JPH11326110A - Device for diagnosing leak from evaporated-fuel treating device - Google Patents
Device for diagnosing leak from evaporated-fuel treating deviceInfo
- Publication number
- JPH11326110A JPH11326110A JP13351598A JP13351598A JPH11326110A JP H11326110 A JPH11326110 A JP H11326110A JP 13351598 A JP13351598 A JP 13351598A JP 13351598 A JP13351598 A JP 13351598A JP H11326110 A JPH11326110 A JP H11326110A
- Authority
- JP
- Japan
- Prior art keywords
- leak
- fuel
- diagnosis
- refueling
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Examining Or Testing Airtightness (AREA)
- Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、内燃機関の蒸発燃
料処理装置のリーク診断装置に関し、特に誤診断を防止
する技術に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a leak diagnosis device for an evaporative fuel treatment system for an internal combustion engine, and more particularly to a technique for preventing erroneous diagnosis.
【0002】[0002]
【従来の技術】従来の内燃機関の蒸発燃料処理装置で
は、燃料タンク等で発生する蒸発燃料をキャニスタに一
時的に吸着し、該吸着した蒸発燃料を所定の機関運転条
件で離脱させてパージ用空気と混合したパージ混合気
を、パージ制御弁で流量制御しつつ機関の吸気系へ吸引
処理することによって、蒸発燃料の外気への蒸散を防止
するようにしている(特開平5−215020号等参
照) 。2. Description of the Related Art In a conventional evaporative fuel processing apparatus for an internal combustion engine, evaporative fuel generated in a fuel tank or the like is temporarily adsorbed to a canister, and the adsorbed evaporative fuel is released under predetermined engine operating conditions for purging. A purge mixture mixed with air is suctioned into the intake system of the engine while controlling the flow rate with a purge control valve, thereby preventing evaporation of the evaporated fuel into the outside air (Japanese Patent Laid-Open No. 5-215020, etc.). See).
【0003】ところで、上記装置では、蒸発燃料配管の
途中に万一亀裂が生じたり、蒸発燃料配管の接合部にシ
ール不良が生じると、前記リーク部分から蒸発燃料が大
気中に放散されることになってしまい、本来の放散防止
効果を十分に発揮させることができなくなる。そこで、
前記蒸発燃料のリークの有無を診断する装置が種々提案
されており、例えば、機関運転によって発生する吸気負
圧を密閉された蒸発燃料供給系に供給した後、該系内の
圧力変化に基づいてリークの有無を診断(以下適宜リー
ク診断という) するようなものがある。By the way, in the above-mentioned apparatus, if a crack is generated in the middle of the fuel vapor pipe or a sealing failure occurs at the joint of the fuel vapor pipe, the fuel vapor is radiated from the leak portion to the atmosphere. As a result, the original effect of preventing radiation cannot be sufficiently exhibited. Therefore,
Various devices for diagnosing the presence or absence of the leak of the evaporative fuel have been proposed.For example, after supplying an intake negative pressure generated by engine operation to a sealed evaporative fuel supply system, based on a pressure change in the system, There is one that diagnoses the presence or absence of a leak (hereinafter referred to as leak diagnosis as appropriate).
【0004】しかしながら、機関の運転中に診断するこ
とには、制約があり、また、動的な状態で診断すること
は精度を十分確保することも難しかった。そこで、機関
運転停止後にリーク診断を行う方式が考えられた。例え
ば、以下のような方式である。即ち、電動ポンプによっ
て基準口径を有した基準オリフィスを経由させて空気を
圧送したときの電動ポンプの駆動電流に基づいて判定レ
ベルを設定した後、電動ポンプによって前記基準オリフ
ィスをバイパスして前記蒸発燃料処理装置のリーク診断
対象となる配管に空気を圧送したときの電動ポンプの駆
動電流を前記設定された判定レベルと比較して蒸発燃料
のリークの有無を診断するものである。具体的には、前
記駆動電流が判定レベルより小さいときに蒸発燃料のリ
ークを生じていると診断する。即ち、前記基準オリフィ
ス相当の孔を生じたときのリーク量より大きなリーク量
が発生すると、空気の圧送負荷の減少により電動ポンプ
の駆動電流が判定レベルより減少するので、該判定レベ
ルとの比較でリークの有無を診断できる。[0004] However, there is a restriction in making a diagnosis during operation of the engine, and it is also difficult to ensure sufficient accuracy in making a diagnosis in a dynamic state. Therefore, a method of performing a leak diagnosis after stopping the operation of the engine has been considered. For example, the following method is used. That is, after setting a determination level based on the drive current of the electric pump when air is pumped through the reference orifice having the reference diameter by the electric pump, the evaporative fuel is bypassed by the electric pump to bypass the reference orifice. The present invention compares the drive current of the electric pump when the air is pressure-fed to the pipe to be subjected to the leak diagnosis of the processing apparatus with the set determination level to diagnose whether or not the fuel vapor leaks. Specifically, when the drive current is smaller than the determination level, it is diagnosed that the fuel vapor leak has occurred. That is, when a leak amount larger than the leak amount when the hole corresponding to the reference orifice is generated, the drive current of the electric pump decreases from the determination level due to a decrease in the air pumping load. It can diagnose the presence or absence of a leak.
【0005】前記方式によれば、配管に細かな孔が生じ
た場合のような小量のリーク発生時でも、高精度に診断
することができる。[0005] According to the above method, even when a small amount of leaks occur, such as when a fine hole is formed in a pipe, diagnosis can be performed with high accuracy.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、このよ
うに機関運転停止後にリーク診断を行う方式では、燃料
タンクのフィラーキャップを開けて給油しているとき
に、リーク診断が実行されると、蒸発燃料供給系内が大
気圧に開放されてしまうため、電動ポンプの駆動電流が
減少してリークを生じていると誤診断してしまうことが
あった。なお、該電動ポンプを用いた加圧方式に限ら
ず、例えば機関運転中にアキュームレータ内に蓄えた圧
力(負圧を用いることも一応可能なように思われました
ので、メインクレームで診断方式を加圧に限定するのを
止めました。御検討下さい。) を蒸発燃料供給系内に供
給し、その後の圧力変化に基づいて診断するような方式
でも同様に誤診断を生じてしまう。However, in such a system in which the leak diagnosis is performed after the operation of the engine is stopped, if the leak diagnosis is performed while the filler cap of the fuel tank is opened and refueling is performed, the evaporative fuel is removed. Since the inside of the supply system is opened to the atmospheric pressure, the drive current of the electric pump is reduced, and it may be erroneously diagnosed that a leak is occurring. In addition to the pressurization method using the electric pump, it seems possible to use the pressure (negative pressure) stored in the accumulator during engine operation, for example .
So, the main claim is to limit the diagnostic method to pressurization.
I stopped. Please consider. ) Is supplied into the evaporative fuel supply system, and a diagnosis based on a subsequent pressure change also causes erroneous diagnosis.
【0007】本発明は、このような従来の課題に着目し
てなされたもので、機関運転停止後に蒸発燃料のリーク
診断を行う装置において、給油が行われても走行毎に正
確なリーク診断を実行できるようにした蒸発燃料処理装
置のリーク診断装置を提供することを目的とする。The present invention has been made in view of such a conventional problem. An apparatus for performing a leak diagnosis of evaporative fuel after stopping the operation of an engine performs an accurate leak diagnosis for each traveling even if refueling is performed. An object of the present invention is to provide a leak diagnostic device for an evaporative fuel treatment device that can be executed.
【0008】[0008]
【課題を解決するための手段】このため、請求項1に係
る発明は図1に示すように、内燃機関の燃料タンクから
の蒸発燃料を一時的に吸着手段に吸着し、所定の機関運
転条件で機関の吸気系に吸入処理する蒸発燃料処理装置
における蒸発燃料のリークの有無を機関運転停止後に診
断するリーク診断手段を備える一方、機関運転停止後、
燃料タンクに給油中か否かを検出する給油検出手段と、
前記給油終了後に前記蒸発燃料のリークの有無の診断を
開始させる診断遅延手段と、を含んで構成したことを特
徴とする。Therefore, according to the first aspect of the present invention, as shown in FIG. 1, fuel vapor from a fuel tank of an internal combustion engine is temporarily adsorbed by an adsorbing means, and a predetermined engine operating condition is obtained. In the evaporative fuel processing device that performs suction processing to the intake system of the engine at, while equipped with leak diagnostic means for diagnosing the presence or absence of evaporative fuel after engine operation is stopped, after the engine operation is stopped,
Refueling detecting means for detecting whether or not the fuel tank is being refueled;
Diagnostic delay means for starting diagnosis of the presence or absence of leakage of the evaporated fuel after the refueling is completed.
【0009】かかる構成によると、給油検出手段が機関
運転停止後に燃料タンクに給油中か否かを検出し、該検
出結果に基づいて診断遅延手段が給油終了後に蒸発燃料
のリーク診断を開始する。また、請求項2に係る発明
は、前記診断遅延手段は、前記給油検出手段により給油
が終了したことが検出されたときに前記診断を開始する
ことを特徴とする。With this configuration, the refueling detecting means detects whether or not the fuel tank is being refueled after the engine operation is stopped, and based on the detection result, the diagnosis delay means starts the fuel vapor leak diagnosis after the refueling is completed. The invention according to claim 2 is characterized in that the diagnosis delay unit starts the diagnosis when the refueling detection unit detects that the refueling has been completed.
【0010】かかる構成によると、給油検出手段による
検出が給油終了まで継続され、給油が終了したことが検
出されたときに、診断遅延手段による検出が開始され
る。また、請求項3に係る発明は、前記診断遅延手段
は、前記給油検出手段によって給油中であることを一度
検出した後、所定時間経過後に前記診断を開始すること
を特徴とする。With this configuration, the detection by the refueling detecting means is continued until the refueling is completed, and when the refueling is detected, the detection by the diagnosis delay means is started. Further, the invention according to claim 3 is characterized in that the diagnosis delay unit starts the diagnosis after a predetermined time has elapsed after the refueling detection unit once detects that refueling is being performed.
【0011】かかる構成によると、給油検出手段によっ
て給油中であることが一度検出されると、それから給油
が終了するのに十分な所定時間が経過するのを待ってか
らリーク診断手段によるリーク診断が開始される。ま
た、請求項4に係る発明は、前記リーク診断手段は、燃
料タンクから機関の吸気系に至る蒸発燃料供給系を密閉
した状態で該蒸発燃料供給系内を加圧し、該加圧に際し
てリークの有無によって変化するパラメータを検出し
て、リークの有無を診断することを特徴とする。With this configuration, once the refueling is detected by the refueling detecting means, after a predetermined time sufficient for the refueling to be completed has elapsed, the leak diagnosis by the leak diagnosing means is performed. Be started. Further, in the invention according to claim 4, the leak diagnosis means pressurizes the inside of the evaporative fuel supply system in a state where the evaporative fuel supply system from the fuel tank to the intake system of the engine is sealed, It is characterized by detecting a parameter that changes depending on the presence or absence and diagnosing the presence or absence of a leak.
