JPH11326048A - Optical spectrum analyzer - Google Patents

Optical spectrum analyzer

Info

Publication number
JPH11326048A
JPH11326048A JP15527198A JP15527198A JPH11326048A JP H11326048 A JPH11326048 A JP H11326048A JP 15527198 A JP15527198 A JP 15527198A JP 15527198 A JP15527198 A JP 15527198A JP H11326048 A JPH11326048 A JP H11326048A
Authority
JP
Japan
Prior art keywords
light
diffraction grating
half mirror
diffraction
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15527198A
Other languages
Japanese (ja)
Other versions
JP3986031B2 (en
Inventor
Takao Tanimoto
隆生 谷本
Hiroaki Odachime
寛明 大立目
Muneo Ishiwata
宗男 石綿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP15527198A priority Critical patent/JP3986031B2/en
Publication of JPH11326048A publication Critical patent/JPH11326048A/en
Application granted granted Critical
Publication of JP3986031B2 publication Critical patent/JP3986031B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve wavelength selectivity characteristics. SOLUTION: A total reflection mirror 34 is arranged in the zero-step diffraction direction of a diffraction lattice 33 relative to incident light, and a resonator is formed by an optical path from the total reflection mirror 34 through the diffraction lattice 33 to a half mirror 35. The half mirror 35, a condenser 36 and a light receiver 37 on a rotary stage 38 are rotatively moved in a body around the axis, which is positioned on a prescribed point on a plane formed by extending a diffraction face of the diffraction lattice 33, and which is parallel to the graduation direction of the diffraction lattice 33, and the length of the resonator and the angle of the half mirror 35 against the diffraction lattice 33 are made cooperatingly variable, to make the wavelength of the light received in the light receiver 37 variable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被測定光に含まれ
る光のスペクトラムを測定するための光スペクトラムア
ナライザに関する。
The present invention relates to an optical spectrum analyzer for measuring the spectrum of light contained in light to be measured.

【0002】[0002]

【従来の技術】被測定光に含まれる波長成分を測定する
ために、光スペクトラムアナライザが用いられている。
2. Description of the Related Art An optical spectrum analyzer is used to measure a wavelength component contained in light to be measured.

【0003】光スペクトラムアナライザは、波長選択性
が高く且つその選択波長を可変できる光学的なフィルタ
を用いて、被測定光に含まれる波長成分を選択的に受光
している。
An optical spectrum analyzer selectively receives a wavelength component contained in light to be measured by using an optical filter having high wavelength selectivity and capable of changing the selected wavelength.

【0004】図9は、このような原理を用いた従来の光
スペクトラムアナライザの概略構成を示している。
FIG. 9 shows a schematic configuration of a conventional optical spectrum analyzer using such a principle.

【0005】この光スペクトラムアナライザでは、光入
射部11から入射された被測定光をコリメータ12で平
行光に変換し、第1のビームスプリッタ13および第2
のビームスプリッタ14を介して回折格子15の回折面
に入射する。
In this optical spectrum analyzer, the light to be measured incident from the light incident part 11 is converted into parallel light by the collimator 12, and the first light is split into the first beam splitter 13 and the second light.
And enters the diffraction surface of the diffraction grating 15 via the beam splitter 14.

【0006】回折格子15の回折光の一部は、第2のビ
ームスプリッタ14を透過して全反射ミラー16で反射
されて回折格子15に戻る。また、回折光の一部は、第
2のビームスプリッタ14で第1のビームスプリッタ1
3側へ反射され、第1のビームスプリッタ13を透過し
て集光器17に入射し、集光器17から受光器18に入
射される。
[0006] Part of the diffracted light from the diffraction grating 15 passes through the second beam splitter 14, is reflected by the total reflection mirror 16, and returns to the diffraction grating 15. A part of the diffracted light is converted by the second beam splitter 14 into the first beam splitter 1.
The light is reflected to the third side, passes through the first beam splitter 13, enters the light collector 17, and is incident on the light receiver 18 from the light collector 17.

【0007】この光スペクトラムアナライザでは、回折
格子15から全反射ミラー16までの光路長で決まる共
振器長と、回折格子15の光の入射角で決まる選択波長
とを連動させて、測定波長を連続的に可変している。
In this optical spectrum analyzer, the measurement wavelength is continuously set by linking a resonator length determined by an optical path length from the diffraction grating 15 to the total reflection mirror 16 and a selected wavelength determined by an incident angle of light on the diffraction grating 15. It is variable.

【0008】即ち、回折格子15は、回折格子15に対
する光の入射角を可変させるための回転ステージ19上
に固定されており、回転ステージ19は、回折格子15
を全反射ミラー16方向に接近または離反させるための
直進ステージ20上に回転自在に支持されている。この
直進ステージ20は、駆動装置21によって駆動され
る。そして、回転ステージ20には、所定長さのスライ
ドバー22の一端側が取り付けられており、その他端側
は、直進ステージ20の移動方向と直交する方向に延び
たスライドガイド23のガイド面23aに当接してい
る。
That is, the diffraction grating 15 is fixed on a rotating stage 19 for changing the incident angle of light on the diffraction grating 15, and the rotating stage 19 is
Is rotatably supported on a rectilinear stage 20 for approaching or moving away from the total reflection mirror 16. The rectilinear stage 20 is driven by a driving device 21. One end of a slide bar 22 having a predetermined length is attached to the rotary stage 20, and the other end of the slide bar 22 contacts a guide surface 23 a of a slide guide 23 extending in a direction orthogonal to the direction of movement of the rectilinear stage 20. In contact.

【0009】したがって、直進ステージ20が駆動装置
21によって移動して共振器長が変化すると、スライド
バー22の他端側とガイド23との当接位置が変化し、
回転ステージ19が回転して、回折格子15への光の入
射角も変化する。
Therefore, when the rectilinear stage 20 is moved by the driving device 21 to change the resonator length, the contact position between the other end of the slide bar 22 and the guide 23 changes,
As the rotation stage 19 rotates, the angle of incidence of light on the diffraction grating 15 also changes.

【0010】そして、共振器長によって決まる波長と、
回折格子15への光の入射角と回折角とで決まる波長と
が一致するように、各部の寸法、角度を予め設定してお
くことによって、この光スペクトラムアナライザの測定
波長を連続的に可変することができ、被測定光に含まれ
る光のうち、この測定波長の光のみを受光器18で受光
することができる。
And a wavelength determined by the length of the resonator;
The measurement wavelength of the optical spectrum analyzer is continuously varied by setting the dimensions and angles of the respective parts in advance so that the wavelength determined by the incident angle of the light on the diffraction grating 15 and the diffraction angle match. Thus, of the light included in the measured light, only the light having this measurement wavelength can be received by the light receiver 18.

【0011】したがって、被測定光を入射した状態で、
駆動装置21によって直進ステージ20を一定方向に移
動させることで、被測定光に含まれる光の波長毎の強度
を受光器18の出力によって測定することができる。
Therefore, with the light to be measured incident,
By moving the rectilinear stage 20 in a certain direction by the driving device 21, the intensity of each wavelength of the light included in the measured light can be measured by the output of the light receiver 18.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、前記し
た従来の光スペクトラムアナライザでは、回折格子15
と全反射ミラー16の間にビームスプリッタ14が必要
であり、また、ビームスプリッタ14によって光損失を
生じてしまうという問題があった。
However, in the above-mentioned conventional optical spectrum analyzer, the diffraction grating 15
There is a problem that the beam splitter 14 is required between the mirror and the total reflection mirror 16, and the beam splitter 14 causes light loss.

【0013】本発明は、この問題を解決した光スペクト
ラムアナライザを提供することを目的としている。
An object of the present invention is to provide an optical spectrum analyzer which solves this problem.

【0014】[0014]

【課題を解決するための手段】前記目的を達成するため
に、本発明の請求項1の光スペクトラムアナライザは被
測定光を入射させるための光入射部(31)と、前記光
入射部から入射された光を平行光に変換するコリメータ
(32)と、前記コリメータから出射される光を所定の
入射角をもって回折面で受ける回折格子(33)と、前
記コリメータから前記回折格子の回折面に入射される光
の0次回折方向に配置され、前記回折格子からの0次回
折光を該回折格子の回折面に反射する全反射ミラー(3
4)と、前記コリメータから前記回折格子の回折面に入
射される光の0次回折方向と異なる回折方向に配置さ
れ、前記回折格子からの回折光の一部を該回折格子の回
折面に反射し、残りの少なくとも一部を透過させるハー
フミラー(35)と、前記ハーフミラーを透過した光を
受光する受光器(37)と、前記ハーフミラーおよび前
記受光器を、互いの相対位置を変えずに、前記回折格子
の回折面を延長した平面上の所定の点、即ち前記全反射
ミラーの反射面を通り前記回折格子の入射光軸と回折光
軸を含む平面に平行な線と、前記回折格子の回折面を通
り前記回折格子の入射光軸と回折光軸を含む平面に平行
な線との交点を含む所定の点にあって前記回折格子の刻
線方向と平行な軸を中心に一体的に回動移動して、前記
全反射ミラーから前記回折格子を経由して前記ハーフミ
ラーに至る光路で形成される共振器の長さと、前記回折
格子に対する前記ハーフミラーの角度を連動可変し、前
記受光器に受光される光の波長を可変する測定波長可変
手段(38、39)とを備えている。
In order to achieve the above object, an optical spectrum analyzer according to a first aspect of the present invention comprises a light incident portion (31) for receiving a light to be measured, and an incident light from the light incident portion. A collimator (32) for converting the converted light into parallel light, a diffraction grating (33) for receiving light emitted from the collimator at a diffraction surface at a predetermined incident angle, and entering the diffraction surface of the diffraction grating from the collimator. Total reflection mirror (3) which is arranged in the 0th-order diffraction direction of the light to be reflected and reflects the 0th-order diffraction light from the diffraction grating to the diffraction surface of the diffraction grating.
And 4) disposing the diffracted light from the collimator in a diffraction direction different from the zero-order diffraction direction of the light incident on the diffraction surface of the diffraction grating, and reflecting a part of the diffracted light from the diffraction grating to the diffraction surface of the diffraction grating. The half mirror (35) transmitting at least the remaining part, the light receiver (37) receiving the light transmitted through the half mirror, and the half mirror and the light receiver are not changed in relative position to each other. At a predetermined point on a plane obtained by extending the diffraction surface of the diffraction grating, that is, a line passing through the reflection surface of the total reflection mirror and parallel to a plane including the incident optical axis and the diffraction optical axis of the diffraction grating; A predetermined point including an intersection of a line parallel to the plane including the diffraction optical axis and the incident optical axis of the diffraction grating passing through the diffraction surface of the diffraction grating, and integrated around an axis parallel to the cutting line direction of the diffraction grating; Pivotally move from the total reflection mirror forward. Measurement in which the length of a resonator formed in an optical path to the half mirror via a diffraction grating and the angle of the half mirror with respect to the diffraction grating are interlocked and changed, and the wavelength of light received by the light receiver is changed. Wavelength changing means (38, 39).

【0015】また、本発明の請求項2の光スペクトラム
アナライザは、被測定光を入射させるための光入射部
(31)と、前記光入射部から入射された光を平行光に
変換するコリメータ(32)と、前記コリメータから出
射される光の一部を透過し、残りの少なくとも一部を反
射する第1のハーフミラー(51)と、前記第1のハー
フミラーを透過した光を所定の入射角をもって回折面で
受ける回折格子(33)と、前記第1のハーフミラーか
ら前記回折格子の回折面に入射される光の入射方向と異
なる方向に配置され、前記回折格子からの回折光の一部
を該回折格子の回折面に反射し、残りの少なくとも一部
を透過させる第2のハーフミラー(35)と、前記第2
のハーフミラーを透過した光を受光する受光器(37)
と、前記第2のハーフミラーおよび前記受光器を、互い
の相対位置を変えずに、前記回折格子の回折面を延長し
た平面上の所定の点、即ち前記第1のハーフミラーの反
射面を通り前記回折格子の入射光軸と回折光軸を含む平
面に平行な線と、前記回折格子の回折面を通り前記回折
格子の入射光軸と回折光軸を含む平面に平行な線との交
点を含む所定の点にあって前記回折格子の刻線方向と平
行な軸を中心に一体的に回動移動して、前記第1のハー
フミラーから前記回折格子を経由して前記第2のハーフ
ミラーに至る光路によって形成される共振器の長さと、
前記回折格子に対する前記第2のハーフミラーの角度を
連動可変し、前記受光器に受光される光の波長を可変す
る測定波長可変手段(38、39)とを備えている。
According to a second aspect of the present invention, there is provided an optical spectrum analyzer, comprising: a light incident portion for receiving the light to be measured; and a collimator for converting the light incident from the light incident portion into parallel light. 32), a first half mirror (51) that transmits a part of the light emitted from the collimator and reflects at least a part of the remaining light, and transmits the light transmitted through the first half mirror at a predetermined incidence. A diffraction grating (33) received on a diffraction surface at an angle, and a diffraction grating arranged in a direction different from an incident direction of light incident on the diffraction surface of the diffraction grating from the first half mirror. A second half mirror (35) for reflecting a portion on a diffraction surface of the diffraction grating and transmitting at least a part of the remaining portion;
(37) for receiving light transmitted through half mirror
And the second half mirror and the photodetector are positioned at predetermined points on a plane obtained by extending the diffraction surface of the diffraction grating without changing their relative positions, that is, the reflection surface of the first half mirror. The intersection of a line parallel to a plane including the incident optical axis and the diffraction optical axis of the diffraction grating and a line passing through the diffraction surface of the diffraction grating and parallel to the plane including the incident optical axis and the diffraction optical axis of the diffraction grating At a predetermined point including the axis and parallel to an axis parallel to the cutting line direction of the diffraction grating, and the second half is rotated from the first half mirror via the diffraction grating. The length of the resonator formed by the optical path to the mirror,
Measurement wavelength varying means (38, 39) for interlockingly varying the angle of the second half mirror with respect to the diffraction grating and varying the wavelength of light received by the light receiver.

【0016】また、本発明の請求項3の光スペクトラム
アナライザは、被測定光を入射させるための光入射部
(31)と、前記光入射部から入射された光を平行光に
変換するコリメータ(32)と、前記コリメータから出
射される光の一部を透過し、残りの少なくとも一部を反
射する第1のハーフミラー(51)と、前記第1のハー
フミラーを透過した光を所定の入射角をもって回折面で
受ける回折格子(33)と、前記第1のハーフミラーか
ら前記回折格子の回折面に入射される光の入射方向と異
なる方向に配置され、前記回折格子からの回折光の一部
を該回折格子の回折面に反射し、残りの少なくとも一部
を透過させる第2のハーフミラー(35)と、前記第2
のハーフミラーを透過した光を受光する受光器(37)
と、前記光入射部、前記コリメータおよび前記第1のハ
ーフミラーを、互いの相対位置を変えずに、前記回折格
子の回折面を延長した平面上の所定の点、即ち前記第2
のハーフミラーの反射面を通り前記回折格子の入射光軸
と回折光軸を含む平面に平行な線と、前記回折格子の回
折面を通り前記回折格子の入射光軸と回折光軸を含む平
面に平行な線との交点を含む所定の点にあって前記回折
格子の刻線方向と平行な軸を中心に一体的に回動移動し
て、前記第1のハーフミラーから前記回折格子を経由し
て前記第2のハーフミラーに至る光路によって形成され
る共振器の長さと、前記回折格子に対する前記第1のハ
ーフミラーの角度を連動可変し、前記受光器に受光され
る光の波長を可変する測定波長可変手段(38、39)
とを備えている。
According to a third aspect of the present invention, there is provided an optical spectrum analyzer, comprising: a light incident portion for receiving the light to be measured; and a collimator for converting the light incident from the light incident portion into parallel light. 32), a first half mirror (51) that transmits a part of the light emitted from the collimator and reflects at least a part of the remaining light, and transmits the light transmitted through the first half mirror at a predetermined incidence. A diffraction grating (33) received on a diffraction surface at an angle, and a diffraction grating arranged in a direction different from an incident direction of light incident on the diffraction surface of the diffraction grating from the first half mirror. A second half mirror (35) for reflecting a portion on a diffraction surface of the diffraction grating and transmitting at least a part of the remaining portion;
(37) for receiving light transmitted through half mirror
A predetermined point on a plane obtained by extending the diffraction surface of the diffraction grating without changing the relative positions of the light incident portion, the collimator, and the first half mirror;
A line parallel to a plane including the incident optical axis and the diffraction optical axis of the diffraction grating passing through the reflection surface of the half mirror, and a plane passing the diffraction plane of the diffraction grating and including the incident optical axis and the diffraction optical axis of the diffraction grating At a predetermined point including an intersection with a line parallel to the diffraction grating, and integrally rotates about an axis parallel to the cutting line direction of the diffraction grating to pass through the diffraction grating from the first half mirror. Then, the length of the resonator formed by the optical path leading to the second half mirror and the angle of the first half mirror with respect to the diffraction grating are interlocked to change the wavelength of the light received by the light receiver. Measuring wavelength variable means (38, 39)
And

【0017】また、本発明の請求項4の光スペクトラム
アナライザは、請求項1〜3記載のの光スペクトラムア
ナライザにおいて、前記光入射部と前記コリメータとの
間に光アイソレータ(71)を配置している。
The optical spectrum analyzer according to a fourth aspect of the present invention is the optical spectrum analyzer according to the first to third aspects, wherein an optical isolator (71) is arranged between the light incident part and the collimator. I have.

【0018】また、本発明の請求項5の光スペクトラム
アナライザは、請求項1〜3記載の光スペクトラムアナ
ライザにおいて、前記共振器を形成する光路内にλ/4
板(72)を配置している。
According to a fifth aspect of the present invention, there is provided an optical spectrum analyzer according to the first to third aspects, wherein λ / 4 is provided in an optical path forming the resonator.
A plate (72) is arranged.

【0019】また、本発明の請求項6の光スペクトラム
アナライザは、請求項1〜3記載の光スペクトラムアナ
ライザにおいて、前記入射部に入射された光または前記
コリメータから出射される光の一部を分岐する光分岐手
段(81、91)と、前記光分岐手段で分岐した光を受
光する第2の受光器(83、92)とを備えている。
According to a sixth aspect of the present invention, there is provided an optical spectrum analyzer according to the first to third aspects, wherein a part of the light incident on the incident part or the part of the light emitted from the collimator is branched. And a second light receiver (83, 92) for receiving the light branched by the light branching means.

【0020】[0020]

【発明の実施の形態】以下、図面に基づいて本発明の実
施形態を説明する。図1は、本発明の実施形態の光スペ
クトラムアナライザ30の構成を示している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a configuration of an optical spectrum analyzer 30 according to the embodiment of the present invention.

【0021】図1において、光入射部31は、被測定光
を入射させるためのものであり、例えば光ファイバの接
続端子によって構成されている。
In FIG. 1, a light incident portion 31 is for receiving light to be measured, and is constituted by, for example, a connection terminal of an optical fiber.

【0022】光入射部31に入射された被測定光はコリ
メータ32によって平行光に変換されて、回折格子33
の回折面33aに所定の入射角度で入射される。
The light to be measured incident on the light incident part 31 is converted into parallel light by the collimator 32 and
At a predetermined angle of incidence.

【0023】このコリメータ32からの入射光に対する
回折格子33の0次回折方向(正反射方向)には、全反
射ミラー34が配置されている。
A total reflection mirror 34 is arranged in the zero-order diffraction direction (specular reflection direction) of the diffraction grating 33 with respect to the incident light from the collimator 32.

【0024】全反射ミラー34は、コリメータ32から
回折格子33の回折面に入射した光の0次回折光(正反
射光)を反射して、回折格子33の回折面に入射する。
The total reflection mirror 34 reflects the 0th-order diffracted light (specular reflection light) of the light incident on the diffraction surface of the diffraction grating 33 from the collimator 32 and enters the diffraction surface of the diffraction grating 33.

【0025】回折格子33の0次回折方向と異なる回折
方向には、ハーフミラー35が対向するように配置され
ている。ハーフミラー35は、回折格子33で回折され
た光の一部を回折格子33の回折面33aへ反射し、損
失を除いた残りを透過させる。
The half mirror 35 is disposed so as to face the diffraction direction different from the zero-order diffraction direction of the diffraction grating 33. The half mirror 35 reflects a part of the light diffracted by the diffraction grating 33 to the diffraction surface 33a of the diffraction grating 33, and transmits the remaining light except for the loss.

【0026】ハーフミラー35を透過した光は、集光器
36によって受光器37に集光され、受光器37によっ
て電気信号に変換される。
The light transmitted through the half mirror 35 is condensed on a light receiver 37 by a light collector 36 and is converted into an electric signal by the light receiver 37.

【0027】また、ハーフミラー35、集光器36およ
び受光器37は、回転ステージ38上に固定されてい
る。
The half mirror 35, the light collector 36 and the light receiver 37 are fixed on a rotary stage 38.

【0028】回転ステージ38は、駆動装置39ととも
にこの実施形態の測定波長可変手段を形成するものであ
り、回折格子33の回折面33aを通り且つ回折格子3
3の入射光軸、回折光軸を含む平面を通る直線Aと、全
反射ミラー34の反射面34aを通り且つ回折格子33
の入射光軸、回折光軸を含む平面を通る直線Bとの交点
Jにあって回折格子33の回折面の刻線に平行な軸、即
ち、回折格子33の回折面の延長平面の所定の点にあっ
て回折格子33の回折面の刻線に平行な軸を中心とし
て、回折格子33の入射光軸、回折光軸を含む平面に沿
って回転する。
The rotary stage 38, together with the driving device 39, forms the measurement wavelength varying means of this embodiment, and passes through the diffraction surface 33a of the diffraction grating 33 and
A straight line A passing through a plane including the incident optical axis and the diffractive optical axis of No. 3 and a diffraction grating 33
Axis which is at the intersection J with the straight line B passing through the plane including the incident optical axis and the diffractive optical axis and is parallel to the scribe line of the diffractive surface of the diffraction grating 33, that is, the predetermined The diffraction grating 33 rotates along a plane including the incident optical axis and the diffracted optical axis with respect to an axis which is at a point and is parallel to an inscribed line of the diffraction surface of the diffraction grating 33.

【0029】また、回転ステージ38上のハーフミラー
35の反射面35aは、この反射面35aを通り且つ回
折格子33の入射光軸、回折光軸を含む平面を通る直線
Cが、回転ステージ38の回転中心Jに交わる向きで、
回折格子33の回折面33aに対向している。
The reflecting surface 35a of the half mirror 35 on the rotating stage 38 has a straight line C passing through the reflecting surface 35a and passing through a plane including the incident optical axis and the diffractive optical axis of the diffraction grating 33. In the direction crossing the center of rotation J,
It faces the diffraction surface 33 a of the diffraction grating 33.

【0030】駆動装置39は、回転ステージ38を側方
から押し引きして回転駆動する。回転ステージ38はバ
ネ39aによって駆動装置39側に付勢されている。
The driving device 39 pushes and pulls the rotary stage 38 from the side to drive it to rotate. The rotary stage 38 is urged toward the drive device 39 by a spring 39a.

【0031】したがって、駆動装置39によって回転ス
テージ38が回転すると、ハーフミラー35、集光器3
6、受光器37が、相対位置を変えずに、回転ステージ
38の回転中心Jを中心に一体的に回動移動し、回折格
子33からハーフミラー35までの光路長と、回折格子
33の回折面33aに対するハーフミラー35の反射面
35aの角度が同時に変化する。
Therefore, when the rotary stage 38 is rotated by the driving device 39, the half mirror 35, the light collector 3
6. The light receiver 37 rotates integrally about the rotation center J of the rotary stage 38 without changing the relative position, and the optical path length from the diffraction grating 33 to the half mirror 35 and the diffraction of the diffraction grating 33 The angle of the reflection surface 35a of the half mirror 35 with respect to the surface 33a changes simultaneously.

【0032】即ち、図2の(a)に示すように、回転ス
テージ38が反時計回りに回転駆動されると、ハーフミ
ラー35が回折格子33から遠ざかるとともに、回折格
子33の回折面に対するハーフミラー35の法線の角
度、即ち回折光軸の角度が大きくなる。
That is, as shown in FIG. 2A, when the rotary stage 38 is driven to rotate counterclockwise, the half mirror 35 moves away from the diffraction grating 33 and the half mirror 35 with respect to the diffraction surface of the diffraction grating 33. The angle of the normal line 35, that is, the angle of the diffraction optical axis becomes large.

【0033】また、図2の(b)のように、回転ステー
ジ38が時計回りに回転駆動されると、ハーフミラー3
5が回折格子33に近づくとともに、回折格子33の回
折面に対するハーフミラー35の法線の角度、即ち回折
光軸の角度が小さくなる。
As shown in FIG. 2B, when the rotary stage 38 is driven to rotate clockwise, the half mirror 3 is rotated.
As 5 approaches the diffraction grating 33, the angle of the normal of the half mirror 35 to the diffraction surface of the diffraction grating 33, that is, the angle of the diffraction optical axis decreases.

【0034】なお、図1に示しているように、駆動装置
39は測定処理部40によって制御される。測定処理部
40は、駆動装置39を制御して、回転ステージ38を
任意の範囲で回転させながら受光器37の出力を例えば
ディジタル化してメモリに記憶し、回転ステージ38の
角度位置に対する受光出力を被測定光に含まれる光のス
ペクトラム波形として表示器41に表示する。
As shown in FIG. 1, the driving device 39 is controlled by the measurement processing unit 40. The measurement processing unit 40 controls the driving device 39 to digitize the output of the light receiver 37 while rotating the rotary stage 38 in an arbitrary range, stores the digitized output in a memory, and outputs the received light output with respect to the angular position of the rotary stage 38. The display 41 displays the spectrum waveform of the light included in the measured light.

【0035】次に、この光スペクトラムアナライザの測
定波長を連続的に可変させるための条件について説明す
る。
Next, conditions for continuously varying the measurement wavelength of the optical spectrum analyzer will be described.

【0036】図3の(a)に示しているように、回折格
子33から全反射ミラー34までの光路長Laは回転ス
テージ38の回転にかかわらず一定であり、この光路長
Laと、回折格子33からハーフミラー35までの光路
長Lbとの合計が共振器長Lとなる。
As shown in FIG. 3A, the optical path length La from the diffraction grating 33 to the total reflection mirror 34 is constant irrespective of the rotation of the rotary stage 38, and the optical path length La and the diffraction grating The sum of the optical path length Lb from 33 to the half mirror 35 is the resonator length L.

【0037】ここで、光路長Lbは、回折格子33の格
子面の光の入射位置から回転ステージ38の回転中心J
までの長さをL0 とし、回折格子33の格子面とハーフ
ミラー35の反射面とがなす角をαとすれば、 Lb=L0 ・sin α となり、共振器長Lは、 L=La+L0 ・sin α となる。
Here, the optical path length Lb is determined from the incident position of light on the grating surface of the diffraction grating 33 by the rotation center J of the rotating stage 38.
Until the length and L 0, if the grating surface and the reflecting surface of the half mirror 35 of the diffraction grating 33 is an angle between α, Lb = L 0 · sin α , and the resonator length L is, L = La + L 0 · sin α.

【0038】そして、波長λの光が共振器の共振モード
次数qで共振しているとすると、q・λ=2Lの関係を
満たすことが必要であるから、共振モード次数qは、 q=2L/λ =2(La+L0 ・sin α)/λ ……(1) となる。
If the light of wavelength λ resonates at the resonance mode order q of the resonator, it is necessary to satisfy the relationship of q · λ = 2L. Therefore, the resonance mode order q is q = 2L / Λ = 2 (La + L 0 · sin α) / λ (1)

【0039】一方、図3の(b)のように、全反射ミラ
ー34から回折格子33への入射角をi、ハーフミラー
35への回折角をβとすると、回折格子33で波長λの
光が回折される条件は、回折格子33の回折次数をm、
格子定数をdとすれば、 λ=d・(sin i+sin β)/m となり、回折格子33の回折角βは回折面33aとハー
フミラー35の反射面35aとがなす角αと等しいか
ら、 λ=d・(sin i+sin α)/m ……(2) となる。
On the other hand, as shown in FIG. 3B, when the incident angle from the total reflection mirror 34 to the diffraction grating 33 is i and the diffraction angle to the half mirror 35 is β, the light having a wavelength λ Are diffracted by setting the diffraction order of the diffraction grating 33 to m,
Assuming that the lattice constant is d, λ = d · (sin i + sin β) / m, and the diffraction angle β of the diffraction grating 33 is equal to the angle α between the diffraction surface 33a and the reflection surface 35a of the half mirror 35. = D · (sin i + sin α) / m (2)

【0040】式(2)から sin α=(m・λ/d)−sin i となり、これを式(1)に代入すると、 q=2{La+L0 〔(m・λ/d)−sin i〕}/λ ここでL0 =La/sin iであるから、これを上式に代
入して整理すると、 q=2・La・m/(d・sin i) ……(3) となる。
From equation (2), sin α = (m · λ / d) −sin i. By substituting this into equation (1), q = 2 {La + L 0 [(m · λ / d) −sin i } / Λ Here, L 0 = La / sin i. By substituting this into the above equation and rearranging, q = 2 · La · m / (d · sin i) (3)

【0041】式(3)の回折格子33の回折次数mと回
折格子33の回折定数dはともに一定の値であり、回折
格子33の入射角iも一定である。また、Laは任意に
設定できる固定値である。
In equation (3), the diffraction order m of the diffraction grating 33 and the diffraction constant d of the diffraction grating 33 are both constant, and the incident angle i of the diffraction grating 33 is also constant. La is a fixed value that can be set arbitrarily.

【0042】したがって、ミラーの回転に関わらず1つ
の共振モード次数qが得られ、この1つの共振モード次
数を維持した状態で測定波長を連続的に可変することが
できる。
Accordingly, one resonance mode order q is obtained irrespective of the rotation of the mirror, and the measurement wavelength can be continuously varied while maintaining this one resonance mode order.

【0043】以上のような関係を満足させることによっ
て、共振器長によって決まる波長と回折格子の入射角と
回折角とで決まる波長とが一致した状態で、回転ステー
ジ38の回転によって測定波長を連続的に可変すること
ができる。
By satisfying the above relationship, the measurement wavelength is continuously set by rotating the rotary stage 38 in a state where the wavelength determined by the resonator length and the wavelength determined by the incident angle and the diffraction angle of the diffraction grating coincide. Variable.

【0044】したがって、回転ステージ38の角度位置
に対する測定波長との関係を予め求めて測定処理部40
に設定しておき、被測定光を入射した状態で回転ステー
ジ38を駆動しながら測定波長毎の受光器37の出力を
記憶すれば、被測定光に含まれる光のスペクトラムのデ
ータを取得することができ、これを表示器41の画面に
表示すればそのスペクトラム波形を観測することができ
る。
Therefore, the relationship between the angular position of the rotary stage 38 and the measurement wavelength is determined in advance, and the measurement processing unit 40
If the output of the light receiver 37 for each measurement wavelength is stored while driving the rotation stage 38 while the light to be measured is incident, spectrum data of light included in the light to be measured can be obtained. If this is displayed on the screen of the display 41, the spectrum waveform can be observed.

【0045】以上のように、この光スペクトラムアナラ
イザ30では、全反射ミラー34から回折格子33を経
由してハーフミラー35に至る光路によって共振器を形
成しているため、回折格子による波長選択特性が良くな
り、波長が近いスペクトラムでも分離して測定すること
ができる。
As described above, in the optical spectrum analyzer 30, since the resonator is formed by the optical path from the total reflection mirror 34 to the half mirror 35 via the diffraction grating 33, the wavelength selection characteristics of the diffraction grating are reduced. As a result, it is possible to separate and measure even spectra having similar wavelengths.

【0046】また、この実施形態の光スペクトラムアナ
ライザ30では、被測定光を回折格子33に正反射させ
て全反射ミラ−34に入射し、その反射光を回折格子3
3への入射光としているので、損失が少なく、少ない部
品で構成できるという利点がある。
In the optical spectrum analyzer 30 of this embodiment, the light to be measured is specularly reflected by the diffraction grating 33 and is incident on the total reflection mirror 34, and the reflected light is reflected by the diffraction grating 3.
Since the light is incident on the light source 3, there is an advantage that the loss can be reduced and the components can be configured with a small number of components.

【0047】[0047]

【他の実施形態】前記実施形態では、被測定光を回折格
子33の回折面で反射させて、その0次回折方向に配置
された全反射ミラー34へ入射していたが、図4に示す
スペクトラムアナライザ50のように、光入射部31か
ら入射した光をコリメータ32で平行光に変換してハー
フミラー51に入射し、ハーフミラー51を透過した光
を回折格子33に入射してもよい。
[Other Embodiments] In the above embodiment, the light to be measured is reflected by the diffraction surface of the diffraction grating 33 and is incident on the total reflection mirror 34 arranged in the zero-order diffraction direction. Like the spectrum analyzer 50, the light incident from the light incident part 31 may be converted into parallel light by the collimator 32 and incident on the half mirror 51, and the light transmitted through the half mirror 51 may be incident on the diffraction grating 33.

【0048】また、このようにハーフミラー51を介し
て被測定光を入射する場合には、図5に示すスペクトラ
ムアナライザ60のように、光入射部31、コリメータ
32およびハーフミラー51を回転ステージ38上に配
置して、入出力の経路を逆にしてもよい。
When the light to be measured is incident through the half mirror 51 as described above, the light incident part 31, the collimator 32 and the half mirror 51 are connected to the rotating stage 38 as in a spectrum analyzer 60 shown in FIG. The input and output paths may be reversed.

【0049】また、図6に示す光スペクトラムアナライ
ザ70のように、光入射部31とコリメータ32との間
に光アイソレータ71を挿入してもよい。この光アイソ
レータ71の挿入によって、回折格子33側からの戻り
光が光入射部31を介して被測定光の光源側へ出射され
るのを防止することができる。
Further, as in an optical spectrum analyzer 70 shown in FIG. 6, an optical isolator 71 may be inserted between the light incident part 31 and the collimator 32. By inserting the optical isolator 71, it is possible to prevent return light from the diffraction grating 33 side from being emitted to the light source side of the measured light via the light incident part 31.

【0050】また、図6の光スペクトラムアナライザ7
0のように、全反射ミラー34と回折格子33の間(あ
るいはハーフミラー35と回折格子33との間)に、任
意波長のλ/4板72を挿入してもよい。このλ/4板
72の挿入によって、回折格子33の偏波依存性による
測定への影響を低減できる。
The optical spectrum analyzer 7 shown in FIG.
As in the case of 0, a λ / 4 plate 72 of an arbitrary wavelength may be inserted between the total reflection mirror 34 and the diffraction grating 33 (or between the half mirror 35 and the diffraction grating 33). By inserting the λ / 4 plate 72, the influence of the polarization dependence of the diffraction grating 33 on the measurement can be reduced.

【0051】また、図7に示す光スペクトラムアナライ
ザ80のように、コリメータ32から出射された光を光
分岐手段81によって2方向に分岐し、その一方を回折
格子33へ入射し、他方を集光器82によって受光器8
3に集光させ、被測定光のパワーを受光器83の出力に
よって測定できるようにしてもよい。
Also, as in an optical spectrum analyzer 80 shown in FIG. 7, the light emitted from the collimator 32 is branched in two directions by a light branching means 81, one of which is incident on the diffraction grating 33 and the other is condensed. Detector 82 by the detector 82
3, and the power of the measured light may be measured by the output of the light receiver 83.

【0052】また、図9に示す光スペクトラムアナライ
ザ90のように、光入射部31に入射された光を光カプ
ラ等の光分岐手段91によって2方向に分岐し、その一
方をコリメータ32へ入射し、他方を受光器92に入射
して、被測定光のパワーを受光器92の出力によって測
定できるようにしてもよい。
Also, as in an optical spectrum analyzer 90 shown in FIG. 9, the light incident on the light incident section 31 is branched in two directions by an optical branching means 91 such as an optical coupler, and one of the light is incident on a collimator 32. Alternatively, the other may be made incident on the light receiver 92 so that the power of the measured light can be measured by the output of the light receiver 92.

【0053】なお、図6に示した光アイソレータ71、
λ/4板72は、前記した図4、図5、図7、図8の光
スペクトラムアナライザにも設けることができ、また、
図7、図8に示したパワー測定機能も、図4〜図6の光
スペクトラムアナライザにも設けることができる。
The optical isolator 71 shown in FIG.
The λ / 4 plate 72 can also be provided in the optical spectrum analyzers of FIGS. 4, 5, 7, and 8 described above.
The power measurement functions shown in FIGS. 7 and 8 can also be provided in the optical spectrum analyzers of FIGS.

【0054】[0054]

【発明の効果】以上説明したように、本発明の請求項1
の光スペクトラムアナライザでは、被測定光を入射させ
るための全反射ミラーから回折格子を経由してハーフミ
ラーに至る光路によって共振器を形成しているため、損
失が少なく、回折格子による波長選択特性が良くなり、
波長が近いスペクトラムでも分離して測定することがで
きる。
As described above, according to the first aspect of the present invention,
In the optical spectrum analyzer, the resonator is formed by the optical path from the total reflection mirror for inputting the measured light to the half mirror via the diffraction grating, so that the loss is small and the wavelength selection characteristics by the diffraction grating are low. Get better,
Even a spectrum having a short wavelength can be measured separately.

【0055】また、請求項2、請求項3の光スペクトラ
ムアナライザでは、被測定光を入射させるための第1の
ハーフミラーから回折格子を経由して第2のハーフミラ
ーに至る光路によって共振器を形成しているため、損失
が少なく、回折格子による波長選択特性が良くなり、波
長が近いスペクトラムでも分離して測定することができ
る。
In the optical spectrum analyzer according to the second and third aspects, the resonator is formed by an optical path from the first half mirror through which the light to be measured is incident to the second half mirror via the diffraction grating. Since it is formed, the loss is small, the wavelength selection characteristic of the diffraction grating is improved, and even a spectrum with a close wavelength can be measured separately.

【0056】また、光入射部とコリメータとの間に光ア
イソレータを配置することで、被測定光の光源側への光
の戻りを防止することができる。
By arranging an optical isolator between the light incident portion and the collimator, it is possible to prevent the light to be measured from returning to the light source side.

【0057】また、共振器を形成する光路内に任意の波
長のλ/4板を配置することで、回折格子の偏波依存性
による測定への影響を低減することができる。
Further, by disposing a λ / 4 plate having an arbitrary wavelength in the optical path forming the resonator, the influence on the measurement due to the polarization dependence of the diffraction grating can be reduced.

【0058】また、光入射部に入射された光あるいはコ
リメータから出射された光を光分岐手段によって分岐
し、その分岐光を第2の受光器によって受光する光スペ
クトラムアナライザでは、被測定光のパワーの測定がス
ペクトラムとともに測定できる。
In an optical spectrum analyzer in which light incident on a light incident portion or light emitted from a collimator is split by an optical splitter and the split light is received by a second light receiver, the power of the light to be measured is Can be measured together with the spectrum.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の構成を示す図FIG. 1 is a diagram showing a configuration of an embodiment of the present invention.

【図2】実施形態の動作を説明するための図FIG. 2 is a diagram for explaining the operation of the embodiment;

【図3】測定波長を連続可変させるための条件を検討す
るための図
FIG. 3 is a diagram for examining conditions for continuously varying a measurement wavelength.

【図4】本発明の他の実施形態の構成を示す図FIG. 4 is a diagram showing a configuration of another embodiment of the present invention.

【図5】本発明の他の実施形態の構成を示す図FIG. 5 is a diagram showing a configuration of another embodiment of the present invention.

【図6】本発明の他の実施形態の構成を示す図FIG. 6 is a diagram showing a configuration of another embodiment of the present invention.

【図7】本発明の他の実施形態の構成を示す図FIG. 7 is a diagram showing a configuration of another embodiment of the present invention.

【図8】本発明の他の実施形態の構成を示す図FIG. 8 is a diagram showing a configuration of another embodiment of the present invention.

【図9】従来装置の構成を示す図FIG. 9 is a diagram showing a configuration of a conventional apparatus.

【符号の説明】[Explanation of symbols]

30、50、60、70、80、90 光スペクトラム
アナライザ 31 光入射部 32 コリメータ 33 回折格子 34 全反射ミラー 35 ハーフミラー 36 集光器 37 受光器 38 回転ステージ 39 駆動装置 40 測定処理部 41 表示器 51 ハーフミラー 71 光アイソレータ 72 λ/4板 81、91 光分岐手段 82 集光器 83、92 受光器
30, 50, 60, 70, 80, 90 Optical spectrum analyzer 31 Light incidence unit 32 Collimator 33 Diffraction grating 34 Total reflection mirror 35 Half mirror 36 Condenser 37 Receiver 38 Rotation stage 39 Drive unit 40 Measurement processing unit 41 Display Reference Signs List 51 half mirror 71 optical isolator 72 λ / 4 plate 81, 91 light branching means 82 light collector 83, 92 light receiver

【手続補正書】[Procedure amendment]

【提出日】平成10年6月16日[Submission date] June 16, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】全図[Correction target item name] All figures

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【図2】 FIG. 2

【図4】 FIG. 4

【図5】 FIG. 5

【図3】 FIG. 3

【図6】 FIG. 6

【図7】 FIG. 7

【図8】 FIG. 8

【図9】 FIG. 9

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】被測定光を入射させるための光入射部(3
1)と、 前記光入射部から入射された光を平行光に変換するコリ
メータ(32)と、 前記コリメータから出射される光を所定の入射角をもっ
て回折面で受ける回折格子(33)と、 前記コリメータから前記回折格子の回折面に入射される
光の0次回折方向に配置され、前記回折格子からの0次
回折光を該回折格子の回折面に反射する全反射ミラー
(34)と、 前記コリメータから前記回折格子の回折面に入射される
光の0次回折方向と異なる回折方向に配置され、前記回
折格子からの回折光の一部を該回折格子の回折面に反射
し、残りの少なくとも一部を透過させるハーフミラー
(35)と、 前記ハーフミラーを透過した光を受光する受光器(3
7)と、 前記ハーフミラーおよび前記受光器を、互いの相対位置
を変えずに、前記回折格子の回折面を延長した平面上の
所定の点にあって前記回折格子の刻線方向と平行な軸を
中心に一体的に回動移動して、前記全反射ミラーから前
記回折格子を経由して前記ハーフミラーに至る光路によ
って形成される共振器の長さと、前記回折格子に対する
前記ハーフミラーの角度を連動可変し、前記受光器に受
光される光の波長を可変する測定波長可変手段(38、
39)とを備えた光スペクトラムアナライザ。
A light incident portion for receiving light to be measured;
1); a collimator (32) for converting light incident from the light incident portion into parallel light; a diffraction grating (33) for receiving light emitted from the collimator on a diffraction surface at a predetermined incident angle; A total reflection mirror (34) arranged in a zero-order diffraction direction of light incident on the diffraction surface of the diffraction grating from the collimator, and reflecting the zero-order diffraction light from the diffraction grating to the diffraction surface of the diffraction grating; Are arranged in a diffraction direction different from the 0th-order diffraction direction of light incident on the diffraction surface of the diffraction grating, and a part of the diffraction light from the diffraction grating is reflected on the diffraction surface of the diffraction grating, and at least one of the remaining light is reflected. A half mirror (35) for transmitting light through the section, and a light receiver (3) for receiving light transmitted through the half mirror.
7) and, without changing the relative positions of the half mirror and the photodetector, at a predetermined point on a plane obtained by extending the diffraction surface of the diffraction grating, the half mirror and the photodetector are parallel to the cutting line direction of the diffraction grating. The length of a resonator formed by an optical path from the total reflection mirror to the half mirror via the diffraction grating by rotating integrally about an axis, and the angle of the half mirror with respect to the diffraction grating Measurement wavelength variable means (38, 38) that varies the wavelength of light received by the light receiver
39) An optical spectrum analyzer comprising:
【請求項2】被測定光を入射させるための光入射部(3
1)と、 前記光入射部から入射された光を平行光に変換するコリ
メータ(32)と、 前記コリメータから出射される光の一部を透過し、残り
の少なくとも一部を反射する第1のハーフミラー(5
1)と、 前記第1のハーフミラーを透過した光を所定の入射角を
もって回折面で受ける回折格子(33)と、 前記第1のハーフミラーから前記回折格子の回折面に入
射される光の入射方向と異なる方向に配置され、前記回
折格子からの回折光の一部を該回折格子の回折面に反射
し、残りの少なくとも一部を透過させる第2のハーフミ
ラー(35)と、 前記第2のハーフミラーを透過した光を受光する受光器
(37)と、 前記第2のハーフミラーおよび前記受光器を、互いの相
対位置を変えずに、前記回折格子の回折面を延長した平
面上の所定の点にあって前記回折格子の刻線方向と平行
な軸を中心に一体的に回動移動して、前記第1のハーフ
ミラーから前記回折格子を経由して前記第2のハーフミ
ラーに至る光路によって形成される共振器の長さと、前
記回折格子に対する前記第2のハーフミラーの角度を連
動可変し、前記受光器に受光される光の波長を可変する
測定波長可変手段(38、39)とを備えた光スペクト
ラムアナライザ。
2. A light incident part (3) for receiving a light to be measured.
1), a collimator (32) for converting the light incident from the light incident portion into parallel light, and a first which transmits a part of the light emitted from the collimator and reflects at least a part of the remaining light. Half mirror (5
1), a diffraction grating (33) receiving light transmitted through the first half mirror at a diffraction surface at a predetermined incident angle, and light incident on the diffraction surface of the diffraction grating from the first half mirror. A second half mirror (35) that is arranged in a direction different from the incident direction, reflects a part of the diffracted light from the diffraction grating to a diffraction surface of the diffraction grating, and transmits at least a part of the remaining light; A light receiver (37) for receiving light transmitted through the second half mirror; and a second half mirror and the light receiver arranged on a plane extending the diffraction surface of the diffraction grating without changing their relative positions. At a predetermined point, and integrally rotating about an axis parallel to the cutting line direction of the diffraction grating, from the first half mirror via the diffraction grating to the second half mirror Formed by the optical path leading to An optical spectrum analyzer comprising measurement wavelength varying means (38, 39) for interlockingly varying the length of the second half mirror with respect to the diffraction grating and varying the wavelength of light received by the light receiver. .
【請求項3】被測定光を入射させるための光入射部(3
1)と、 前記光入射部から入射された光を平行光に変換するコリ
メータ(32)と、 前記コリメータから出射される光の一部を透過し、残り
の少なくとも一部を反射する第1のハーフミラー(5
1)と、 前記第1のハーフミラーを透過した光を所定の入射角を
もって回折面で受ける回折格子(33)と、 前記第1のハーフミラーから前記回折格子の回折面に入
射される光の入射方向と異なる方向に配置され、前記回
折格子からの回折光の一部を該回折格子の回折面に反射
し、残りの少なくとも一部を透過させる第2のハーフミ
ラー(35)と、 前記第2のハーフミラーを透過した光を受光する受光器
(37)と、 前記光入射部、前記コリメータおよび前記第1のハーフ
ミラーを、互いの相対位置を変えずに、前記回折格子の
回折面を延長した平面上の所定の点にあって前記回折格
子の刻線方向と平行な軸を中心に一体的に回動移動し
て、前記第1のハーフミラーから前記回折格子を経由し
て前記第2のハーフミラーに至る光路によって形成され
る共振器の長さと、前記回折格子に対する前記第1のハ
ーフミラーの角度を連動可変し、前記受光器に受光され
る光の波長を可変する測定波長可変手段(38、39)
とを備えた光スペクトラムアナライザ。
3. A light incident portion (3) for receiving light to be measured.
1), a collimator (32) for converting the light incident from the light incident portion into parallel light, and a first which transmits a part of the light emitted from the collimator and reflects at least a part of the remaining light. Half mirror (5
1), a diffraction grating (33) that receives the light transmitted through the first half mirror at a diffraction surface at a predetermined incident angle, and a light incident on the diffraction surface of the diffraction grating from the first half mirror. A second half mirror (35) that is arranged in a direction different from the incident direction, reflects a part of the diffracted light from the diffraction grating on a diffraction surface of the diffraction grating, and transmits at least a part of the remaining light; A light receiver (37) for receiving the light transmitted through the second half mirror; and a light incident portion, the collimator, and the first half mirror, the diffraction surface of the diffraction grating being changed without changing their relative positions. At a predetermined point on an extended plane, the diffraction grating is integrally rotated around an axis parallel to the cutting line direction of the diffraction grating, and is moved from the first half mirror via the diffraction grating to the second half mirror. Depending on the optical path to the second half mirror Measurement wavelength varying means (38, 39) for interlockingly varying the length of the resonator formed and the angle of the first half mirror with respect to the diffraction grating to vary the wavelength of light received by the light receiver.
An optical spectrum analyzer comprising:
【請求項4】前記光入射部と前記コリメータとの間に光
アイソレータ(71)を配置したことを特徴とする請求
項1または請求項2記載または請求項3の光スペクトラ
ムアナライザ。
4. An optical spectrum analyzer according to claim 1, wherein an optical isolator (71) is arranged between said light incident part and said collimator.
【請求項5】前記共振器を形成する光路内にλ/4板
(72)を配置したことを特徴とする請求項1または請
求項2記載または請求項3記載の光スペクトラムアナラ
イザ。
5. The optical spectrum analyzer according to claim 1, wherein a λ / 4 plate (72) is arranged in an optical path forming the resonator.
【請求項6】前記入射部に入射された光または前記コリ
メータから出射される光の一部を分岐する光分岐手段
(81、91)と、 前記光分岐手段で分岐した光を受光する第2の受光器
(83、92)とを備えたことを特徴とする請求項1ま
たは請求項2または請求項3記載の光スペクトラムアナ
ライザ。
6. A light splitting means (81, 91) for splitting a part of light incident on the incident part or light emitted from the collimator, and a second light receiving means for receiving the light split by the light splitting means. The optical spectrum analyzer according to claim 1, further comprising: a light receiver (83, 92).
JP15527198A 1998-05-20 1998-05-20 Optical spectrum analyzer Expired - Lifetime JP3986031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15527198A JP3986031B2 (en) 1998-05-20 1998-05-20 Optical spectrum analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15527198A JP3986031B2 (en) 1998-05-20 1998-05-20 Optical spectrum analyzer

Publications (2)

Publication Number Publication Date
JPH11326048A true JPH11326048A (en) 1999-11-26
JP3986031B2 JP3986031B2 (en) 2007-10-03

Family

ID=15602263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15527198A Expired - Lifetime JP3986031B2 (en) 1998-05-20 1998-05-20 Optical spectrum analyzer

Country Status (1)

Country Link
JP (1) JP3986031B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7136854B2 (en) * 2020-08-17 2022-09-13 アンリツ株式会社 Pulse-modulated light measurement method, pulse-modulated light measurement program, and optical spectrum analyzer
JP7332650B2 (en) * 2021-03-29 2023-08-23 アンリツ株式会社 Optical spectrum analyzer and pulse modulated light measurement method
US11686617B2 (en) 2021-03-29 2023-06-27 Anritsu Corporation Optical spectrum analyzer and pulse-modulated light measurement method
JP7339292B2 (en) * 2021-03-29 2023-09-05 アンリツ株式会社 Optical spectrum analyzer and pulse modulated light measurement method

Also Published As

Publication number Publication date
JP3986031B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
JP4722474B2 (en) Displacement detector
US5255075A (en) Optical sensor
US6856384B1 (en) Optical metrology system with combined interferometer and ellipsometer
US6738140B2 (en) Wavelength detector and method of detecting wavelength of an optical signal
JP2000283847A (en) Double pulse etalon spectrometer
JP2005539260A (en) Apparatus for changing the path length of a radiation beam
US4989932A (en) Multiplexer for use with a device for optically analyzing a sample
CA2070330C (en) High resolution spectroscopy system
US6094271A (en) Wavelength measuring system
JPH11326048A (en) Optical spectrum analyzer
JP2001183233A (en) Spectrometer and spectral method
US7224462B2 (en) Beam shifting surface plasmon resonance system and method
JP5558927B2 (en) Spectrometer
JP2001183178A (en) Diffraction grating revolving laser optical encoder
JPH11326047A (en) Optical spectrum analyzer
US6870617B2 (en) Accurate small-spot spectrometry systems and methods
CA1210608A (en) Interferometer spectrophotometer
JP2002323374A (en) Optical spectrum analyzer
JP3068408B2 (en) Lattice interference displacement detector
JP2914122B2 (en) Multi-spectrometer and measuring method using the spectrometer
JP3182744B2 (en) Spectrometer
CN115685575A (en) First optical system, optical splitter and optical device
JPS62178208A (en) Optical chopper device
CN116804588A (en) Grating diffraction efficiency measuring device
GB2268800A (en) Optical sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050214

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20061121

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070206

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3