JPH11326246A - Method for measuring abundance of constitutive component element in inorganic ion exchanger - Google Patents

Method for measuring abundance of constitutive component element in inorganic ion exchanger

Info

Publication number
JPH11326246A
JPH11326246A JP13307798A JP13307798A JPH11326246A JP H11326246 A JPH11326246 A JP H11326246A JP 13307798 A JP13307798 A JP 13307798A JP 13307798 A JP13307798 A JP 13307798A JP H11326246 A JPH11326246 A JP H11326246A
Authority
JP
Japan
Prior art keywords
inorganic ion
ion exchanger
measured
internal standard
constituent elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13307798A
Other languages
Japanese (ja)
Inventor
Katsumi Kamiyama
上山克己
Tomokazu Tabata
田畑智一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP13307798A priority Critical patent/JPH11326246A/en
Publication of JPH11326246A publication Critical patent/JPH11326246A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure an abundance of a constitutive component element in an inorganic ion exchanger correctly and quickly, by setting the constitutive component element in the inorganic ion exchanger as an internal standard element, and measuring the abundance of the constitutive component element with the use of a fluorescent X-ray analysis apparatus. SOLUTION: An abundance of a constitutive component element in an inorganic ion exchanger set as an internal standard element is measured with the use of a fluorescent X-ray analysis apparatus. The internal standard element preferably includes an Si element and an Al element that can be measured with the use of the fluorescent X-ray analysis apparatus among the elements in the inorganic ion exchanger to be measured. An Na element, a K element or the like included in the inorganic ion exchanger is measured, whereby a mole ratio of the internal standard element and an optional element included in the inorganic ion exchanger can be measured. The mole ratio of the constitutive component element in the inorganic ion exchanger to be measured and the constitutive component element in the inorganic ion exchanger different from the exchanger to be measured is preferably 0.0001-1000000 times a molar quantity of the internal standard element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は無機イオン交換体中
の構成成分元素存在比をの測定方法に関するものであ
る。さらに詳しくは、無機触媒分野や吸着剤分野等に使
用される無機イオン交換体の構成成分元素の存在比の好
適な分析方法を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the abundance ratio of constituent elements in an inorganic ion exchanger. More specifically, the present invention provides a suitable method for analyzing the abundance ratio of the constituent elements of the inorganic ion exchanger used in the field of inorganic catalysts, adsorbents, and the like.

【0002】[0002]

【従来の技術】従来、無機イオン元素の分析方法として
はJIS−H−1306(昭和49年5月1日制定、平
成4年12月1日改正)、JIS−H−1307(平成
5年2月1日制定)記載の原子吸光分析、誘導結合プラ
ズマ発光分析法が知られており、これは酸性溶液で試料
を溶解しその吸光度、発光強度を測定するものである。
2. Description of the Related Art Conventionally, methods for analyzing inorganic ion elements include JIS-H-1306 (established on May 1, 1974, revised on December 1, 1992) and JIS-H-1307 (February 1993). Atomic absorption spectrometry and inductively coupled plasma emission spectrometry described in US Pat.

【0003】しかしながら、この方法では試料の前処理
として全てを溶液化する為に液の液性・噴霧状態等に結
果が影響されたりまた操作性が非常に悪く、これらの分
析精度は装置の性能や測定条件によって大きく影響され
る。
However, in this method, since all of the solution is converted into a solution as a pretreatment of the sample, the result is affected by the liquid properties and the spray state of the solution, and the operability is extremely poor. And measurement conditions.

【0004】一方、溶液中の無機イオン元素の構成成分
元素分析法としては、キレート適定分析が知られている
が共存無機イオン元素等が多い場合分離が必要になった
り分離困難な場合は妨害が生じ正確な結果が得られな
い。
[0004] On the other hand, as a method for elemental analysis of constituent elements of inorganic ion elements in a solution, chelate appropriate analysis is known. And accurate results cannot be obtained.

