熱伝導性が
あるもので、例えば本出願人が提案した無機材耐熱組成
物(特開平1−297471号公報参照)が好ましい。 耐火骨材100重量部に、SiアルコキシドとTiア
ルコキシド、Alアルコキシド、Zrアルコキシドから
選ばれた少なくとも一種からなる、複合アルコキシド部
分加水分解ゾル10〜200重量部を配合した無機材耐
熱組成物が好ましい。 耐火骨材としては、アルミナ、ムライト、マグネシ
ア、チタニアの0.5〜50μmの粉末を用いる。 複合アルコキシド部分加水分解ゾルはSiアルコキシ
ドに対し、Ti、Al、Zrの金属アルコキシド7〜2
5重量部の複合比率を用いる。また、OR基の30〜9
5モル%残存したものである。 耐火骨材に対し、複合アルコキシド部分加水分解ゾル
を外掛けで40〜100重量部(内掛け28〜50重量
部)の配合で塗布、充填性は得られる。 絶縁材は熱線および溝等に50〜300μm塗布また
はそれ以上充填することができる。
The preferred heating wires, thermocouples, grooves, insulating materials, and insulating sleeves in the above embodiments are as follows. (1) It is preferable that the hot wire and the thermocouple for temperature measurement have a wire diameter of 0.5 mm or less, and the contacts of the thermocouple (platinum / platinum rhodium) have the same wire diameter and have no tip. (2) The grooves for burying hot wires and thermocouples are excavated on one or both sides of the test piece. The groove depth is 0.6mm
~ 2 mm is preferred. (3) The insulating material for burying a hot wire and a thermocouple has a coating property, a filling property, a heat resistance property, an insulating property, and a high thermal conductivity. For example, the inorganic material heat-resistant composition proposed by the present applicant ( JP-A-1-297471) is preferred. An inorganic material heat-resistant composition comprising 100 parts by weight of refractory aggregate and 10 to 200 parts by weight of a composite alkoxide partially hydrolyzed sol comprising at least one selected from Si alkoxide, Ti alkoxide, Al alkoxide and Zr alkoxide is preferred. As the refractory aggregate, a powder of alumina, mullite, magnesia, and titania having a size of 0.5 to 50 μm is used. The complex alkoxide partially hydrolyzed sol is composed of metal alkoxides of Ti, Al, Zr 7 to 2 with respect to Si alkoxides.
A composite ratio of 5 parts by weight is used. In addition, 30 to 9 of the OR group
5 mol% remained. The coating and filling properties can be obtained by adding the composite alkoxide partially hydrolyzed sol to the refractory aggregate in an amount of 40 to 100 parts by weight (28 to 50 parts by weight) on the outside. The insulating material can be applied to the heating wire and the groove or the like by 50 to 300 μm or more.

【0018】(4)絶縁スリーブ 耐熱性、高気密性、絶縁性、高熱伝導性のあるアルミ
ナ、ムライト、マグネシアからなる公知のものがある。 また、外径0.8〜2mm、内径0.6〜1mmが好
ましい。
(4) Insulation Sleeve There is a known insulation sleeve made of alumina, mullite, and magnesia having heat resistance, high airtightness, insulation, and high thermal conductivity. Further, the outer diameter is preferably 0.8 to 2 mm and the inner diameter is 0.6 to 1 mm.

【0019】[0019]

【発明の効果】以上のように本発明によれば、低温から
高温まで試験片と熱線および熱電対の絶縁が完全とな
り、正確な電力が熱線に加わるとともに、熱線から試験
片へロスなく熱伝達され、熱電対による正確な温度変化
の測定が可能となり、その結果、高精度で安定した導電
性を有する耐火物の熱伝導率試験が可能になった。
As described above, according to the present invention, the insulation between the test piece, the heating wire and the thermocouple from the low temperature to the high temperature is completely completed, accurate power is applied to the heating wire, and heat is transferred from the heating wire to the test piece without any loss. As a result, accurate measurement of temperature change by a thermocouple became possible, and as a result, a thermal conductivity test of a highly accurate and stable conductive refractory was made possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の熱伝導率試験方法の基本的構成を説
明する図である。
FIG. 1 is a diagram illustrating a basic configuration of a thermal conductivity test method of the present invention.

【図2】 実施例1を説明する図である。FIG. 2 is a diagram illustrating a first embodiment.

【図3】 実施例2を説明する図である。FIG. 3 is a diagram illustrating a second embodiment.

【図4】 実施例3を説明する図である。FIG. 4 is a diagram illustrating a third embodiment.

【図5】 実施例4を説明する図である。FIG. 5 is a diagram illustrating a fourth embodiment.

【図6】 従来の導電性を有する耐火物の熱伝導率試験
方法の例を説明する図である。
FIG. 6 is a diagram illustrating an example of a conventional method for testing the thermal conductivity of a refractory having conductivity.

【符号の説明】[Explanation of symbols]

1,2…試験片、5…熱線、6…熱電対、7…溝、8…
絶縁材、9…塗布材、11…中空状の焼成物、12…隙
間。
1, 2, ... test piece, 5 ... hot wire, 6 ... thermocouple, 7 ... groove, 8 ...
Insulating material, 9: coating material, 11: hollow fired product, 12: gap.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 所定の高温無酸化雰囲気中に置かれた試
験片に熱線と熱電対とを所定間隔で埋設し、試験片を熱
線で局部的に加熱したときの温度変化を熱電対で測定す
る熱伝導率試験方法において、前記試験片に埋設される
熱線と熱電対の周囲に耐熱性の高熱伝導性を有する絶縁
材を施したことを特徴とする熱伝導率試験方法。
1. A hot wire and a thermocouple are buried at a predetermined interval in a test piece placed in a predetermined high-temperature non-oxidizing atmosphere, and a temperature change when the test piece is locally heated by the hot wire is measured by the thermocouple. A heat conductivity test method, characterized in that a heat-resistant insulating material having high heat conductivity is provided around a heat wire and a thermocouple embedded in the test piece.
【請求項2】 前記絶縁材は刷毛塗りのできる粘性、付
着性及び硬化後高気密性を有する塗布材からなり、該塗
布材は、骨材にアルミナまたはムライトまたはマグネシ
アまたはチタニアを、バインダに複合アルコキシド部分
加水分解物を用いたものであることを特徴とする請求項
1記載の熱伝導率試験方法。
2. The insulating material comprises a coating material having viscosity, adhesion, and high airtightness after curing, which can be applied with a brush. The coating material is composed of alumina, mullite, magnesia, or titania as an aggregate, and a binder as a composite. 2. The method for testing thermal conductivity according to claim 1, wherein an alkoxide partial hydrolyzate is used.
【請求項3】 前記絶縁材は高気密性を有する中空状の
焼成物からなり、該中空状の焼成物は、主成分がアルミ
ナまたはムライトまたはマグネシアまたはチタニアから
なることを特徴とする請求項1記載の熱伝導率試験方
法。
3. The insulating material is made of a hollow fired material having high airtightness, and the hollow fired material is mainly made of alumina, mullite, magnesia, or titania. The described thermal conductivity test method.
【請求項4】 前記試験片を2分割してその片面または
両面に表面から溝を掘削し、骨材にアルミナまたはムラ
イトまたはマグネシアまたはチタニアを、バインダに複
合アルコキシド部分加水分解物を用い、刷毛塗りのでき
る粘性、付着性及び硬化後高気密性を有する塗布材を前
記熱線及び熱電対に塗布して硬化させた後前記溝に配設
したことを特徴とする請求項1記載の熱伝導率試験方
法。
4. A test piece is divided into two parts and a groove is cut out from one or both sides of the test piece, and alumina, mullite or magnesia or titania is used as an aggregate, and a composite alkoxide partial hydrolyzate is used as a binder. 2. A thermal conductivity test according to claim 1, wherein a coating material having high viscosity, adhesion and high airtightness after curing is applied to said hot wire and thermocouple and cured, and then disposed in said groove. Method.
【請求項5】 前記試験片を2分割してその片面に表面
から溝を掘削し、骨材にアルミナまたはムライトまたは
マグネシアまたはチタニアを、バインダに複合アルコキ
シド部分加水分解物を用い、刷毛塗りのできる粘性、付
着性及び硬化後高気密性を有する塗布材を前記溝に塗布
して硬化させた後、前記熱線及び熱電対を前記溝に配設
し、さらに熱線及び熱電対と溝との隙間に前記塗布材を
充填したことを特徴とする請求項1記載の熱伝導率試験
方法。
5. The test piece is divided into two parts, a groove is excavated from the surface on one side, and alumina, mullite or magnesia or titania is used as an aggregate, and a composite alkoxide partial hydrolyzate is used as a binder. After applying and curing the coating material having viscosity, adhesiveness and high airtightness after curing in the groove, the hot wire and the thermocouple are arranged in the groove, and furthermore, in the gap between the hot wire and the thermocouple and the groove. The thermal conductivity test method according to claim 1, wherein the coating material is filled.
【請求項6】 前記試験片を2分割してその片面または
両面に表面から掘削した溝に配設される前記熱線及び熱
電対は、主成分がアルミナまたはムライトまたはマグネ
シアまたはチタニアからなる絶縁材から形成した高気密
性を有する中空状の焼成物に挿設したことを特徴とする
請求項1記載の熱伝導率試験方法。
6. The hot wire and the thermocouple provided in a groove excavated from the surface on one or both sides of the test piece divided into two parts, wherein the main component is made of an insulating material mainly composed of alumina, mullite, magnesia or titania. 2. The thermal conductivity test method according to claim 1, wherein the thermal conductivity test method is inserted into the formed fired material having high airtightness.
【請求項7】 前記中空状の焼成物と熱線及び熱電対の
隙間に、骨材にアルミナまたはムライトまたはマグネシ
アまたはチタニアを、バインダに複合アルコキシド部分
加水分解物を用い、刷毛塗りのできる粘性、付着性およ
び硬化後高気密性を有する塗布材を充填したことを特徴
とする請求項6記載の熱伝導率試験方法。
7. A viscous material which can be brush-coated by using alumina or mullite or magnesia or titania as an aggregate and a composite alkoxide partial hydrolyzate as a binder in a gap between the hollow fired product and a heat wire or a thermocouple. 7. The method for testing thermal conductivity according to claim 6, wherein the coating material is filled with an application material having high airtightness after curing.
【請求項8】 前記中空状の焼成物と試験片の隙間に、
骨材にアルミナまたはムライトまたはマグネシアまたは
チタニアを、バインダに複合アルコキシド部分加水分解
物を用い、刷毛塗りのできる粘性、付着性及び硬化後高
気密性を有する塗布材を充填したことを特徴とする請求
項6記載の熱伝導率試験方法。
8. A gap between the hollow fired product and the test piece,
An alumina or mullite or magnesia or titania as an aggregate and a composite alkoxide partial hydrolyzate as a binder, which is filled with a coating material which can be brushed and has high viscosity, adhesion and high airtightness after curing. Item 6. The thermal conductivity test method according to Item 6.
JP13642998A 1998-05-19 1998-05-19 Test method for thermal conductivity Pending JPH11326250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13642998A JPH11326250A (en) 1998-05-19 1998-05-19 Test method for thermal conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13642998A JPH11326250A (en) 1998-05-19 1998-05-19 Test method for thermal conductivity

Publications (1)

Publication Number Publication Date
JPH11326250A true JPH11326250A (en) 1999-11-26

Family

ID=15174947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13642998A Pending JPH11326250A (en) 1998-05-19 1998-05-19 Test method for thermal conductivity

Country Status (1)

Country Link
JP (1) JPH11326250A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1347290A1 (en) * 2002-03-22 2003-09-24 Instrumentarium Corporation Gas analyzer using thermal detectors
WO2015046547A1 (en) * 2013-09-30 2015-04-02 ニチアス株式会社 Method and device for measuring thermal diffusivity
KR20160032577A (en) * 2014-09-16 2016-03-24 부산대학교 산학협력단 device for surface heat flux measurement and manufacturing method thereof
KR101682141B1 (en) 2016-03-16 2016-12-02 부산대학교 산학협력단 device for simultaneous measurement of temperature and pressure and manufacturing method thereof
CN109580709A (en) * 2018-12-27 2019-04-05 西南科技大学 The method of the hot physical property of heat-pole method instantaneous measurement material
CN110907492A (en) * 2019-11-28 2020-03-24 航天特种材料及工艺技术研究所 Temperature-uniforming high-temperature heating assembly and heating device for testing thermal conductivity

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1347290A1 (en) * 2002-03-22 2003-09-24 Instrumentarium Corporation Gas analyzer using thermal detectors
US6694800B2 (en) 2002-03-22 2004-02-24 Instrumentarium Corp. Gas analyzer using thermal detectors
WO2015046547A1 (en) * 2013-09-30 2015-04-02 ニチアス株式会社 Method and device for measuring thermal diffusivity
KR20160032577A (en) * 2014-09-16 2016-03-24 부산대학교 산학협력단 device for surface heat flux measurement and manufacturing method thereof
KR101682141B1 (en) 2016-03-16 2016-12-02 부산대학교 산학협력단 device for simultaneous measurement of temperature and pressure and manufacturing method thereof
CN109580709A (en) * 2018-12-27 2019-04-05 西南科技大学 The method of the hot physical property of heat-pole method instantaneous measurement material
CN110907492A (en) * 2019-11-28 2020-03-24 航天特种材料及工艺技术研究所 Temperature-uniforming high-temperature heating assembly and heating device for testing thermal conductivity
CN110907492B (en) * 2019-11-28 2022-05-03 航天特种材料及工艺技术研究所 Temperature-uniforming high-temperature heating assembly and heating device for testing thermal conductivity

Similar Documents

Publication Publication Date Title
EP0764837A1 (en) Thermocouple structure
JPH09105677A (en) Ceramic sheath type component and manufacture thereof
KR20090111805A (en) Ceramic heater, glow plug using the ceramic heater, and ceramic heater manufacturing method
US6632018B2 (en) Thermocouple-type temperature-detecting device
CN105509921B (en) Using metal or alloy as the temperature sensor of temperature-sensing probe and production and school temperature method
JP4314028B2 (en) Thermoelectric element
KR20070090028A (en) Thermocouple assembly and method of use
WO2012014872A1 (en) Heater and glow plug provided with same
JPH11326250A (en) Test method for thermal conductivity
CN110073187A (en) Temperature sensor
JP3306427B2 (en) Sheath structure
JP2002013984A (en) Thermocouple
WO2014069480A1 (en) Heater and glow plug equipped with same
JP4081396B2 (en) Thermocouple mounting structure of ceramic heater
JPWO2010071049A1 (en) Ceramic heater
JP3572312B2 (en) Ceramic sheath type thermocouple
Assael et al. A transient hot-wire instrument for the measurement of the thermal conductivity of solids up to 590 K
JP5777812B2 (en) Heater and glow plug equipped with the same
JP3355166B2 (en) Thermocouple for measuring molten metal temperature
JP2553132B2 (en) Thermal conductivity and temperature measurement probe and manufacturing method thereof
JP2534847B2 (en) Ceramic Heater
JP2537098B2 (en) Temperature sensor
JPH0241580Y2 (en)
JPH10132666A (en) Ceramic thermocouple for measuring high temperature
JP2537606B2 (en) Ceramic Heater