JPH11324233A - Temperature adjustable hollow face structural body and its manufacture - Google Patents

Temperature adjustable hollow face structural body and its manufacture

Info

Publication number
JPH11324233A
JPH11324233A JP13952098A JP13952098A JPH11324233A JP H11324233 A JPH11324233 A JP H11324233A JP 13952098 A JP13952098 A JP 13952098A JP 13952098 A JP13952098 A JP 13952098A JP H11324233 A JPH11324233 A JP H11324233A
Authority
JP
Japan
Prior art keywords
temperature
cavity
control fluid
fluid passage
temperature control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13952098A
Other languages
Japanese (ja)
Inventor
Kaoru Toyouchi
薫 豊内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP13952098A priority Critical patent/JPH11324233A/en
Publication of JPH11324233A publication Critical patent/JPH11324233A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1703Introducing an auxiliary fluid into the mould
    • B29C45/1704Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1703Introducing an auxiliary fluid into the mould
    • B29C45/1704Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles
    • B29C2045/1724Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles hollows used as conduits

Abstract

PROBLEM TO BE SOLVED: To easily manufacture a temperature adjustable hollow face structural body at a low cost by integrally forming a temperature adjusting fluid passing hole in the inside. SOLUTION: A mold 6 having a gas channel forming recess part 5 forming a gas channel is used along the formation position of a temperature adjusting fluid passing hole 1. Next, a molten synthetic resin is injected in the mold in a prescribed amount and at a prescribed pressure. Immediately after injection or after passage of a minute time, pressurized gas is press-fitted in the synthetic resin of the recess 5 at the prescribed pressure. Thereafter the prescribed time gas pressure is maintained, and after cooling, the pressurized gas of a molding inside is discharged. Thereby a passing hole 1 is integrally formed as a hollow part left in the invasion route of the pressurized gas. Thereby structure is simple, its manufacture is easy and it can be provided at a low cost.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば建築材料等
として使用でき、しかも温度調節が可能な中空面状構造
体及びその製造方法に関する。更に詳しくは、温度調節
用流体(熱媒、冷媒)を中空部である温度調節用流体通
過孔に通すことで温度調節を行うことができる一体の合
成樹脂射出成形品である中空面状構造体及びその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hollow planar structure which can be used, for example, as a building material and the like, and which can control the temperature, and a method for producing the same. More specifically, a hollow planar structure which is an integrated synthetic resin injection molded product capable of performing temperature control by passing a temperature control fluid (heat medium, refrigerant) through a temperature control fluid passage hole which is a hollow portion. And its manufacturing method.

【0002】[0002]

【従来の技術】最近、特に住宅の屋根瓦において、屋根
瓦の温度を調節して居住環境を快適化することが検討さ
れている。つまり、冬季には屋根瓦に暖かい流体を、夏
季には外気より温度の低い流体を流し、冬季は融雪、夏
季は日射による屋内の灼けこみを緩和することが提案さ
れている。
2. Description of the Related Art Recently, it has been studied to adjust the temperature of a roof tile to make a living environment comfortable, especially for a roof tile of a house. In other words, it has been proposed that a warm fluid is flown to the roof tiles in winter and a fluid having a lower temperature than the outside air in summer to reduce the burning of indoors due to snow melting in winter and solar radiation in summer.

【0003】例えば、特開昭61−204458号公報
では、内部に、伝熱管を通す空間と、伝熱管より放射さ
れる熱によって加熱又は冷却される仕切られた空間とを
持つ組立構造の屋根瓦を用い、伝熱管に、冬季には温風
を、夏季には冷風を通気することにより、冬季には融
雪、夏季には日射による屋根の温度上昇緩和を図ること
ができる屋根瓦構造を提案している。
For example, Japanese Patent Application Laid-Open No. 61-204458 discloses a roof tile having an assembled structure in which a space through which a heat transfer tube passes and a space which is heated or cooled by heat radiated from the heat transfer tube are provided. We propose a roof tile structure that can reduce the temperature rise of the roof due to snow melting in winter and solar radiation in summer by ventilating warm air in winter and cool air in summer in the heat transfer tube. ing.

【0004】また、特開平8−326232号公報で
は、アルミ屋根瓦の裏側に、冷却用媒体を通過させる熱
交換通路を有する断熱部材を設けておき、これによって
夏季の屋根温度を下げる提案がされている。
Japanese Patent Application Laid-Open No. Hei 8-326232 proposes that a heat insulating member having a heat exchange passage through which a cooling medium passes is provided on the back side of an aluminum roof tile, thereby lowering the roof temperature in summer. ing.

【0005】更に、「工業材料」第46巻第4号第94
頁には、面状発熱体を一体化した合成樹脂製融雪屋根瓦
が記載されている。
Further, "Industrial Materials", Vol. 46, No. 4, No. 94
The page describes a synthetic resin snow-melting roof tile in which a planar heating element is integrated.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、特開昭
61−204458号公報の屋根瓦は、複数の部品を組
み合わせて屋根瓦を構成しなければならず、構造が複雑
で、製造が煩雑であると共に重量が重くなりやすい問題
がある。
However, the roof tile disclosed in Japanese Patent Application Laid-Open No. 61-204458 requires a combination of a plurality of components to constitute the roof tile, and the structure is complicated and the production is complicated. In addition, there is a problem that the weight tends to be heavy.

【0007】また、特開平8−326232号公報の屋
根瓦は、アルミ屋根瓦の裏面に特殊な断熱部材を貼り合
わせなければならず、やはり構造が複雑で、製造に手間
がかかる問題がある。
Further, the roof tile disclosed in Japanese Patent Application Laid-Open No. 8-326232 has a problem that a special heat insulating member must be bonded to the back surface of the aluminum roof tile, so that the structure is complicated and the production is troublesome.

【0008】更に、「工業材料」第46巻第4号第94
頁の合成樹脂製融雪屋根瓦は、特殊な面状発熱体を一体
化しなければならず、やはり製造に手間がかかると共
に、製造コストも高くなる。
Further, "Industrial Materials", Vol. 46, No. 4, No. 94
The snow-melting roof tile made of synthetic resin on the page must integrate a special sheet-like heating element, which also requires time and effort to manufacture and increases the manufacturing cost.

【0009】本発明は、上記従来の問題点にかんがみて
なされたもので、例えば上述したような屋根瓦等として
使用できる温度調節可能な中空面増構造体を、構造が簡
単で低コストで容易に製造できるようにすることを目的
とする。
The present invention has been made in view of the above-mentioned conventional problems. For example, the present invention provides a temperature-adjustable hollow-surface-enhanced structure that can be used as a roof tile as described above, and has a simple structure, a low cost, and an easy structure. It is intended to be able to be manufactured.

【0010】[0010]

【課題を解決するための手段】本発明は、一体の合成樹
脂射出成形品であって、内部に、一端から注入した温度
調節用流体を他端より排出可能な一連の温度調節用流体
通過孔が一体に形成されていることを特徴とする温度調
節可能な中空面状構造体を提供すると共に、その製造方
法として、金型内に射出した樹脂中に加圧ガスを圧入す
ることで内部に温度調節用流体通過孔を一体に形成する
ことを特徴とする温度調節可能な中空面状構造体の製造
方法を提供するものである。
SUMMARY OF THE INVENTION The present invention is an integrated synthetic resin injection-molded product, and has a series of temperature control fluid passage holes through which a temperature control fluid injected from one end can be discharged from the other end. And a temperature-controllable hollow surface-shaped structure characterized by being integrally formed, and as a method of manufacturing the same, pressurized gas is injected into a resin injected into a mold to thereby form a hollow inside. An object of the present invention is to provide a method for producing a temperature-adjustable hollow planar structure, wherein a temperature adjusting fluid passage hole is integrally formed.

【0011】[0011]

【発明の実施の形態】図1は本発明に係る温度調節可能
な中空面状構造体の一例(屋根瓦)を示す平面図、図2
はその縦断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a plan view showing an example (roof tile) of a temperature-adjustable hollow planar structure according to the present invention, and FIG.
Is a longitudinal sectional view thereof.

【0012】本発明に係る中空面状構造体は、一体の合
成樹脂射出成形品で、その内部に一体に形成された温度
調節用流体通過孔1を有するものである。本発明に係る
中空面状構造体は、例えば屋根材、床材、壁材等の建築
材料、自動車ボディ、コンピューター、コピー、ファク
シミリ等のOA機器キャビネット等に使用されるもので
ある。
The hollow planar structure according to the present invention is a one-piece synthetic resin injection-molded article having a temperature control fluid passage hole 1 integrally formed therein. The hollow planar structure according to the present invention is used, for example, in building materials such as roofing materials, flooring materials, and wall materials, and in OA equipment cabinets such as automobile bodies, computers, copiers, and facsimile machines.

【0013】本例に係る屋根瓦においては、裏面側に部
分的に突出したリブ状の肉厚部としてガスチャンネル2
が形成されており、このガスチャンネル2に沿って内部
に温度調節用流体通過孔1が一体に形成されている。ま
た、ガスチャンネル2は、ジグザグ状に蛇行して形成さ
れており、このガスチャンネル2に沿って同様のジグザ
グ状に形成されている温度調節用流体通過孔1は、一端
から注入した温度調節用流体を他端から排出できる一連
のものとなっている。
In the roof tile according to the present embodiment, the gas channel 2 is formed as a rib-shaped thick portion that partially projects to the back side.
The temperature control fluid passage hole 1 is integrally formed inside the gas channel 2 inside. The gas channel 2 is formed in a zigzag meandering manner. A similar temperature control fluid passage hole 1 formed along the gas channel 2 is provided with a temperature adjusting fluid injection hole 1 injected from one end. A series of fluids can be discharged from the other end.

【0014】一方、本例に係る屋根瓦の表面側には接着
剤層3を介して表面層4が積層されている。この表面層
4は、本体を構成する合成樹脂の耐候性を高めるための
もので、例えばアルミニウムやアクリル樹脂を用いるこ
とができる。
On the other hand, a surface layer 4 is laminated via an adhesive layer 3 on the surface side of the roof tile according to this embodiment. The surface layer 4 is for increasing the weather resistance of the synthetic resin constituting the main body, and for example, aluminum or acrylic resin can be used.

【0015】本例に係る屋根瓦は、温度調節用流体通過
孔1内に温度調節用流体を流すことで温度調節をするこ
とができる。本例に係る複数の屋根瓦を、温度調節用流
体通過孔1を相互に接続して敷設し、屋根を構成する
と、冬季には暖めた温度調節用流体を温度調節用流体通
過孔1に流して融雪することができ、夏季には冷やした
温度調節用流体を温度調節用流体通過孔1に流して、日
照による熱エネルギーを吸収して屋内の温度上昇を防ぐ
ことができる。温度調節用流体として水を使用すれば、
日照により昇温した水を風呂やシャワー用の温水して利
用することもできる。
The temperature of the roof tile according to this embodiment can be adjusted by flowing a temperature adjusting fluid into the temperature adjusting fluid passage hole 1. When a plurality of roof tiles according to this example are laid by connecting the temperature control fluid passage holes 1 to each other, and the roof is configured, the temperature control fluid heated in winter is allowed to flow through the temperature control fluid passage holes 1. It is possible to melt snow, and in summer, a cooled temperature control fluid is allowed to flow through the temperature control fluid passage hole 1 to absorb heat energy due to sunshine, thereby preventing a rise in indoor temperature. If water is used as the temperature control fluid,
Water heated by sunshine can be used as hot water for baths and showers.

【0016】本発明に係る中空面状構造体は、本例の屋
根瓦に限らず、通常、温度調節用流体通過孔1を相互に
接続した複数単位で使用することになる。例えば本例の
屋根瓦の場合、屋根全体の屋根瓦の温度調節用流体通過
孔1を相互に接続し、単一の温度調節用流体経路を有す
るものとしてもよいが、屋根をいくつかのブロックに分
け、各ブロック毎の屋根瓦について温度調節用流体通過
孔1を接続するようにし、複数の温度調節用流体経路を
有する屋根としてもよい。
The hollow planar structure according to the present invention is not limited to the roof tile of the present embodiment, but is usually used in a plurality of units in which the temperature control fluid passage holes 1 are interconnected. For example, in the case of the roof tile of this example, the temperature control fluid passage holes 1 of the roof tile of the entire roof may be connected to each other to have a single temperature control fluid path. And the temperature control fluid passage hole 1 may be connected to the roof tile for each block, and the roof may have a plurality of temperature control fluid paths.

【0017】本発明に用いる合成樹脂は特に限定される
ものではないが、熱可塑性樹脂が好ましく、例えばAB
S樹脂、ポリカーボネート樹脂、ポリカーボネート/A
BS樹脂、変性ポリフェニレンエーテル樹脂等を代表と
する非結晶性樹脂、高密度ポリエチレン樹脂、ポリプロ
ピレン樹脂等のポリオレフィン系樹脂、ポリアミド樹
脂、ポリアセタール樹脂等を代表とする結晶性樹脂が良
好に用いられる。
The synthetic resin used in the present invention is not particularly limited, but is preferably a thermoplastic resin.
S resin, polycarbonate resin, polycarbonate / A
Amorphous resins such as BS resins and modified polyphenylene ether resins, polyolefin resins such as high-density polyethylene resins and polypropylene resins, and crystalline resins such as polyamide resins and polyacetal resins are preferably used.

【0018】本発明に用いる合成樹脂は、温度調節用流
体に対する耐性、耐火性、その他建築材料として要求さ
れる特性に応じて選択すればよい。また必要に応じて、
例えばタルク、マイカ、炭酸カルシウム、セラミックス
等の無機充填剤、木粉、繊維状木材、セルロース性微粉
等の有機充填材、ガラス繊維、炭素繊維、化学合成繊維
等の強化フィラー、ハロゲン系、リン酸エステル系、ポ
リテトラフルオロエチレンあるいは水酸化カルシウム、
マグネシウム等の難燃剤、顔料、酸化防止剤、耐光剤等
の添加剤を樹脂に添加してもよい。
The synthetic resin used in the present invention may be selected according to the resistance to a temperature controlling fluid, the fire resistance, and other characteristics required as a building material. Also, if necessary,
For example, inorganic fillers such as talc, mica, calcium carbonate, ceramics, etc., organic fillers such as wood flour, fibrous wood, cellulosic fine powder, reinforcing fillers such as glass fiber, carbon fiber, synthetic fiber, halogen-based, phosphoric acid Ester type, polytetrafluoroethylene or calcium hydroxide,
Additives such as a flame retardant such as magnesium, a pigment, an antioxidant, and a light stabilizer may be added to the resin.

【0019】温度調節用流体(熱媒、冷媒)としては一
般的に公知のものが使用されるが、例えば水、ポリエチ
レングリコール、空気等が良好に使用できる。
As the temperature controlling fluid (heating medium, refrigerant), generally known fluids are used, and for example, water, polyethylene glycol, air and the like can be used favorably.

【0020】図1及び図2に示されるような、ガスチャ
ンネル2に沿って温度調節用流体通過孔1が一体に形成
された中空面状構造体は、例えば特公昭57−1496
8公報、英国特許公開公報第2217644号等に記載
されたガスアシスト射出成形法により容易に製造するこ
とができる。
As shown in FIG. 1 and FIG. 2, a hollow planar structure integrally formed with a temperature control fluid passage hole 1 along a gas channel 2 is, for example, Japanese Patent Publication No. 57-1496.
8 and British Patent Publication No. 2217644 can be easily manufactured by a gas assist injection molding method.

【0021】すなわち、図3(a)に示されるように、
温度調節用流体通過孔1(図1及び図2参照)の形成位
置に沿って厚肉のガスチャンネル2(図2参照)を形成
するガスチャンネル形成凹部5を有する金型6を用い、
図3(b)に示されるように、溶融した合成樹脂を所定
量、所定圧力で金型6に射出し、射出完了直後あるいは
微少時間経過後に、図3(c)に示されるように、所定
の圧力で加圧ガスをガスチャンネル形成凹部5内の合成
樹脂中に圧入し、所定時間ガス圧を維持し、成形品を冷
却した後、成形品内部に存在する加圧ガスを排出してか
ら金型6を開いて成形品を取り出すことで容易に製造す
ることができる。
That is, as shown in FIG.
Using a mold 6 having a gas channel forming recess 5 for forming a thick gas channel 2 (see FIG. 2) along a position where the temperature control fluid passage hole 1 (see FIGS. 1 and 2) is formed,
As shown in FIG. 3 (b), the molten synthetic resin is injected into the mold 6 at a predetermined amount and at a predetermined pressure, and immediately after the completion of the injection or after a lapse of a very short time, as shown in FIG. After the pressurized gas is pressed into the synthetic resin in the gas channel forming concave portion 5 at the pressure described above, the gas pressure is maintained for a predetermined time, and after the molded product is cooled, the pressurized gas present inside the molded product is discharged The mold can be easily manufactured by opening the mold 6 and taking out the molded product.

【0022】このガスアシスト射出成形法においては、
加圧ガスの侵入経路に残される中空部として温度調節用
流体通過孔1が一体に形成される。加圧ガスは、流動抵
抗の小さな成形品の厚肉部に沿って侵入する性質を有す
ることから、成形品にガスチャンネル2を設定しておく
と、このガスチャンネル2に沿って温度調節用流体通過
孔1を一体に形成することができ、ガスチャンネル2の
配置デザインによって温度調節用流体通過孔1の流路を
設計することができる。ガスチャンネル2の形状は特に
限定されないが、例えば断面半円形状、矩形状等の連続
したリブ状の突条として構成することができる。
In this gas assist injection molding method,
A temperature control fluid passage hole 1 is integrally formed as a hollow portion left in the passage of the pressurized gas. Since the pressurized gas has a property of penetrating along the thick part of the molded article having a small flow resistance, if the gas channel 2 is set in the molded article, the fluid for temperature adjustment is formed along the gas channel 2. The passage hole 1 can be formed integrally, and the flow path of the temperature control fluid passage hole 1 can be designed by the layout design of the gas channel 2. The shape of the gas channel 2 is not particularly limited. For example, the gas channel 2 may be configured as a continuous rib-shaped protrusion having a semicircular cross section, a rectangular shape, or the like.

【0023】加圧ガスとしては、炭酸ガス、空気等を用
いることもできるが、窒素等の不活性ガスが好ましい。
また、加圧ガスの圧入は、ノズル、スプルー、ランナー
又は金型キャビティの所望の箇所にガス注入ニードルを
設けて行うことができる。どの箇所から加圧ガスを注入
するかは、成形品の形状、ゲートデザインにより決定す
るが、ガスチャンネル2に加圧ガスが導かれるようにガ
ス注入口の位置を設定する。
As the pressurized gas, carbon dioxide gas, air or the like can be used, but an inert gas such as nitrogen is preferable.
The pressurized gas can be injected by providing a gas injection needle at a desired position in a nozzle, a sprue, a runner, or a mold cavity. The location from which the pressurized gas is injected is determined by the shape of the molded product and the gate design. The position of the gas injection port is set so that the pressurized gas is guided to the gas channel 2.

【0024】次に、図4及び図5に基づいて、本発明に
係る温度調節可能な中空面状構造体の他の例(厚板材)
を説明する。
Next, based on FIGS. 4 and 5, another example of the temperature-controllable hollow planar structure according to the present invention (thick plate material)
Will be described.

【0025】本例に係る厚板材は、例えば床材や壁材等
として使用されるもので、温度調節用流体通過孔1が、
両側から交互に張り出した仕切り壁7によってジグザク
状に形成されている。
The thick plate material according to the present embodiment is used, for example, as a floor material, a wall material, or the like.
It is formed in a zigzag shape by partition walls 7 alternately projecting from both sides.

【0026】上記厚板材のような中空率の高い中空面状
構造体は、特公平7−12621号公報に記載されてい
る、可動中子を用いたガスアシスト射出成形によって容
易に製造することができる。
The hollow planar structure having a high hollow ratio, such as the above-mentioned thick plate, can be easily manufactured by gas-assisted injection molding using a movable core described in Japanese Patent Publication No. Hei 7-12621. it can.

【0027】すなわち、図6(a)に示されるように、
キャビティ8内への突出とこの突出位置からの後退が可
能な可動中子9がキャビティ8内の仕切り壁7形成位置
に設けられた金型10を用い、図6(b)に示されるよ
うに、キャビティ8内へ溶融した合成樹脂を射出し、射
出完了直後あるいは微少時間経過後に、キャビティ8内
へ可動中子9が突出した状態で合成樹脂中に加圧ガスを
圧入して予備中空成形体を形成し、次いで、図6(c)
に示されるように、可動中子9を後退させることで中空
部を拡大させ、ガス圧を維持しつつ成形品を冷却した
後、成形品内部に存在する加圧ガスを排出してから金型
10を開いて成形品を取り出すことで容易に製造するこ
とができる。
That is, as shown in FIG.
As shown in FIG. 6B, a movable core 9 capable of protruding into the cavity 8 and retreating from this protruding position is provided with a mold 10 provided at the partition wall 7 forming position in the cavity 8. The molten synthetic resin is injected into the cavity 8, and immediately after the injection is completed or after a lapse of a short time, a pressurized gas is injected into the synthetic resin with the movable core 9 protruding into the cavity 8, and the preliminary hollow molded body is formed. Is formed, and then FIG.
As shown in the figure, the hollow portion is expanded by retracting the movable core 9, and after cooling the molded product while maintaining the gas pressure, the pressurized gas existing inside the molded product is discharged, and then the mold is formed. It can be easily manufactured by opening 10 and taking out the molded product.

【0028】上記可動中子9を用いたガスアシスト射出
成形法において、合成樹脂の射出後に圧入される加圧ガ
スは、キャビティ8内に可動中子9が突出していること
によって、各可動中子9間を流動してそこに中空部を形
成する。そして、可動中子9が後退されると、可動中子
9の後退跡を埋めるように合成樹脂が流動して仕切り壁
7が形成されると共に、加圧ガスの圧力で中空部が拡大
され、断面積が大きく、かつ両側から交互に張り出した
仕切り壁7によってジグザク状となった温度調節用流体
通過孔1が一体に形成されることになる。
In the gas-assisted injection molding method using the movable core 9, the pressurized gas press-fitted after the injection of the synthetic resin is applied to each movable core 9 by projecting the movable core 9 into the cavity 8. It flows through the space 9 to form a hollow portion there. When the movable core 9 is retracted, the synthetic resin flows so as to fill the retracted trace of the movable core 9 to form the partition wall 7, and the hollow portion is enlarged by the pressure of the pressurized gas, The zigzag temperature control fluid passage holes 1 having a large sectional area and alternately projecting from both sides are integrally formed.

【0029】また、上記可動中子9を用いたガスアシス
ト射出成形において、キャビティ面の移動による(金型
10の開放方向の移動)によるキャビティ容積の拡大が
可能な金型10としておき、加圧ガスを圧入した後、図
6(d)に示されるように、可動中子9の後退と、キャ
ビティ面の移動によるキャビティ容積の拡大とを行う
と、更に厚肉で断面積の大きな温度調節用流体通過孔1
を有する厚板材とすることができる。
In the gas-assisted injection molding using the movable core 9, a mold 10 capable of expanding the cavity volume by moving the cavity surface (moving in the opening direction of the mold 10) is used. After the gas is injected, as shown in FIG. 6 (d), when the movable core 9 is retracted and the cavity volume is increased by moving the cavity surface, a thicker and larger cross-sectional area for temperature control is obtained. Fluid passage hole 1
Can be obtained as a thick plate material.

【0030】[0030]

【実施例】実施例1 変性ポリフェニレンエーテル(旭化成工業社製「ザイロ
ン540Z」、荷重たわみ温度(ASYM−D648)
120℃、UL−94規格、0.8mm厚みV−0)を
用い、図1及び図2に示されるような屋根瓦を図3で説
明したガスアシスト射出成形法で得た。
EXAMPLES Example 1 Modified polyphenylene ether (“Zylon 540Z” manufactured by Asahi Kasei Corporation), deflection temperature under load (ASYM-D648)
A roof tile as shown in FIGS. 1 and 2 was obtained by the gas-assisted injection molding method described with reference to FIG. 3 using 120 ° C., UL-94 standard, 0.8 mm thickness V-0).

【0031】ガスチャンネルに沿って一体に形成された
温度調節用流体通過孔の両端に耐熱ゴムホースを配し、
ゴムホースの一方を水道蛇口に接続し、他方を開放した
状態で、該屋根瓦を70℃に設定したオーブン中に入
れ、加熱雰囲気に曝しながら、水道水を中空構造体に2
時間流し続けた。
Heat-resistant rubber hoses are arranged at both ends of a temperature control fluid passage hole formed integrally along the gas channel,
With one of the rubber hoses connected to a tap and the other open, place the roof tile in an oven set at 70 ° C. and expose tap water to the hollow structure while exposing it to a heated atmosphere.
Continued flowing for hours.

【0032】次いで、水の供給を止め、屋根瓦をオーブ
ンから取り出し、屋根瓦表面の温度を熱電対により直ち
に測定した。屋根瓦表面の温度は30℃であった。
Next, the supply of water was stopped, the roof tile was taken out of the oven, and the temperature of the roof tile surface was immediately measured by a thermocouple. The temperature of the roof tile surface was 30 ° C.

【0033】実施例2 ポリプロピレン(三井東圧化学社製「三井ノーブレンJ
HH−G」)を用い、図4及び図5に示されるような厚
板材を図6で説明した可動中子を用いたガスアシスト射
出成形法で得た。
Example 2 Polypropylene ("Mitsui Noblen J, manufactured by Mitsui Toatsu Chemicals, Inc.)
HH-G "), and a thick plate material as shown in FIGS. 4 and 5 was obtained by the gas-assisted injection molding method using the movable core described in FIG.

【0034】厚板材内に一体に形成された温度調節用流
体通過孔の両端に耐熱ゴムホースを配し、ゴムホースの
一方を熱風ドライヤーの送気口に接続し、他方を開放し
た状態で、該厚板材を23℃の恒温室に入れ、80℃×
1時間熱風を流し続けた。
A heat-resistant rubber hose is provided at both ends of a temperature control fluid passage hole formed integrally in a thick plate material. One end of the rubber hose is connected to an air supply port of a hot air dryer, and the other end is opened. Place the plate in a constant temperature room at 23 ° C,
Hot air was kept flowing for one hour.

【0035】次いで、熱風の供給を止め、厚板材表面の
温度を熱電対により直ちに測定した。厚板材表面の温度
は約50℃であった。
Next, the supply of hot air was stopped, and the temperature of the surface of the thick plate material was immediately measured with a thermocouple. The temperature of the thick plate surface was about 50 ° C.

【0036】[0036]

【発明の効果】本発明は、以上説明した通りのものであ
り、射出成形により、内部に一体に形成された温度調節
用流体通過孔1を有するものであることから、構造が単
純であると共に、ガスアシスト成形法を利用して容易に
製造することができ、温度調節可能な中空面状構造体を
低価格で提供ですることができるものである。
As described above, the present invention has a temperature control fluid passage hole 1 integrally formed therein by injection molding, so that the structure is simple and It can be easily manufactured by using the gas assist molding method, and can provide a hollow surface-shaped structure whose temperature can be adjusted at a low price.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る温度調節可能な中空面状構造体の
一例(屋根瓦)を示す平面図である。
FIG. 1 is a plan view showing an example of a temperature-adjustable hollow planar structure (roof tile) according to the present invention.

【図2】図1に示される中空面状構造体の縦断面図であ
る。
FIG. 2 is a longitudinal sectional view of the hollow planar structure shown in FIG.

【図3】図1に示される中空面状構造体の製造方法の説
明図である。
FIG. 3 is an explanatory diagram of a method of manufacturing the hollow planar structure shown in FIG.

【図4】本発明に係る温度調節可能な中空面状構造体の
他の例(厚板材)を示す平面図である。
FIG. 4 is a plan view showing another example (thick plate) of the hollow planar structure capable of adjusting the temperature according to the present invention.

【図5】図4に示される中空面状構造体の縦断面図であ
る。
5 is a longitudinal sectional view of the hollow planar structure shown in FIG.

【図6】図4に示される中空面状構造体の製造方法の説
明図である。
6 is an explanatory diagram of a method for manufacturing the hollow planar structure shown in FIG.

【符号の説明】[Explanation of symbols]

1 温度調節用流体通過孔 2 ガスチャンネル 3 接着剤層 4 表面層 5 ガスチャンネル形成凹部 6 金型 7 仕切り壁 8 キャビティ 9 可動中子 10 金型 DESCRIPTION OF SYMBOLS 1 Temperature control fluid passage hole 2 Gas channel 3 Adhesive layer 4 Surface layer 5 Gas channel forming recess 6 Mold 7 Partition wall 8 Cavity 9 Movable core 10 Mold

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI E04D 1/24 E04D 1/24 A 13/00 13/00 F F24D 3/16 F24D 3/16 B A // B29L 31:10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI E04D 1/24 E04D 1/24 A 13/00 13/00 F F24D 3/16 F24D 3/16 B A // B29L 31:10

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 一体の合成樹脂射出成形品であって、内
部に、一端から注入した温度調節用流体を他端より排出
可能な一連の温度調節用流体通過孔が一体に形成されて
いることを特徴とする温度調節可能な中空面状構造体。
1. An integrated synthetic resin injection-molded product, wherein a series of temperature control fluid passage holes through which a temperature control fluid injected from one end can be discharged from the other end are integrally formed. A temperature-controllable hollow planar structure characterized by the following.
【請求項2】 建築材料であることを特徴とする請求項
1の温度調節可能な中空面状構造体。
2. The temperature-controllable hollow surface-like structure according to claim 1, which is a building material.
【請求項3】 温度調節用流体通過孔が、部分的に設け
られた肉厚のガスチャンネルに沿って形成されているこ
とを特徴とする請求項1又は2のの温度調節可能な中空
面状構造体。
3. The temperature-controllable hollow surface according to claim 1, wherein the temperature control fluid passage hole is formed along a partially provided gas channel having a large thickness. Structure.
【請求項4】 温度調節用流体通過孔が、両側から交互
に張り出した仕切り壁によってジグザク状に形成されて
いることを特徴とする請求項1又は2の温度調節可能な
中空面状構造体。
4. The temperature-controllable hollow planar structure according to claim 1, wherein the temperature control fluid passage holes are formed in a zigzag shape by partition walls protruding alternately from both sides.
【請求項5】 請求項1〜4いずれかの温度調節可能な
中空面状構造体を1単位として、温度調節用流体通過孔
が相互に連結された複数単位で構成されていることを特
徴とする温度調節可能な中空面状構造体。
5. A temperature control fluid passage hole comprising a plurality of interconnected units, with the temperature-adjustable hollow surface-shaped structure according to claim 1 as one unit. Temperature adjustable hollow planar structure.
【請求項6】 金型内に射出した合成樹脂中に加圧ガス
を圧入することで内部に温度調節用流体通過孔を一体に
形成することを特徴とする温度調節可能な中空面状構造
体の製造方法。
6. A temperature-adjustable hollow planar structure characterized in that a temperature-adjusting fluid passage hole is integrally formed inside a synthetic resin injected into a mold by pressurizing a pressurized gas. Manufacturing method.
【請求項7】 温度調節用流体通過孔の形成位置に沿っ
て厚肉のガスチャンネルを形成するガスチャンネル形成
凹部を有する金型を用い、このガスチャンネル形成凹部
内の合成樹脂中に加圧ガスを圧入することで、ガスチャ
ンネルに沿って温度調節用流体通過孔を一体に形成する
ことを特徴とする請求項6の温度調節可能な中空面状構
造体の製造方法。
7. A mold having a gas channel forming recess for forming a thick gas channel along a position where a temperature control fluid passage hole is formed, and pressurized gas is introduced into the synthetic resin in the gas channel forming recess. 7. The method for manufacturing a temperature-controllable hollow planar structure according to claim 6, wherein the temperature control fluid passage hole is integrally formed along the gas channel by press-fitting.
【請求項8】 キャビティ内への突出とこの突出位置か
らの後退が可能な可動中子をキャビティ内の仕切り壁形
成位置に設けた金型を用い、キャビティ内へ合成樹脂を
射出し、キャビティ内へ可動中子が突出した状態で加圧
ガスを圧入して、可動中子を後退させることで、両側か
ら交互に張り出した仕切り壁によってジグザク状となっ
た温度調節用流体通過孔を一体に形成することを特徴と
する請求項6の温度調節可能な中空面状構造体の製造方
法。
8. A synthetic resin is injected into the cavity by using a mold provided with a movable core capable of projecting into the cavity and retreating from the projecting position at a partition wall forming position in the cavity. The pressurized gas is pressed in with the movable core protruding into it, and the movable core is retracted to form a zigzag temperature control fluid passage hole integrally formed by partition walls that alternately protrude from both sides. 7. The method for producing a temperature-adjustable hollow planar structure according to claim 6, wherein:
【請求項9】 キャビティ内への突出とこの突出位置か
らの後退が可能な可動中子がキャビティ内の仕切り壁形
成位置に設けられ、キャビティ面の移動によるキャビテ
ィ容積の拡大が可能な金型を用い、キャビティ内へ合成
樹脂を射出し、キャビティ内へ可動中子が突出した状態
で加圧ガスを圧入して、可動中子の後退と、キャビティ
面の移動によるキャビティ容積の拡大とを行うことで、
両側から交互に張り出した仕切り壁によってジグザク状
となった温度調節用流体通過孔を一体に形成することを
特徴とする請求項6の温度調節可能な中空面状構造体の
製造方法。
9. A mold in which a movable core capable of protruding into the cavity and retracting from the protruding position is provided at a partition wall forming position in the cavity, and the cavity volume can be increased by moving the cavity surface. Used to inject synthetic resin into the cavity, press-fit a pressurized gas with the movable core projecting into the cavity, and retract the movable core and expand the cavity volume by moving the cavity surface. so,
7. The method for producing a temperature-adjustable hollow planar structure according to claim 6, wherein zigzag-shaped fluid passages for temperature adjustment are formed integrally by partition walls alternately projecting from both sides.
JP13952098A 1998-05-21 1998-05-21 Temperature adjustable hollow face structural body and its manufacture Pending JPH11324233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13952098A JPH11324233A (en) 1998-05-21 1998-05-21 Temperature adjustable hollow face structural body and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13952098A JPH11324233A (en) 1998-05-21 1998-05-21 Temperature adjustable hollow face structural body and its manufacture

Publications (1)

Publication Number Publication Date
JPH11324233A true JPH11324233A (en) 1999-11-26

Family

ID=15247210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13952098A Pending JPH11324233A (en) 1998-05-21 1998-05-21 Temperature adjustable hollow face structural body and its manufacture

Country Status (1)

Country Link
JP (1) JPH11324233A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1457307A3 (en) * 2003-03-12 2006-02-22 Epoch Composite Products, Inc. Method for manufacturing roofing products
JP2006169755A (en) * 2004-12-14 2006-06-29 Sus Corp Construction material element and construction method
EP1925419A1 (en) * 2006-11-22 2008-05-28 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Product having a solid body and inside hollow rooms
WO2018041912A1 (en) * 2016-08-31 2018-03-08 Kautex Textron Gmbh & Co. Kg Method for producing a shell-like plastics moulding, shell-like plastics moulding, and container made of thermoplastic

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1457307A3 (en) * 2003-03-12 2006-02-22 Epoch Composite Products, Inc. Method for manufacturing roofing products
JP2006169755A (en) * 2004-12-14 2006-06-29 Sus Corp Construction material element and construction method
EP1925419A1 (en) * 2006-11-22 2008-05-28 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Product having a solid body and inside hollow rooms
WO2018041912A1 (en) * 2016-08-31 2018-03-08 Kautex Textron Gmbh & Co. Kg Method for producing a shell-like plastics moulding, shell-like plastics moulding, and container made of thermoplastic

Similar Documents

Publication Publication Date Title
CN102016477B (en) Modular heat exchange system for use in central heat exchange installations in buildings
KR101744310B1 (en) Windows and doors frame with polyamide insulation bar and manufacturing method therof
JP4514806B2 (en) Hot water circulation radiator for room heating
WO2003013820A1 (en) Method for producing upsized frp member
CN102677860B (en) Phase change energy storage temperature regulation energy-saving floor
US3410336A (en) Thermal conditioning system for an enclosed space
JPH11324233A (en) Temperature adjustable hollow face structural body and its manufacture
EP0882200B1 (en) Method and device for heating and cooling buildings, and a heat-insulating wall covering
KR20110112194A (en) Hot-water pannel assembly for pressing out type
CN202017322U (en) Phase-change energy-accumulation temperature-regulation and energy-saving floor
CN102518357A (en) Composite energy-saving door window frame or door window sash frame and forming method
KR200339260Y1 (en) Heating System Using the Enhanced Thermally Conductive Plastic Panel
JP2009133074A (en) Flooring material and its manufacturing method
CA2055163A1 (en) Slot die of an extruder
JP2006193998A (en) Laminated roofing tile
KR20100025084A (en) Kennel for heat-retaining
JPS61184337A (en) Heat storage tank for floor heating
CN216076813U (en) High-heat-insulation high-strength fine frame door and window
RU2319901C2 (en) Method of manufacturing heating panel
CN100374783C (en) Heating valve unit
EP4336106A1 (en) Heating panel and manufacturing method therefor
CN219214005U (en) Silica gel telescopic pipe mould
CN216340649U (en) Energy-storage self-temperature-adjusting metal material paving structure
CN210887874U (en) Waterproof heat-preservation polyurethane PIR low-temperature cold storage plate for cold storage
CN207348374U (en) A kind of hot-water heating floor panel structure