JPH11325904A - Earth magnetism azimuth sensor - Google Patents

Earth magnetism azimuth sensor

Info

Publication number
JPH11325904A
JPH11325904A JP13860098A JP13860098A JPH11325904A JP H11325904 A JPH11325904 A JP H11325904A JP 13860098 A JP13860098 A JP 13860098A JP 13860098 A JP13860098 A JP 13860098A JP H11325904 A JPH11325904 A JP H11325904A
Authority
JP
Japan
Prior art keywords
sensor
azimuth
magnetic
geomagnetic
latitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13860098A
Other languages
Japanese (ja)
Inventor
Tadashi Higo
正 肥後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP13860098A priority Critical patent/JPH11325904A/en
Publication of JPH11325904A publication Critical patent/JPH11325904A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an earth magnetism azimuth sensor wherein magnetic azimuth is automatically corrected to obtain a true azimuth even when latitude and longitude of a point which is to be measured is unknown. SOLUTION: An earth magnetism sensor 1, a tilt sensor 2, a corrective calculation part 32 wherein a tilt of magnetic output is corrected to be horizontal with altitude angle with inputted magnetic output detected by the earth magnetism sensor 1 and altitude angle detected by the tilt sensor 2, an azimuth calculation part 33 wherein a calculation result of the corrective calculation part 32 is inputted to calculate magnetic azimuth ψ, an antenna 4 which receives GPS signal transmitted from a GPS satellite, and a GPS receiver 5 wherein the GPS signal is inputted for outputting latitude/longitude information, are provided. Here, a deviation-angle calculation part 34 wherein the latitude/longitude information is inputted to calculate an angle of deviation δψ, and an adder part 35 wherein the magnetic azimuth ψ and the angle of deviation δψ are added together for outputting corrected through azimuth ψ' are comprised.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、地磁気方位セン
サに関し、特に、測定しようとしている地点の経度およ
び緯度が未知であっても磁方位を自動的に補正して真方
位を求める地磁気方位センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a geomagnetic azimuth sensor, and more particularly, to a geomagnetic azimuth sensor for automatically correcting a magnetic azimuth to obtain a true azimuth even if the longitude and latitude of a point to be measured are unknown. .

【0002】[0002]

【従来の技術】地磁気方位センサの従来例を図3を参照
して具体的に説明する。図3において、1は地磁気セン
サを示す。この地磁気センサ1はroll或いはX軸方
向の地磁気センサX、pitci或いはY軸方向の地磁
気センサYおよびyaw或いはZ軸方向の地磁気センサ
Zの3者より成る。xtmは地磁気センサXの検出したX
軸方向磁気出力、ytmは地磁気センサYの検出したY軸
方向磁気出力、ztmは地磁気センサZの検出したZ軸方
向磁気出力を示す。
2. Description of the Related Art A conventional example of a geomagnetic direction sensor will be specifically described with reference to FIG. In FIG. 3, reference numeral 1 denotes a geomagnetic sensor. The geomagnetic sensor 1 is composed of three components: a geomagnetic sensor X in a roll or X-axis direction, a pitci or a geomagnetic sensor Y in a Y-axis direction, and a yaw or a geomagnetic sensor Z in a Z-axis direction. xtm is X detected by the geomagnetic sensor X
The axial magnetic output, ytm indicates the Y-axis magnetic output detected by the geomagnetic sensor Y, and ztm indicates the Z-axis magnetic output detected by the geomagnetic sensor Z.

【0003】2は傾斜センサを示す。この傾斜センサ2
は傾斜センサrollおよび傾斜センサpitciの2
者より成る。φは傾斜センサrollの検出したrol
l軸方向姿勢角、θは傾斜センサpitciの検出した
pitci軸方向姿勢角を示す。3は演算処理装置を示
す。この演算処理装置3は、装置内部における演算計算
処理を実施する計算機31、回転行列を計算する補正計
算部32、補正計算部32の計算結果を入力して磁方位
を計算する方位計算部33より成る。補正計算部32に
は、地磁気センサ1により検出されたX軸方向磁気出力
tm、Y軸方向磁気出力ytmおよびZ軸方向磁気出力z
tmが入力されると共に、傾斜センサ2により検出された
roll軸方向姿勢角φおよびpitci軸方向姿勢角
θが入力される。
[0003] Reference numeral 2 denotes an inclination sensor. This tilt sensor 2
Is the inclination sensor roll and the inclination sensor pitci.
People. φ is the roll detected by the tilt sensor roll
The 1-axis direction posture angle, θ indicates the pitci-axis direction posture angle detected by the tilt sensor pitci. Reference numeral 3 denotes an arithmetic processing unit. The arithmetic processing device 3 includes a computer 31 for performing arithmetic calculation processing in the device, a correction calculation unit 32 for calculating a rotation matrix, and an azimuth calculation unit 33 for inputting the calculation result of the correction calculation unit 32 and calculating a magnetic azimuth. Become. The correction calculator 32 includes an X-axis direction magnetic output x tm , a Y-axis direction magnetic output y tm and a Z-axis direction magnetic output z detected by the geomagnetic sensor 1.
In addition to the input of tm, the roll axis direction attitude angle φ and the pitci axis direction attitude angle θ detected by the tilt sensor 2 are input.

【0004】以上の地磁気方位センサは、補正計算部3
2に対して、地磁気センサ1により検出されたX軸方向
磁気出力xtm、Y軸方向磁気出力ytmおよびZ軸方向磁
気出力ztmが入力されると共に傾斜センサ2により検出
されたroll軸方向姿勢角φおよびpitci軸方向
姿勢角θが入力され、ここにおいて回転行列の計算が実
施される。これにより、直交3軸の地磁気センサ1の磁
気出力の傾斜は傾斜センサ2の検出した姿勢角により補
正され、水平で直交した磁気出力のデータに変換され
る。
The above-described geomagnetic direction sensor has a correction calculation unit 3
2, the X-axis direction magnetic output x tm , the Y-axis direction magnetic output y tm and the Z-axis direction magnetic output z tm detected by the geomagnetic sensor 1 are input, and the roll axis direction detected by the tilt sensor 2. The attitude angle φ and the attitude angle θ in the pitci-axis direction are input, and the rotation matrix is calculated here. As a result, the inclination of the magnetic output of the geomagnetic sensor 1 of the three orthogonal axes is corrected by the attitude angle detected by the inclination sensor 2, and is converted into data of the magnetic output that is horizontal and orthogonal.

【0005】[0005]

【数1】 そして、補正計算部32において補正されたデータは方
位計算部33に入力され、ここにおいて磁方位の計算が
実施される。
(Equation 1) The data corrected by the correction calculator 32 is input to the azimuth calculator 33, where the magnetic azimuth is calculated.

【0006】[0006]

【数2】 以上の通り、その一方のデータにより他方のデータを除
算し、除算結果のarctanを磁方位ψとするもので
ある。
(Equation 2) As described above, one data is divided by the other data, and the arctan of the division result is set to the magnetic direction ψ.

【0007】[0007]

【発明が解決しようとする課題】ところで、磁北即ち磁
方位と真北即ち真方位とは一般に等しくはなく、両者の
間には偏差、即ち偏角が存在している。そして、この偏
角は地球上の各観測地点において異なる値を示す。即
ち、地球上の各観測地点において磁方位は同一の測定値
を示していても、偏角は地球上の各観測地点において相
違しているので、相異なる地点において同様の基準で方
向を知りたい場合、磁方位ではなくして真方位を示す必
要がある。
Incidentally, magnetic north, ie, magnetic azimuth, and true north, ie, true azimuth, are generally not equal, and there is a deviation, ie, declination between them. And this declination shows a different value at each observation point on the earth. In other words, even if the magnetic azimuth shows the same measured value at each observation point on the earth, the argument is different at each observation point on the earth, so we want to know the direction at different points on the same basis In this case, it is necessary to indicate the true direction instead of the magnetic direction.

【0008】この真方位を得るには、先ず、当該測定地
点の緯度および経度を測定し、この測定値に基づいて偏
角を計算し、この偏角により磁方位を補正して真方位を
求める必要があり、この真方位を求める操作は簡単容易
という訳ではない。この発明は、測定しようとしている
地点の経度および緯度が未知であっても磁方位を自動的
に補正して真方位を求める上述の問題を解消した地磁気
方位センサを提供するものである。
To obtain the true azimuth, first, the latitude and longitude of the measurement point are measured, the declination is calculated based on the measured values, and the magnetic azimuth is corrected based on the declination to obtain the true azimuth. It is necessary to do so, and the operation for finding the true direction is not always easy. The present invention provides a geomagnetic azimuth sensor that solves the above-described problem of automatically correcting a magnetic azimuth and finding a true azimuth even if the longitude and latitude of a point to be measured are unknown.

【0009】[0009]

【課題を解決するための手段】請求項1:地磁気センサ
1を具備し、傾斜センサ2を具備し、地磁気センサ1に
より検出された磁気出力および傾斜センサ2により検出
された姿勢角を入力して磁気出力の傾斜を姿勢角により
水平に補正する補正計算部32を具備し、補正計算部3
2の計算結果を入力して磁方位ψを計算する方位計算部
33を具備し、GPS衛星から送信されるGPS信号を
受信するアンテナ4を具備し、GPS信号を入力して緯
度経度情報を出力するGPS受信機5を具備し、緯度経
度情報を入力して偏角δψを計算する偏角計算部34を
具備し、磁方位ψと偏角δψとを加算して補正された真
方位ψ’を出力する加算部35を具備する地磁気方位セ
ンサを構成した。
Means for Solving the Problems Claim 1 is provided with a geomagnetic sensor 1, an inclination sensor 2, and a magnetic output detected by the geomagnetic sensor 1 and a posture angle detected by the inclination sensor 2 are inputted. A correction calculation unit for correcting the inclination of the magnetic output horizontally by the attitude angle;
2 is provided with an azimuth calculation unit 33 for calculating the magnetic azimuth し て by inputting the calculation result, an antenna 4 for receiving a GPS signal transmitted from a GPS satellite, and inputting a GPS signal and outputting latitude and longitude information And a declination calculator 34 for inputting latitude and longitude information and calculating a declination δψ, and a true azimuth ψ ′ corrected by adding the magnetic azimuth ψ and the declination δψ. A geomagnetic azimuth sensor provided with an adder 35 for outputting the data is constructed.

【0010】そして、請求項2:請求項1に記載される
地磁気方位センサにおいて、地磁気センサ1はroll
軸方向の地磁気センサX、pitci軸方向の地磁気セ
ンサYおよびyaw軸方向の地磁気センサZの3者より
成り、傾斜センサ2はroll軸方向の傾斜センサro
llおよびpitci軸方向の傾斜センサpitciの
2者より成る地磁気方位センサを構成した
In the terrestrial magnetism sensor according to claim 1, the terrestrial magnetism sensor 1 is rolled.
The tilt sensor 2 includes an axial geomagnetic sensor X, a pitci axial geomagnetic sensor Y, and a yaw axial geomagnetic sensor Z, and the tilt sensor 2 is a roll axial tilt sensor ro.
A geomagnetic azimuth sensor consisting of two sensors, ll and pitci, is provided.

【0011】[0011]

【発明の実施の形態】この発明の実施の形態を図1の実
施例を参照して説明する。図1の実施例は、経度および
緯度が未知であっても磁方位を自動的に補正して真方位
を求める構成として、GPS衛星から送信されるGPS
信号を受信するアンテナ、GPS信号を入力して緯度経
度情報を出力するGPS受信機および偏角計算部を、図
2の実施例に付加したものに相当する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the embodiment shown in FIG. The embodiment of FIG. 1 has a configuration in which the magnetic azimuth is automatically corrected even if the longitude and latitude are unknown, and the true azimuth is obtained.
An antenna for receiving a signal, a GPS receiver for inputting a GPS signal and outputting latitude and longitude information, and a declination calculator are equivalent to those added to the embodiment of FIG.

【0012】図1における地磁気センサ1および傾斜セ
ンサ2は図2の実施例において使用されるセンサと共通
している。4はGPS衛星から送信されるGPS信号を
受信するアンテナを示す。5はアンテナ4の受信したG
PS信号を入力して緯度経度情報を出力するGPS受信
機である。
The geomagnetic sensor 1 and the tilt sensor 2 in FIG. 1 are common to the sensors used in the embodiment of FIG. Reference numeral 4 denotes an antenna for receiving a GPS signal transmitted from a GPS satellite. 5 is G received by antenna 4
This is a GPS receiver that inputs a PS signal and outputs latitude and longitude information.

【0013】演算処理装置30は、図2の演算処理装置
3に対してGPS受信機5の出力する緯度経度情報を入
力して偏角δψを計算する偏角計算部34、および方位
計算部33の計算結果である磁方位ψと偏角計算部34
の計算結果である偏角δψとを加算して補正された真方
位ψ’を出力する加算部35を付加したものである。こ
の発明の地磁気方位センサも、演算処理装置30の補正
計算部32に対して地磁気センサ1により検出されたX
軸方向磁気出力xtm、Y軸方向磁気出力ytmおよびZ軸
方向磁気出力ztmが入力されると共に、傾斜センサ2に
より検出されたroll軸方向姿勢角φおよびpitc
i軸方向姿勢角θが入力され、ここにおいて回転行列の
計算が実施される。これにより、直交3軸の地磁気セン
サ1の磁気出力の傾斜は傾斜センサ2の検出した姿勢角
により補正され、水平で直交した磁気出力のデータに変
換される。
The arithmetic processing unit 30 inputs the latitude / longitude information output from the GPS receiver 5 to the arithmetic processing unit 3 of FIG. 2 to calculate a declination δψ, and an azimuth calculation unit 33. Magnetic azimuth あ る which is the calculation result of ψ and the deflection angle calculation unit 34
And an adder 35 that outputs the true azimuth ψ ′ which is corrected by adding the argument δψ, which is the calculation result of の, is added. The geomagnetic azimuth sensor according to the present invention also provides the correction calculator 32 of the arithmetic processing unit 30 with the X detected by the geomagnetic sensor 1.
The axial magnetic output x tm , the Y axial magnetic output y tm and the Z axial magnetic output z tm are input, and the roll axis attitude angle φ and pitc detected by the tilt sensor 2.
The i-axis orientation angle θ is input, and the rotation matrix is calculated here. As a result, the inclination of the magnetic output of the geomagnetic sensor 1 of the three orthogonal axes is corrected by the attitude angle detected by the inclination sensor 2, and is converted into data of the magnetic output that is horizontal and orthogonal.

【0014】[0014]

【数3】 日本列島内の偏角計算式を95年版理科年表から抜粋し
て示すと、以下の通りである。ところで、地磁気は一定
不変のものではなく、周期的にも不規則的にも変化する
ものであり、これは1990年値の近似式である。 δψ=7゜22. 82´+21. 01´×△Γ−7. 3
6´×△Λ−0. 197´×△Γ2+0. 587´×△
Γ・△Λ−0. 961´×△Λ2 (西偏)[deg] 但し、△Γ=Γ−37゜N △Λ=Λ−138゜E Γ:緯度[deg] Λ:経度[deg] 補正計算部32において補正されたデータは方位計算部
33に入力され、ここにおいて磁方位ψの計算が実施さ
れる。
(Equation 3) The declination formula in the Japanese Islands is excerpted from the 1995 scientific chronology as shown below. By the way, the geomagnetism is not constant and changes periodically and irregularly. This is an approximate expression of 1990 values. δψ = 7 ゜ 22.82 ′ + 21.01 ′ × △ Γ−7.3
6 '× △ Λ-0.197' × △ Γ 2 + 0.587 '× △
Γ · △ Λ−0.961 ′ × △ Λ 2 (westward deviation) [deg] where △ Γ = Γ−37 ゜ N △ Λ = Λ-138 ゜ E Γ: latitude [deg] Λ: longitude [deg] The data corrected by the correction calculator 32 is input to the azimuth calculator 33, where the magnetic azimuth ψ is calculated.

【0015】[0015]

【数4】 以上の通り、その一方のデータにより他方のデータを除
算し、除算結果のarctanを磁方位とするものであ
る。ここで、この発明の地磁気方位センサは、一方にお
いて、GPS衛星から送信されるGPS信号をアンテナ
4により受信し、GPS受信機5はこれに基づいて当該
受信地点の緯度経度情報を出力する。GPS受信機5か
ら得られる緯度経度情報は演算処理装置30の偏角計算
部34に入力され、ここにおいて偏角δψを計算する。
この偏角δψは加算部35において方位計算部33の計
算結果である磁方位ψに加算され、加算結果として真方
位ψ’が得られる。
(Equation 4) As described above, one data is divided by the other data, and arctan of the division result is used as the magnetic direction. Here, the geomagnetic azimuth sensor of the present invention, on the other hand, receives a GPS signal transmitted from a GPS satellite via the antenna 4, and the GPS receiver 5 outputs the latitude / longitude information of the receiving point based on this. The latitude / longitude information obtained from the GPS receiver 5 is input to the argument calculating unit 34 of the arithmetic processing unit 30, where the argument δψ is calculated.
This declination δψ is added to the magnetic azimuth ψ which is the calculation result of the azimuth calculation unit 33 in the adding unit 35, and the true azimuth ψ 'is obtained as an addition result.

【0016】[0016]

【発明の効果】以上の通りであって、この発明によれ
ば、GPS衛星を使用した測位装置により、測定地点の
経度緯度が未知であっても自動的にその緯度経度情報を
得ることができ、これを計算機により読み込んで偏角の
自動計算を実施する。この自動計算された偏角を使用し
て磁方位の補正を実時間で実施し、現在位置における真
方位を得るすることができる。
As described above, according to the present invention, a positioning device using a GPS satellite can automatically obtain latitude and longitude information even if the longitude and latitude of the measurement point are unknown. This is read by a computer to automatically calculate the argument. The magnetic azimuth is corrected in real time using the automatically calculated declination, and the true azimuth at the current position can be obtained.

【0017】そして、GPS衛星は全地球表面を測定範
囲としてカバーしているので、地球表面の何れの地点に
おいてもその真方位を実時間で測定計算することができ
る。また、磁気方位センサを航空機、走行車その他の移
動体に載置して移動状態においても地磁気センサの検出
結果を自動的に補正することができる。
Since the GPS satellite covers the entire earth surface as a measurement range, the true bearing can be measured and calculated at any point on the earth surface in real time. In addition, the magnetic azimuth sensor can be mounted on an aircraft, a traveling vehicle, or another moving body to automatically correct the detection result of the geomagnetic sensor even in a moving state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例を説明する図。FIG. 1 illustrates an embodiment.

【図2】方位軸を示す図。FIG. 2 is a diagram showing an azimuth axis.

【図3】従来例を説明する図。FIG. 3 illustrates a conventional example.

【符号の説明】[Explanation of symbols]

1 地磁気センサ 2 傾斜センサ 3 演算処理装置 30 演算処理装置 31 計算機 32 補正計算部 33 方位計算部 34 偏角計算部 35 加算部 4 アンテナ 5 GPS受信機 DESCRIPTION OF SYMBOLS 1 Geomagnetic sensor 2 Inclination sensor 3 Arithmetic processing unit 30 Arithmetic processing unit 31 Calculator 32 Correction calculation part 33 Azimuth calculation part 34 Declination angle calculation part 35 Addition part 4 Antenna 5 GPS receiver

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 地磁気センサを具備し、 傾斜センサを具備し、 地磁気センサにより検出された磁気出力および傾斜セン
サにより検出された姿勢角を入力して磁気出力の傾斜を
姿勢角により水平に補正する補正計算部を具備し、 補正計算部の計算結果を入力して磁方位を計算する方位
計算部を具備し、 GPS衛星から送信されるGPS信号を受信するアンテ
ナを具備し、 GPS信号を入力して緯度経度情報を出力するGPS受
信機を具備し、 緯度経度情報を入力して偏角を計算する偏角計算部を具
備し、 磁方位と偏角とを加算して補正された真方位を出力する
加算部を具備することを特徴とする地磁気方位センサ。
1. A magnetic sensor comprising: a tilt sensor; a magnetic output detected by the geomagnetic sensor and an attitude angle detected by the tilt sensor are input, and the tilt of the magnetic output is corrected horizontally by the attitude angle. A correction calculation unit, an azimuth calculation unit for calculating a magnetic azimuth by inputting a calculation result of the correction calculation unit, an antenna for receiving a GPS signal transmitted from a GPS satellite, and a GPS signal input A GPS receiver that outputs latitude and longitude information, and a declination calculation unit that calculates the declination by inputting the latitude and longitude information, and calculates the true direction corrected by adding the magnetic direction and the declination. A geomagnetic azimuth sensor comprising an adder for outputting.
【請求項2】 請求項1に記載される地磁気方位センサ
において、 地磁気センサはroll軸方向の地磁気センサ、pit
ci軸方向の地磁気センサおよびyaw軸方向の地磁気
センサの3者より成り、 傾斜センサはroll軸方向の傾斜センサおよびpit
ci軸方向の傾斜センサの2者より成ることを特徴とす
る地磁気方位センサ。
2. The geomagnetic direction sensor according to claim 1, wherein the geomagnetic sensor is a geomagnetic sensor in a roll axis direction, pit.
It consists of a geomagnetic sensor in the direction of the ci axis and a geomagnetic sensor in the direction of the yaw axis. The tilt sensor is a tilt sensor in the roll axis direction and pit.
A geomagnetic azimuth sensor comprising two sensors: a tilt sensor in a ci-axis direction.
JP13860098A 1998-05-20 1998-05-20 Earth magnetism azimuth sensor Withdrawn JPH11325904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13860098A JPH11325904A (en) 1998-05-20 1998-05-20 Earth magnetism azimuth sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13860098A JPH11325904A (en) 1998-05-20 1998-05-20 Earth magnetism azimuth sensor

Publications (1)

Publication Number Publication Date
JPH11325904A true JPH11325904A (en) 1999-11-26

Family

ID=15225887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13860098A Withdrawn JPH11325904A (en) 1998-05-20 1998-05-20 Earth magnetism azimuth sensor

Country Status (1)

Country Link
JP (1) JPH11325904A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014013A (en) * 2000-06-27 2002-01-18 Structural Quality Assurance Inc Total countermeasure system for ensuring safety of building receiving effect of sudden external force such as earthquake
JP2003065791A (en) * 2001-08-23 2003-03-05 Asahi Kasei Corp Azimuth angle measuring device and azimuth angle measuring method
US6957088B2 (en) 2001-11-22 2005-10-18 Yamaha Corporation Electronic apparatus
KR100533106B1 (en) * 2002-08-06 2005-12-05 삼성전자주식회사 Attitude error compensation system of fluxgate and method thereof
JP2006023318A (en) * 2000-10-16 2006-01-26 Dentsu Kiko Kk Three-axis magnetic sensor, omnidirectional magnetic sensor, and azimuth measuring method using the same
JP2006138843A (en) * 2004-10-12 2006-06-01 Yamaha Corp Terrestrial magnetism detecting device
US7069145B2 (en) * 2004-05-03 2006-06-27 Sony Ericsson Mobile Communications Ab Mobile terminals, methods, and program products for generating a magnetic heading based on position
JP2006337333A (en) * 2005-06-06 2006-12-14 Alps Electric Co Ltd Triaxial electronic compass, and azimuth detecting method using the same
GB2453433A (en) * 2007-10-02 2009-04-08 Toyota Motor Co Ltd Azimuth detecting device capable of correcting the outputs of a geomagnetic sensor
JP2010101732A (en) * 2008-10-23 2010-05-06 Ikegami Tsushinki Co Ltd Device and method for forming compensating data table of geomagnetic sensor
JP2011099872A (en) * 2011-02-07 2011-05-19 Asahi Kasei Electronics Co Ltd Azimuth measuring device
JP2011149945A (en) * 2011-02-07 2011-08-04 Asahi Kasei Electronics Co Ltd Azimuth measuring device
JP2011185868A (en) * 2010-03-10 2011-09-22 Alps Electric Co Ltd Azimuth detector
CN103105163A (en) * 2013-01-10 2013-05-15 厦门新诺科技有限公司 Method for realizing compass function based on ship-borne satellite television receiving device
USRE45023E1 (en) 2000-10-16 2014-07-22 Naos Innovation, Llc Three-axis magnetic sensor, an omnidirectional magnetic sensor and an azimuth measuring method using the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014013A (en) * 2000-06-27 2002-01-18 Structural Quality Assurance Inc Total countermeasure system for ensuring safety of building receiving effect of sudden external force such as earthquake
USRE45023E1 (en) 2000-10-16 2014-07-22 Naos Innovation, Llc Three-axis magnetic sensor, an omnidirectional magnetic sensor and an azimuth measuring method using the same
JP2006023318A (en) * 2000-10-16 2006-01-26 Dentsu Kiko Kk Three-axis magnetic sensor, omnidirectional magnetic sensor, and azimuth measuring method using the same
JP2003065791A (en) * 2001-08-23 2003-03-05 Asahi Kasei Corp Azimuth angle measuring device and azimuth angle measuring method
US6957088B2 (en) 2001-11-22 2005-10-18 Yamaha Corporation Electronic apparatus
KR100533106B1 (en) * 2002-08-06 2005-12-05 삼성전자주식회사 Attitude error compensation system of fluxgate and method thereof
US7069145B2 (en) * 2004-05-03 2006-06-27 Sony Ericsson Mobile Communications Ab Mobile terminals, methods, and program products for generating a magnetic heading based on position
JP2006138843A (en) * 2004-10-12 2006-06-01 Yamaha Corp Terrestrial magnetism detecting device
JP2006337333A (en) * 2005-06-06 2006-12-14 Alps Electric Co Ltd Triaxial electronic compass, and azimuth detecting method using the same
GB2453433A (en) * 2007-10-02 2009-04-08 Toyota Motor Co Ltd Azimuth detecting device capable of correcting the outputs of a geomagnetic sensor
US8224573B2 (en) 2007-10-02 2012-07-17 Toyota Jidosha Kabushiki Kaisha Azimuth detecting device and azimuth detecting method
US8527201B2 (en) 2007-10-02 2013-09-03 Toyota Jidosha Kabushiki Kaisha Azimuth detecting device and azimuth detecting method
GB2453433B (en) * 2007-10-02 2010-01-20 Toyota Motor Co Ltd Azimuth detecting device and azimuth detecting method
JP2010101732A (en) * 2008-10-23 2010-05-06 Ikegami Tsushinki Co Ltd Device and method for forming compensating data table of geomagnetic sensor
JP2011185868A (en) * 2010-03-10 2011-09-22 Alps Electric Co Ltd Azimuth detector
JP2011099872A (en) * 2011-02-07 2011-05-19 Asahi Kasei Electronics Co Ltd Azimuth measuring device
JP2011149945A (en) * 2011-02-07 2011-08-04 Asahi Kasei Electronics Co Ltd Azimuth measuring device
CN103105163A (en) * 2013-01-10 2013-05-15 厦门新诺科技有限公司 Method for realizing compass function based on ship-borne satellite television receiving device

Similar Documents

Publication Publication Date Title
US6622091B2 (en) Method and system for calibrating an IG/GP navigational system
US6860023B2 (en) Methods and apparatus for automatic magnetic compensation
JPH11325904A (en) Earth magnetism azimuth sensor
US20060066295A1 (en) Control method of controlling magnetic-field sensor, control device, and mobile terminal device
US20070156337A1 (en) Systems, methods and apparatuses for continuous in-vehicle and pedestrian navigation
EP3443299B1 (en) Gyromagnetic geopositioning system
US3943763A (en) Magnetic heading reference
JP2006126148A (en) Azimuth attitude sensor
US11408735B2 (en) Positioning system and positioning method
WO2018179189A1 (en) Vehicle-mounted device, calculation device, and program
CN106403952A (en) Method for measuring combined attitudes of Satcom on the move with low cost
JP6983565B2 (en) Methods and systems for compensating for soft iron magnetic disturbances in vehicle heading reference systems
JP2017166895A (en) Electronic apparatus, sensor calibration method, and sensor calibration program
JP3763435B2 (en) Attitude angle detector
JP2000321070A (en) Strap-down inertial navigation device
US12066289B2 (en) Navigation instrument with tilt compensation mounted on or integrated into a wearable device and associated method
US4006631A (en) Magnetic heading reference
EP0986736B1 (en) Inertial and magnetic sensors systems designed for measuring the heading angle with respect to the north terrestrial pole
KR20070049419A (en) Apparatus and method for estimation of virtual axis magnetic compass data to compensate the tilt error of biaxial magnetic compass
JP3044357B2 (en) Gyro device
JP2012202749A (en) Orientation detection device
EP0392104A1 (en) Inertial navigation system
US3430238A (en) Apparatus for providing an accurate vertical reference in a doppler-inertial navigation system
Kaur et al. Design and development of mems sensors based inertial navigation systems for aerial vehicles: A case study
JP3576728B2 (en) Attitude detection device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802