【0012】かかる構成によると、燃料タンクから機関
の吸気系に至る蒸発燃料供給系を密閉した状態で該蒸発
燃料供給系内を加圧すると、リークの有無によって例え
ば加圧の負荷や加圧後の圧力状態が変化するので、リー
ク診断手段は、これらのパラメータに基づいてリークの
有無を診断する。また、請求項5に係る発明は、前記リ
ーク診断手段は、電動ポンプで前記蒸発燃料供給系内を
加圧したときの駆動電流に基づいてリークの有無を診断
することを特徴とする。According to this configuration, when the inside of the fuel vapor supply system is pressurized in a state where the fuel vapor supply system from the fuel tank to the intake system of the engine is closed, for example, depending on the presence or absence of a leak, the pressurizing load or the pressure after pressurization is determined. The leak diagnostic means diagnoses the presence or absence of a leak based on these parameters. The invention according to claim 5 is characterized in that the leak diagnosis means diagnoses the presence or absence of a leak based on a drive current when the inside of the evaporative fuel supply system is pressurized by an electric pump.
【0013】かかる構成によると、電動ポンプで前記蒸
発燃料供給系内を加圧したときの駆動電流はリークを生
じているときは減少するので、リーク診断手段は、該駆
動電流によってリークの有無を診断する。また、請求項
6に係る発明は、前記給油検出手段は、電動ポンプで前
記蒸発燃料供給系内を加圧したときの駆動電流に基づい
て給油中か否かを検出することを特徴とする。According to this structure, the drive current when the electric fuel pump pressurizes the inside of the evaporative fuel supply system decreases when a leak occurs, so that the leak diagnosis means determines whether or not there is a leak by the drive current. Diagnose. The invention according to claim 6 is characterized in that the refueling detecting means detects whether or not refueling is being performed based on a drive current when the inside of the evaporative fuel supply system is pressurized by an electric pump.
【0014】かかる構成によると、給油中は電動ポンプ
で前記蒸発燃料供給系内を加圧したときの駆動電流は非
給油中に比較して大きく減少するので、給油検出手段
は、該駆動電流に基づいて給油中か否かを検出する。With this configuration, the drive current when the evaporative fuel supply system is pressurized by the electric pump during refueling is greatly reduced as compared to during non-refueling. It is detected whether or not refueling is in progress.
【0015】[0015]
【発明の効果】請求項1に係る発明によると、機関運転
停止後の静的な条件で高精度に行えるリーク診断を、給
油が行われたときでも給油終了後に実行することがで
き、走行毎に高精度なリーク診断を確実に実行すること
ができるという効果がある。請求項2に係る発明による
と、給油検出手段により給油が終了したことを検出する
と同時にリーク診断を実行することができるという効果
がある。According to the first aspect of the present invention, a leak diagnosis that can be performed with high accuracy under static conditions after the engine operation is stopped can be executed even after refueling has been performed after refueling has been completed. Therefore, there is an effect that highly accurate leak diagnosis can be reliably performed. According to the second aspect of the present invention, there is an effect that the leak diagnosis can be executed at the same time when the refueling is detected by the refueling detecting means.
【0016】請求項3に係る発明によると、給油検出手
段は一度だけ給油中であることを検出すればよく、検出
負荷が減少するという効果がある。請求項4に係る発明
によると、蒸発燃料供給系内の加圧に際してリークの有
無により変化するパラメータを用いて精度の良いリーク
診断を行えるという効果がある。According to the third aspect of the present invention, the refueling detecting means only needs to detect that the fuel is being supplied only once, which has the effect of reducing the detection load. According to the fourth aspect of the invention, there is an effect that accurate leak diagnosis can be performed using a parameter that changes depending on the presence or absence of a leak when pressurizing the evaporative fuel supply system.
【0017】請求項5に係る発明によると、電動ポンプ
の駆動電流に基づいて高精度なリーク診断を行えるとい
う効果がある。請求項6に係る発明によると、電動ポン
プの駆動電流に基づいて給油中か否かを確実に検出でき
るという効果がある。According to the fifth aspect of the invention, there is an effect that leak diagnosis can be performed with high accuracy based on the drive current of the electric pump. According to the invention according to claim 6, there is an effect that whether or not fueling is being performed can be reliably detected based on the drive current of the electric pump.
【0018】[0018]
【発明の実施の形態】以下に本発明の実施の形態を説明
する。一実施の形態を示す図2において、内燃機関1に
は、図示しないアクセルペダルと連動するスロットル弁
2を介装した吸気通路3を介して空気が吸入される。前
記吸気通路3の上流部には、前記スロットル弁2によっ
て流量制御される吸入空気流量を検出するエアフローメ
ータ4が装着され、吸気通路3の下流部 (マニホールド
部) には、各気筒毎に電磁式の燃料噴射弁5が設けられ
ていて、図示しない燃料ポンプから圧送されプレッシャ
レギュレータにより所定の圧力に制御される燃料を吸気
通路3内に噴射供給する。前記燃料噴射弁5による燃料
噴射量の制御は、マイクロコンピュータ内蔵のコントロ
ールユニット6 (一点鎖線で図示) で行われるようにな
っている。Embodiments of the present invention will be described below. In FIG. 2 showing one embodiment, air is sucked into an internal combustion engine 1 through an intake passage 3 provided with a throttle valve 2 interlocked with an accelerator pedal (not shown). An air flow meter 4 for detecting an intake air flow rate controlled by the throttle valve 2 is mounted at an upstream portion of the intake passage 3, and an electromagnetic flow meter (manifold portion) at a downstream portion of the intake passage 3 is provided for each cylinder. A fuel injection valve 5 of a type is provided and injects fuel supplied from a fuel pump (not shown) and controlled to a predetermined pressure by a pressure regulator into the intake passage 3. The control of the fuel injection amount by the fuel injection valve 5 is performed by a control unit 6 (shown by a dashed line) built in a microcomputer.
【0019】また、前記機関1には、蒸発燃料処理装置
が備えられている。前記蒸発燃料処理装置は、燃料タン
ク19内で発生した燃料の蒸発燃料を蒸発燃料導入通路20
を介して吸着手段としてのキャニスタ21内に充填された
活性炭などの吸着剤に吸着捕集させ、該吸着剤に吸着さ
れた燃料をパージ通路22を介してスロットル弁2下流側
の吸気通路3に供給するものである。The engine 1 is provided with a fuel vapor treatment device. The evaporative fuel processing device converts the evaporative fuel of the fuel generated in the fuel tank 19 into the evaporative fuel introduction passage 20.
The fuel adsorbed by the adsorbent is adsorbed and collected by an adsorbent such as activated carbon filled in a canister 21 serving as an adsorbing means, and the fuel adsorbed by the adsorbent is supplied to an intake passage 3 downstream of the throttle valve 2 via a purge passage 22. Supply.
【0020】前記パージ通路22には、前記コントロール
ユニット6からの制御信号に基づいて制御される電磁駆
動式のパージ制御弁23が介装されている。また、前記蒸
発燃料処理装置における蒸発燃料のリーク診断のため、
以下のような配管システムが構成される。即ち、前記キ
ャニスタ21底部に開口されたの空気導入口に、基準口径
例えば0.5mm 口径の基準オリフィス24を介装した第1通
路25と、該第1通路25に並列接続され切換バルブ26の一
方のポートを経由する第2通路27と、を介して電動ポン
プ28が接続されている。該電動ポンプ28の吸入口に接続
されたエア導入通路29は、エアフィルタ30を介して空気
を導入するようになっている。前記切換バルブ26の他方
のポートにはエア吐出通路31が接続されている。前記切
換バルブ26は、図示の状態では前記他方のポートがキャ
ニスタ21の空気導入口に至る第2通路27と連通し、前記
エア吐出通路31から吐出された空気をエアフィルタ30を
介して大気中に吐出するようになっており、また、切換
バルブ26が図示の状態から切換操作されて図示右側へ移
動すると前記一方のポートを介して第2通路27が開通
し、該第2通路27を介して電動ポンプ28とキャニスタ21
の空気導入口とが連通するようになっている。The purge passage 22 is provided with an electromagnetically driven purge control valve 23 which is controlled based on a control signal from the control unit 6. Further, for the fuel vapor leak diagnosis in the fuel vapor processing apparatus,
The following piping system is configured. That is, a first passage 25 provided with a reference orifice 24 having a reference diameter of, for example, 0.5 mm in the air inlet opening at the bottom of the canister 21, and one of a switching valve 26 connected in parallel to the first passage 25. And an electric pump 28 is connected via a second passage 27 passing through the port. An air introduction passage 29 connected to a suction port of the electric pump 28 introduces air through an air filter 30. An air discharge passage 31 is connected to the other port of the switching valve 26. In the state shown in the drawing, the switching valve 26 communicates with the second passage 27 that connects the other port to the air introduction port of the canister 21, and allows the air discharged from the air discharge passage 31 to enter the atmosphere through the air filter 30. When the switching valve 26 is switched from the state shown in the figure to the right side in the figure, the second passage 27 is opened through the one port, and is discharged through the second passage 27. Electric pump 28 and canister 21
With the air inlet of the air conditioner.
【0021】また、機関回転速度Nを検出する回転速度
センサ32,水温Twを検出する水温センサ33,排気中の
酸素濃度等に基づいて空燃比を検出する空燃比センサ34
などが設けられ、それらの検出信号はコントロールユニ
ット6に出力される。コントロールユニット6は、前記
各種センサからの信号に基づいて、燃料噴射弁5による
燃料噴射量を制御することによる空燃比フィードバック
制御を行うと共に、所定の運転条件で前記パージ制御弁
23を制御することにより蒸発燃料を吸気系にパージする
処理を行い、かつ、所定の条件で本発明に係る蒸発燃料
のリーク診断を行う。A rotation speed sensor 32 for detecting the engine rotation speed N, a water temperature sensor 33 for detecting the water temperature Tw, and an air-fuel ratio sensor 34 for detecting the air-fuel ratio based on the oxygen concentration in the exhaust gas and the like.
The detection signals are output to the control unit 6. The control unit 6 performs an air-fuel ratio feedback control by controlling a fuel injection amount by the fuel injection valve 5 based on signals from the various sensors, and performs the purge control valve under a predetermined operating condition.
By controlling 23, a process of purging the evaporated fuel into the intake system is performed, and a leak diagnosis of the evaporated fuel according to the present invention is performed under predetermined conditions.
【0022】かかる構成において、前記コントロールユ
ニット6による第1の実施の形態に係る蒸発燃料のリー
ク診断ルーチンを図3のフローチャートに従って説明す
る。ステップ1(図ではS1と略記する。以下同様)で
は、所定のリーク診断開始条件、例えば、以下の条件が
満たされているか否かを判定する。機関回転速度及び車
速がそれぞれ所定値より小さく、機関が停止状態である
こと。With this configuration, a routine for diagnosing a leak of evaporated fuel according to the first embodiment by the control unit 6 will be described with reference to the flowchart of FIG. In step 1 (abbreviated as S1 in the figure, the same applies hereinafter), it is determined whether a predetermined leak diagnosis start condition, for example, the following condition is satisfied. The engine speed and the vehicle speed are each lower than a predetermined value, and the engine is stopped.
【0023】前記パージ制御弁23の別途実行される故障
診断ルーチンにおいて、故障が無いと診断されているこ
と。ステップ1で前記リーク診断条件が成立していると
判定されたときはステップ2へ進み、給油判定を行う。
該給油判定のサブルーチンを図4のフローチャートに従
って説明すると、前記パージ制御弁23を全閉(ステップ
21) 、切換バルブ26を第2通路27開通側とし(ステップ
22) 、所定時間を経過後に電動ポンプ28の駆動電流IPU
MP0 を計測して読み込み(ステップ23,24)、該駆動電流
IPUMP0 をフィラーキャップが開放された状態を判別す
るためのしきい値IPUMPCPと比較し(ステップ25) 、し
きい値未満のときは給油中であると判定してフラグFPIT
N を1にセットし(ステップ26) 、しきい値以上のとき
は給油中でないと判定してフラグFPITN を0にリセット
する(ステップ27) 。即ち、給油中でないときは、前記
各バルブを閉じて密閉された蒸発燃料供給系内に電動ポ
ンプ28を駆動して空気を圧送すると、該系内の圧力が上
昇するため駆動電流が増大するのに対し、給油のためし
フィラーキャップが開放されているときは、空気を圧送
しても系内の圧力が上がらないので駆動電流が小さいま
まであるので、該駆動電流をしきい値と比較することで
確実に給油中か否かを判別できる。なお、リーク発生時
は系内の圧力は減少するが、給油中のフィラーキャップ
開放状態での圧力に比較すると十分高い圧力に上昇する
ので誤判定することはない。また、前記所定時間は電動
ポンプ28の駆動後、系内の圧力が平衡するのに要する時
間(系の容積とポンプ吐出量で決定される) +αに設定
されている。In the failure diagnosis routine executed separately for the purge control valve 23, it is diagnosed that there is no failure. If it is determined in step 1 that the above-described leak diagnosis condition is satisfied, the process proceeds to step 2 and a refueling determination is performed.
The refueling determination subroutine will be described with reference to the flowchart of FIG. 4. When the purge control valve 23 is fully closed (step
21) The switching valve 26 is set to the second passage 27 opening side (step
22) After a lapse of a predetermined time, the drive current IPU of the electric pump 28 is
MP0 is measured and read (steps 23 and 24), and the drive current IPUMP0 is compared with a threshold value IPUMPCP for determining whether the filler cap is open (step 25). Is determined to be in the middle and flag FPIT
N is set to 1 (step 26), and when it exceeds the threshold value, it is determined that refueling is not being performed, and the flag FPITN is reset to 0 (step 27). That is, when the fuel is not being supplied, when the electric pump 28 is driven to pump the air into the closed evaporative fuel supply system by closing the valves, the drive current increases because the pressure in the system increases. On the other hand, when the filler cap is opened for refueling, the pressure in the system does not rise even if air is pumped, so the drive current remains small, so the drive current is compared with a threshold value. This makes it possible to reliably determine whether or not the fuel is being supplied. When a leak occurs, the pressure in the system decreases, but the pressure rises to a sufficiently high pressure as compared with the pressure when the filler cap is open during refueling, so there is no erroneous determination. The predetermined time is set to a time required for the pressure in the system to equilibrate after the driving of the electric pump 28 (determined by the volume of the system and the pump discharge amount) + α.
【0024】かかる給油判定を行った後、図3のステッ
プ3へ進み前記フラグFPITN の値を判別する。そして、
フラグFPITN の値が1、つまり給油中と判定されたとき
は、ステップ2へ戻って給油判定を継続し、フラグFPIT
N の値が0になって給油が終了した又は元々給油を行わ
なかったと判定されたときに、ステップ4以降へ進んで
リーク診断を実行する。After the refueling determination is made, the routine proceeds to step 3 in FIG. 3, where the value of the flag FPITN is determined. And
If the value of the flag FPITN is 1, that is, it is determined that refueling is being performed, the flow returns to step 2 to continue refueling determination, and the flag FPITN is determined.
When the value of N becomes 0 and it is determined that refueling has been completed or that refueling has not been performed originally, the routine proceeds to step 4 and thereafter to execute a leak diagnosis.
【0025】まず、ステップ4では蒸発燃料パージ系雰
囲気を初期化する処理を行う。具体的には、前記パージ
制御弁23を開弁し、前記切換バルブ26の前記一方のポー
トを閉じ、他方のポートを開いて、電動ポンプ28を駆動
し、この状態を所定時間維持する。このとき図5に示す
ように、電動ポンプ28の駆動によりエアフィルタ31,エ
ア導入通路29を介して導入された空気が、前記第1通路
25を介してキャニスタ21内を通りパージ通路22を経て吸
気通路3内に流出する。また、一部の空気は、前記切換
バルブ26からエア吐出通路31,エアフィルタ30を介して
大気中に放出される。First, in step 4, a process for initializing the atmosphere of the fuel vapor purge system is performed. Specifically, the purge control valve 23 is opened, the one port of the switching valve 26 is closed, and the other port is opened to drive the electric pump 28, and this state is maintained for a predetermined time. At this time, as shown in FIG. 5, the air introduced through the air filter 31 and the air introduction passage 29 by the driving of the electric pump 28 is supplied to the first passage.
The gas flows through the canister 21 through the purge passage 22 and flows into the intake passage 3 through the passage 25. Part of the air is released from the switching valve 26 to the atmosphere via the air discharge passage 31 and the air filter 30.
【0026】この結果、パージ通路22内の残圧(負圧)
及び残留ガスが除去される。次に、リーク診断実行に先
立ち、リーク診断系を自己診断する。まず、ステップ5
では、前記パージ制御弁23を閉弁し、前記切換バルブ26
の前記一方のポートを閉じ、他方のポートを開いて、電
動ポンプ28を駆動し、この状態を所定時間維持する。As a result, the residual pressure (negative pressure) in the purge passage 22
And the residual gas is removed. Next, the self-diagnosis of the leak diagnosis system is performed prior to the execution of the leak diagnosis. First, step 5
Then, the purge control valve 23 is closed, and the switching valve 26 is closed.
The one port is closed and the other port is opened to drive the electric pump 28, and this state is maintained for a predetermined time.
【0027】このとき図6に示すように、電動ポンプ28
の駆動によりエアフィルタ31,エア導入通路29を介して
導入された空気が、前記第1通路25を介して前記切換バ
ルブ26からエア吐出通路31,エアフィルタ30を介して大
気中に放出される。前記の状態で所定時間経過後にステ
ップ6へ進み、電動ポンプ28の駆動電流を検出し、基準
値IPUMPとして記憶しておく。即ち、空気が基準口径を
有する基準オリフィス24を流通するときの電動ポンプ28
の駆動電流が後述するリーク診断の判定用基準値として
検出される。At this time, as shown in FIG.
The air introduced through the air filter 31 and the air introduction passage 29 by the driving of the air is discharged from the switching valve 26 through the first passage 25 to the atmosphere through the air discharge passage 31 and the air filter 30. . After a lapse of a predetermined time in the above state, the process proceeds to step 6, where the drive current of the electric pump 28 is detected and stored as a reference value IPUMP. That is, when the air flows through the reference orifice 24 having the reference diameter, the electric pump 28
Is detected as a reference value for determination of leak diagnosis described later.
【0028】ステップ7では、リーク診断試験を実行す
る。具体的には、前記パージ制御弁23を閉弁し、前記切
換バルブ26の前記他方のポートを閉じ、一方のポートを
開いて、電動ポンプ28を駆動し、この状態を所定時間維
持する。このとき図7に示すように、電動ポンプ28の駆
動によりエアフィルタ31,エア導入通路29を介して導入
された空気が、前記第2通路27を介してキャニスタ21内
を通って燃料タンク19からパージ制御弁23に至る蒸発燃
料導入通路20及びパージ通路22内に流入する。In step 7, a leak diagnosis test is performed. Specifically, the purge control valve 23 is closed, the other port of the switching valve 26 is closed, and one port is opened to drive the electric pump 28, and this state is maintained for a predetermined time. At this time, as shown in FIG. 7, the air introduced through the air filter 31 and the air introduction passage 29 by the driving of the electric pump 28 passes through the canister 21 through the second passage 27 and is discharged from the fuel tank 19. The fuel flows into the evaporated fuel introduction passage 20 and the purge passage 22 that reach the purge control valve 23.
【0029】前記の状態で前記所定時間経過後、ステッ
プ8へ進んで電動ポンプ28の駆動電流を検出し、リーク
試験値IPUMPLTとして記憶する。ステップ9では、前記
ステップ5で検出されたリーク試験値IPUMPLTを、前記
ステップ6で記憶された基準値IPUMPと比較する。そし
て、ステップ9でリーク試験値IPUMPLTが基準値IPUMP
より大きいと判定されたときは、ステップ10へ進んでリ
ークの発生無しと診断し、駆動電流が判定レベル以下と
判定されたときは、ステップ11へ進んでリークの発生有
りと診断する。After the lapse of the predetermined time in the above state, the routine proceeds to step 8, where the drive current of the electric pump 28 is detected and stored as the leak test value IPUMPLT. In step 9, the leak test value I PUMPLT detected in step 5 is compared with the reference value I PUMP stored in step 6. Then, in step 9, the leak test value IPUMPLT is changed to the reference value IPUMPLT.
If it is determined that the current is larger than the threshold, the process proceeds to step 10 to diagnose that no leakage has occurred. If it is determined that the drive current is equal to or lower than the determination level, the process proceeds to step 11 to diagnose that the leak has occurred.
【0030】即ち、空気が基準口径を有した基準オリフ
ィス24を流通するのに要する電動ポンプ28の駆動電流に
対し、前記リーク診断試験時の駆動電流の方が小さい場
合、つまり電動ポンプ28の駆動負荷が減少した場合は、
蒸発燃料導入通路20又はパージ通路22中に前記基準口径
より大きな孔が開口したのと同等の失陥を生じて設定レ
ベル以上のリークが発生すると診断し、そうでない場合
は、リーク発生無し(正常) と診断する。That is, when the drive current at the time of the leak diagnosis test is smaller than the drive current of the electric pump 28 required for the air to flow through the reference orifice 24 having the reference diameter, that is, the drive of the electric pump 28 If the load decreases,
It is diagnosed that a leak equal to or more than a set level occurs due to the occurrence of a failure equivalent to the opening of a hole larger than the reference diameter in the evaporative fuel introduction passage 20 or the purge passage 22, and if not, there is no leak (normal ) Is diagnosed.
【0031】このようにすれば、機関運転停止後、給油
を行った場合は、給油が終了してからリーク診断が行わ
れるので、誤診断を防止しつつ、走行毎に高精度なリー
ク診断を実行することができる。次に、第2の実施の形
態について説明する。前記第1の実施の形態では、機関
運転停止後、給油中の検出を給油が終了するまで継続し
て、終了検出後にリーク診断を開始する構成としたが、
第2の実施の形態では、機関運転停止後、一度給油中で
あることを検出したら、その後給油が終了するのに十分
な所定時間の経過を待ってリーク診断を実行するように
したものである。According to this configuration, when refueling is performed after the engine operation is stopped, the leak diagnosis is performed after the refueling is completed. Can be performed. Next, a second embodiment will be described. In the first embodiment, after the engine operation is stopped, the detection of refueling is continued until the refueling is completed, and the leak diagnosis is started after the completion of the refueling is detected.
In the second embodiment, once it is detected that refueling is being performed after the engine operation is stopped, a leak diagnosis is executed after a predetermined time sufficient for refueling has elapsed thereafter. .
【0032】図8は、該第2の実施の形態に係る蒸発燃
料のリーク診断ルーチンを示す。図3と異なるのは、ス
テップ3で給油判定用のフラグFPITN の値が1つまり給
油中であると判定した後、ステップ12で前記所定時間の
経過を待ってステップ4へ進みリーク診断を行うように
した点である。このようにすれば、給油中であることを
一度するだけでよいので、検出負荷が減少する。FIG. 8 shows a fuel vapor leak diagnosis routine according to the second embodiment. The difference from FIG. 3 is that after it is determined in step 3 that the value of the refueling determination flag FPITN is 1, that is, the fuel is being supplied, the flow proceeds to step 12 after the predetermined time has elapsed, and the flow proceeds to step 4 to perform the leak diagnosis. It is a point that was made. With this configuration, it is only necessary to perform the refueling operation once, so that the detection load is reduced.
【図1】本発明の構成・機能を示すブロック図。FIG. 1 is a block diagram showing the configuration and functions of the present invention.
【図2】本発明の実施の形態のシステム構成を示す図。FIG. 2 is a diagram showing a system configuration according to the embodiment of the present invention.
【図3】第1の実施の形態のリーク診断ルーチンを示す
フローチャート。FIG. 3 is a flowchart illustrating a leak diagnosis routine according to the first embodiment;
【図4】同上リーク診断ルーチンのサブルーチンを示す
フローチャート。FIG. 4 is a flowchart showing a subroutine of the above-mentioned leak diagnosis routine.
【図5】同上実施の形態の初期化処理実行時の空気の流
れを示す図。FIG. 5 is a diagram showing a flow of air when an initialization process is performed in the embodiment.
【図6】同上実施の形態の判定レベル設定時の空気の流
れを示す図。FIG. 6 is a diagram showing the flow of air when a determination level is set in the embodiment.
【図7】同上実施の形態のリーク診断試験実行時の空気
の流れを示す図。FIG. 7 is a diagram showing the flow of air when a leak diagnostic test according to the embodiment is performed.
【図8】第2の実施の形態のリーク診断ルーチンを示す
フローチャート。FIG. 8 is a flowchart illustrating a leak diagnosis routine according to the second embodiment.
1 内燃機関 6 コントロールユニット 19 燃料タンク 20 蒸発燃料導入通路 21 キャニスタ 22 パージ通路 23 パージ制御弁 24 基準オリフィス 25 第1通路 26 切換バルブ 27 第2通路 28 電動ポンプ 32 回転速度センサ DESCRIPTION OF SYMBOLS 1 Internal combustion engine 6 Control unit 19 Fuel tank 20 Evaporated fuel introduction passage 21 Canister 22 Purge passage 23 Purge control valve 24 Reference orifice 25 First passage 26 Switching valve 27 Second passage 28 Electric pump 32 Rotation speed sensor
Claims (6)
時的に吸着手段に吸着し、所定の機関運転条件で機関の
吸気系に吸入処理する蒸発燃料処理装置における蒸発燃
料のリークの有無を機関運転停止後に診断するリーク診
断手段を備える一方、 機関運転停止後、燃料タンクに給油中か否かを検出する
給油検出手段と、 前記給油終了後に前記蒸発燃料のリークの有無の診断を
開始させる診断遅延手段と、 を含んで構成したことを特徴とする蒸発燃料処理装置の
リーク診断装置。An evaporative fuel processing apparatus for temporarily adsorbing fuel vapor from a fuel tank of an internal combustion engine to an adsorbing means and performing suction processing on an intake system of the engine under predetermined engine operating conditions determines whether or not there is a leak of vapor fuel. A fuel supply means for detecting whether or not the fuel tank is being refueled after stopping the operation of the engine; and starting a diagnosis of whether or not the fuel vapor leaks after the refueling is completed. A leak diagnosis device for an evaporative fuel treatment device, comprising: diagnosis delay means;
より給油が終了したことが検出されたときに前記診断を
開始することを特徴とする請求項1に記載の蒸発燃料処
理装置のリーク診断装置。2. The leak diagnosis according to claim 1, wherein the diagnosis delay unit starts the diagnosis when the refueling detection unit detects that the refueling is completed. apparatus.
よって給油中であることを一度検出した後、所定時間経
過後に前記診断を開始することを特徴とする請求項1に
記載の蒸発燃料処理装置のリーク診断装置。3. The fuel vapor processing according to claim 1, wherein the diagnosis delay means starts the diagnosis after a predetermined time has elapsed after the fueling detection means once detects that the fuel is being supplied. Equipment leak diagnostic device.
関の吸気系に至る蒸発燃料供給系を密閉した状態で該蒸
発燃料供給系内を加圧し、該加圧に際してリークの有無
によって変化するパラメータを検出して、リークの有無
を診断することを特徴とする請求項1に記載の蒸発燃料
処理装置のリーク診断装置。4. The leak diagnostic means pressurizes the inside of the fuel vapor supply system in a state in which the fuel vapor supply system from the fuel tank to the intake system of the engine is sealed, and a parameter which varies depending on the presence or absence of a leak at the time of pressurization. 2. The leak diagnostic device for an evaporative fuel treatment apparatus according to claim 1, wherein the device diagnoses the presence or absence of a leak by detecting a leak.
蒸発燃料供給系内を加圧したときの駆動電流に基づいて
リークの有無を診断することを特徴とする請求項4に記
載の蒸発燃料処理装置のリーク診断装置。5. The evaporative fuel according to claim 4, wherein the leak diagnostic means diagnoses whether or not there is a leak based on a drive current when the inside of the evaporative fuel supply system is pressurized by an electric pump. Leak diagnosis device for processing equipment.
発燃料供給系内を加圧したときの駆動電流に基づいて給
油中か否かを検出することを特徴とする請求項5に記載
の蒸発燃料処理装置のリーク診断装置。6. The fuel supply system according to claim 5, wherein the fuel supply detection means detects whether or not fuel is being supplied based on a drive current when the inside of the fuel vapor supply system is pressurized by an electric pump. Leak diagnosis device for evaporative fuel processing equipment.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13351598A JP3412678B2 (en) | 1998-05-15 | 1998-05-15 | Leak diagnosis device for evaporative fuel treatment equipment |
US09/267,666 US6119663A (en) | 1998-03-31 | 1999-03-15 | Method and apparatus for diagnosing leakage of fuel vapor treatment unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13351598A JP3412678B2 (en) | 1998-05-15 | 1998-05-15 | Leak diagnosis device for evaporative fuel treatment equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11326110A true JPH11326110A (en) | 1999-11-26 |
JP3412678B2 JP3412678B2 (en) | 2003-06-03 |
Family
ID=15106597
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13351598A Expired - Fee Related JP3412678B2 (en) | 1998-03-31 | 1998-05-15 | Leak diagnosis device for evaporative fuel treatment equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3412678B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001059286A1 (en) * | 2000-02-11 | 2001-08-16 | Robert Bosch Gmbh | Method for verifying the tightness of a tank system in a motor vehicle |
JP2004506124A (en) * | 2000-08-03 | 2004-02-26 | ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング | In particular, a method and apparatus for inspecting the sealing performance of a fuel tank system of a vehicle while saving energy. |
US6854452B2 (en) | 2001-10-18 | 2005-02-15 | Denso Corporation | Fuel vapor handling system |
KR100501351B1 (en) * | 2001-08-31 | 2005-07-18 | 현대자동차주식회사 | A leak testing control system and the method for engine in vehicle |
CN113417767A (en) * | 2021-07-30 | 2021-09-21 | 安徽江淮汽车集团股份有限公司 | Positive pressure type desorption pipeline flow diagnosis method based on fuel tank leakage diagnosis module |
CN115126635A (en) * | 2021-03-26 | 2022-09-30 | 重庆金康赛力斯新能源汽车设计院有限公司 | Fuel leakage diagnosis method and device based on OBD |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4432615B2 (en) | 2004-05-24 | 2010-03-17 | スズキ株式会社 | Evaporative fuel control device for internal combustion engine |
-
1998
- 1998-05-15 JP JP13351598A patent/JP3412678B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001059286A1 (en) * | 2000-02-11 | 2001-08-16 | Robert Bosch Gmbh | Method for verifying the tightness of a tank system in a motor vehicle |
US6460518B1 (en) | 2000-02-11 | 2002-10-08 | Robert Bosch Gmbh | Method for verifying the tightness of a tank system in a motor vehicle |
JP2004506124A (en) * | 2000-08-03 | 2004-02-26 | ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング | In particular, a method and apparatus for inspecting the sealing performance of a fuel tank system of a vehicle while saving energy. |
JP4819295B2 (en) * | 2000-08-03 | 2011-11-24 | ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method and apparatus for fuel tank equipment to save energy and inspect hermeticity |
KR100501351B1 (en) * | 2001-08-31 | 2005-07-18 | 현대자동차주식회사 | A leak testing control system and the method for engine in vehicle |
US6854452B2 (en) | 2001-10-18 | 2005-02-15 | Denso Corporation | Fuel vapor handling system |
CN115126635A (en) * | 2021-03-26 | 2022-09-30 | 重庆金康赛力斯新能源汽车设计院有限公司 | Fuel leakage diagnosis method and device based on OBD |
CN113417767A (en) * | 2021-07-30 | 2021-09-21 | 安徽江淮汽车集团股份有限公司 | Positive pressure type desorption pipeline flow diagnosis method based on fuel tank leakage diagnosis module |
Also Published As
Publication number | Publication date |
---|---|
JP3412678B2 (en) | 2003-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3516599B2 (en) | Leak diagnosis device for evaporative fuel treatment equipment | |
US7441549B2 (en) | Fuel supply apparatus for and pressure control method of internal combustion engine | |
CN110945230B (en) | Leak detection device for evaporated fuel treatment device | |
JP3558555B2 (en) | Leak diagnosis device for evaporative fuel treatment equipment | |
JP2004156493A (en) | Evaporated fuel treatment device of internal combustion engine | |
JP2001115915A (en) | Leak diagnosis device for intang canister system | |
US6321728B1 (en) | Apparatus and method for diagnosing faults of fuel vapor treatment unit | |
US6119663A (en) | Method and apparatus for diagnosing leakage of fuel vapor treatment unit | |
JP3412678B2 (en) | Leak diagnosis device for evaporative fuel treatment equipment | |
JP3899857B2 (en) | Failure diagnosis device for evaporative fuel treatment equipment | |
JP3326113B2 (en) | Leak diagnosis device for evaporative fuel treatment equipment | |
JP3412683B2 (en) | Leak diagnosis device for evaporative fuel treatment equipment | |
JP2745966B2 (en) | Failure diagnosis device for evaporation purge system | |
JP3340380B2 (en) | Leak diagnosis device for evaporative fuel treatment equipment | |
JP3888287B2 (en) | Failure diagnosis apparatus for fuel vapor purge system and failure diagnosis method for fuel vapor purge system | |
JP3326111B2 (en) | Leak diagnosis device for evaporative fuel treatment equipment | |
JP2021134745A (en) | Leakage diagnostic device for vaporized fuel treatment device | |
JP3376276B2 (en) | Leak diagnosis device for evaporative fuel treatment equipment | |
JP2001152975A (en) | Leak diagnostic device for evaporated fuel disposal device | |
JP3823011B2 (en) | Evaporative fuel treatment device leak diagnosis device | |
KR20070037251A (en) | Method for detecting error of pressure sensor in fuel tank for car | |
JP2001123893A (en) | Trouble diagnostic device for vaporized fuel treatment device | |
JP3548026B2 (en) | Leak diagnosis device for evaporative fuel treatment equipment | |
JPH0791330A (en) | Failure diagnosing device for evaporation fuel processing device | |
JPH07139439A (en) | Leak diagnostc device in evaporative fuel processing device of engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |