JPH11326177A - Method for judging shape of powder particle - Google Patents

Method for judging shape of powder particle

Info

Publication number
JPH11326177A
JPH11326177A JP10129362A JP12936298A JPH11326177A JP H11326177 A JPH11326177 A JP H11326177A JP 10129362 A JP10129362 A JP 10129362A JP 12936298 A JP12936298 A JP 12936298A JP H11326177 A JPH11326177 A JP H11326177A
Authority
JP
Japan
Prior art keywords
sieve
sample
particle
diameter
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10129362A
Other languages
Japanese (ja)
Other versions
JP3697891B2 (en
Inventor
Kanji Matsudaira
寛司 松平
Masaru Nishimura
勝 西村
Shingo Asada
真吾 朝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP12936298A priority Critical patent/JP3697891B2/en
Publication of JPH11326177A publication Critical patent/JPH11326177A/en
Application granted granted Critical
Publication of JP3697891B2 publication Critical patent/JP3697891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To judge the degree of estrangement from the spherical shape of a powder particle by using a sieve with a sieve mesh with essentially the same diameter as the particle diameter of a sample grain being obtained by the light-scattering method for sifting the sample grain and by obtaining the ratio below or above the sieve. SOLUTION: For one of two parts of a sample powder divided in advance so that the grain size is not maldistributed, the distribution of the grain size is measured by the light scattering method using a laser diffraction particle meter according to, for example, the wet method and a particle diameter X of a point where the ratio of the amount of integrated particle from the smaller or larger particle diameter reaches n% (for example, 50%) is obtained. Then, a sieve with the sieve mesh with essentially the same diameter as the particle diameter X is used for sifting the other of the divided sample grains, thus obtaining the ratio below or above the sieve. Then, based on the ratio below or above the sieve, the degree of estrangement is judged from the spherical shape of the sample grain.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粉体粒子の球形か
らの乖離の度合を容易に判定することのできる粉体粒子
の形状判定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for determining the shape of a powder particle, which can easily determine the degree of deviation of the powder particle from a sphere.

【0002】[0002]

【従来の技術】コークス炉に装入する石炭、電池材料に
用いる黒鉛、プラスチックスの成形や塗料・インク・化
粧料の製造のために用いる各種のフィラー、焼結操作に
供する粉体、各種の粉塵をはじめ、粉体を取り扱う分野
においては、粉体粒子の形状を把握することが必要とな
ることが多い。
2. Description of the Related Art Coal charged in a coke oven, graphite used for battery materials, various fillers used for molding plastics and manufacturing paints, inks and cosmetics, powders used for sintering operations, In the field of handling powder such as dust, it is often necessary to grasp the shape of powder particles.

【0003】従来、粉体粒子の形状測定方法としては、
光学顕微鏡や電子顕微鏡による直接観察法が広く採用さ
れているが、光散乱法(粒子が分散している液相または
気相に光を照射し、粒子からの反射光を集光して光強度
を測定する方法)も採用されるようになってきている。
Conventionally, methods for measuring the shape of powder particles include:
The direct observation method using an optical microscope or an electron microscope is widely used. The light scattering method (irradiates the liquid or gas phase in which particles are dispersed with light, collects the reflected light from the particles, Measurement method) has also been adopted.

【0004】環境庁企画調整局Sの公共資料である「廃
棄物の処理と資源化技術に関する総合研究、平成2年
度、63(1991)」の「アスベスト廃棄物の無公害
化処理・利用技術に関する研究」と題する論文には、ア
スベスト廃棄物対策の動向と問題点に関する技術的対策
方法が述べられており、その中で、アスベストを形状の
上から分析する方法には、光学顕微鏡法(捕集した試料
につき位相差顕微鏡で繊維数を計数し、生物顕微鏡を併
用することによりアスベストをほかの繊維状物質と区別
する方法)、電子顕微鏡法(試料を捕集したメンブラン
フィルターの表面をアセトン蒸気で平滑化し、カーボン
または金を蒸着した後、SEMにより繊維数を計数する
方法)、リアルタイム法(繊維状エアロゾルモニターを
用いる方法)があることが述べられている。
[0004] "General Research on Waste Treatment and Recycling Technology," a public document of the Planning and Coordination Bureau of the Environment Agency, "Techniques for detoxification and utilization technology of asbestos waste" in 63 (1991), 1990. The research entitled “Research” describes trends in asbestos waste countermeasures and technical countermeasures regarding problems. Among them, methods for analyzing asbestos from the topography include optical microscopy (collection). The number of fibers in each sample is counted using a phase contrast microscope, and asbestos is distinguished from other fibrous substances by using a biological microscope together. After smoothing and depositing carbon or gold, there is a method of counting the number of fibers by SEM) and a real-time method (a method using a fibrous aerosol monitor). Bets have been described.

【0005】「公害と対策、Vol. 25, No. 10 (1989)
」の990〜995頁の「繊維状エアロゾルモニター
による大気中アスベストの測定」と題する論文にも、光
学顕微鏡法と対比させて、繊維状エアロゾルモニターを
用いる方法につき詳しい説明がある。
"Pollution and Countermeasures, Vol. 25, No. 10 (1989)
The paper entitled "Measurement of Asbestos in the Atmosphere Using a Fibrous Aerosol Monitor" on pages 990 to 995 also provides a detailed description of a method using a fibrous aerosol monitor in comparison with optical microscopy.

【0006】特公平7−52151号公報には、粉体粒
子に対して6〜10度の角度をなす2方向から粉体粒子
画像をとらえる原理を利用した粉体粒子形状の自動計測
装置が示されている。この公報の従来の技術の説明の個
所には、従来、粉体粒子形状を表わす測定値としては平
均粒径があげられ、平均粒径の測定方法としては、レー
ザ回折式粒度分布測定等の光学的測定方法、走査型電子
顕微鏡もしくは光学顕微鏡を用いて得た二次元的画像か
ら直接測定する方法、比表面積計で求めた比表面積から
算出する方法などがある旨のことが記載されている。
Japanese Patent Publication No. 7-52151 discloses an automatic powder particle shape measuring apparatus utilizing the principle of capturing a powder particle image from two directions forming an angle of 6 to 10 degrees with respect to the powder particles. Have been. In the description of the prior art in this publication, an average particle size is conventionally given as a measurement value representing the powder particle shape, and a method for measuring the average particle size is an optical method such as a laser diffraction type particle size distribution measurement. It is described that there are a method for measuring directly from a two-dimensional image obtained using a scanning electron microscope or an optical microscope, a method for calculating from a specific surface area obtained by a specific surface area meter, and the like.

【0007】特開平7−301593号公報には、粒子
が分散している液相または気相に入射光を照射し、入射
光に対して前方の0〜5度の微小角位置で、液相または
気相を透過した散乱光を集光し、散乱光を垂直成分およ
び水平成分の強度を比較し、強度比によって粒子の球形
または非球形を判定し、強度の和に基き粒子径を算出す
る前方微小角散乱法による粒子径及び粒子形状の同時計
測・判定方法と装置が示されている。この公報の従来の
技術の説明の個所には、従来の顕微鏡観察法や光散乱法
についても言及があり、それら従来法の問題点について
も述べられている。
Japanese Patent Application Laid-Open No. 7-301593 discloses that a liquid phase or a gaseous phase in which particles are dispersed is irradiated with incident light, and the liquid phase or the gas phase is located at a small angle of 0 to 5 degrees ahead of the incident light. Or collect the scattered light transmitted through the gas phase, compare the intensity of the scattered light with the vertical component and the horizontal component, determine the spherical or non-spherical shape of the particle based on the intensity ratio, and calculate the particle size based on the sum of the intensity A method and apparatus for simultaneous measurement and determination of particle diameter and particle shape by forward small angle scattering are shown. In the description of the prior art in this publication, reference is also made to conventional microscopic observation methods and light scattering methods, and the problems of the conventional methods are also described.

【0008】[0008]

【発明が解決しようとする課題】従来の顕微鏡観察法
は、ブリケット等を作成するための事前処理が煩雑であ
ること、試料入手から測定までに時間を要すること、平
均的サンプルをとることが難しいこと、測定操作に熟練
を要する上、測定者または判定者により判定にばらつき
を生じやすいこと、などの種々の問題点がある。
In the conventional microscopic observation method, the prior processing for preparing briquettes and the like is complicated, it takes time from sample acquisition to measurement, and it is difficult to take an average sample. In addition, there are various problems such as the fact that the measurement operation requires skill and that the determination is easily scattered by the measurer or the judge.

【0009】従来の光散乱法による粒度分布の測定方法
に関しては、粉体が非球形の場合でも評価可能な改良を
加えた方法、殊に上記の特開平7−301593号公報
に開示の粒子の形状判定法がある。この方法は、球形−
非球形をリアルタイムに判定することが可能で、工程管
理には有効であるが、予め検量線用のデータを必要とす
るため、未知試料を取り扱うことの多い分析試験におい
ては、検量線作成のための検討をしなければならないと
いう煩わしさがある。
A conventional method for measuring the particle size distribution by the light scattering method is an improved method which can be evaluated even when the powder is non-spherical, especially the method disclosed in Japanese Patent Application Laid-Open No. 7-301593. There is a shape determination method. This method is spherical-
It is possible to determine non-spherical shapes in real time, which is effective for process control.However, since calibration curve data is required in advance, it is necessary to prepare a calibration curve for analytical tests that often handle unknown samples. Has to be considered.

【0010】本発明は、このような背景下において、顕
微鏡観察などの煩雑な手段を講ずることなく、また光散
乱法に見られる検量線の作成作業という複雑な手段を講
ずることなく、光散乱法と篩分け法との両方法の原理を
利用することによって、粉体粒子の球形からの乖離の度
合を容易に判定することのできる粉体粒子の形状判定方
法を提供することを目的とするものである。
Under such a background, the present invention provides a light scattering method without taking complicated means such as microscopic observation, and without taking the complicated means of creating a calibration curve as seen in the light scattering method. The object of the present invention is to provide a method for judging the shape of powder particles that can easily judge the degree of deviation of the powder particles from the sphere by utilizing the principles of both the sieving method and the sieving method. It is.

【0011】[0011]

【課題を解決するための手段】本発明の粉体粒子の形状
判定方法は、 ・試料粉体につき、その一部を用いて光散乱法による粒
度分布測定を行うことにより、粒子径の小さい方または
大きい方からの積算粒子量がn%における試料粉体の粒
子径Xを求めること、 ・その粒子径Xと実質的に同じ径の篩目の篩を用いて試
料粉体を篩分けすることにより、篩下または篩上の割合
を求めること、 ・そのときの篩下または篩上の割合に基いて、試料粉体
の球形からの乖離の度合を判定すること、を特徴とする
ものである。
Means for Solving the Problems The method for determining the shape of powder particles according to the present invention is as follows. Or, to determine the particle diameter X of the sample powder when the integrated particle amount from the larger one is n%. ・ Sieving the sample powder using a sieve having a sieve having substantially the same diameter as the particle diameter X By determining the ratio under the sieve or on the sieve, ・ Determining the degree of deviation from the spherical shape of the sample powder based on the ratio under the sieve or on the sieve at that time .

【0012】[0012]

【発明の実施の形態】以下本発明を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.

【0013】本発明においては、試料粉体を粒度分布が
偏らないように2つの部分に分け、その一部を光散乱法
による粒度分布測定用に(たとえば湿式法によるレーザ
ー回折粒子計を用いた粒度分布測定用に)、他部を篩を
用いた粒度分布測定用に用意する。
In the present invention, the sample powder is divided into two parts so that the particle size distribution is not deviated, and a part thereof is used for measuring the particle size distribution by a light scattering method (for example, using a laser diffraction particle meter by a wet method). The other part is prepared for particle size distribution measurement using a sieve.

【0014】ついで試料粉体につき、その一部を用いて
光散乱法による粒度分布測定を行うことにより(たとえ
ば、湿式法によるレーザー回折粒子計においては、試料
量約0.5gを適当な分散媒に分散させて粒度分布測定を
行うことにより)、試料粉体の粒子径の小さい方または
大きい方からの積算粒子量n%における粒子径Xを求め
る(一例をあげると、中位径を採用し、粒子径の小さい
方からの積算粒子量の%が50%となる点の粒子径Xを
求める)。
Next, the particle size distribution of the sample powder is measured by a light scattering method using a part of the powder (for example, in a laser diffraction particle meter by the wet method, about 0.5 g of the sample is placed in an appropriate dispersion medium). By measuring the particle size distribution by dispersing the sample powder), the particle size X at the integrated particle amount n% from the smaller or larger particle size of the sample powder is determined (for example, the median size is adopted, The particle diameter X at the point where the percentage of the integrated particle amount from the smaller particle diameter becomes 50% is determined).

【0015】図1に、レーザー回折粒子計の測定部の構
造図を示す。図1中、(1) はレーザーダイオード、(2)
は集光レンズ、(3) は空間フィルター、(4) はコリメー
トレンズ、(5) はフローセル、(6) はフーリエ変換レン
ズ、(7) は同心円センサー、(8) は循環槽である。
FIG. 1 shows a structural diagram of a measuring section of a laser diffraction particle meter. In FIG. 1, (1) is a laser diode, (2)
Is a condenser lens, (3) is a spatial filter, (4) is a collimating lens, (5) is a flow cell, (6) is a Fourier transform lens, (7) is a concentric sensor, and (8) is a circulation tank.

【0016】次に、上記で得られた粒子径Xと実質的に
同じ径の篩目の篩を用いて(たとえば、その粒子径Xに
最も近い篩目の標準篩を用いて)、上記で分けた他部の
試料粉体を篩分けすることにより、篩下または篩上の割
合を求める。
Next, by using a sieve having a sieve having substantially the same diameter as the particle diameter X obtained above (for example, using a standard sieve having a sieve closest to the particle diameter X), By sieving the separated sample powder, the ratio under the sieve or on the sieve is determined.

【0017】上記のようにして篩下または篩上の割合が
求められた後は、そのときの篩下または篩上の割合に基
いて、試料粉体の球形からの乖離の度合を判定する。
After the ratio under the sieve or on the sieve is determined as described above, the degree of deviation of the sample powder from the sphere is determined based on the ratio at the time of the under sieve or on the sieve.

【0018】乖離の度合の判定は、たとえば、式 乖離度(%)=100×(U−n)/n で定義される乖離度を用いることができる。式中のU
は、光散乱法により得られた粒子径Xと実質的に同じ径
の篩目の篩を用いて篩分けしたときのたとえば篩下%で
ある。また式中のnは、光散乱法により得られた粒子径
Xのたとえば粒子径の小さい方からの積算粒子量の%で
ある。
For the determination of the degree of divergence, for example, the degree of divergence defined by the equation: divergence (%) = 100 × (U−n) / n can be used. U in the formula
Is, for example,% under the sieve when sieved using a sieve having a sieve having substantially the same diameter as the particle diameter X obtained by the light scattering method. Further, n in the formula is, for example,% of the integrated particle amount from the smaller particle diameter of the particle diameter X obtained by the light scattering method.

【0019】本発明の形状判定方法が適用できる粉体粒
子は、炭素質粒子(石炭、コークス、黒鉛等)、土砂、
鉄鉱石、金属、プラスチックス粉体、無機質または有機
質のフィラーや顔料、セラミックス、アスベスト、窯業
原料、粉塵をはじめ、篩分けが可能な大きさのものであ
れば材質を問わない。
The powder particles to which the shape determination method of the present invention can be applied include carbonaceous particles (coal, coke, graphite, etc.), earth and sand,
Any material can be used as long as it can be sieved, including iron ore, metal, plastics powder, inorganic or organic fillers and pigments, ceramics, asbestos, ceramic raw materials, dust, and the like.

【0020】〈作用〉本発明においては、光散乱法によ
る粒度分布測定と、篩による試料粉体の篩分けとの組み
合わせを行っている。
<Function> In the present invention, a combination of particle size distribution measurement by a light scattering method and sieving of a sample powder by a sieve is performed.

【0021】図2は、粒度分布の測定方法の違いによる
粒子径の評価部分の原理図を示したものであり、(イ)
は光散乱法の原理図、(ロ)は篩による篩分け法の原理
図である。
FIG. 2 shows a principle diagram of a part for evaluating the particle diameter due to the difference in the method of measuring the particle size distribution.
1 is a principle diagram of a light scattering method, and (b) is a principle diagram of a sieving method using a sieve.

【0022】図2(イ)の光散乱法による粒度分布の測
定にあっては、薄片状や細長状の粒子ではその粒子の最
大径をその粒子の粒子径と測定しやすい。一方、図2
(ロ)の篩分け法による粒度分布の測定は、ある篩目に
対し粒子が通過するか否かで篩分けするため、その粒子
の最小径をその粒子の粒子径と測定する原理となってい
る。
In the measurement of the particle size distribution by the light scattering method shown in FIG. 2A, the maximum diameter of the flaky or elongated particles is easily measured as the particle diameter of the particles. On the other hand, FIG.
The measurement of the particle size distribution by the screening method of (b) is based on the principle that the minimum diameter of the particle is measured as the particle diameter of the particle because the particle is sieved based on whether or not the particle passes through a certain sieve. I have.

【0023】従って、粉体粒子の形状が球形に近けれ
ば、光散乱法によって測定した結果から得られる粒子径
と、篩を用いて篩分けしたときの粒子径との差は小さい
が、粉体粒子の形状が薄片状や細長状になればなるほ
ど、両方法で測定される粒子径の差は大きくなる。
Therefore, if the shape of the powder particles is close to spherical, the difference between the particle size obtained from the result measured by the light scattering method and the particle size when sieved using a sieve is small, The more the shape of the particles becomes flaky or elongated, the greater the difference between the particle sizes measured by the two methods.

【0024】そこで本発明においては、試料粉体の光散
乱法による粒度分布測定を行うことにより粒子径の小さ
い方または大きい方からの積算粒子量がn%における試
料粉体の粒子径Xを求め、その粒子径Xと実質的に同じ
径の篩目の篩を用いて試料粉体を篩分けすることにより
篩下または篩上の割合を求め、その篩下の割合または篩
上の割合がn%に近ければ粉体粒子は球形に近く、その
篩下の割合または篩上の割合がn%から遠ざかるほど粉
体粒子は球形から離れていると判定できる。
Therefore, in the present invention, the particle size X of the sample powder when the integrated particle amount from the smaller or larger particle size is n% is determined by measuring the particle size distribution of the sample powder by the light scattering method. By sieving the sample powder using a sieve having a sieve having substantially the same diameter as the particle size X, the ratio under the sieve or the ratio on the sieve is determined, and the ratio under the sieve or the ratio on the sieve is n %, The powder particles are close to spherical, and it can be determined that the powder particles are farther from the spherical shape as the ratio under the sieve or the ratio on the sieve is farther from n%.

【0025】上記原理に基く本発明の方法は、短時間に
判定ができること、測定や判定に個人差がないこと、定
量的判定ができること、試料粉体の平均的な形状を把握
することができること、などの利点がある。
According to the method of the present invention based on the above principle, it is possible to judge in a short time, there is no individual difference in measurement and judgment, it is possible to make a quantitative judgment, and it is possible to grasp the average shape of a sample powder. , There are advantages.

【0026】[0026]

【実施例】次に実施例をあげて本発明をさらに説明す
る。
The present invention will be further described with reference to the following examples.

【0027】実施例1〜2 試料Aとして鉱物質である黒雲母の粒子、試料Bとして
合成物質であるフェノール樹脂の粒子を用い、予め粒度
分布が偏らないように二分しておいた試料の片方につ
き、湿式法によるレーザー回折粒子計を用いてそれぞれ
の光散乱法による粒度分布を測定した。結果を図3に示
す。横軸は光散乱法による粒子径(μm )、縦軸はこの
ときの粒子径の小さい方からの積算粒子量の%である。
Examples 1 and 2 Sample A was made of mineral biotite particles, and sample B was made of synthetic phenol resin particles. One of the samples was divided in advance so that the particle size distribution was not biased. The particle size distribution was measured by a light scattering method using a laser diffraction particle meter based on the wet method. The results are shown in FIG. The horizontal axis is the particle diameter (μm) by the light scattering method, and the vertical axis is the percentage of the integrated particle amount from the smaller particle diameter at this time.

【0028】図3のように、光散乱法によって測定した
試料Aのたとえば粒子径の小さい方からの積算粒子量5
0%径(以下、中位径と略)は 0.333mm(333μm )
であり、試料Bの中位径は 0.213mm(213μm )であ
ることが判明した。
As shown in FIG. 3, the integrated particle amount 5 of the sample A measured by the light scattering method, for example, from the smaller particle diameter.
0% diameter (hereinafter abbreviated as median diameter) is 0.333mm (333μm)
It was found that the median diameter of sample B was 0.213 mm (213 μm).

【0029】次に、中位径に最も近い篩目の篩として、
試料Aについては 0.355mm(355μm )、試料Bにつ
いては 0.212mm(212μm )のJIS規格の試験用篩
を選定した。ついで、選定した篩を用いて、予め粒度分
布が偏らないように二分しておいた試料の他方を篩い分
けたところ、試料Aの篩下%は100%、試料Bの篩下
%は56%であった。この結果から、試料Aは球形から
の乖離の度合が著しく、試料Bは球形にかなり近いこと
がわかる。
Next, as a sieve having a sieve closest to the median diameter,
A 0.355 mm (355 μm) JIS standard test sieve for sample A and a 0.212 mm (212 μm) JIS standard sieve for sample B were selected. Then, using the selected sieve, the other half of the sample, which had been divided in advance so that the particle size distribution was not biased, was sieved. Met. From this result, it can be seen that the degree of deviation of the sample A from the sphere is remarkable, and that the sample B is quite close to the sphere.

【0030】試料Aおよび試料Bの粒子形状を直接的に
目視確認するため、ブリケットを作成し、顕微鏡観察を
実施して(倍率175倍、試料Aは長細く、試料Bは丸
みを帯びている)、粉体粒子の長軸径および短軸径を測
定することにより短軸径/長軸径の比を算出した。粉体
粒子の形状が球形の場合は短軸径/長軸径の比は1とな
り、粉体粒子の形状が薄片状または細長状の場合は1よ
りも小さくなる。上記顕微鏡観察の結果に基いて算出し
た短軸径/長軸径の比は、試料Aが 0.423であり、試料
Bが 0.793であった。
In order to directly visually confirm the particle shapes of Sample A and Sample B, a briquette was prepared and observed under a microscope (magnification: 175 times, Sample A was long and thin, Sample B was rounded). ), The ratio of short axis diameter / long axis diameter was calculated by measuring the long axis diameter and short axis diameter of the powder particles. When the shape of the powder particles is spherical, the ratio of the minor axis diameter / major axis diameter is 1, and when the shape of the powder particles is flaky or elongated, it is smaller than 1. The ratio of the short axis diameter to the long axis diameter calculated based on the results of the above microscopic observation was 0.423 for sample A and 0.793 for sample B.

【0031】実施例3〜5 試料C、試料D、試料Eとしていずれも石炭粒子を用
い、予め粒度分布が偏らないように二分しておいたそれ
ぞれの試料の片方につき、湿式法によるレーザー回折粒
子計を用いて光散乱法による粒度分布を測定した。光散
乱法による中位径は、試料Cが 0.235mm、試料Dが 0.2
06mm、試料Eが 0.199mmであった。
Examples 3 to 5 Coal particles were used as Samples C, D and E, and each of the samples which had been divided in advance so that the particle size distribution was not biased, was subjected to laser diffraction particles by the wet method. The particle size distribution was measured by a light scattering method using a meter. The median diameter by the light scattering method was 0.235 mm for sample C and 0.235 mm for sample D.
06 mm, and sample E was 0.199 mm.

【0032】これらの中位径に最も近い篩として、試料
Cについては 0.250mm、試料Dおよび試料Eについては
0.212mmの篩目のJIS規格の試験用篩を選択し、予め
粒度分布が偏らないように二分しておいた試料の他方を
篩い分けた。試料Cの篩下%は61.7%、試料Dの篩下%
は53.9%、試料Eの篩下%は53.0%であった。
The sieves closest to these median diameters were 0.250 mm for sample C and 0.250 mm for sample D and sample E.
A test sieve of JIS standard having a sieve of 0.212 mm was selected, and the other sample which had been divided in advance so that the particle size distribution was not biased was sieved. The sieving percentage of sample C is 61.7%, the sieving percentage of sample D
Was 53.9%, and the under-sieving% of Sample E was 53.0%.

【0033】球形からの乖離度を、式 乖離度(%)=100×(U−n)/n によって定義したとき、試料C、DおよびEのU(篩分
け法による篩下%)はそれぞれ61.7、53.9、53.0であ
り、n(光散乱法による中位径)は50であるので、試
料Cの乖離度は23.4%、試料Dの乖離度は 7.8%、試料
Eの乖離度は 6.0%となる。
When the degree of divergence from the sphere is defined by the equation: degree of divergence (%) = 100 × (U−n) / n, U of sample C, D and E (% under sieving by the sieving method) is Since 61.7, 53.9, and 53.0, and n (medium diameter by light scattering method) is 50, the divergence of sample C is 23.4%, the divergence of sample D is 7.8%, and the divergence of sample E is 6.0%. Becomes

【0034】一方、試料C、D、Eをブリケットに成型
し、顕微鏡(倍率50〜100倍)にて観察して粉体粒
子の短軸径/長軸径の比を測定したところ、試料C、
D、Eの順に 0.486、 0.596、 0.680の値が得られた。
On the other hand, Samples C, D and E were molded into briquettes, and the ratio of the short axis diameter to the long axis diameter of the powder particles was measured under a microscope (magnification: 50 to 100 times). ,
Values of 0.486, 0.596, and 0.680 were obtained in the order of D and E.

【0035】そこで、横軸に顕微鏡観察法による短軸径
/長軸径の比をとり、縦軸に上述の乖離度をとって、上
記の結果をプロットしたときの結果を図4に示す。図4
から、短軸径/長軸径の比が小さくなればなるほど、つ
まり球形から薄片状または細長状になればなるほど、本
発明の方法に従って求めた乖離度は大きくなること、従
って、本発明の方法は粉体粒子の球形からの乖離の度合
を簡易的に示す指標となることがわかる。
FIG. 4 shows the results obtained by plotting the above results by plotting the ratio of the minor axis diameter / major axis diameter by microscopic observation on the horizontal axis and the above-mentioned divergence on the vertical axis. FIG.
Thus, the smaller the ratio of the minor axis diameter / major axis diameter, that is, the more the sphere becomes flaky or elongated, the greater the degree of divergence determined according to the method of the present invention, and hence the method of the present invention. It can be seen that is an index that simply indicates the degree of deviation of the powder particles from the sphere.

【0036】[0036]

【発明の効果】本発明においては、光散乱法による粒度
分布測定を行うことにより粒子径の小さい方または大き
い方からの積算粒子量がn%における試料粉体の粒子径
Xを求め、その粒子径Xと実質的に同じ径の篩目の篩を
用いて試料粉体を篩分けすることにより篩下または篩上
の割合を求め、そのときの篩下または篩上の割合に基い
て試料粉体の球形からの乖離の度合を判定している。
In the present invention, the particle size X of the sample powder is calculated by measuring the particle size distribution by the light scattering method, and the integrated particle amount from the smaller or larger particle size is n%. The sample powder is sieved using a sieve having a sieve having substantially the same diameter as the diameter X to determine the ratio under the sieve or on the sieve. The degree of deviation from the spherical shape of the body is determined.

【0037】そのため、本発明の方法によれば次のよう
なすぐれた効果が奏される。 ・複雑な前処理や手段を必要とせず、短時間に判定を行
うことができる。たとえば、試料入手から粒子の形状の
判別までに要する時間を、顕微鏡観察法の約1/12に
短縮することができる。 ・測定や判定に熟練を要せず、個人差も出ないので、客
観的な判定を行うことができる。また、判定に至る経過
記録を残しておくことができる。 ・球形からの乖離の度合を定量的に判定することができ
る。 ・ブリケット等を作成する顕微鏡法とは異なり、本発明
においては測定に供した試料粉体の回収や再使用を行う
ことができる。 ・顕微鏡観察法では視野に入る粒子が平均的な形状を有
するものかどうかわからないが、本発明においては試料
全体の平均的な形状を知ることができる。
Therefore, according to the method of the present invention, the following excellent effects can be obtained. The determination can be performed in a short time without requiring complicated preprocessing and means. For example, the time required from sample acquisition to particle shape discrimination can be reduced to about 1/12 that of a microscope observation method. -Since measurement and judgment do not require skill and there is no individual difference, an objective judgment can be made. Further, a progress record leading to the determination can be left. -The degree of deviation from the spherical shape can be quantitatively determined. Unlike the microscopy method for producing briquettes and the like, in the present invention, the sample powder used for the measurement can be collected and reused. In the microscope observation method, it is not known whether the particles entering the visual field have an average shape, but in the present invention, the average shape of the entire sample can be known.

【図面の簡単な説明】[Brief description of the drawings]

【図1】レーザー回折粒子計の測定部の構造図である。FIG. 1 is a structural diagram of a measurement unit of a laser diffraction particle meter.

【図2】粒度分布の測定方法の違いによる粒子径の評価
部分の原理図を示したものであり、(イ)は光散乱法の
原理図、(ロ)は篩による篩分け法の原理図である。
FIGS. 2A and 2B are diagrams showing the principle of the evaluation part of the particle diameter according to the difference in the method of measuring the particle size distribution, wherein FIG. 2A shows the principle of the light scattering method, and FIG. 2B shows the principle of the screening method using a sieve. It is.

【図3】湿式法によるレーザー回折粒子計を用いて試料
Aおよび試料Bの光散乱法による粒度分布を測定したと
きの結果を示した図である。
FIG. 3 is a diagram showing the results of measuring the particle size distribution of a sample A and a sample B by a light scattering method using a laser diffraction particle meter by a wet method.

【図4】試料C、D、Eについての短軸径/長軸径の比
と乖離度との関係を示したグラフである。
FIG. 4 is a graph showing the relationship between the ratio of minor axis diameter / major axis diameter and the degree of deviation for samples C, D, and E.

【符号の説明】[Explanation of symbols]

(1) …レーザーダイオード、 (2) …集光レンズ、 (3) …空間フィルター、 (4) …コリメートレンズ、 (5) …フローセル、 (6) …フーリエ変換レンズ、 (7) …同心円センサー、 (8) …循環槽 (1)… laser diode, (2)… condenser lens, (3)… spatial filter, (4)… collimating lens, (5)… flow cell, (6)… Fourier transform lens, (7)… concentric sensor, (8)… Circulation tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】試料粉体につき、その一部を用いて光散乱
法による粒度分布測定を行うことにより、粒子径の小さ
い方または大きい方からの積算粒子量がn%における試
料粉体の粒子径Xを求めること、 その粒子径Xと実質的に同じ径の篩目の篩を用いて試料
粉体を篩分けすることにより、篩下または篩上の割合を
求めること、 そのときの篩下または篩上の割合に基いて、試料粉体の
球形からの乖離の度合を判定すること、を特徴とする粉
体粒子の形状判定方法。
A particle size distribution of a sample powder is measured by a light scattering method using a part of the sample powder. Determining the diameter X, sieving the sample powder using a sieve having a sieve having substantially the same diameter as the particle diameter X to determine the ratio under or above the sieve, Alternatively, the degree of deviation of the sample powder from the spherical shape is determined based on the ratio on the sieve, and the shape of the powder particles is determined.
JP12936298A 1998-05-13 1998-05-13 Method for determining the shape of powder particles Expired - Fee Related JP3697891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12936298A JP3697891B2 (en) 1998-05-13 1998-05-13 Method for determining the shape of powder particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12936298A JP3697891B2 (en) 1998-05-13 1998-05-13 Method for determining the shape of powder particles

Publications (2)

Publication Number Publication Date
JPH11326177A true JPH11326177A (en) 1999-11-26
JP3697891B2 JP3697891B2 (en) 2005-09-21

Family

ID=15007719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12936298A Expired - Fee Related JP3697891B2 (en) 1998-05-13 1998-05-13 Method for determining the shape of powder particles

Country Status (1)

Country Link
JP (1) JP3697891B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102004068A (en) * 2010-11-05 2011-04-06 济南微纳颗粒仪器股份有限公司 Wet-method granule circulating device
CN102890050A (en) * 2012-07-31 2013-01-23 中国石油化工股份有限公司 Method for calibrating particle size analysis data by using laser method and sieve analysis method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102004068A (en) * 2010-11-05 2011-04-06 济南微纳颗粒仪器股份有限公司 Wet-method granule circulating device
CN102890050A (en) * 2012-07-31 2013-01-23 中国石油化工股份有限公司 Method for calibrating particle size analysis data by using laser method and sieve analysis method
CN102890050B (en) * 2012-07-31 2015-03-11 中国石油化工股份有限公司 Method for calibrating particle size analysis data by using laser method and sieve analysis method

Also Published As

Publication number Publication date
JP3697891B2 (en) 2005-09-21

Similar Documents

Publication Publication Date Title
Higashitani et al. Powder technology handbook
Casuccio et al. The use of computer controlled scanning electron microscopy in environmental studies
JP5550098B2 (en) Integrated analysis method for crystals in sediments
Sinha et al. Experimental characterization protocols for wear products from disc brake materials
Mamane et al. Evaluation of computer-controlled scanning electron microscopy applied to an ambient urban aerosol sample
CN110672478A (en) Testing method and device for analyzing shape of machined sand particles based on image processing technology
US9222856B2 (en) Measurement of particle morphology using filtration
Ilić et al. Size and shape particle analysis by applying image analysis and laser diffraction–Inhalable dust in a dental laboratory
CN111812138A (en) Method for measuring asbestos content in brake pad by scanning electron microscope-energy spectrometer
CN114324437A (en) Characterization method and system for in-situ statistical distribution of inclusions in steel
JPH11326177A (en) Method for judging shape of powder particle
Peng et al. SUSPENSOIDS IN NEW YORK CITY'S DRINKING WATER RESERVOIRS: TURBIDITY APPORTIONMENT 1
Shandilya et al. Qualitative evaluation of particulate matter inside public transit buses operated by biodiesel
Scott et al. Scale-up And Production Of Uranium-bearing QC Reference Particulates By An Aerosol Synthesis Method
KR20040104607A (en) Method and device for measuring fine particles in ultrapure water
Zavašnik et al. Microscopic techniques for the characterisation of metal-based nanoparticles
Little The development and demonstration of a practical methodology for fine particle shape characterisation in minerals processing
CA1208937A (en) Particle counting system for a fractionating device
KR101371663B1 (en) Method and apparatus for quantitative measuring the particles
Mancini et al. Reproducibility of Physico-Chemical Properties in Brakes Emissions Generated at Different Dynamometric Benches
Eryu et al. Effects of filter packing density and particle deposit on classification performance of inertial filter for sampling of PM0. 1
Bandli et al. Mineralogical and dimensional characterization of EMPs destined for biological experimentation
CN108828141A (en) A kind of heavy metal adsorption performance test methods of mussel shell material
Coudray et al. Image processing nanoparticle size measurement for determination of density values to correct the ELPI measures
Mancini et al. Chemical Characterization of Nanoparticle Emissions from Brakes-The nPETS Project

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees