JPH11324683A - Scavenge air passage for 2-cycle engine - Google Patents

Scavenge air passage for 2-cycle engine

Info

Publication number
JPH11324683A
JPH11324683A JP17378798A JP17378798A JPH11324683A JP H11324683 A JPH11324683 A JP H11324683A JP 17378798 A JP17378798 A JP 17378798A JP 17378798 A JP17378798 A JP 17378798A JP H11324683 A JPH11324683 A JP H11324683A
Authority
JP
Japan
Prior art keywords
scavenging passage
bent portion
scavenging
passage
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17378798A
Other languages
Japanese (ja)
Inventor
Shuichi Kitamura
修一 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP17378798A priority Critical patent/JPH11324683A/en
Publication of JPH11324683A publication Critical patent/JPH11324683A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • F02F1/22Other cylinders characterised by having ports in cylinder wall for scavenging or charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the degree of concentration separation of mixture in a cylinder, to reduce the blow-by of fuel, and to improve the fuel consumption and exhaust gas characteristics by holding the concentration separation results of the mixture by a bending part in the downstream side of the bending part. SOLUTION: Mixture flowing in a scavenge air passage 7 is separated according to the concentration in a bending part 9 by a centrifuging action so that a rich mixture and a lean mixture are so set as to flow in the direction for the combustion chamber in a place far from and near the exhaust port respectively. The scavenge air passage 7 in the downstream side of the bending part 9 is partitioned by a partition wall 10 to reinforce the orientation operation in an exit part. The curvature radius of the external inside wall of the bending part 9 is set to 1.1 times as large as the width H of the scavenge air passage right before the bending part from the viewpoint of the cylinder inside.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は曲折部を有する掃気通路
を備えた2サイクル機関に係わり、曲折部における混合
気の遠心分離作用による効果を高めたものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-stroke engine provided with a scavenging passage having a bent portion, and more particularly to a two-stroke engine in which the effect of centrifugal separation of the air-fuel mixture at the bent portion is enhanced.

【0002】[0002]

【従来の技術】従来の曲折部を有する掃気通路を備えた
2サイクル機関は一般に図2(内燃機関、1988年7
月、p31)の如くクランク室4′からシリンダー内へ
通じる掃気通路7′の所定位置に曲折部9′が形成さ
れ、この曲折部9′において混合気は流れの遠心分離作
用により濃淡に分離され、シリンダー内では排気口から
遠いところは濃混合気が、近いところは希薄混合気が燃
焼室方向へ流れ、燃料の吹き抜けを減少させる事を目的
としている。しかしながら曲折部9′の外側内壁面の曲
率半径R′が比較的小さい為、乱流が発生して混合気が
遠心分離作用により濃淡に分離されても曲折部9′の下
流側では混合が起り、シリンダー内での混合気の濃淡分
離の度合が弱まり、燃料の吹抜けを十分に減少させる事
はできなかった.
2. Description of the Related Art A conventional two-stroke engine having a scavenging passage having a bent portion is generally shown in FIG. 2 (internal combustion engine, July 1988).
A bent portion 9 'is formed at a predetermined position of the scavenging passage 7' leading from the crank chamber 4 'into the cylinder as shown in the drawing, p31). In the bent portion 9', the air-fuel mixture is separated into light and dark by centrifugal action of the flow. In a cylinder, a rich air-fuel mixture flows in a place far from the exhaust port and a lean air-fuel mixture flows in a direction near the exhaust port, thereby reducing fuel blow-through. However, since the radius of curvature R 'of the outside inner wall surface of the bent portion 9' is relatively small, even if turbulence occurs and the air-fuel mixture is separated into light and dark by centrifugal separation, mixing occurs on the downstream side of the bent portion 9 '. However, the degree of concentration separation of the air-fuel mixture in the cylinder became weak, and it was not possible to sufficiently reduce fuel blow-through.

【0003】[0003]

【発明が解決しようとする問題点】本発明の目的は曲折
部による混合気の濃淡分離結果を曲折部の下流側でもそ
のまま維持する事によってシリンダー内での混合気の濃
淡分離の度合を高め、以って燃料の吹き抜けを減少さ
せ、燃費と排ガス特性を改善するところにある。
SUMMARY OF THE INVENTION It is an object of the present invention to increase the degree of density separation of an air-fuel mixture in a cylinder by maintaining the result of concentration separation of an air-fuel mixture by a bent portion as it is downstream of the bent portion. Therefore, it is intended to reduce fuel blow-through and improve fuel efficiency and exhaust gas characteristics.

【0004】[0004]

【問題点を解決する為の手段】本発明は掃気通路内を流
れる混合気を曲折部において遠心分離作用により濃淡に
分離し、これにより排気口から遠いところは濃混合気
が、排気口に近いところは希薄混合気が燃焼室方向へ向
かって流れる様にしたシュニーレ掃気式2サイクル機関
において、前記曲折部の下流側の掃気通路を分離壁によ
って分割して掃気通路出口部における方向づけ作用を強
化し、かつ前記曲折部の外側内壁面の曲率半径を曲折部
直前の掃気通路のシリンダー内部から見た幅の1.1倍
以上とした。
According to the present invention, the air-fuel mixture flowing in the scavenging passage is separated into dark and light by the centrifugal separation action at the bent portion, whereby the rich air-fuel mixture is located far from the exhaust port and close to the exhaust port. However, in a Schnille scavenging type two-stroke engine in which the lean mixture flows toward the combustion chamber, the scavenging passage downstream of the bent portion is divided by a separation wall to enhance the directing action at the scavenging passage outlet. The radius of curvature of the outer inner wall surface of the bent portion is 1.1 times or more the width of the scavenging passage immediately before the bent portion as viewed from the inside of the cylinder.

【0005】[0005]

【実施例】図1(イ)は本発明による2サイクル機関の
一実施例で、ピストン3の下降行程では先ず排気通路1
1が、続いて掃気通路7が開かれ、シリンダー1内の既
燃ガスが掃気される。この掃気過程を通してシリンダー
1内に留まった新気はピストン3の上昇と共に圧縮され
(同時に気化器5,吸入通路6を介して混合気がクラン
ク室4内に吸入される)、上死点付近で点火されて燃焼
し、爆発力を発生する.クランク室4からシリンダー内
へ通ずる掃気通路7の所定位置には曲折部9が形成さ
れ、曲折部9において掃気通路7内を流れる混合気が遠
心分離作用により濃淡に分離される。従ってシリンダー
内へ流入すると排気口(排気通路11がシリンダー内壁
面に開口する部分を言う)から遠いところは濃混合気
が、排気口に近いところは希薄混合気が燃焼室方向へ向
かって流れる様になる.本発明では掃気方式はシュニー
レ掃気式であり、曲折部9の下流側の掃気通路を分離壁
10によって分割(図は2分割であるが、3分割でも良
い)し、掃気通路出口部における方向づけ作用(ノズル
機能)を強化している.掃気通路7の入口部から曲折部
9まで到らない所定のところまでの掃気通路8をクラン
ク室4との仕切壁がない溝状とすれば(図2は仕切壁あ
り)、構造及び製作が簡単となる.そしてこの掃気通路
の部分8を越えると曲折部9までの掃気通路の部分はイ
ンロー部2により蓋をされ、インロー部2が掃気通路内
壁面の一部を形成するのである.シリンダーブロックを
底部から見た図を図1(ハ)に示し、クランクケースを
シリンダーブロックとの結合面A−A′から見た図を図
1(ニ)に示す(共に要部のみ示す)。この場合、シリ
ンダーブロックとクランクケース間の結合面直前のクラ
ンクケース側掃気通路において、曲折部9の曲りに対し
て内側の内壁面13がクランクケースの左右分割面B−
B′にほぼ垂直である様にすると(適当な抜き勾配は付
ける)、鋳造上好都合である(通常は内壁面13は1
3′に平行であり、アンダーカット形状となる為、砂中
子を使用せねばならない).従ってこの内壁面13に接
続するシリンダーブロック側の掃気通路内壁面はその形
状に合わせる必要がある(図1(ハ)参照)。即ち、1
2は滑らかな斜面で、掃気通路内の流れを円滑にしてい
る。尚、図1(イ)においてS=0として、掃気通路7
の曲折部9よりも上流側の内壁面の一部がシリンダーブ
ロックとクランクケース間の結合面A−A′により形成
される様にする事も可能で、これを図1(ロ)に示し、
結合面A−A′から見たクランクケースを図1(ホ)に
要部のみ示す。構造が簡単で、製作が容易となり、低コ
スト化する利点が生まれる。再び図1(イ)に戻って、
本発明は曲折部9の外側内壁面の曲率半径Rを曲折部直
前の掃気通路7のシリンダー内部から見た幅Hの1.1
倍以上としたところに特徴がある(曲折部直前とは曲折
部9の直ぐ上流側と言う意味である)。曲折部9の内側
内壁面の曲率半径rは付着した液体燃料を再び気流に乗
せる為に極く小さくしてある。曲率半径比φをφ=R/
Hと定義し、φの値を変えて実験した結果を図3に示
す。実験は曲折部9を有する掃気通路7を図3の如く透
明な樹脂で模型的に作り、内部に非常に細かな粉(ガス
化していない燃料粒子に相当)をブロワにより吹き込ん
で観察した。図3(イ)はφ=0.5の時で、斜線部は
粉の流れを示し、曲率半径Rが小さい為、曲率部9の下
流側で乱流が発生し、曲折部9で粉は遠心分離しても下
流側に進むにつれて混合し、明確には分離していない。
図3(ロ)はφ=1の時で、掃気通路7の出口部付近で
も粉の濃淡分離はかなり明確になってはいるが、十分で
はない。図3(ハ)はφ=1.1の時で、粉の濃淡分離
は明確で、十分であると判断した。分離壁10に油を塗
って見たが、粉は殆ど付着しなかった。二重の斜線部は
粉の濃度が高い部分の流れで、曲折部9の上流側にも曲
折部がある為、図示の様な流れになるのである(単一の
斜線部は粉の濃度が低い部分の流れであるが、Z部を流
れる粉は遠心分離作用を受けて濃淡に分離されつつ流れ
てゆく)。図3(ニ)はφ=1.2の時で、図3(ハ)
の場合より更に良好で、分離壁10に油を塗っても粉の
付着は殆どなかった。図3(ホ)はφ=1.4の時で、
粉の濃淡分離は極めて明確で、分離壁10に油を塗って
も粉は全く付着しなかった。以上から、φ=1.1以上
では曲折部9の下流側でも粉の濃淡分離は明確で、両者
の混合はないと考えられる。この事は、粉はガス化して
いない燃料粒子を表わしているから、混合気の濃淡分離
が曲折部9で行なわれた状態のまま掃気通路の出口部ま
で維持されている事を示すものである。φ=1.1以上
の場合でも図3(ホ)の矢印の如く掃気通路の出口部か
ら粉が噴出する時は掃気通路の内壁面方向から僅かでは
あるが傾いて噴出する傾向が見られたが、これは曲折部
9の影響が若干残っている為であろう。これをなくすに
は図3(ヘ)の如く掃気通路の曲折部9よりも下流側に
あり、かつ掃気通路の出口部における方向づけを行なう
内壁面に接続する排気口から最も遠い方の側にある内壁
面14が出口部に向かうに従って排気口から徐々に遠ざ
かる様に構成する事が考えられる。図3において濃混合
気の流れ(二重の斜線部)からも明らかな様に分離壁1
0がこの流れに衝突しない様に、シリンダー内部から見
て、曲折部直前の掃気通路の燃焼室側内壁面の延長線か
ら一定距離hだけ離れた位置から分離壁10が出口部へ
向かって延びてゆく様に構成する事が望ましい.尚、曲
折部の曲率半径Rに関しては図1(ニ)の如く内壁面1
3′が結合面B−B′に対して垂直ではない為、実際は
区間Pに形成される.次に図4(ハ)に示す如く掃気通
路の出口部における排気口から最も遠い側の方向づけを
行なう内壁面の近傍の出口部aから噴出する新気はシリ
ンダー内壁面に衝突して撥ね返り、排気口へ突き抜けよ
うとするが、出口部aを除く出口部bから噴出する新気
はこれを押し返さなければならない.この場合、分離壁
10がなければ掃気通路の出口部における方向づけ作用
が弱まり(ノズル機能が弱く、噴出する新気が拡散し易
い)、出口部aから噴出してシリンダー内壁面で撥ね返
る流れを十分に押し返す事ができず、排気口へ突き抜け
る.分離壁10を形成する事により前記撥ね返りによる
排気口への突き抜けは避けられるが、燃焼室へ向かって
流れる新気は図1(イ)の如く未だ排気口側へ若干傾い
て流れる様子が見られる。これを矯正するには出口部a
から噴出してシリンダー内壁面で撥ね返るエネルギーを
減衰させれば良いわけで、図4(イ)、(ロ)の如く
(後者は前者のB矢視図である)掃気通路の出口部にお
ける排気口から最も遠い側の方向づけを行なう内壁面の
近傍の出口部aから噴出する新気の一部を衝突させて速
度エネルギーを減衰させる減衰壁面16を有するデフレ
クター15をピストン頂部に形成するのである。これに
より出口部aから噴出してシリンダー内壁面で撥ね返る
流れは弱まり、相対的に出口部bから噴出する新気の押
し返す力は強まり、新気はシリンダー内壁面に正しく沿
って(垂直に)燃焼室方向へ流れる様になる。この場
合、図4(ニ)の如く曲折部の下流側の掃気通路を分離
壁10によって2分割したものの内で、排気口に近い側
の通路分割部7bの円周方向長が遠い側の通路分割部7
aのそれよりも小である様に構成した方が効果が大であ
った.これは通路分割部7aの方向づけ作用が若干弱ま
る為であろう.17はピストン頂面まで滑らかに接続す
る斜面で、出口部bから噴出する新気の速度エネルギー
を減衰させる事はない(出口部bから噴出する新気は減
衰壁面16に衝突しない)。図4(ホ)の実施例は曲折
部9における遠心分離作用を強化する為に曲折部直前の
掃気通路を絞ったものである。尚、本発明では掃気通路
の曲折部9の曲り角度をほぼ90°とすると、中子使用
等を考えると製作が容易となる。
FIG. 1 (a) shows one embodiment of a two-stroke engine according to the present invention.
Next, the scavenging passage 7 is opened, and the burned gas in the cylinder 1 is scavenged. The fresh air remaining in the cylinder 1 during this scavenging process is compressed with the rise of the piston 3 (at the same time, the air-fuel mixture is sucked into the crank chamber 4 through the carburetor 5 and the suction passage 6), and near the top dead center. It ignites and burns, producing explosive power. A bent portion 9 is formed at a predetermined position of the scavenging passage 7 leading from the crank chamber 4 into the cylinder, and the air-fuel mixture flowing in the scavenging passage 7 is separated into dark and light by the centrifugal separation action in the bent portion 9. Therefore, when the gas flows into the cylinder, the rich mixture flows toward the combustion chamber in a location far from the exhaust port (the portion where the exhaust passage 11 opens on the inner wall surface of the cylinder) and the lean mixture near the exhaust port. become. In the present invention, the scavenging method is the schneille scavenging method, in which the scavenging passage on the downstream side of the bent portion 9 is divided by a separation wall 10 (in the figure, it is divided into two, but may be divided into three). (Nozzle function). If the scavenging passage 8 extending from the inlet of the scavenging passage 7 to a predetermined portion that does not reach the bent portion 9 is formed in a groove shape without a partition wall from the crank chamber 4 (FIG. 2 has a partition wall), the structure and manufacturing are simplified. It's easy. Then, beyond the scavenging passage portion 8, the scavenging passage portion up to the bent portion 9 is covered by the spigot portion 2, and the spigot portion 2 forms a part of the inner wall surface of the scavenging passage. FIG. 1 (c) shows a view of the cylinder block as viewed from the bottom, and FIG. 1 (d) shows a view of the crankcase from the connecting surface AA ′ with the cylinder block (both showing only essential parts). In this case, in the scavenging passage on the crankcase side immediately before the coupling surface between the cylinder block and the crankcase, the inner wall surface 13 on the inner side with respect to the bending of the bent portion 9 is divided into the left and right dividing surfaces B-
If it is substantially perpendicular to B '(with an appropriate draft), it is convenient for casting (usually, the inner wall surface 13 is 1 mm).
Since it is parallel to 3 'and has an undercut shape, a sand core must be used.) Therefore, the inner wall surface of the scavenging passage on the cylinder block side connected to the inner wall surface 13 must be adjusted to its shape (see FIG. 1C). That is, 1
Reference numeral 2 denotes a smooth slope, which makes the flow in the scavenging passage smooth. In addition, in FIG.
It is also possible to form a part of the inner wall surface on the upstream side of the bent portion 9 by the connecting surface AA ′ between the cylinder block and the crankcase, which is shown in FIG.
FIG. 1 (e) shows only a main part of the crankcase viewed from the coupling surface AA '. The structure is simple, the manufacture is easy, and the advantage of cost reduction is produced. Returning again to FIG.
In the present invention, the radius of curvature R of the outer inner wall surface of the bent portion 9 is set to 1.1 of the width H when viewed from the inside of the cylinder of the scavenging passage 7 immediately before the bent portion.
There is a characteristic in that it is set to be twice or more (the term “immediately before the bent portion” means a position immediately upstream of the bent portion 9). The radius of curvature r of the inner inner wall surface of the bent portion 9 is made extremely small so that the attached liquid fuel can be put into the airflow again. When the radius of curvature ratio φ is φ = R /
FIG. 3 shows the result of an experiment defined as H and changing the value of φ. In the experiment, the scavenging passage 7 having the bent portion 9 was modeled with a transparent resin as shown in FIG. 3, and very fine powder (corresponding to non-gasified fuel particles) was blown into the inside with a blower and observed. FIG. 3A shows a case where φ = 0.5, the hatched portion indicates the flow of the powder, and since the radius of curvature R is small, a turbulent flow is generated downstream of the curvature portion 9, and the powder is formed at the bent portion 9. Even after centrifugation, they mix as they proceed downstream and are not clearly separated.
FIG. 3 (b) shows the case where φ = 1, and the density separation of the powder is also quite clear near the outlet of the scavenging passage 7, but it is not sufficient. FIG. 3 (c) is when φ = 1.1, and it was judged that the density separation of the powder was clear and sufficient. When oil was applied to the separation wall 10, the powder hardly adhered. The double shaded portion is a flow in a portion where the concentration of powder is high, and since there is a bent portion on the upstream side of the bent portion 9, the flow is as shown in the figure. Although the flow is in a low part, the powder flowing in the Z part flows while being separated into light and shade by the centrifugal separation action). FIG. 3D shows the condition when φ = 1.2, and FIG.
The results were even better than in the case of (1), and even if oil was applied to the separation wall 10, the powder hardly adhered. FIG. 3 (e) shows when φ = 1.4.
The separation of the density of the powder was very clear, and even if oil was applied to the separation wall 10, the powder did not adhere at all. From the above, it is considered that when φ = 1.1 or more, the separation of the density of the powder is clear even on the downstream side of the bent portion 9 and there is no mixing of both. This indicates that since the powder represents fuel particles that have not been gasified, the mixture is maintained at the outlet of the scavenging passage while the air-fuel mixture is separated at the bend portion 9. . Even when φ = 1.1 or more, when the powder squirts from the outlet of the scavenging passage as shown by the arrow in FIG. 3 (e), the powder tends to squirt slightly inclining from the direction of the inner wall surface of the scavenging passage. However, this is probably because the influence of the bent portion 9 remains slightly. In order to eliminate this, as shown in FIG. 3 (f), it is located downstream of the bent portion 9 of the scavenging passage, and is furthest from the exhaust port connected to the inner wall surface for orienting at the outlet of the scavenging passage. It is conceivable that the inner wall surface 14 is configured to gradually move away from the exhaust port as it goes toward the outlet. As is clear from the flow of the rich mixture in FIG.
As viewed from the inside of the cylinder, the separation wall 10 extends toward the outlet from a position a predetermined distance h away from the extension of the inner wall surface of the scavenging passage on the combustion chamber side immediately before the bent portion so that 0 does not collide with this flow. It is desirable to configure it in such a way. The radius of curvature R of the bent portion is the same as the inner wall surface 1 as shown in FIG.
Since 3 'is not perpendicular to the coupling plane BB', it is actually formed in the section P. Next, as shown in FIG. 4 (c), fresh air ejected from the outlet a near the inner wall surface that directs the farthest side from the exhaust port at the outlet of the scavenging passage collides with the cylinder inner wall surface and rebounds. The fresh air squirting from the outlet b except for the outlet a has to be pushed back, while trying to penetrate into the exhaust port. In this case, if there is no separation wall 10, the directing action at the outlet of the scavenging passage is weakened (the nozzle function is weak, and the fresh air to be ejected is easily diffused), and the flow ejected from the outlet a and repelled on the inner wall surface of the cylinder is reduced. I could not push it back enough and pierced the exhaust. By forming the separation wall 10, penetration into the exhaust port due to the rebound can be avoided, but fresh air flowing toward the combustion chamber still flows slightly inclined toward the exhaust port as shown in FIG. Can be Exit a to correct this
It is only necessary to attenuate the energy which is ejected from the cylinder and rebounds on the inner wall surface of the cylinder. As shown in FIGS. 4 (a) and 4 (b), the latter is the exhaust at the outlet of the scavenging passage as viewed from the arrow B of the former. A deflector 15 having an attenuating wall 16 for attenuating velocity energy by colliding a part of fresh air ejected from an outlet a near an inner wall surface orienting a side farthest from the mouth is formed at the top of the piston. As a result, the flow spouting from the outlet portion a and repelling on the inner wall surface of the cylinder is weakened, and the repulsive force of the fresh air spouting from the outlet portion b is relatively increased, so that the fresh air is correctly (vertically) along the inner wall surface of the cylinder. It flows toward the combustion chamber. In this case, as shown in FIG. 4 (d), the scavenging passage on the downstream side of the bent portion is divided into two by the separating wall 10, and the passage in the circumferential direction of the passage dividing portion 7b near the exhaust port is the passage on the far side. Division 7
The effect was greater when it was configured to be smaller than that of a. This may be because the orienting action of the passage dividing portion 7a is slightly weakened. Numeral 17 is a slope that smoothly connects to the piston top surface, and does not attenuate the velocity energy of the fresh air ejected from the outlet b (the fresh air ejected from the outlet b does not collide with the damping wall 16). In the embodiment shown in FIG. 4E, the scavenging passage immediately before the bend is narrowed in order to enhance the centrifugal action in the bend 9. In the present invention, when the bending angle of the bent portion 9 of the scavenging passage is set to approximately 90 °, the manufacture becomes easy considering the use of the core.

【0006】[0006]

【発明の効果】本発明では曲折部9の下流側の掃気通路
を分離壁10により分割している為、出口部における方
向づけ作用が強化され、新気のシリンダー内壁面での撥
ね返りによる排気口への突き抜けが起らず、新気はシリ
ンダー内壁面に正しく沿って(垂直に)燃焼室方向へ流
れる(図4に示すデフレクター15を使えば一段と有効
である).更に本発明では曲折部9の外側内壁面の曲率
半径Rを曲折部直前の掃気通路のシリンダー内部から見
た幅Hの1.1倍以上としている為、流れは円滑であ
り、曲折部9及びこの下流側でも乱流は起らない.従っ
て曲折部9で濃淡に遠心分離された状態がそのまま維持
され、曲折部9の下流側でも混合は起らないし、シリン
ダー内に流入しても混合気の濃淡分離が非常に明確化す
る。即ち、図5の如く排気口から遠いところは従来より
濃い混合気が、排気口に近いところは従来より希薄な混
合気が燃焼室方向へ向かって流れる様になる.この結
果、濃混合気はシリンダー内壁面に張り付く様にして燃
焼室方向へ流れてゆくから、排気口へ殺到する既燃ガス
と共に持ち去られる事はない(濃混合気がシリンダー内
壁面から少しでも離れて流れていると、その間にガスが
は入って来れるから、排気口へ持ち去られ易い)。排気
口に近いところは従来よりも遥かに希薄な混合気が分布
しており、かくして燃料の吹き抜けを大幅に減少させる
事が可能であり、燃費及び排ガス特性が大幅に改善され
る。図2の従来では曲折部9′の曲率半径R′は相対的
に小さく、従って乱流が発生して効果は小さい.これは
曲率半径R′の大きさを漫然と決め、注意を怠った為で
あろう。本発明では曲率半径Rの大きさにより絶大な効
果がある事を見い出したのである。尚、本発明では各実
施例を互いに組み合わせる(例えば図4(ホ)の実施例
にデフレクター15を備える)事も可能である。
According to the present invention, since the scavenging passage downstream of the bent portion 9 is divided by the separation wall 10, the directing action at the outlet portion is enhanced, and the exhaust port is repelled by fresh air rebounding on the inner wall surface of the cylinder. No fresh air flows through, and fresh air flows correctly (vertically) toward the combustion chamber along the cylinder inner wall surface (the deflector 15 shown in FIG. 4 is more effective). Further, in the present invention, since the radius of curvature R of the outer inner wall surface of the bent portion 9 is set to be 1.1 times or more the width H of the scavenging passage immediately before the bent portion as viewed from the inside of the cylinder, the flow is smooth, and the bent portions 9 and No turbulence occurs downstream of this. Therefore, the state where the centrifugal separation is performed at the bent portion 9 is maintained as it is, and no mixing occurs at the downstream side of the bent portion 9, and even if the mixture flows into the cylinder, the density separation becomes very clear. That is, as shown in FIG. 5, a mixture richer than the conventional one flows far from the exhaust port, and a mixture leaner than the conventional one flows toward the combustion chamber near the exhaust port. As a result, the rich mixture flows toward the combustion chamber in such a manner as to stick to the inner wall surface of the cylinder, so that the rich mixture is not carried away with the burned gas rushing to the exhaust port. If it is flowing, gas can enter during that time, so it is easy to carry it to the exhaust port.) Near the exhaust port, a far more lean air-fuel mixture than in the past is distributed, thus making it possible to greatly reduce fuel blow-through, thereby greatly improving fuel efficiency and exhaust gas characteristics. In the prior art shown in FIG. 2, the radius of curvature R 'of the bent portion 9' is relatively small, so that turbulence is generated and the effect is small. This is probably because the radius of curvature R 'was determined inadvertently and carelessness was neglected. In the present invention, it has been found that the size of the radius of curvature R has a great effect. In the present invention, the embodiments can be combined with each other (for example, the embodiment shown in FIG. 4E is provided with the deflector 15).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による2サイクル機関の掃気通路を示す
図。
FIG. 1 is a diagram showing a scavenging passage of a two-stroke engine according to the present invention.

【図2】従来の2サイクル機関の掃気通路を示す図.FIG. 2 is a diagram showing a scavenging passage of a conventional two-stroke engine.

【図3】掃気通路内における流れを示す模式図。FIG. 3 is a schematic view showing a flow in a scavenging passage.

【図4】本発明における各実施態様を示す模式図。FIG. 4 is a schematic view showing each embodiment of the present invention.

【図5】本発明の効果を説明する為の模式図.FIG. 5 is a schematic diagram for explaining the effect of the present invention.

【符号の説明】[Explanation of symbols]

1はシリンダー、2はインロー部、3はピストン、4は
クランク室、5は気化器、6は吸入通路、7は掃気通
路、7a・7bは通路分割部、8は掃気通路の溝状の部
分、9は掃気通路の曲折部、10は分離壁、11は排気
通路、12は滑らかな斜面、13・13′は内壁面、1
4は内壁面、15はデフレクター、16は減衰壁面、1
7は斜面、a・bは出口部、4′はクランク室、7′は
掃気通路、9′は曲折部である.
1 is a cylinder, 2 is a spigot part, 3 is a piston, 4 is a crank chamber, 5 is a carburetor, 6 is a suction passage, 7 is a scavenging passage, 7a and 7b are passage dividing portions, and 8 is a grooved portion of the scavenging passage. , 9 is a bent portion of the scavenging passage, 10 is a separation wall, 11 is an exhaust passage, 12 is a smooth slope, 13 and 13 'are inner wall surfaces, 1
4 is an inner wall, 15 is a deflector, 16 is a damping wall, 1
7 is a slope, a and b are outlets, 4 'is a crankcase, 7' is a scavenging passage, and 9 'is a bent portion.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 シリンダー内へ流入する新気によって既
燃ガスを掃気する掃気過程を有し、クランク室からシリ
ンダー内へ通ずる掃気通路の所定位置に曲折部を形成
し、前記曲折部において掃気通路内を流れる混合気を遠
心分離作用によって濃淡に分離し、これにより排気口か
ら遠いところは濃混合気が、排気口に近いところは希薄
混合気が燃焼室方向へ向かって流れる様に構成したシュ
ニーレ掃気式2サイクル機関において、前記曲折部の下
流側の掃気通路を分離壁によって分割して掃気通路出口
部における方向づけ作用を強化し、かつ前記曲折部の外
側内壁面の曲率半径を曲折部直前の掃気通路のシリンダ
ー内部から見た幅の1.1倍以上とした率を特徴とする
2サイクル機関の掃気通路。
1. A scavenging process for scavenging burned gas by fresh air flowing into a cylinder, wherein a bent portion is formed at a predetermined position of a scavenging passage leading from the crankcase to the cylinder, and the scavenging passage is formed at the bent portion. The air-fuel mixture flowing through the interior is separated into dark and light by centrifugal separation, so that a rich air-fuel mixture far from the exhaust port and a lean air-fuel mixture near the exhaust port flow toward the combustion chamber. In the scavenging type two-stroke engine, the scavenging passage downstream of the bent portion is divided by a separating wall to enhance the directing action at the scavenging passage outlet portion, and the radius of curvature of the outer inner wall surface of the bent portion is changed immediately before the bent portion. A scavenging passage for a two-stroke engine, characterized in that the ratio is 1.1 times or more the width of the scavenging passage as viewed from inside the cylinder.
【請求項2】 曲折部の下流側の掃気通路を分離壁によ
って2分割したものの内で、排気口に近い側の通路分割
部の円周方向長が遠い側の通路分割部のそれよりも小で
ある請求項1記載の2サイクル機関の掃気通路。
2. A scavenging passage on the downstream side of a bent portion, which is divided into two by a separation wall, wherein a circumferential length of a passage dividing portion closer to an exhaust port is smaller than that of a farther passage dividing portion. The scavenging passage of a two-stroke engine according to claim 1, wherein
【請求項3】 掃気通路の入口部から曲折部まで到らな
い所定のところまでの掃気通路がクランク室との仕切壁
を持たない溝状である請求項1又は2記載の2サイクル
機関の掃気通路.
3. A scavenging air for a two-stroke engine according to claim 1, wherein the scavenging passage extending from the inlet portion of the scavenging passage to a predetermined portion which does not reach the bent portion has a groove shape without a partition wall from the crank chamber. aisle.
【請求項4】 曲折部直前の掃気通路を絞って遠心分離
作用を強化した請求項1ないし3のいずれかに記載の2
サイクル機関の掃気通路.
4. The method according to claim 1, wherein the scavenging passage immediately before the bent portion is narrowed to enhance the centrifugal separation.
Scavenging passage of cycle engine.
【請求項5】 シリンダー内部から見て、曲折部直前の
掃気通路の燃焼室側内壁面の延長線から一定距離だけ離
れた位置から掃気通路の分離壁が出口部へ向かって延び
る様にした請求項1ないし4のいずれかに記載の2サイ
クル機関.
5. A separation wall of a scavenging passage extending from a position at a predetermined distance from an extension of an inner wall surface of a scavenging passage on a combustion chamber side immediately before a bent portion when viewed from inside the cylinder, the separation wall of the scavenging passage extending toward the outlet. Item 2. A two-stroke engine according to any one of Items 1 to 4.
【請求項6】 掃気通路の出口部における排気口から最
も遠い側の方向づけを行なう内壁面の近傍の出口部から
噴出する新気の一部を衝突させて速度エネルギーを減衰
させる減衰内壁面を有するデフレクターをピストン頂部
に形成した請求項1ないし5のいずれかに記載の2サイ
クル機関の掃気通路。
6. An attenuating inner wall surface that attenuates velocity energy by colliding a part of fresh air ejected from an outlet portion near an inner wall surface that directs a farthest side from an exhaust port at an outlet portion of a scavenging passage. The scavenging passage of a two-stroke engine according to any one of claims 1 to 5, wherein the deflector is formed on the top of the piston.
【請求項7】 掃気通路の曲折部の曲り角度がほぼ90
°である請求項1ないし6のいずれかに記載の2サイク
ル機関の掃気通路.
7. The bending angle of the bent portion of the scavenging passage is substantially 90.
The scavenging passage of the two-stroke engine according to any one of claims 1 to 6.
【請求項8】 掃気通路の曲折部よりも下流側にあり、
かつ掃気通路の出口部における方向づけを行なう内壁面
に接続する排気口から最も遠い方の側にある内壁面が出
口部に向かうに従って排気口から徐々に遠ざかる様に構
成した請求項1ないし7のいずれかに記載の2サイクル
機関の掃気通路。
8. A scavenging passage which is located downstream of a bent portion of the scavenging passage,
8. The air purifier according to claim 1, wherein the inner wall surface furthest from the exhaust port connected to the inner wall surface for directing at the outlet portion of the scavenging passage gradually moves away from the exhaust port toward the outlet portion. A scavenging passage for a two-stroke engine according to any of claims 1 to 3.
【請求項9】 掃気通路の曲折部よりも上流側の内壁面
の一部がシリンダーブロックとクランクケース間の結合
面により形成されている請求項1ないし8のいずれかに
記載の2サイクル機関の掃気通路.
9. The two-stroke engine according to claim 1, wherein a part of the inner wall surface upstream of the bent portion of the scavenging passage is formed by a coupling surface between the cylinder block and the crankcase. Scavenging passage.
【請求項10】 シリンダーブロックとクランクケース
間の結合面直前のクランクケース側掃気通路において、
曲折部の曲りに対して内側の内壁面がクランクケースの
左右分割面にほぼ垂直である請求項1ないし8のいずれ
かに記載の2サイクル機関の掃気通路。
10. A scavenging passage on a crankcase side immediately before a coupling surface between a cylinder block and a crankcase,
The scavenging passage of a two-stroke engine according to any one of claims 1 to 8, wherein an inner wall surface inside the bent portion is substantially perpendicular to a left-right divided surface of the crankcase.
JP17378798A 1998-05-06 1998-05-06 Scavenge air passage for 2-cycle engine Withdrawn JPH11324683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17378798A JPH11324683A (en) 1998-05-06 1998-05-06 Scavenge air passage for 2-cycle engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17378798A JPH11324683A (en) 1998-05-06 1998-05-06 Scavenge air passage for 2-cycle engine

Publications (1)

Publication Number Publication Date
JPH11324683A true JPH11324683A (en) 1999-11-26

Family

ID=15967150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17378798A Withdrawn JPH11324683A (en) 1998-05-06 1998-05-06 Scavenge air passage for 2-cycle engine

Country Status (1)

Country Link
JP (1) JPH11324683A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004866A (en) * 2000-04-22 2002-01-09 Andreas Stihl:Fa Die-cast cylinder of two-cycle engine
JP2011127608A (en) * 2009-12-19 2011-06-30 Andreas Stihl Ag & Co Kg Two-cycle engine, sand core for manufacturing two-cycle engine and operation method of two-cycle engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004866A (en) * 2000-04-22 2002-01-09 Andreas Stihl:Fa Die-cast cylinder of two-cycle engine
JP2011127608A (en) * 2009-12-19 2011-06-30 Andreas Stihl Ag & Co Kg Two-cycle engine, sand core for manufacturing two-cycle engine and operation method of two-cycle engine
US9175598B2 (en) 2009-12-19 2015-11-03 Andreas Stihl Ag & Co. Kg Two-stroke engine, sand core for producing a two-stroke engine, and method for operating a two-stroke engine

Similar Documents

Publication Publication Date Title
US6513465B2 (en) Two-stroke internal combustion engine
JPS5920850B2 (en) Helical intake port for internal combustion engines
US7243622B2 (en) Two-stroke internal combustion engine
JPS5853630A (en) Internal-combustion engine
JP2011027017A (en) Two-cycle engine
JP4342960B2 (en) 2-cycle engine
JPH0988617A (en) Two-cycle engine
JPH11324683A (en) Scavenge air passage for 2-cycle engine
US20190170054A1 (en) Two-stroke internal combustion engine
US4308832A (en) Helically shaped intake port of an internal combustion engine
JPS6024290B2 (en) 2-cycle engine blowback prevention device
JPH06159203A (en) Air intake device of engine
JPH11315722A (en) Two-cycle engine
JPS5849382Y2 (en) Internal combustion engine helical intake port
JP2732716B2 (en) Air blast valve
JPH1130153A (en) Stratified scavenging two-cycle engine
JP2000018042A (en) Scavenging passage for two cycle engine
JPH11303639A (en) Schnurle scavenging type two-cycle engine
JPH11148357A (en) Combustion chamber of two cycle engine
JPS6030424A (en) Intake port of internal-combustion engine
JPS61232322A (en) Two cycle internal combustion engine
JP3221279B2 (en) Diesel engine combustion chamber
JP2002004863A (en) Combustion chamber structure of internal combustion engine
JPS6217091B2 (en)
JP3275198B2 (en) Sliding throttle valve carburetor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802