【0005】このように、従来の技術では、無機イオン
交換体中の構成成分元素存在比を同時に、迅速に、精度
よく測定することは共存元素イオンによる妨害等の除去
のために分析に長時間を要するために困難であり、ま
た、試料を硝酸等の酸により溶解させる前処理が必要と
なるため操作性が悪いものであった。
[0005] As described above, in the prior art, simultaneous, rapid and accurate measurement of the constituent element abundance in the inorganic ion exchanger requires a long time for analysis in order to remove interference or the like due to coexisting element ions. In addition, operability is poor because pretreatment for dissolving the sample with an acid such as nitric acid is required.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、無機
イオン交換体中の構成成分元素存在比を測定する際に、
従来の方法と同程度以上に正確に無機イオン交換体中の
構成成分元素存在比を測定でき、しかも共存無機イオン
元素が多い場合においても妨害を受けることなく、迅速
かつ簡便で正確に構成成分元素存在比を測定する方法を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to measure the ratio of constituent elements in an inorganic ion exchanger.
The component element abundance ratio in the inorganic ion exchanger can be measured more accurately than the conventional method, and even if there are many coexisting inorganic ion elements, it is quick, simple and accurate without any interference. An object of the present invention is to provide a method for measuring an abundance ratio.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記課題を
解決するために鋭意検討を重ねた結果、無機イオン交換
体中の含有成分元素の測定法において、無機イオン交換
体中の構成成分元素を内部標準元素とし、蛍光X線分析
装置を用い構成成分元素存在比を測定できることを見出
し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, in the method of measuring the constituent elements contained in the inorganic ion exchanger, Using the element as an internal standard element, it has been found that the constituent element abundance ratio can be measured using a fluorescent X-ray analyzer, and the present invention has been completed.

【0008】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0009】本発明の方法は、無機イオン交換体中の構
成成分元素の測定法において、無機イオン交換体中の構
成成分元素を内部標準元素とし、蛍光X線分析装置を用
い構成成分元素存在比を測定するものである。
The method of the present invention is a method for measuring constituent elements in an inorganic ion exchanger, wherein the constituent elements in the inorganic ion exchanger are used as internal standard elements, and the ratio of constituent element abundance is determined using a fluorescent X-ray analyzer. Is measured.

【0010】本発明の方法において分析に供せられる無
機イオン交換体とはイオン交換現象を示す無機物質をい
い、特に制限はなく、例えば、結晶性あるいは不定形の
アルミノケイ酸塩や、粘土鉱物、不溶性含水酸化物等が
挙げられ、これらは天然物であっても合成物であっても
よい。
The inorganic ion exchanger used for analysis in the method of the present invention refers to an inorganic substance exhibiting an ion exchange phenomenon, and is not particularly limited. Examples thereof include a crystalline or amorphous aluminosilicate, a clay mineral, Examples include insoluble hydrated oxides, which may be natural products or synthetic products.

【0011】アルミノケイ酸塩としては、ジュンウイリ
ーアンドサンズ、ニューヨークN.Y(1974年)、
デイ・ダブリュ・ブレック(D.W.Breck)著の
「ゼオライトモレキュラーシーブ」で定義されるような
ゼオライトや、不定形のアルミノケイ酸塩が挙げられ
る。特にゼオライトとしては、フェリライト、フィリッ
プサイト、ソ−ダライト、カンクリナイト、エオリナイ
ト、オフレタイト、クリノプチロライト、グメリナイ
ト、チャバサイト、フォージャサイト、モルデナイト、
A型ゼオライト、X型ゼオライト、Y型ゼオライト、L
型ゼオライト、ベータ型ゼオライト、オメガ型ゼオライ
ト、ZSM−5等のゼオライトやメソポーラスモレキュ
ラーシーブを挙げることができ、これらのプロトン型
や、Li、Mg、Ca等のアルカリ金属塩、アルカリ土
類金属塩、及びこれらの水和物も用いられる。
As aluminosilicates, Jun Wheelie and Sons, New York N.N. Y (1974),
Zeolite as defined in "Zeolite Molecular Sieve" by DW Breck, and amorphous aluminosilicate. Particularly as zeolites, ferrilite, phillipsite, sodalite, canclinite, aeolite, offretite, clinoptilolite, gmelinite, chabazite, faujasite, mordenite,
A-type zeolite, X-type zeolite, Y-type zeolite, L
Zeolite, beta zeolite, omega zeolite, zeolites such as ZSM-5 and mesoporous molecular sieves, and these proton types, and alkali metal salts such as Li, Mg and Ca, alkaline earth metal salts, And hydrates thereof.

【0012】粘土鉱物としては、岩波書店発行、第4版
「理化学辞典」より定義されるようなものであり、さら
に具体的には、カオリナイト、ハロサイト、モンモリロ
ナイト、イライト、バーミキュライト、緑泥石などを挙
げることができ、これらのLi、Mg、Ca等のアルカ
リ金属塩、アルカリ土類金属塩、及びこれらの水和物も
用いられる。
Clay minerals are those defined by Iwanami Shoten Publishing Co., Ltd., 4th edition, "The Dictionary of Physical and Chemical Sciences". More specifically, kaolinite, halosite, montmorillonite, illite, vermiculite, chlorite, etc. Examples thereof include alkali metal salts such as Li, Mg, and Ca, alkaline earth metal salts, and hydrates thereof.

【0013】不溶性含水酸化物としては、金属の含水酸
化物、多価金属の酸性塩、不溶性のヘテロポリ塩、不溶
性ヘキサシアノ鉄酸塩などを挙げることができ、さらに
具体的には、シリカアルミナ、アルミナチタニア、リン
酸ジルコニウム、シリカチタニア等を挙げることがで
き、これらのLi、Mg、Ca等のアルカリ金属塩、ア
ルカリ土類金属塩、及びこれらの水和物も用いられる。
Examples of the insoluble hydrated oxide include hydrated oxides of metals, acidic salts of polyvalent metals, insoluble heteropoly salts, insoluble hexacyanoferrates, and more specifically, silica alumina, alumina Examples thereof include titania, zirconium phosphate, and silica titania, and alkali metal salts such as Li, Mg, and Ca, alkaline earth metal salts, and hydrates thereof are also used.

【0014】また、これらの無機イオン交換体は単独の
みならず、これらの2種以上の混合物であってもよい。
These inorganic ion exchangers may be used alone or as a mixture of two or more of them.

【0015】これらの内、測定精度や測定感度の面か
ら、各測定元素のピークのオーバーラップがなく測定精
度を向上させることができるためにアルミノケイ酸塩
が、さらに結晶性を有したゼオライトが好ましく用いら
れる。
Of these, aluminosilicates are preferable, and zeolite having crystallinity is more preferable in terms of measurement accuracy and measurement sensitivity because the measurement accuracy can be improved without overlapping peaks of the respective measurement elements. Used.

【0016】測定にあたっての内部標準元素としては、
測定対象となる無機イオン交換体中の元素の内蛍光X線
分析装置を用いて測定することができるものであれば特
に限定されるものではないが、Si元素やAl元素、さ
らにAl元素を含むことが特に好ましい。そして、無機
イオン交換体に含まれるNa元素、K元素などを測定し
て、内部標準元素とこれらの無機イオン交換体に含まれ
る任意の元素とのモル比を測定することができる。
The internal standard elements for the measurement include:
The element in the inorganic ion exchanger to be measured is not particularly limited as long as it can be measured using a fluorescent X-ray analyzer, and includes an Si element, an Al element, and an Al element. Is particularly preferred. Then, by measuring the Na element, the K element, and the like contained in the inorganic ion exchanger, the molar ratio between the internal standard element and any element contained in these inorganic ion exchangers can be measured.

【0017】ここで、測定対象となる無機イオン交換体
中の構成成分元素とこれとは異なる任意に選ばれる無機
イオン交換体中の構成成分元素とのモル比は、内部標準
元素のモル量の0.000001以上であることが好ま
しく、さらに0.0001以上1000000倍以下で
あることが好ましい。この範囲であれば、蛍光X線分析
装置の測定強度より速やかにかつ定量的に分析できるか
らである。
Here, the molar ratio between the constituent element in the inorganic ion exchanger to be measured and the constituent element in the inorganic ion exchanger which is arbitrarily different from the above is determined by the molar amount of the internal standard element. It is preferably 0.000001 or more, and more preferably 0.0001 to 1,000,000 times. This is because within this range, the analysis can be performed more quickly and quantitatively than the intensity measured by the fluorescent X-ray analyzer.

【0018】またこれらの無機イオン交換体はほとんど
が粉体であり、測定に際しては、これらの試料を加圧成
形できるものであれば特に制限されるものではない。例
えば、加圧成形の方法としてはブリケット法やガラスビ
ード法などがあるが、電動式試料成形機を用いて行うブ
リケット法では、リング法、ダイス法のいずれの方法も
本発明の方法に用いることができる。一方、ガラスビー
ド法では、溶融法、高周波加熱法のいずれの方法も本発
明の方法に用いることができるが、これらの方法のいず
れも溶融助剤を添加するため、含有成分元素が低含有成
分元素が希釈されることがあるため注意が必要である。
また、成形品の形状、大きさ、圧縮密度等は特に制限さ
れるものではないが、試料表面への汚染が少なく、ま
た、分析面が常に平滑面となるようにすることに注意す
る必要がある。
Most of these inorganic ion exchangers are powders, and the measurement is not particularly limited as long as these samples can be molded under pressure. For example, as a method of pressure molding, there are a briquette method, a glass bead method, and the like. In a briquette method performed using an electric sample molding machine, any of a ring method and a die method may be used in the method of the present invention. Can be. On the other hand, in the glass bead method, any of the melting method and the high-frequency heating method can be used in the method of the present invention. Care must be taken because the elements may be diluted.
The shape, size, compression density, etc. of the molded product are not particularly limited, but care must be taken to minimize contamination on the sample surface and to ensure that the analysis surface is always smooth. is there.

【0019】このようにして成形された成形体を蛍光X
線分析装置を用いて測定される。
The molded body formed in this manner is treated with fluorescent X
It is measured using a line analyzer.

【0020】本発明の方法において用いられる蛍光X線
分析装置については波長分散型蛍光X線分析装置で用い
られるものであれば特に制限されるものではない。
The X-ray fluorescence analyzer used in the method of the present invention is not particularly limited as long as it is used in a wavelength dispersive X-ray fluorescence analyzer.

【0021】これらの加圧成形・測定の方法を用いるこ
とで無機イオン交換体中の構成成分元素の存在比を測定
することができ、この結果から無機イオン交換体中の構
成成分元素を内部標準元素として測定することで無機イ
オン交換体中の構成成分元素の存在比を測定できるわけ
であるが、実際の測定にあたっては、各元素の分析値が
既知の無機イオン交換体を用い無機イオン交換体中の構
成成分元素を内部標準元素として測定し無機イオン交換
体中の構成成分元素の存在比を測定し、本発明の方法に
より得られた測定結果との関係を示す検量線を作成し、
無機イオン交換体中の構成成分元素の量が未知な場合に
適用できる。
The abundance ratio of the constituent elements in the inorganic ion exchanger can be measured by using these pressure molding / measuring methods. From the results, the constituent elements in the inorganic ion exchanger can be determined by the internal standard. By measuring as an element, the abundance ratio of the constituent elements in the inorganic ion exchanger can be measured.However, in actual measurement, the inorganic ion exchanger using an inorganic ion exchanger whose analytical value of each element is known is used. The constituent elements in the inorganic ion exchanger were measured as internal standard elements to determine the abundance ratio of the constituent elements, and a calibration curve showing the relationship with the measurement results obtained by the method of the present invention was created.
It is applicable when the amount of the constituent element in the inorganic ion exchanger is unknown.

【0022】測定結果の計算については、ピーク分離、
検出手段により変わるものの、その量が計算できる方法
であれば特に限定されるものではない。ここでは、蛍光
X線より得られるピークについて、そのピークの高さ、
ピークの幅、面積等を通常用いられる方法により計算す
ることができる。さらに、蛍光X線より得られるピーク
位置を確認することで同定もできる。これらの蛍光X線
分析装置により得られたデータを蛍光X線分析装置に内
蔵あるいは外部に設置されたコンピュータ等の情報処理
装置により計算し処理して無機イオン交換体中の構成成
分元素の存在比として求めることもできる。
For calculation of the measurement results, peak separation,
Although it depends on the detection means, the method is not particularly limited as long as the amount can be calculated. Here, regarding the peak obtained from the fluorescent X-ray, the height of the peak,
The peak width, area and the like can be calculated by a commonly used method. Further, identification can be performed by confirming the peak position obtained from the fluorescent X-ray. The data obtained by these X-ray fluorescence analyzers are calculated and processed by an information processing device such as a computer built in or external to the X-ray fluorescence analyzer, and the abundance ratio of the constituent elements in the inorganic ion exchanger is calculated. Can also be sought.

【0023】本発明の方法は、無機イオン交換体中の構
成成分元素の測定を迅速かつ簡便で正確にすることが可
能になるものである。
The method of the present invention makes it possible to quickly, simply and accurately measure constituent elements in an inorganic ion exchanger.

【0024】[0024]

【実施例】以下、本発明を実施例を用いてさらに詳細に
説明するが、本発明はこれら実施例にのみ限定されるも
のではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0025】実施例1 標準サンプルとしてICPによる湿式化学分析により求
められたシリカ・アルミ比(SiO2/Al23;モル
比)及びナトリウム・アルミナ比(Na2O/Al23
モル比)の異なるゼオライト粉末A、B、C、Dを塩ビ
樹脂リング(径:30mm、厚み:5mm)を用いて電
動式試料成形機により15t加重で30秒加圧すること
でそれぞれの成形体を得た。
Example 1 A silica-aluminum ratio (SiO 2 / Al 2 O 3 ; molar ratio) and a sodium-alumina ratio (Na 2 O / Al 2 O 3 ) determined by wet chemical analysis using ICP as standard samples
Zeolite powders A, B, C, and D having different molar ratios) are pressed by a motor-driven sample molding machine using a PVC resin ring (diameter: 30 mm, thickness: 5 mm) with a load of 15 t for 30 seconds to form each compact. Obtained.

【0026】このようにして得た成形体に対して蛍光X
線分析装置(波長分散型、理学電気工業製、型式:RI
X―2100)を用いて構成成分元素の分析を行った。
表1には湿式化学分析によるSiO2/Al23モル比
及び蛍光X線分析によるSiO2とAl23のピーク強
度の比(測定強度比)を、表2には湿式化学分析による
Na2O/Al23モル比及び蛍光X線分析によるNa2
OとAl23のピーク強度の比(測定強度比)をそれぞ
れ示した。これらの標準サンプルはあらかじめ湿式化学
分析により求めており、蛍光X線分析測定により得られ
るピーク強度とは比例関係にはあるが、ここではゼオラ
イトに構成されるAl23を内部標準元素とした内部標
準法により適宜計算し検量線を作成した。
The molded product obtained in this manner was subjected to fluorescent X
X-ray analyzer (wavelength dispersion type, manufactured by Rigaku Denki Kogyo, model: RI
X-2100) was used to analyze constituent elements.
Table 1 shows the molar ratio of SiO 2 / Al 2 O 3 by wet chemical analysis and the ratio of the peak intensity of SiO 2 to Al 2 O 3 (measured intensity ratio) by X-ray fluorescence analysis. Table 2 shows the ratio by wet chemical analysis. Na 2 O / Al 2 O 3 molar ratio and Na 2 by X-ray fluorescence analysis
The ratios of the peak intensities of O and Al 2 O 3 (measured intensity ratios) are shown. These standard samples have been determined in advance by wet chemical analysis and have a proportional relationship with the peak intensity obtained by the fluorescent X-ray analysis measurement. Here, Al 2 O 3 constituted by zeolite was used as the internal standard element. A calibration curve was prepared by appropriately calculating according to the internal standard method.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】表1、表2より明らかなように上記記載の
方法によれば、無機イオン交換体中の構成成分元素のモ
ル比として、無機イオン交換体中の構成成分元素である
Al23を内部標準元素とし、これとSiO2やNa2
との測定強度比は湿式化学分析によるモル比とは直線性
が良く、両者によい相関性があることが分かった。
As is clear from Tables 1 and 2, according to the method described above, the molar ratio of the constituent elements in the inorganic ion exchanger is expressed as Al 2 O 3 which is the constituent element in the inorganic ion exchanger. Is used as an internal standard element, and SiO 2 or Na 2 O
The measured intensity ratio was well linear with the molar ratio obtained by wet chemical analysis, and it was found that there was a good correlation between the two.

【0030】実施例2 表1、表2で得られた検量線を用い、E、F、G、Hの
ゼオライトサンプルについて、湿式化学分析及び蛍光X
線分析の測定を行い、SiO2/Al23モル比及びN
2O/Al23モル比を求め、その結果を表3、表4
に示した。
Example 2 Using the calibration curves obtained in Tables 1 and 2, samples of zeolite E, F, G and H were subjected to wet chemical analysis and fluorescence X
Line analysis was performed and the SiO 2 / Al 2 O 3 molar ratio and N
The a 2 O / Al 2 O 3 molar ratio was determined, and the results were shown in Tables 3 and 4.
It was shown to.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】表3、表4より明らかなように、湿式化学
分析及び蛍光X線分析の測定の結果はよい相関性を示し
ており、本発明の方法は無機イオン交換体中の構成成分
元素の存在比を正確に測定できることが分かった。
As is clear from Tables 3 and 4, the results of the wet chemical analysis and the X-ray fluorescence analysis show good correlation, and the method of the present invention shows that the constituent elements in the inorganic ion exchanger were It was found that the abundance ratio could be measured accurately.

【0034】実施例3 標準サンプルとしてICPによる湿式化学分析により求
められたカリウム・アルミ比(K2O/Al23;モル
比)の異なるゼオライト粉末I、J、Kを塩ビ樹脂リン
グ(径:30mm、厚み:5mm)を用いて電動式試料
成形機により15t加重で30秒加圧することでそれぞ
れの成形体を得た。
Example 3 As a standard sample, zeolite powders I, J and K having different potassium / aluminum ratios (K 2 O / Al 2 O 3 ; molar ratio) determined by wet chemical analysis by ICP were converted to a PVC resin ring (diameter). : 30 mm, thickness: 5 mm) and pressurized with a 15-t load for 30 seconds using an electric sample molding machine to obtain respective molded bodies.

【0035】このようにして得た成形体に対して蛍光X
線分析装置(波長分散型、理学電気工業製、型式:RI
X―2100)を用いて構成成分元素の分析を行った。
表5には湿式化学分析によるK2O/Al23モル比及
び蛍光X線分析によるK2OとAl23のピーク強度の
比(測定強度比)を示した。これらの標準サンプルはあ
らかじめ湿式化学分析により求めており、蛍光X線分析
測定により得られるピーク強度とは比例関係にはある
が、ここではゼオライトに構成されるAl23を内部標
準元素とした内部標準法により適宜計算し検量線を作成
した。
A fluorescent X was applied to the thus obtained molded body.
X-ray analyzer (wavelength dispersion type, manufactured by Rigaku Denki Kogyo, model: RI
X-2100) was used to analyze constituent elements.
Table 5 shows the molar ratio of K 2 O / Al 2 O 3 by wet chemical analysis and the ratio of the peak intensity of K 2 O to Al 2 O 3 (measured intensity ratio) by X-ray fluorescence analysis. These standard samples have been determined in advance by wet chemical analysis and have a proportional relationship with the peak intensity obtained by the fluorescent X-ray analysis measurement. Here, Al 2 O 3 constituted by zeolite was used as the internal standard element. A calibration curve was prepared by appropriately calculating according to the internal standard method.

【0036】[0036]

【表5】 [Table 5]

【0037】表5より明らかなように上記記載の方法に
よれば、無機イオン交換体中の構成成分元素のモル比と
して、無機イオン交換体中の構成成分元素であるAl2
3を内部標準元素とし、これとK2Oとの測定強度比は
湿式化学分析によるモル比とは直線性が良く、両者によ
い相関性があることが分かった。
As apparent from Table 5, according to the method described above, the molar ratio of the constituent elements in the inorganic ion exchanger is expressed as Al 2 which is the constituent element in the inorganic ion exchanger.
O 3 was used as an internal standard element, and the measured intensity ratio between K 3 O and K 2 O was excellent in linearity with the molar ratio determined by wet chemical analysis, and it was found that there was a good correlation between the two.

【0038】実施例4 表5で得られた検量線を用い、L、Mのゼオライトサン
プルについて、湿式化学分析及び蛍光X線分析の測定を
行い、K2O/Al23モル比を求め、その結果を表6
に示した。
Example 4 Using the calibration curves obtained in Table 5, the L and M zeolite samples were subjected to wet chemical analysis and X-ray fluorescence analysis to determine the K 2 O / Al 2 O 3 molar ratio. Table 6 shows the results.
It was shown to.

【0039】[0039]

【表6】 [Table 6]

【0040】表6より明らかなように、湿式化学分析及
び蛍光X線分析の測定の結果はよい相関性を示してお
り、本発明の方法は無機イオン交換体中の構成成分元素
の存在比を正確に測定できることが分かった。
As is clear from Table 6, the results of the wet chemical analysis and the X-ray fluorescence analysis show a good correlation, and the method of the present invention determines the abundance ratio of the constituent elements in the inorganic ion exchanger. It turned out that it can be measured accurately.

【0041】[0041]

【発明の効果】以上述べてきたように、本発明の方法に
よれば、無機イオン交換体中の構成成分元素存在比を測
定する際に、従来の方法と同程度以上に正確に無機イオ
ン交換体中の構成成分元素存在比を測定でき、しかも共
存無機イオン元素が多い場合においても妨害を受けるこ
となく、迅速かつ簡便で正確に構成成分元素存在比を測
定する利点がある。
As described above, according to the method of the present invention, when measuring the abundance ratio of the constituent elements in the inorganic ion exchanger, the inorganic ion exchange is more accurately performed than the conventional method. There is an advantage that the component element abundance ratio in the body can be measured, and even if there are many coexisting inorganic ion elements, the component element abundance ratio is measured quickly, simply, and accurately without being hindered.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】無機イオン交換体中の構成成分元素を蛍光
X線分析装置を用いて測定することを特徴とする無機イ
オン交換体中の構成成分元素の存在比測定方法。
1. A method for measuring the abundance ratio of constituent elements in an inorganic ion exchanger, wherein the constituent elements in the inorganic ion exchanger are measured using an X-ray fluorescence analyzer.
【請求項2】無機イオン交換体中の構成成分元素を内部
標準とすることを特徴とする請求項1に記載の無機イオ
ン交換体中の構成成分元素の存在比測定方法。
2. The method according to claim 1, wherein the constituent elements in the inorganic ion exchanger are used as an internal standard.
【請求項3】無機イオン交換体がアルミノ珪酸塩である
ことを特徴とする請求項1又は請求項2に記載の無機イ
オン交換体中の構成成分元素の存在比測定方法。
3. The method according to claim 1, wherein the inorganic ion exchanger is an aluminosilicate.
【請求項4】無機イオン交換体がゼオライトであること
を特徴とする請求項3に記載の無機イオン交換体中の構
成成分元素の存在比測定方法。
4. The method according to claim 3, wherein the inorganic ion exchanger is zeolite.
【請求項5】無機イオン交換体中の構成成分元素である
アルミニウム(Al)を内部標準とすることを特徴とす
る請求項2〜4のいずれかに記載の無機イオン交換体中
の構成成分元素の存在比測定方法。
5. A constituent element in an inorganic ion exchanger according to claim 2, wherein aluminum (Al) which is a constituent element in the inorganic ion exchanger is used as an internal standard. Abundance ratio measurement method.
【請求項6】無機イオン交換体中の構成成分元素である
アルミニウムを内部標準として測定し、さらにナトリウ
ム(Na)、カリウム(K)及び珪素(Si)からなる
群より選ばれる1種以上の元素を測定して、その対応す
るNa2O/Al23、K2O/Al23及びSiO2
Al23からなる群より選ばれる1種以上のモル比を求
めることを特徴とする請求項5に記載の無機イオン交換
体中の構成成分元素の存在比測定方法。
6. An inorganic ion exchanger in which aluminum as a constituent element is measured as an internal standard, and one or more elements selected from the group consisting of sodium (Na), potassium (K) and silicon (Si). Are measured to determine the corresponding Na 2 O / Al 2 O 3 , K 2 O / Al 2 O 3 and SiO 2 /
Abundance ratio measurement method for a component element of the inorganic ion exchanger in claim 5, wherein the determination of the one or more molar ratio selected from the group made of Al 2 O 3.
【請求項7】蛍光X線分析装置を用いて得られるピーク
より無機イオン交換体中の構成成分元素の存在比を求め
ることを特徴とする請求項1〜6のいずれかに記載の無
機イオン交換体中の構成成分元素の存在比測定方法。
7. The inorganic ion exchange according to claim 1, wherein an abundance ratio of the constituent elements in the inorganic ion exchanger is determined from a peak obtained by using an X-ray fluorescence analyzer. Method for measuring abundance ratio of constituent element in body.
【請求項8】蛍光X線分析装置を用いて得られるピーク
を情報処理装置により処理して無機イオン交換体中の構
成成分元素の存在比を求めることを特徴とする請求項7
に記載の無機イオン交換体中の構成成分元素の存在比測
定方法。
8. The method according to claim 7, wherein a peak obtained by using an X-ray fluorescence analyzer is processed by an information processor to determine the abundance ratio of the constituent elements in the inorganic ion exchanger.
4. The method for measuring the abundance ratio of constituent elements in an inorganic ion exchanger according to the above.
JP13307798A 1998-05-15 1998-05-15 Method for measuring abundance of constitutive component element in inorganic ion exchanger Pending JPH11326246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13307798A JPH11326246A (en) 1998-05-15 1998-05-15 Method for measuring abundance of constitutive component element in inorganic ion exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13307798A JPH11326246A (en) 1998-05-15 1998-05-15 Method for measuring abundance of constitutive component element in inorganic ion exchanger

Publications (1)

Publication Number Publication Date
JPH11326246A true JPH11326246A (en) 1999-11-26

Family

ID=15096317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13307798A Pending JPH11326246A (en) 1998-05-15 1998-05-15 Method for measuring abundance of constitutive component element in inorganic ion exchanger

Country Status (1)

Country Link
JP (1) JPH11326246A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506176A (en) * 2006-11-02 2010-02-25 エフ.ホフマン−ラ ロシュ アーゲー Method for preparing microporous crystals and conjugates thereof
JP2017058362A (en) * 2015-09-15 2017-03-23 住友金属鉱山株式会社 X-ray fluorescence analysis sample preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506176A (en) * 2006-11-02 2010-02-25 エフ.ホフマン−ラ ロシュ アーゲー Method for preparing microporous crystals and conjugates thereof
JP2017058362A (en) * 2015-09-15 2017-03-23 住友金属鉱山株式会社 X-ray fluorescence analysis sample preparation method

Similar Documents

Publication Publication Date Title
Willemse et al. How to handle adsorption of cerebrospinal fluid amyloid β (1–42) in laboratory practice? Identifying problematic handlings and resolving the issue by use of the Aβ42/Aβ40 ratio
Carlson et al. Spectrophotometric determination of silicon
JPH0512506A (en) Bar code measuring method
JPH06167501A (en) Analytical measuring method of component concentration in medical sample
CN109596654B (en) Method for measuring bromine and antimony elements in plastic by combining X fluorescence spectrum and infrared spectrum method
JPH11326246A (en) Method for measuring abundance of constitutive component element in inorganic ion exchanger
JP2016510417A (en) Equipment that reduces false positives in reagent testing equipment
Datka et al. Influence of the overall composition on zeolite properties. 1. The framework: An infrared spectroscopic and quantum chemical study
Herbert et al. Precise major component determinations in deep-sea sediments using Fourier Transform Infrared Spectroscopy
Spencer et al. Urine free beta hCG and beta core in pregnancies affected by Down's syndrome
JP2003014763A (en) Immune enzumological analyzing device for one time use and analyzing method relating thereto
O'BROIN et al. Evaluation of factors influencing precision in the analysis of samples taken from blood spots on filter paper
Spencer et al. Dual analyte immunoassay in neural tube defect and Down's syndrome screening: results of a multicentre clinical trial
Kalivas Determination of optimal parameters for multicomponent analysis using the calibration matrix condition number
Pauwels et al. Homogeneity determination of Cd in plastic CRMs using solid sampling atomic absorption spectrometry
Sieber Matrix-independent XRF methods for certification of standard reference materials
Bekers et al. Determination of faecal fat by near-infrared spectroscopy
Hosty et al. Intercomparison of results obtained with five commercial diffusion plates supplied for quantitation of immunoglobulins
Ji et al. Application of conventional X-ray fluorescence spectrometer for chemical state analysis
BYE et al. On the determination of crystalline silica in the presence of amorphous silica
WO2007126371A1 (en) Method at spectrometry for investigation of samples, where the sample contains at least two elements
JPH0875740A (en) Immunological nephelometry
JP2000121562A (en) Device for quantitatively determining coloring substance and storage medium for quantitatively determining coloring substance
Camiña et al. Simultaneous spectrophotometric determination of rare-earth and transition elements using partial least-squares (PLS) multivariate calibration
CN112683938A (en) Method for measuring silica-alumina molar ratio of high-silica zeolite