JPH11325564A - Different environment separating device and control method of different environment separation - Google Patents

Different environment separating device and control method of different environment separation

Info

Publication number
JPH11325564A
JPH11325564A JP10127197A JP12719798A JPH11325564A JP H11325564 A JPH11325564 A JP H11325564A JP 10127197 A JP10127197 A JP 10127197A JP 12719798 A JP12719798 A JP 12719798A JP H11325564 A JPH11325564 A JP H11325564A
Authority
JP
Japan
Prior art keywords
air
temperature
separation
separated
different environments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10127197A
Other languages
Japanese (ja)
Other versions
JP3784960B2 (en
Inventor
Shin Nakamura
中村  慎
Noriyuki Takahashi
紀行 高橋
Yoshiaki Higuchi
祥明 樋口
Keimei Takai
啓明 高井
Atsushi Ariyoshi
淳 有吉
Yoshikazu Mizutani
義和 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP12719798A priority Critical patent/JP3784960B2/en
Publication of JPH11325564A publication Critical patent/JPH11325564A/en
Application granted granted Critical
Publication of JP3784960B2 publication Critical patent/JP3784960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

PROBLEM TO BE SOLVED: To maintain separated two different environments of a large temperature difference by following an external environment in connection with a method for controlling a different environment separating device for separating and forming by air two different environments of a temperature difference in a space and a different environment separation. SOLUTION: A different environment separating system based on air for separating and forming by air two different environments 3 and 4 of a temperature difference in a lower part of a heat collecting range 2 formed in an upper part of a space, comprises an air outlet 5 provided along a separating boundary line of the two different environments, a measuring means 8 for measuring at least one control parameter of air temperature, wind velocity, and wind direction in the vicinity of a separating height position in a separating boundary of the two different environments, and control means 7 and 6 for controlling the temperature, air flow rate, and wind velocity of the separated air blown out from an air outlet 5 so as to maintain the control parameter constant in the vicinity of the separating height position.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空間を空気によっ
て分離し温度差のある2つの異環境を形成する異環境分
離装置及び異環境分離の制御方法に係り、特に大空間に
温度差が大きい2つの異環境を形成するのに好適な異環
境分離装置及び異環境分離の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a different environment separating apparatus for forming two different environments having a temperature difference by separating a space by air and a method for controlling the different environment separation, and particularly to a large space having a large temperature difference. The present invention relates to a different environment separating apparatus suitable for forming two different environments and a method for controlling different environment separation.

【0002】[0002]

【従来の技術】建物内の空間を建築的な間仕切りなしで
分離し温度差のある2つの異環境を形成する手法として
は、従来、エアカーテン方式が知られている。エアカー
テン方式は、分離境界線に沿った天井に吹出口、床面に
吸込口をそれぞれ設け、天井から床面に向かって流れる
空気の壁を形成し、空間を分離する方式である。
2. Description of the Related Art An air curtain method is conventionally known as a method of separating a space in a building without an architectural partition to form two different environments having a temperature difference. The air curtain system is a system in which an outlet is provided on a ceiling along a separation boundary line and an inlet is provided on a floor surface to form a wall of air flowing from the ceiling toward the floor surface, thereby separating the space.

【0003】そして、分離した各空間の温熱環境をそれ
ぞれ独立の空調装置で制御し、温度差のある2つの異環
境を形成する。空間の温熱環境を一定に保つ手法として
は、居住域の気温、湿度、放射熱量や外気温、屋根表面
温度等を計測して、居住域空調へフィードバックする方
法が一般的である。
[0003] The thermal environment of each of the separated spaces is controlled by an independent air conditioner to form two different environments having a temperature difference. As a method of keeping the thermal environment of the space constant, a method of measuring the temperature, humidity, radiant heat, outside temperature, roof surface temperature, and the like of a living area and feeding it back to the air conditioning of the living area is general.

【0004】[0004]

【発明が解決しようとする課題】ところで、大空間を大
きな温度差のある2つの異環境に分離する場合、例えば
スピードスケート競技場が設けられる体育館において、
大空間を観客席と競技リンクとに2分し、観客席は25
℃程度の室温に維持し、競技リンクは氷が融けない程度
の低温に維持する場合、建築的な間仕切りなしで実現す
ることが望まれるが、従来のエアカーテン方式によって
実現するのは困難である。
When separating a large space into two different environments having a large temperature difference, for example, in a gymnasium where a speed skating stadium is provided,
The large space is divided into two seats and a competition link, with 25 seats
If it is maintained at room temperature of about ℃ and the competition link is maintained at a low temperature that does not melt ice, it is desirable to realize it without architectural partitions, but it is difficult to realize it with the conventional air curtain method .

【0005】また、そのような大空間を空気により分離
し、2つの異環境に大きな温度差を与える場合には、そ
こでのエアバランスは、外気温、日射量、居住域負荷等
に依存した微妙な関係で維持される状態となるので、上
述した居住域空調へのフィードバックだけでは、変動す
る負荷に追従できず、大空間内のエアバランスが崩れて
しまい、維持が困難となる。
Further, when such a large space is separated by air to give a large temperature difference between two different environments, the air balance there is delicate depending on the outside air temperature, the amount of solar radiation, the load on the living area, and the like. Therefore, it is not possible to follow the fluctuating load only by the feedback to the air conditioning in the living area described above, the air balance in the large space is broken, and the maintenance becomes difficult.

【0006】本発明の目的は、大空間を建築的な間仕切
りなしで分離した大きな温度差のある2つの異環境を、
熱効率が良く、かつ外部環境に追従して維持できる空気
による異環境分離装置及び異環境分離の制御方法を提供
する。
An object of the present invention is to provide two different environments having a large temperature difference, which separate a large space without an architectural partition,
Provided is a different environment separation apparatus and a different environment separation control method using air, which has good thermal efficiency and can be maintained following an external environment.

【0007】[0007]

【課題を解決するための手段】請求項1に記載の発明
は、上部に熱溜まり領域が形成されるようにな空間にお
いて、下方に温度差のある2つの異環境を空気により分
離形成する異環境分離装置であって、前記2つの異環境
の分離境界線に沿って設けられ、分離空気を分離境界面
に沿って吹き上げる開口を有する吹出口と、前記2つの
異環境の分離境界における分離高さ位置近傍での空気温
度、風速、風向の少なくとも1つの制御パラメータを測
定する測定手段と、前記分離高さ位置近傍での前記制御
パラメータが一定となるように、前記吹出口から吹き出
す分離空気の温度、風量、風速を制御する制御手段とを
備えることを特徴とする。
According to the first aspect of the present invention, in a space in which a heat accumulation region is formed at an upper portion, two different environments having a temperature difference below are separated and formed by air. An environment separation device, comprising: an outlet provided along a separation boundary between the two different environments and having an opening for blowing separation air along the separation boundary; and a separation height at a separation boundary between the two different environments. Measuring means for measuring at least one control parameter of the air temperature, wind speed, and wind direction in the vicinity of the height position, and the separated air blown out from the outlet so that the control parameter in the vicinity of the separation height position is constant. Control means for controlling temperature, air volume, and wind speed.

【0008】即ち、請求項1に記載の発明では、2つの
異環境の分離境界線に沿った床面や2つの異環境の分離
境界線に沿って形成した例えば腰板の板面などに吹出口
を設け、吹出口から分離空気を分離境界面に沿って吹き
上げて熱溜まり領域の下方の空間を温度差のある2つの
異環境に分離形成した場合において、2つの異環境それ
ぞれの空調制御系とは別個独立に、測定手段が、2つの
異環境の分離境界における分離高さ位置近傍での空気温
度、風速、風向の少なくとも1つの制御パラメータを測
定する。そして、制御手段が、学習しながら吹出口から
吹き出す分離空気の温度、風量、風速を制御し、測定手
段の測定した制御パラメータが一定となるようにする。
これにより、所定の分離高さ位置において空気により分
離形成した温度差のある2つの異環境を安定的に維持で
きる。
That is, according to the first aspect of the present invention, the air outlet is formed on the floor surface along the separation boundary between the two different environments or on the plate surface of the waistboard formed along the separation boundary between the two different environments. In the case where the separated air is blown up along the separation boundary surface from the outlet to separate and form the space below the heat accumulation region into two different environments having a temperature difference, the air conditioning control system of each of the two different environments and Independently and independently, the measuring means measures at least one control parameter of the air temperature, the wind speed and the wind direction near the separation height position at the separation boundary between the two different environments. Then, the control means controls the temperature, the flow rate, and the wind velocity of the separated air blown out from the outlet while learning, so that the control parameters measured by the measuring means become constant.
Thus, two different environments having a temperature difference separated by air at a predetermined separation height position can be stably maintained.

【0009】請求項2に記載の発明は、請求項1に記載
の異環境分離装置において、前記制御手段は、測定した
制御パラメータに基づき分離空気の温度、風量、風速を
制御することを特徴とする。即ち、請求項2に記載の発
明では、測定手段が測定する制御パラメータには、空気
温度、風速、風向の何れか1つだけでなく、2以上を含
めることができる。したがって、制御精度の向上を図る
ことが容易となる。
According to a second aspect of the present invention, in the different environment separating apparatus according to the first aspect, the control means controls a temperature, an air volume, and an air velocity of the separated air based on the measured control parameters. I do. In other words, according to the second aspect of the present invention, the control parameters measured by the measuring means can include not only one of the air temperature, the wind speed, and the wind direction but also two or more. Therefore, it is easy to improve control accuracy.

【0010】請求項3に記載の発明は、請求項1に記載
の異環境分離装置において、前記制御手段は、前記熱溜
まり領域の温度、低温度領域の温度、日射計の測定値の
少なくとも1つに基づき分離空気の温度、風量、風速を
制御することを特徴とする。即ち、請求項3に記載の発
明では、空気温度に基づき分離空気の温度、風量、風速
を制御する場合には、分離高さ位置近傍での空気温度だ
けでなく、熱溜まり領域の温度、低温度領域の温度、日
射計の測定値などの外的要因も対象とする。したがっ
て、負荷の変動に追従した制御が可能となる。また、こ
れらの外的要因は測定が容易であるので、構成の容易化
が図れる。
According to a third aspect of the present invention, in the different environment separating apparatus according to the first aspect, the control means includes at least one of a temperature of the heat reservoir area, a temperature of a low temperature area, and a measured value of a pyranometer. The temperature, the flow rate, and the wind speed of the separated air are controlled based on the above. That is, according to the third aspect of the present invention, when controlling the temperature, air volume, and wind speed of the separated air based on the air temperature, not only the air temperature near the separation height position, but also the temperature of the heat accumulation region, External factors such as temperature in the temperature range and pyranometer measurements are also included. Therefore, control that follows the change in load can be performed. Further, since these external factors can be easily measured, the configuration can be simplified.

【0011】請求項4に記載の発明は、請求項1に記載
の異環境分離装置において、前記分離空気は、前記熱溜
まり領域から取得した空気が用いられることを特徴とす
る。即ち、請求項4に記載の発明では、暖まっている熱
溜まり領域の空気を利用するので、熱効率の良い制御が
可能となる。
According to a fourth aspect of the present invention, in the different environment separating apparatus according to the first aspect, the separated air is air obtained from the heat accumulation region. That is, in the invention described in claim 4, since the air in the heated heat accumulation region is used, it is possible to perform control with good thermal efficiency.

【0012】請求項5に記載の発明は、請求項1に記載
の異環境分離装置において、前記制御手段は、制御結果
が前記2つの異環境のそれぞれに与える影響度合いを予
測し、予測結果を前記2つの異環境のそれぞれにおける
空調制御系に出力することを特徴とする。即ち、請求項
5に記載の発明では、2つの異環境のそれぞれにおける
空調制御系が、分離空気の制御に時間遅れなく追従して
動作できるので、2つの異環境での温熱環境を応答性良
く安定に維持できる。
According to a fifth aspect of the present invention, in the different environment separating apparatus according to the first aspect, the control means predicts a degree of influence of a control result on each of the two different environments, and calculates the predicted result. The output is provided to an air conditioning control system in each of the two different environments. That is, in the invention according to claim 5, the air-conditioning control system in each of the two different environments can operate without delay with the control of the separated air, so that the thermal environment in the two different environments can be responsively improved. Can be kept stable.

【0013】請求項6に記載の発明は、請求項1に記載
の異環境分離装置において、前記2つの異環境のそれぞ
れにおける空調制御系は、負荷変動に応答して制御する
内容の分離空気に与える影響度合いを予測し、予測結果
を前記制御手段に出力することを特徴とする。即ち、請
求項6に記載の発明では、2つの異環境のそれぞれにお
いて負荷変動があった場合には、制御手段は、時間遅れ
なく分離空気の制御に反映できる。
According to a sixth aspect of the present invention, in the different environment separating apparatus according to the first aspect, the air conditioning control system in each of the two different environments converts the separated air to be controlled in response to a load change. The degree of influence is predicted, and the prediction result is output to the control means. That is, according to the invention described in claim 6, when there is a load change in each of the two different environments, the control means can reflect the change in the separated air without delay.

【0014】請求項7に記載の発明は、上部に熱溜まり
領域が形成されるような空間において、下方に温度差の
ある2つの異環境を空気により分離形成する異環境分離
の制御方法であって、前記2つの異環境の分離境界にお
ける分離高さ位置近傍での空気温度、風速、風向の少な
くとも1つの制御パラメータを測定する手順と、前記分
離高さ位置近傍での前記制御パラメータが一定となるよ
うに、前記2つの異環境の分離境界線に沿って設けられ
た吹出口から吹き出す分離空気の温度、風量、風速を制
御する手順とを備えることを特徴とする。
According to a seventh aspect of the present invention, there is provided a method for controlling separation of different environments, wherein two different environments having a temperature difference below are separated from each other by air in a space in which a heat accumulation region is formed at an upper portion. A step of measuring at least one control parameter of the air temperature, wind speed, and wind direction near the separation height position at the separation boundary between the two different environments; and determining that the control parameter near the separation height position is constant. And controlling the temperature, flow rate, and speed of the separated air blown out from the outlet provided along the separation boundary between the two different environments.

【0015】即ち、請求項7に記載の発明では、温度差
のある2つの異環境が所定の分離高さにおいて分離形成
された後において、温度差のある2つの異環境の分離境
界における分離高さ位置近傍での空気温度、風速、風向
の少なくとも1つの制御パラメータを測定し、測定した
制御パラメータが一定となるように、学習しながら吹出
口から吹き出す分離空気の温度、風量、風速を制御す
る。これにより、所定の分離高さ位置において空気によ
り分離形成した温度差のある2つの異環境を安定的に維
持できる。
That is, according to the present invention, after two different environments having a temperature difference are separated and formed at a predetermined separation height, the separation height at the separation boundary between the two different environments having the temperature difference is determined. At least one control parameter of the air temperature, wind speed and wind direction near the position is measured, and the temperature, air volume and wind speed of the separated air blown out from the outlet are controlled while learning so that the measured control parameters become constant. . Thus, two different environments having a temperature difference separated by air at a predetermined separation height position can be stably maintained.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。図1は、請求項1乃至請求項7に
対応する実施形態の構成概念図である。図1において、
建物1は、内部に大空間を備える。この大空間の上部に
は、熱溜まり領域2が形成される。本実施形態では、こ
の熱溜まり領域2の下方の居住域空間に大きな温度差の
ある2つの異環境(高温度領域3と低温度領域4)を空
気によって分離形成する。そのために、吹出口5が高温
度領域3と低温度領域4の分離境界線(図示例では、紙
面の表裏方向に形成される直線または曲線)に沿って設
けられる。この吹出口5は、分離境界線に沿って形成さ
れる細長い開口を有するもので、分離境界線に沿った床
面や2つの異環境を分離境界線に沿って分離する壁の上
面(例えば腰板の板面)に形成される。空間天頂部に吹
出口5に対応した吸込口が存在しない分離方式であり、
エアーカーテン方式と異なる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a conceptual diagram of a configuration of an embodiment corresponding to claims 1 to 7. In FIG.
The building 1 has a large space inside. Above this large space, a heat accumulation region 2 is formed. In the present embodiment, two different environments (a high temperature region 3 and a low temperature region 4) having a large temperature difference are separately formed in the living space below the heat accumulation region 2 by air. For this purpose, the air outlet 5 is provided along a separation boundary between the high temperature region 3 and the low temperature region 4 (in the illustrated example, a straight line or a curve formed in the front and back directions of the paper). The outlet 5 has an elongated opening formed along the separation boundary, and has a floor surface along the separation boundary and an upper surface of a wall (for example, a waistboard) separating two different environments along the separation boundary. Plate surface). This is a separation method in which the suction port corresponding to the outlet 5 does not exist at the top of the space.
Different from air curtain method.

【0017】吹出口5は、空調制御系6の出側と配管で
接続される。空調制御系6の入り側は、建物1の天井に
形成される熱溜まり領域2と配管で接続される。空調制
御系6は、空調機と送風機を備え、熱溜まり領域2から
取得した空気を制御装置7の制御下に調節して吹出口5
に送る。その結果、吹出口5から分離空気が、高温度領
域3と低温度領域4の分離境界面に沿って吹き上げられ
る。
The outlet 5 is connected to the outlet of the air conditioning control system 6 by piping. The entrance side of the air-conditioning control system 6 is connected to the heat reservoir area 2 formed on the ceiling of the building 1 by piping. The air conditioning control system 6 includes an air conditioner and a blower, and adjusts the air obtained from the heat accumulation region 2 under the control of the control device 7 to control the air outlet 5.
Send to As a result, the separated air is blown up from the outlet 5 along the separation boundary between the high temperature region 3 and the low temperature region 4.

【0018】吹出口5真上の所定の分離高さは、低温度
領域4の高さ位置を規定する所定値であり、予め定めら
れる。制御パラメータ(空気温度、風速、風向)の測定
位置8は、この所定の分離高さ位置の近傍である。測定
方法には、種々ある。例えば図2に示すスピーカ21と
集音マイク22のセットとパーソナルコンピュータ(P
C)23とからなる計測システムが利用できる。即ち、
分離高さ位置近傍における建物1の対向する側壁にスピ
ーカ21と集音マイク22を配置し、パーソナルコンピ
ュータ(PC)23が、スピーカ21に発音させて集音
マイク22の出力を取り込み、音波の到達時間を求め、
分離高さ位置近傍の空気温度、風速、風向を推定する方
法である。
The predetermined separation height immediately above the outlet 5 is a predetermined value that defines the height position of the low temperature area 4 and is predetermined. The measurement position 8 of the control parameter (air temperature, wind speed, wind direction) is near this predetermined separation height position. There are various measurement methods. For example, a set of a speaker 21 and a sound collecting microphone 22 shown in FIG.
C) A measurement system consisting of 23 can be used. That is,
A speaker 21 and a sound collecting microphone 22 are arranged on the opposing side walls of the building 1 near the separation height position, and a personal computer (PC) 23 makes the speaker 21 emit sound, captures the output of the sound collecting microphone 22, and reaches the sound wave. Ask for time,
This is a method for estimating the air temperature, wind speed, and wind direction near the separation height position.

【0019】また、温度のみの測定であるが、分離境界
付近に建物の支柱等があれば(配置できれば配置し)、
その表面温度を赤外線温度計で測定する方法がある。更
に、可能であれば、空間に熱電対や風速計などのセンサ
を配置し、直接分離高さでの温度、風速、風向を計測す
る方法もある。なお、熱溜まり領域2や低温度領域4、
高温度領域3に設けてある温度センサ9、10、12
は、それぞれ熱電対など温度信号が取り出せる温度計で
ある。温度センサ10、12は、低温度領域4、高温度
領域3に元々備えられるものである。本実施形態では、
それを有効に利用しようとするものである。
In the measurement of only the temperature, if there is a column or the like of the building near the separation boundary (if it can be arranged, it is arranged).
There is a method of measuring the surface temperature with an infrared thermometer. Furthermore, if possible, there is a method of arranging a sensor such as a thermocouple or an anemometer in a space and directly measuring the temperature, wind speed, and wind direction at the separation height. In addition, the heat accumulation area | region 2 and the low temperature area | region 4,
Temperature sensors 9, 10, 12 provided in the high temperature area 3
Are thermometers that can take out temperature signals such as thermocouples. The temperature sensors 10 and 12 are originally provided in the low temperature region 4 and the high temperature region 3. In this embodiment,
They try to use it effectively.

【0020】制御装置7は、測定位置8での測定値(温
度、風速、風向)が入力する他、温度センサ9が検出す
る熱溜まり領域2の温度情報、温度センサ10が検出す
る低温度領域4の温度情報、温度センサ12が検出する
高温度領域3の温度情報、日射計11が検出する建物1
の屋根表面温度の推定温度情報がそれぞれ入力する。ま
た、制御装置7は、高温度領域3と低温度領域4それぞ
れに互いに独立に設けられる空調制御系13、14と接
続される。空調制御系13、14は、それぞれ、空調機
と送風機を備え、それぞれの領域の温熱特性を制御す
る。
The control device 7 receives the measured values (temperature, wind speed, wind direction) at the measuring position 8, the temperature information of the heat accumulation region 2 detected by the temperature sensor 9, and the low temperature region detected by the temperature sensor 10. 4, the temperature information of the high temperature area 3 detected by the temperature sensor 12, and the building 1 detected by the pyranometer 11
The estimated temperature information of the roof surface temperature is input. Further, the control device 7 is connected to air conditioning control systems 13 and 14 provided independently of each other in the high temperature region 3 and the low temperature region 4. The air conditioning control systems 13 and 14 each include an air conditioner and a blower, and control the thermal characteristics of each area.

【0021】制御装置7の制御動作は、PID制御やニ
ューラルネットワークを利用した制御方法によって実現
される。ニューラルネットワークは、ある望ましい状態
へと制御対象の出力を導くための制御入力を生成するフ
ィードフォアードの制御系であり、任意の非線形写像関
数を実現できること、学習則が比較的単純であること、
多種多様なデータを並列的に活用できることから有用な
実現手段である。
The control operation of the control device 7 is realized by PID control or a control method using a neural network. A neural network is a feed-forward control system that generates a control input to guide an output of a control target to a desired state.It can realize an arbitrary nonlinear mapping function, a learning rule is relatively simple,
This is a useful means because various kinds of data can be used in parallel.

【0022】以上の構成と請求項との対応関係は、次の
ようになっている。空間には、建物1内に形成される大
空間が対応する。熱溜まり領域には、熱溜まり領域2が
対応する。温度差のある2つの異環境には、高温度領域
3と低温度領域4とが対応する。吹出口には、吹出口5
が対応する。測定手段には、例えば図2に示す計測シス
テムが対応する。制御手段には、空調制御系6と制御装
置7が対応する。2つの異環境それぞれにおける空調制
御系には、空調制御系13、14が対応する。
The correspondence between the above configuration and the claims is as follows. The large space formed in the building 1 corresponds to the space. The heat accumulation region 2 corresponds to the heat accumulation region. A high temperature area 3 and a low temperature area 4 correspond to two different environments having a temperature difference. The outlet 5
Corresponds. For example, the measurement system shown in FIG. 2 corresponds to the measurement unit. The air conditioning control system 6 and the control device 7 correspond to the control means. The air conditioning control systems 13 and 14 correspond to the air conditioning control systems in the two different environments, respectively.

【0023】次に、図1〜図3を参照して本実施形態の
動作を説明する。なお、図3は、ニューラルネットワー
クを利用した制御系の動作フローチャートである。建物
1内の大空間の上部には、日射や照明器具等の熱で暖め
られた空気が滞留して熱溜まり領域2が形成される。熱
溜まり領域2の空気温度は、夏場では高く冬場では下が
る。したがって、熱溜まり領域2の高さ方向の幅は、季
節によって変動し、夏場では厚くなり、下面が下がって
くる一方、冬場では薄くなり、下面が上昇する。
Next, the operation of the present embodiment will be described with reference to FIGS. FIG. 3 is an operation flowchart of a control system using a neural network. In the upper part of the large space in the building 1, air heated by the heat of solar radiation, lighting equipment and the like stays to form a heat accumulation region 2. The air temperature in the heat accumulation area 2 is high in summer and decreases in winter. Therefore, the width in the height direction of the heat accumulation region 2 varies depending on the season, and becomes thicker in summer and the lower surface is lowered, while it becomes thinner in winter and the lower surface is raised.

【0024】制御装置7は、このような熱溜まり領域2
の下方に、まず、高温度領域3と低温度領域4という大
きな温度差のある2つの異環境を分離形成する。即ち、
制御装置7は、空調制御系6に吹出口5から分離空気を
吹き出させるとともに、空調制御系13、14をそれぞ
れ起動し、空調制御系13には高温度領域3の温度制御
を実行させ、空調制御系14には低温度領域4の温度制
御を実行させる。
The control device 7 controls such a heat accumulation region 2
First, two different environments having a large temperature difference of a high temperature region 3 and a low temperature region 4 are separately formed. That is,
The control device 7 causes the air-conditioning control system 6 to blow out the separated air from the air outlet 5, activates the air-conditioning control systems 13 and 14, respectively, causes the air-conditioning control system 13 to execute the temperature control of the high temperature region 3, and controls the air conditioning. The control system 14 executes the temperature control of the low temperature region 4.

【0025】この過程で制御装置7は、図3に示す手順
で、分離高さ位置(測定位置8)での温度、風速、風
向、熱溜まり領域2や低温度領域4の温度、日射計10
の出力といった多入力を受けて学習しながら所定の分離
高さを形成するのに必要な分離空気の温度、風量、風速
の最適な制御値を決定し、制御値を空調制御系6に出力
する。
In this process, the control device 7 executes the procedure shown in FIG. 3 to determine the temperature at the separation height position (measurement position 8), the wind speed, the wind direction, the temperature of the heat accumulation region 2 and the low temperature region 4, the pyranometer 10, and the like.
The optimum control values for the temperature, air volume, and wind speed of the separated air necessary to form a predetermined separation height are determined while learning while receiving multiple inputs such as the output of the air conditioner, and the control values are output to the air conditioning control system 6. .

【0026】空調制御系6は、入力した制御値に基づき
吹出口5から吹き出す分離空気の温度を調節する温度制
御、送風機の回転数を制御する風量制御、吹出口5を調
節して分離空気の吹き出し幅を制御する風速制御をそれ
ぞれ行う。
The air-conditioning control system 6 controls the temperature of the separated air blown out of the outlet 5 based on the input control value, the air volume control for controlling the rotation speed of the blower, and the separated air by controlling the outlet 5. Wind speed control for controlling the blowing width is performed.

【0027】これにより、所定の分離高さにおいて高温
度領域3と低温度領域4が分離形成される。2つの異環
境が安定的に分離された状態では、所定の分離高さ位置
は、図1に示すように、熱溜まり領域2の下面に届かな
い下方の位置となっている。分離空気は、熱溜まり領域
2に向けて吹出口5から吹き出され、分離境界面に沿っ
て上昇するが、先端は噴水のように広がり、熱溜まり領
域2の下面に到達する以前に失速するような状況とな
る。
As a result, the high temperature region 3 and the low temperature region 4 are separately formed at a predetermined separation height. In a state where the two different environments are stably separated from each other, the predetermined separation height position is a lower position that does not reach the lower surface of the heat accumulation region 2 as shown in FIG. The separation air is blown out from the outlet 5 toward the heat accumulation region 2 and rises along the separation boundary surface, but the tip spreads like a fountain and stalls before reaching the lower surface of the heat accumulation region 2. Situation.

【0028】しかし、このように大きな温度差のある2
つの異環境を分離空気で分離しただけの状況下でのエア
バランスは、外気温、日射量、居住域負荷等に依存した
微妙な関係で維持された状態となっている。また、熱溜
まり領域2の厚さは、季節・時間によって変動するの
で、その下面の高さ位置が、所定の分離高さ位置よりも
低くなることも考えられる。
However, there is a large temperature difference 2
The air balance in a situation where only two different environments are separated by separated air is maintained in a delicate relationship depending on the outside temperature, the amount of solar radiation, the load on the living area, and the like. Further, since the thickness of the heat accumulation region 2 varies depending on the season and time, the height position of the lower surface may be lower than the predetermined separation height position.

【0029】したがって、制御装置7は、図1に示すよ
うに、熱溜まり領域2の下方に高温度領域3と低温度領
域4が分離形成された後は、所定の分離高さにおいてこ
れら2つの異環境を安定的に維持する動作を繰り返し行
うことになる。具体的には、制御装置7は、図2に示す
計測システムから一定間隔で測定した分離高さ位置(測
定位置8)近傍での空気温度、風速、風向の各制御パラ
メータを取得し、また、温度センサ9、10、12や日
射計11からの各種温度情報を取得する。そして、分離
高さ位置(測定位置8)近傍での空気温度、風速、風向
の少なくとも1つの制御パラメータが一定となるよう
に、測定位置8で測定した制御パラメータや別途取得し
た各種温度情報に基づき学習しながら吹出口5から吹き
出す分離空気の温度、風量、風速の制御値を決定し、空
調制御系6に与えることを繰り返す。
Therefore, as shown in FIG. 1, after the high-temperature region 3 and the low-temperature region 4 are separately formed below the heat accumulation region 2, as shown in FIG. The operation of stably maintaining the different environment is repeatedly performed. Specifically, the control device 7 acquires control parameters of the air temperature, the wind speed, and the wind direction near the separation height position (measurement position 8) measured at regular intervals from the measurement system illustrated in FIG. Various temperature information from the temperature sensors 9, 10, 12 and the pyranometer 11 is acquired. Then, based on the control parameters measured at the measurement position 8 and various temperature information separately acquired, at least one control parameter of the air temperature, the wind speed, and the wind direction near the separation height position (measurement position 8) becomes constant. While learning, the control values of the temperature, the amount of air, and the speed of the separated air blown out from the outlet 5 are determined, and the control values are repeatedly given to the air-conditioning control system 6.

【0030】このとき、制御装置7は、分離空気の制御
値を決定する際に高温度領域3と低温度領域4に与える
影響を予測し、予測値を高温度領域3と低温度領域4そ
れぞれの空調制御系13、14に各別に与え、それぞれ
の領域の空調制御に反映させる。更に、高温度領域3と
低温度領域4それぞれの空調制御系13、14は、それ
ぞれの領域での負荷変動に対し追従した制御を行うが、
その際に分離空気の制御に与える影響を予測し、それぞ
れの予測値を制御装置7に与える。制御装置7は、それ
らの予測値を分離空気の制御に反映させ、高温度領域3
と低温度領域4の安定的な維持を図る。
At this time, the control device 7 predicts the influence on the high temperature region 3 and the low temperature region 4 when determining the control value of the separated air, and divides the predicted values into the high temperature region 3 and the low temperature region 4 respectively. The air conditioning control systems 13 and 14 are individually given to each other and reflected in the air conditioning control of each area. Furthermore, the air-conditioning control systems 13 and 14 in the high temperature region 3 and the low temperature region 4 perform control following load fluctuation in each region.
At that time, the influence on the control of the separated air is predicted, and each predicted value is given to the control device 7. The control device 7 reflects those predicted values in the control of the separated air, and
And the low temperature region 4 is stably maintained.

【0031】図3は、制御装置が以上のように行う動作
を示したものである。図3において制御装置7の動作
は、入力取得過程と、中間過程と、出力過程とに分けて
考えることができる。入力取得過程では、一定の時間間
隔で、分離高さ温度a、分離高さ風速b、分離高さ風向
c、日射量(天井面温度)d、熱溜まり領域温度e、低
温度領域温度f、高温度領域温度gをそれぞれ取得す
る。
FIG. 3 shows the operation performed by the control device as described above. In FIG. 3, the operation of the control device 7 can be considered in an input acquisition process, an intermediate process, and an output process. In the input acquisition process, at a fixed time interval, the separation height temperature a, the separation height wind speed b, the separation height wind direction c, the amount of solar radiation (ceiling surface temperature) d, the heat accumulation region temperature e, the low temperature region temperature f, The high temperature region temperature g is obtained.

【0032】分離高さ温度aと分離高さ風速bと分離高
さ風向cは、例えば図2示す計測システムによって取得
する。勿論、分離高さ温度aと分離高さ風速bと分離高
さ風向cの何れか1つのみを取得することでも良い。制
御精度や取り付け得るセンサ等との関係から選択するこ
とになる。また、日射量(天井面温度)d、熱溜まり領
域温度e、低温度領域温度f、高温度領域温度gは、そ
れぞれ、日射計10、温度センサ9、温度センサ10、
12から取得したものである。
The separation height temperature a, the separation height wind speed b, and the separation height wind direction c are acquired by, for example, the measurement system shown in FIG. Of course, only one of the separation height temperature a, the separation height wind speed b, and the separation height wind direction c may be obtained. The selection is made based on the relationship between the control accuracy and the sensors that can be attached. The solar radiation amount (ceiling surface temperature) d, the heat accumulation region temperature e, the low temperature region temperature f, and the high temperature region temperature g are respectively a pyranometer 10, a temperature sensor 9, a temperature sensor 10,
12.

【0033】中間過程では、入出力の相関を学習により
最適化することが行われる。即ち、入力過程で取得した
a〜gの多入力から分離空気強さh、熱溜まり領域状況
i、外界条件熱負荷j、低温度領域熱負荷k、高温度領
域熱負荷mをそれぞれ推定する。熱溜まり領域状況iに
は、温度の他に、領域の厚さや空気の流れ等が含まれ
る。そして、推定した分離空気強さh、熱溜まり領域状
況i、外界条件熱負荷j、低温度領域熱負荷k、高温度
領域熱負荷mから分離空気吹出条件nと低温度領域吹出
条件pと高温度領域吹出条件qとを求める。
In the intermediate process, the correlation between input and output is optimized by learning. That is, from the multiple inputs a to g obtained in the input process, the separated air strength h, the heat accumulation area condition i, the external condition heat load j, the low temperature area heat load k, and the high temperature area heat load m are estimated. The heat accumulation region situation i includes the thickness of the region, the flow of air, and the like, in addition to the temperature. Then, based on the estimated separated air strength h, the heat accumulation region condition i, the external condition heat load j, the low temperature region heat load k, and the high temperature region heat load m, the separated air blowing condition n, the low temperature region blowing condition p and the high A temperature region blowing condition q is obtained.

【0034】出力過程では、分離空気吹出条件nと低温
度領域吹出条件pと高温度領域吹出条件qとから、風量
に関する制御値(風量大r・風量小s)、風速に関する
制御値(風速大t・風速小u)、温度に関する制御値
(温度高v・温度低w)を求める。そして、分離空気吹
出条件nから求めた制御値(r〜w)を空調制御系6に
出力し、低温度領域吹出条件pから求めた制御値(r〜
w)を空調制御系13に出力し、高温度領域吹出条件q
から求めた制御値(r〜w)を空調制御系14に出力す
る。
In the output process, a control value relating to the air volume (large air volume r, small air volume s) and a control value relating to the wind speed (high wind speed) are obtained from the separated air blowing condition n, the low temperature region blowing condition p, and the high temperature region blowing condition q. t, small wind speed u), and control values relating to temperature (high temperature v, low temperature w). Then, the control values (r to w) obtained from the separated air blowing condition n are output to the air conditioning control system 6, and the control values (r to w) obtained from the low temperature region blowing condition p are output.
w) is output to the air-conditioning control system 13, and the high-temperature region blowing condition q
Is output to the air conditioning control system 14.

【0035】次に、空気温度、風速、風向の変化に対す
る制御態様について若干の具体例を説明する。 A.測定対象が1つの場合 (1)空気温度が測定対象の場合。この場合には、分離
高さ位置近傍の温度(測定位置8での計測値)、熱溜ま
り領域2の温度(温度センサ9の計測値)、低温度領域
4の温度(温度センサ10の計測値)、建物1の屋根の
表面温度(日射計11の測定値)が対象となる。
Next, a description will be given of some specific examples of a control mode with respect to changes in air temperature, wind speed and wind direction. A. When there is only one measurement target (1) When the air temperature is the measurement target. In this case, the temperature near the separation height position (measured value at the measurement position 8), the temperature of the heat accumulation region 2 (measured value of the temperature sensor 9), and the temperature of the low temperature region 4 (measured value of the temperature sensor 10) ), The surface temperature of the roof of the building 1 (measured value of the pyranometer 11).

【0036】分離高さ位置(測定位置8)近傍での温
度が低くなる場合には、低温度領域4の冷気が高温度領
域3へ侵入していると考えられる。逆に、分離高さ位置
(測定位置8)近傍での温度が高くなる場合には、熱溜
まり領域2の下面が下がり、必要高さまでの分離が不完
全であると考えられる。これらの場合には、分離空気の
吹出風量を増やす、風速を上げる、温度を上げる等の分
離空気を強める措置を採る。このとき、温度を上げる上
限は、熱溜まり領域2の温度を考慮して定められる。
When the temperature near the separation height position (measurement position 8) decreases, it is considered that the cool air in the low temperature region 4 has entered the high temperature region 3. Conversely, when the temperature near the separation height position (measurement position 8) increases, the lower surface of the heat accumulation region 2 is lowered, and it is considered that separation to the required height is incomplete. In these cases, measures are taken to increase the amount of the separated air, such as increasing the amount of air blown out of the separated air, increasing the wind speed, and increasing the temperature. At this time, the upper limit for increasing the temperature is determined in consideration of the temperature of the heat accumulation region 2.

【0037】熱溜まり領域2の温度が低くなる場合、
または、低温度領域4の温度が高くなる場合には、分離
空気が強すぎ、熱溜まり領域2の空気を攪拌し大循環を
生じさせていると考えられる。したがって、これらの場
合には、分離空気の吹出風量を減らす、風速を下げる、
温度を下げる等の分離空気を弱める措置を採る。 日射が強くなった場合。例えば、雨が止んで日が射し
てきた場合である。この場合には、熱溜まり領域2の空
気が直ぐに暖められる訳ではないが、屋根の表面温度が
急速に上昇するので、やがて熱溜まり領域2が高温とな
り、熱溜まり領域2の下面が降りて来ることが予想され
る。したがって、この場合には、分離空気の吹出風量を
増やす、風速を上げる、温度を上げる等の分離空気を強
める措置を採る。そして、居住域の負荷も当然大きくな
るので、高温度領域3と低温度領域4の空調制御系1
2、13も追従してそれぞれの領域の空調制御を行う。
When the temperature of the heat accumulation region 2 becomes low,
Alternatively, when the temperature of the low temperature region 4 becomes high, it is considered that the separated air is too strong and the air in the heat accumulation region 2 is stirred to generate large circulation. Therefore, in these cases, reduce the amount of air blown out of the separated air, lower the wind speed,
Take measures such as lowering the temperature to weaken the separated air. When insolation increases. For example, when the rain stops and the sun comes. In this case, the air in the heat accumulation region 2 is not immediately heated, but the surface temperature of the roof rapidly rises, so that the heat accumulation region 2 becomes high in temperature and the lower surface of the heat accumulation region 2 comes down. It is expected that. Therefore, in this case, measures are taken to increase the amount of the separated air, such as increasing the amount of air blown out of the separated air, increasing the wind speed, and increasing the temperature. Since the load on the living area naturally increases, the air conditioning control system 1 in the high temperature area 3 and the low temperature area 4
Air conditioning control of each area is also performed by following steps 2 and 13.

【0038】(2)垂直方向の風速が測定対象の場合。 風速が速くなる場合には、分離空気が強すぎ、熱溜ま
り領域2の空気を攪拌し大循環を生じさせると考えられ
る。この場合には、分離空気の吹出風量を減らす、風速
を下げる、温度を下げる等の分離空気を弱める措置を採
る。 風速が遅くなる場合には、熱溜まり領域2の下面が下
がり、必要高さまでの分離が不完全であると考えられ
る。この場合には、分離空気の吹出風量を増やす、風速
を上げる、温度を上げる等の分離空気を強める措置を採
る。
(2) The case where the wind speed in the vertical direction is the object to be measured. When the wind speed is high, it is considered that the separated air is too strong and agitates the air in the heat accumulation region 2 to generate large circulation. In this case, measures to reduce the separation air, such as reducing the amount of blown air of the separation air, lowering the wind speed, and lowering the temperature, are taken. When the wind speed decreases, the lower surface of the heat accumulation region 2 is lowered, and it is considered that separation to the required height is incomplete. In this case, measures to increase the separation air, such as increasing the amount of blown air of the separation air, increasing the wind speed, and increasing the temperature, are taken.

【0039】(3)風向が測定対象の場合。 風向が下部から上部へ向かう方向となる場合には、分
離空気が強すぎ、熱溜まり領域2の空気を攪拌し大循環
が生じていると考えられる。この場合には、分離空気の
吹出風量を減らす、風速を下げる、温度を下げる等の分
離空気を弱める措置を採る。
(3) When the wind direction is the object to be measured. When the wind direction is from the lower part to the upper part, it is considered that the separated air is too strong and the air in the heat accumulation region 2 is agitated to generate large circulation. In this case, measures to reduce the separation air, such as reducing the amount of blown air of the separation air, lowering the wind speed, and lowering the temperature, are taken.

【0040】風向が低温度領域4から高温度領域へ向
かう方向となる場合には、低温度領域4の冷気が高温度
領域3へ侵入していると考えられる。この場合には、分
離空気の吹出風量を増やす、風速を上げる、温度を上げ
る等の分離空気を強める措置を採る。 B.測定対象が2つの場合 分離高さ位置(測定位置8)近傍での温度が上昇し、
かつ風速が減少した場合には、必要高さまでの分離が不
完全であると考えられる。この場合には、分離空気の吹
出風量を増やす、風速を上げる、温度を上げる等の分離
空気を強める措置を採る。
When the wind direction is from the low temperature region 4 to the high temperature region, it is considered that the cool air in the low temperature region 4 has entered the high temperature region 3. In this case, measures to increase the separation air, such as increasing the amount of blown air of the separation air, increasing the wind speed, and increasing the temperature, are taken. B. When the number of measurement objects is two, the temperature near the separation height position (measurement position 8) increases,
If the wind speed decreases, the separation to the required height is considered to be incomplete. In this case, measures to increase the separation air, such as increasing the amount of blown air of the separation air, increasing the wind speed, and increasing the temperature, are taken.

【0041】分離高さ位置(測定位置8)近傍での温
度が下降し、かつ風速が増加した場合には、分離空気が
強すぎ、熱溜まり領域2の空気を攪拌し大循環を生じて
いると考えられる。この場合には、分離空気の吹出風量
を減らす、風速を下げる、温度を下げる等の分離空気を
弱める措置を採る。 分離高さ位置(測定位置8)近傍での温度が下降し、
かつ風向が低温度領域4から高温度領域3へと変化した
場合には、低温度領域4の冷気が高温度領域3へ侵入し
ていると考えられる。この場合には、分離空気の吹出風
量を増やす、風速を上げる、温度を上げる等の分離空気
を強める措置を採る。
When the temperature near the separation height position (measurement position 8) decreases and the wind speed increases, the separated air is too strong and agitates the air in the heat accumulation region 2 to generate large circulation. it is conceivable that. In this case, measures to reduce the separation air, such as reducing the amount of blown air of the separation air, lowering the wind speed, and lowering the temperature, are taken. The temperature near the separation height position (measurement position 8) decreases,
When the wind direction changes from the low temperature region 4 to the high temperature region 3, it is considered that the cool air in the low temperature region 4 has entered the high temperature region 3. In this case, measures to increase the separation air, such as increasing the amount of blown air of the separation air, increasing the wind speed, and increasing the temperature, are taken.

【0042】以上の措置により、微妙なエアバランスの
下で維持される大きな温度差のある2つの異環境が安定
的に維持される。なお、本実施形態では、熱溜まり領域
2の空気を分離空気に利用するので、空調制御系6の熱
効率が向上する。勿論、空調制御系6は、建物1の外気
を取り込み分離空気を生成することでも良い。
By the above measures, two different environments having a large temperature difference maintained under a delicate air balance are stably maintained. In this embodiment, since the air in the heat accumulation region 2 is used as the separated air, the thermal efficiency of the air conditioning control system 6 is improved. Of course, the air conditioning control system 6 may take in the outside air of the building 1 and generate the separated air.

【0043】[0043]

【発明の効果】以上説明したように、請求項1、7に記
載の発明では、2つの異環境の分離境界における分離高
さ位置近傍での空気温度、風速、風向の少なくとも1つ
が一定となるように、分離空気の温度、風量、風速を制
御する。これにより、所定の分離高さ位置において空気
により分離形成した温度差のある2つの異環境を安定的
に維持できる。
As described above, according to the first and seventh aspects of the present invention, at least one of the air temperature, the wind speed and the wind direction near the separation height position at the separation boundary between two different environments becomes constant. Thus, the temperature, air volume, and air speed of the separated air are controlled. Thus, two different environments having a temperature difference separated by air at a predetermined separation height position can be stably maintained.

【0044】請求項2に記載の発明では、空気温度、風
速、風向の何れか1つだけでなく、2以上の制御パラメ
ータを含めることができる。したがって、制御精度の向
上を図ることが容易となる。請求項3に記載の発明で
は、空気温度に基づき分離空気の温度、風量、風速を制
御する場合には、分離高さ位置近傍での空気温度だけで
なく、熱溜まり領域の温度、低温度領域の温度、日射計
の測定値などの外的要因も対象とすることができ、負荷
変動に追従した制御が可能となり、また構成の容易化が
図れる。
According to the second aspect of the invention, not only one of the air temperature, the wind speed, and the wind direction but also two or more control parameters can be included. Therefore, it is easy to improve control accuracy. According to the third aspect of the invention, when controlling the temperature, air volume, and wind speed of the separated air based on the air temperature, not only the air temperature near the separation height position, but also the temperature of the heat accumulation region and the low temperature region External factors such as the temperature of the object and the measured value of a pyranometer can also be targeted, and control following load fluctuations can be performed, and the configuration can be simplified.

【0045】請求項4に記載の発明では、暖まっている
熱溜まり領域の空気を利用するので、熱効率の良い制御
が可能となる。請求項5に記載の発明では、分離維持の
制御動作を2つの異環境の空調制御に時間遅れなく反映
させることができる。請求項6に記載の発明では、分離
維持の制御動作に2つの異環境の負荷変動を時間遅れな
く反映させることができる。
According to the fourth aspect of the present invention, since the air in the heated heat accumulation region is used, it is possible to perform control with good thermal efficiency. According to the fifth aspect of the present invention, the control operation for maintaining the separation can be reflected in the air conditioning control of two different environments without time delay. According to the sixth aspect of the present invention, it is possible to reflect load fluctuations of two different environments without delay in the control operation for maintaining separation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1乃至請求項7に記載の発明に対応する
実施形態の構成概念図である。
FIG. 1 is a conceptual diagram of a configuration of an embodiment corresponding to the invention described in claims 1 to 7;

【図2】計測システムの構成例である。FIG. 2 is a configuration example of a measurement system.

【図3】ニューラルネットワークを利用した制御系の動
作フローチャートである。
FIG. 3 is an operation flowchart of a control system using a neural network.

【符号の説明】[Explanation of symbols]

1 建物 2 熱溜まり領域 3 高温度領域 4 低温度領域 5 吹出口 6、13、14 空調制御系 7 制御装置 8 測定位置 9、10、12 温度センサ 11 日射計 21 スピーカ 22 集音マイク 23 パーソナルコンピュータ(PC) DESCRIPTION OF SYMBOLS 1 Building 2 Heat accumulation area 3 High temperature area 4 Low temperature area 5 Air outlet 6,13,14 Air conditioning control system 7 Control device 8 Measurement position 9,10,12 Temperature sensor 11 Pyranometer 21 Speaker 22 Sound collecting microphone 23 Personal computer (PC)

フロントページの続き (51)Int.Cl.6 識別記号 FI G05D 27/00 G05D 27/00 Z (72)発明者 高井 啓明 東京都中央区銀座8丁目21番1号 株式会 社竹中工務店東京本店内 (72)発明者 有吉 淳 東京都中央区銀座8丁目21番1号 株式会 社竹中工務店東京本店内 (72)発明者 水谷 義和 東京都中央区銀座8丁目21番1号 株式会 社竹中工務店東京本店内Continued on the front page (51) Int.Cl. 6 Identification code FI G05D 27/00 G05D 27/00 Z (72) Inventor Hiroaki Takai 8-21-1, Ginza, Chuo-ku, Tokyo Takenaka Corporation Tokyo Head Office In-store (72) Inventor Jun Ariyoshi 8-21-1, Ginza, Chuo-ku, Tokyo Inside Takenaka Corporation Tokyo Main Store (72) Inventor Yoshikazu Mizutani 8-2-1-1, Ginza, Chuo-ku, Tokyo Takenaka Corporation Construction office Tokyo head office

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 上部に熱溜まり領域が形成されるような
空間において、下方に温度差のある2つの異環境を空気
により分離形成する異環境分離装置であって、 前記2つの異環境の分離境界線に沿って設けられ、分離
空気を分離境界面に沿って吹き上げる開口を有する吹出
口と、 前記2つの異環境の分離境界における分離高さ位置近傍
での空気温度、風速、風向の少なくとも1つの制御パラ
メータを測定する測定手段と、 前記分離高さ位置近傍での前記制御パラメータが一定と
なるように、前記吹出口から吹き出す分離空気の温度、
風量、風速を制御する制御手段とを備えることを特徴と
する異環境分離装置。
1. A different environment separating apparatus for separating and forming two different environments having a temperature difference downward by air in a space in which a heat accumulation region is formed in an upper part, wherein the two different environments are separated. An outlet provided along the boundary line and having an opening for blowing separated air along the separation boundary surface; and at least one of an air temperature, a wind speed, and a wind direction near a separation height position at the separation boundary between the two different environments. Measuring means for measuring two control parameters, the temperature of the separated air blown out from the outlet, so that the control parameters near the separation height position are constant,
A different environment separating apparatus, comprising: a control unit for controlling an air volume and a wind speed.
【請求項2】 請求項1に記載の異環境分離装置におい
て、 前記制御手段は、測定した制御パラメータに基づき分離
空気の空気温度、風量、風速を制御することを特徴とす
る異環境分離装置。
2. The different environment separating apparatus according to claim 1, wherein the control means controls the temperature, amount, and speed of the separated air based on the measured control parameters.
【請求項3】 請求項1に記載の異環境分離装置におい
て、 前記制御手段は、前記熱溜まり領域の温度、低温度領域
の温度、日射計の測定値の少なくとも1つに基づき分離
空気の空気温度、風量、風速を制御することを特徴とす
る異環境分離装置。
3. The apparatus according to claim 1, wherein the control unit is configured to control the temperature of the heat accumulation area, the temperature of the low temperature area, and the measured value of a pyranometer. A different environment separation device characterized by controlling temperature, air volume, and wind speed.
【請求項4】 請求項1に記載の異環境分離装置におい
て、 前記分離空気は、前記熱溜まり領域から取得した空気が
用いられることを特徴とする異環境分離装置。
4. The different environment separating apparatus according to claim 1, wherein the separated air is air obtained from the heat accumulation region.
【請求項5】 請求項1に記載の異環境分離装置におい
て、 前記制御手段は、制御結果が前記2つの異環境のそれぞ
れに与える影響度合いを予測し、予測結果を前記2つの
異環境のそれぞれにおける空調制御系に出力することを
特徴とする異環境分離装置。
5. The different environment separating apparatus according to claim 1, wherein the control unit predicts a degree of influence of a control result on each of the two different environments, and calculates a prediction result for each of the two different environments. A different environment separating apparatus, wherein the output is provided to an air conditioning control system in the apparatus.
【請求項6】 請求項1に記載の異環境分離装置におい
て、 前記2つの異環境のそれぞれにおける空調制御系は、負
荷変動に応答して制御する内容の分離空気に与える影響
度合いを予測し、予測結果を前記制御手段に出力するこ
とを特徴とする異環境分離装置。
6. The different environment separating apparatus according to claim 1, wherein the air conditioning control system in each of the two different environments predicts a degree of influence of the content to be controlled on the separated air in response to a load change, A different environment separating apparatus for outputting a prediction result to the control means.
【請求項7】 上部に熱溜まり領域が形成されるような
空間において、下方に温度差のある2つの異環境を空気
により分離形成する異環境分離の制御方法であって、 前記2つの異環境の分離境界における分離高さ位置近傍
での空気温度、風速、風向の少なくとも1つの制御パラ
メータを測定する手順と、 前記分離高さ位置近傍での前記制御パラメータが一定と
なるように、前記2つの異環境の分離境界線に沿って設
けられた吹出口から吹き出す分離空気の温度、風量、風
速を制御する手順とを備えることを特徴とする異環境分
離の制御方法。
7. A method for controlling different environment separation in which two different environments having a temperature difference below are separated and formed by air in a space in which a heat accumulation region is formed in an upper part, wherein the two different environments are separated by air. Measuring at least one control parameter of air temperature, wind speed, and wind direction near the separation height position at the separation boundary of the separation boundary; and controlling the two control parameters so that the control parameter near the separation height position is constant. Controlling the temperature, air volume, and wind speed of the separated air blown out from an outlet provided along a separation boundary between different environments.
JP12719798A 1998-05-11 1998-05-11 Different environment separation apparatus and different environment separation control method Expired - Fee Related JP3784960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12719798A JP3784960B2 (en) 1998-05-11 1998-05-11 Different environment separation apparatus and different environment separation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12719798A JP3784960B2 (en) 1998-05-11 1998-05-11 Different environment separation apparatus and different environment separation control method

Publications (2)

Publication Number Publication Date
JPH11325564A true JPH11325564A (en) 1999-11-26
JP3784960B2 JP3784960B2 (en) 2006-06-14

Family

ID=14954111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12719798A Expired - Fee Related JP3784960B2 (en) 1998-05-11 1998-05-11 Different environment separation apparatus and different environment separation control method

Country Status (1)

Country Link
JP (1) JP3784960B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005074268A (en) * 2003-08-29 2005-03-24 Oriental Giken Kogyo Kk Fume hood
JP2009264619A (en) * 2008-04-23 2009-11-12 Mitsubishi Electric Building Techno Service Co Ltd Indoor air-conditioning control system
CN103574828A (en) * 2013-11-13 2014-02-12 欧阳国华 Large-scale integrated wind screen isolating device and method
CN105320193A (en) * 2015-11-25 2016-02-10 哈尔滨工业大学 Base station energy-efficient integrated management system and method
CN105674469A (en) * 2016-03-06 2016-06-15 刘倩 Room air isolation device
WO2016157675A1 (en) * 2015-03-30 2016-10-06 パナソニックIpマネジメント株式会社 Control system, control method, and control program
JP2020134051A (en) * 2019-02-21 2020-08-31 三菱電機株式会社 Air conditioner control device, air conditioner control method, and program
JP2020533547A (en) * 2017-09-06 2020-11-19 バーティブ・コーポレイション Cooling unit energy optimization through smart supply air temperature setpoint control

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140724A (en) * 1989-10-26 1991-06-14 Techno Ryowa:Kk Air conditioning system for large space building
JPH04142A (en) * 1990-04-16 1992-01-06 Shimizu Corp Hot heat environment control system
JPH08100940A (en) * 1992-10-23 1996-04-16 Matsushita Electric Ind Co Ltd Load estimating device for air-conditioning machine
JPH08240335A (en) * 1995-03-03 1996-09-17 Toshiba Corp Air-conditioning heat load estimating device for building
JPH10110993A (en) * 1996-10-07 1998-04-28 Mitsubishi Heavy Ind Ltd Stratified temperature air-conditioning system
JPH10170051A (en) * 1996-10-07 1998-06-26 Mitsubishi Heavy Ind Ltd Air conditioning controller

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140724A (en) * 1989-10-26 1991-06-14 Techno Ryowa:Kk Air conditioning system for large space building
JPH04142A (en) * 1990-04-16 1992-01-06 Shimizu Corp Hot heat environment control system
JPH08100940A (en) * 1992-10-23 1996-04-16 Matsushita Electric Ind Co Ltd Load estimating device for air-conditioning machine
JPH08240335A (en) * 1995-03-03 1996-09-17 Toshiba Corp Air-conditioning heat load estimating device for building
JPH10110993A (en) * 1996-10-07 1998-04-28 Mitsubishi Heavy Ind Ltd Stratified temperature air-conditioning system
JPH10170051A (en) * 1996-10-07 1998-06-26 Mitsubishi Heavy Ind Ltd Air conditioning controller

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005074268A (en) * 2003-08-29 2005-03-24 Oriental Giken Kogyo Kk Fume hood
JP4532087B2 (en) * 2003-08-29 2010-08-25 オリエンタル技研工業株式会社 Fume hood
JP2009264619A (en) * 2008-04-23 2009-11-12 Mitsubishi Electric Building Techno Service Co Ltd Indoor air-conditioning control system
CN103574828A (en) * 2013-11-13 2014-02-12 欧阳国华 Large-scale integrated wind screen isolating device and method
WO2016157675A1 (en) * 2015-03-30 2016-10-06 パナソニックIpマネジメント株式会社 Control system, control method, and control program
CN105320193A (en) * 2015-11-25 2016-02-10 哈尔滨工业大学 Base station energy-efficient integrated management system and method
CN105320193B (en) * 2015-11-25 2017-06-16 哈尔滨工业大学 Base station energy-saving total management system and method
CN105674469A (en) * 2016-03-06 2016-06-15 刘倩 Room air isolation device
JP2020533547A (en) * 2017-09-06 2020-11-19 バーティブ・コーポレイション Cooling unit energy optimization through smart supply air temperature setpoint control
JP2020134051A (en) * 2019-02-21 2020-08-31 三菱電機株式会社 Air conditioner control device, air conditioner control method, and program

Also Published As

Publication number Publication date
JP3784960B2 (en) 2006-06-14

Similar Documents

Publication Publication Date Title
US8958921B2 (en) Method for operating building climate control system using integrated temperature and humidity models
US10533763B2 (en) Controller of air-conditioning system and method for controlling air-conditioning system
DK2449314T3 (en) A method and device for tempering of a building
US20100101264A1 (en) Air conditioning blow-out panel, air conditioning control system including the same and air conditioning control method
US20050209813A1 (en) Temperature sensing device
CN110520679A (en) Heating,Ventilating and Air Conditioning generator set controller
CN103282841A (en) Building automation system
KR101187519B1 (en) Air conditioning operating apparatus and air conditioning operating method
JPH11325564A (en) Different environment separating device and control method of different environment separation
US4793553A (en) Infrared thermostat control
EP3997545B1 (en) Method and system for controlling the temperature of a room
CN112178785A (en) Dehumidification control method and dehumidification control equipment for air conditioner
CN113091243A (en) Control system and method for intelligently controlling air conditioner
WO2012091820A1 (en) System and method for measuring atmospheric parameters in enclosed spaces
CN112268350B (en) Air conditioner side load prediction method based on system delay
TWI746087B (en) Air conditioning system control method
CN2448101Y (en) Constant temp. incubator
CN114251809A (en) Intelligent control method and device for upper air outlet of air conditioner with upper air outlet and lower air outlet and air conditioner
US11320169B2 (en) Controller, radiative air-conditioning equipment, and control method
KR102070889B1 (en) Valve controller for heating system
JPH06331201A (en) Indoor environment setting device for air conditioner
CN108388175A (en) Self-optimizing efficiency managing and control system based on artificial neural network and method
JPH06213493A (en) Controller for air-conditioning operation
KR20200010972A (en) Automatic control artificial intelligence device and method for update control function
JPH06159765A (en) Operation controller for air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees