JPH11323401A - Titanium boride-dispersed hard material - Google Patents

Titanium boride-dispersed hard material

Info

Publication number
JPH11323401A
JPH11323401A JP10146542A JP14654298A JPH11323401A JP H11323401 A JPH11323401 A JP H11323401A JP 10146542 A JP10146542 A JP 10146542A JP 14654298 A JP14654298 A JP 14654298A JP H11323401 A JPH11323401 A JP H11323401A
Authority
JP
Japan
Prior art keywords
powder
tib2
composite material
tib
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10146542A
Other languages
Japanese (ja)
Other versions
JP3032818B2 (en
Inventor
Keizo Kobayashi
慶三 小林
Akira Sugiyama
明 杉山
Toshiyuki Nishio
敏幸 西尾
Koyo Ozaki
公洋 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10146542A priority Critical patent/JP3032818B2/en
Publication of JPH11323401A publication Critical patent/JPH11323401A/en
Application granted granted Critical
Publication of JP3032818B2 publication Critical patent/JP3032818B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To densely compact a composite material at a low temp. by substituting a specified ratio of TiB2 in a composite material composed of a specified amt. of TiB2 , and the balance transition metals such as Fe, Ni, Co with Ti powder and B powder and executing mechanical alloying treatment. SOLUTION: The composite material contains >=50 wt.% TiB2 . By weight, 10 to 50% TiB2 phase to from hard phases are substituted with Ti powder and B powder. This raw material is subjected to mechanical alloying treatment. A dry type pulverizer can be utilized for this treatment, and a vibration-type ball mill or the like is preferably illustrated. The obtd. alloy powder is composed of TiB2 , Fe or the like micronized into a submicron size, Ti and B powder. Next, the powder is sintered and compacted. Moreover, the compacted body is subjected to heating treatment in a hydrostatic pressure, by which residual pores are perfectly removed to densify it. Furthermore, by executing rapid cooling after the heating, the size of crystal pasticles other than the hard phases can be micronized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チタン硼化物分散
硬質材料およびその製造方法に関する。さらに詳しく
は、本発明は、チタン硼化物を分散した硬質材料を合成
する際に、チタン硼化物の一部をTi粉末およびB粉末
に置換して、これを機械的合金化法により微細分散し、
焼結時にTiB2 相を合成することにより、緻密な硬質
材料を製造する方法およびその製品に関する。
The present invention relates to a titanium boride-dispersed hard material and a method for producing the same. More specifically, in the present invention, when synthesizing a hard material in which titanium boride is dispersed, a part of the titanium boride is replaced with Ti powder and B powder, which are finely dispersed by a mechanical alloying method. ,
The present invention relates to a method for producing a dense hard material by synthesizing a TiB 2 phase during sintering, and a product thereof.

【0002】[0002]

【従来の技術】チタン硼化物を硬質粒子とする複合材料
は焼結性が悪く、従来、鉄系材料を結合相とする緻密な
チタン硼化物分散硬質材料を作製することは困難であっ
た。また、該材料の焼結には大きな加圧力と高温での焼
結が必要となり、チタン硼化物の粗大化が生じ、成形体
の特性が低下するという問題があった。
2. Description of the Related Art Composite materials containing titanium boride as hard particles have poor sinterability, and it has been conventionally difficult to prepare a dense titanium boride-dispersed hard material having an iron-based material as a binder phase. Further, sintering of the material requires a large pressing force and sintering at a high temperature, and there is a problem that the titanium boride is coarsened and the properties of the molded body are deteriorated.

【0003】また、硬質粒子であるチタン硼化物と金属
粉末を機械的合金化処理すると、機械的合金化処理用の
容器や粉砕球からのコンタミネーションが多くなるとい
う問題もある。
Further, when titanium boride, which is hard particles, and metal powder are subjected to mechanical alloying treatment, there is also a problem that contamination from a container for mechanical alloying treatment and grinding balls increases.

【0004】[0004]

【発明が解決しようとする課題】本発明者らは、上記従
来技術の問題点を解決するために鋭意研究した結果、チ
タン硼化物を分散した硬質材料を合成する際に、チタン
硼化物の一部をチタン粉末とボロン粉末に置き換えて機
械的合金化処理を行い、焼結過程においてTiB2 を合
成することにより、焼結体の緻密さが向上すること、そ
して、低温で緻密な複合材料が作製できることを見出
し、本発明を完成した。本発明は、チタン硼化物を分散
した硬質材料を、チタン硼化物の一部を焼結過程におい
て合成することにより作製すること、それにより、低温
で緻密な高硬度材料を作製することを目的とするもので
ある。即ち、本発明は、チタン硼化物を含む複合材料を
低温で緻密に成形する方法を提供するためになされたも
のである。
SUMMARY OF THE INVENTION The present inventors have made intensive studies to solve the above-mentioned problems of the prior art, and as a result, when synthesizing a hard material in which titanium boride is dispersed, one of titanium boride has been obtained. By replacing the parts with titanium powder and boron powder and performing mechanical alloying treatment, and synthesizing TiB 2 in the sintering process, the denseness of the sintered body is improved, and a dense composite material at low temperature They found that they could be made and completed the present invention. An object of the present invention is to produce a hard material in which titanium boride is dispersed by synthesizing a part of titanium boride in a sintering process, thereby producing a dense high-hardness material at a low temperature. Is what you do. That is, the present invention has been made to provide a method of forming a composite material containing titanium boride densely at a low temperature.

【0005】[0005]

【課題を解決するための手段】上記課題を解決する本発
明は、以下の技術的手段からなる。 (1)50重量%以上のTiB2 と残部が鉄あるいはニ
ッケル、コバルトなどの遷移金属より構成される複合材
料で、該TiB2 の10重量%〜50重量%をTi粉末
とB粉末で置き換え、機械的合金化処理した合金粉末。 (2)前記(1)で作製した合金粉末を加圧下で焼結す
ることにより成形したチタン硼化物を含む複合材料。 (3)前記(1)または(2)で作製した合金粉末また
は成形体を加熱熱処理し、必要により、その後急冷した
材料。 (4)TiB2 の5重量%〜50重量%をチタン炭化物
またはチタン窒化物粉末に置き換えた前記(1)記載の
合金粉末。 (5)前記(4)で作製した粉末を加圧下で焼結するこ
とにより成形したチタン硼化物を含む複合材料。 (6)50重量%以上のTiB2 と残部が鉄あるいはニ
ッケル、コバルトなどの遷移金属より構成される複合材
料で、該TiB2 の10重量%〜50重量%をTi粉末
とB粉末で置き換え、機械的合金化処理した合金粉末を
加圧下で焼結することにより成形することからなるチタ
ン硼化物を含む複合材料の製造方法。
The present invention for solving the above problems comprises the following technical means. (1) A composite material composed of 50% by weight or more of TiB 2 and the rest composed of a transition metal such as iron, nickel, or cobalt. 10% to 50% by weight of the TiB 2 is replaced with Ti powder and B powder; Alloy powder that has been mechanically alloyed. (2) A composite material containing titanium boride formed by sintering the alloy powder produced in (1) under pressure. (3) A material obtained by subjecting the alloy powder or the compact produced in the above (1) or (2) to heat treatment and, if necessary, quenching. (4) The alloy powder according to (1), wherein 5% to 50% by weight of TiB 2 is replaced with titanium carbide or titanium nitride powder. (5) A composite material containing titanium boride formed by sintering the powder produced in (4) under pressure. (6) A composite material composed of 50% by weight or more of TiB 2 and the remainder composed of a transition metal such as iron, nickel, or cobalt, and replacing 10% to 50% by weight of the TiB 2 with Ti powder and B powder; A method for producing a composite material containing titanium boride, comprising forming an alloy powder subjected to mechanical alloying by sintering under pressure.

【0006】[0006]

【発明の実施の形態】次に、本発明をさらに詳細に説明
する。本発明は、従来、低温での緻密化が困難であった
チタン硼化物を分散した硬質材料をチタン硼化物の一部
を焼結時に合成することにより、その部分的な発熱現象
を利用して作製し、緻密な成形体を得るものである。本
発明に用いる材料としては、市販のTiB2 粉末、遷移
金属粉末(鉄、ニッケル、コバルトなど)、チタン粉末
およびボロン粉末が利用できる。この場合、ボロン粉末
としては、例えば、市販のボロン塊を粉砕機で粉砕した
もの、非晶質の粉末などが利用できる。粉末の粒度につ
いては特に指定しないが、一般的には数ミリ〜数ミクロ
ンの粉末が好適なものとして利用できる。
Next, the present invention will be described in more detail. The present invention utilizes a partial heat generation phenomenon by synthesizing a part of titanium boride at the time of sintering a hard material in which titanium boride is dispersed, which has been difficult to densify at low temperatures. It is intended to obtain a dense compact. As the material used in the present invention, commercially available TiB 2 powder, transition metal powder (iron, nickel, cobalt, etc.), titanium powder and boron powder can be used. In this case, as the boron powder, for example, commercially available boron lump pulverized by a pulverizer, amorphous powder, or the like can be used. The particle size of the powder is not particularly specified, but generally a powder of several millimeters to several microns can be used as a suitable powder.

【0007】硬質相となるTiB2 相の10重量%〜5
0重量%をチタン粉末およびボロン粉末で置き換える。
この場合、チタン粉末とボロン粉末の混合量が10重量
%未満では焼結が困難であり、また、50重量%を越え
るとをTiB2 合成時の熱により他の硼化物の生成が促
進される。これらの粉末を機械的合金化法により処理す
る。上記TiB2 をチタン粉末とボロン粉末に置き換え
る量を変化させることにより、緻密化温度をおよそ80
0℃から1200℃まで変化させることができる。
[0007] 10% by weight to 5% of TiB 2 phase to be a hard phase
Replace 0% by weight with titanium powder and boron powder.
In this case, if the mixing amount of the titanium powder and the boron powder is less than 10% by weight, sintering is difficult, and if the mixing amount exceeds 50% by weight, the generation of other borides is promoted by heat during the synthesis of TiB 2. . These powders are processed by a mechanical alloying method. By changing the amount of replacing the TiB 2 with titanium powder and boron powder, the densification temperature can be increased to about 80%.
It can be varied from 0 ° C to 1200 ° C.

【0008】硬質相にさらに高硬度のチタン炭化物やチ
タン窒化物を混合することも可能である。この場合は、
TiB2 粉末の5重量%〜50重量%をそれぞれの粉末
に置き換えればよい。5重量%未満の添加では、添加に
よる硬度の上昇が期待できず、また、50重量%を越え
て添加すると焼結性が低下する。
[0008] It is also possible to mix a titanium carbide or titanium nitride of higher hardness with the hard phase. in this case,
TiB 2 5 wt% to 50 wt% of the powder may be replaced with each of the powder. If the addition is less than 5% by weight, an increase in hardness due to the addition cannot be expected, and if the addition exceeds 50% by weight, the sinterability decreases.

【0009】機械的合金化処理には、適宜の手段が使用
されるが、例えば、好適には、乾式の粉砕機が利用で
き、さらに、振動型ボールミル、遊星型ボールミル、転
動型ボールミル、アトライターなどが利用できる。機械
的合金化時の雰囲気は、粉末の酸化を防止するために、
不活性ガス雰囲気や減圧雰囲気が好ましい。
For the mechanical alloying treatment, an appropriate means is used. For example, a dry pulverizer can be preferably used. Further, a vibration ball mill, a planetary ball mill, a rolling ball mill, Lighters are available. The atmosphere during mechanical alloying is to prevent powder oxidation.
An inert gas atmosphere or a reduced pressure atmosphere is preferable.

【0010】機械的合金化に供する時間については特に
指定しないが、50時間から200時間が一般的であ
る。また、圧力伝達媒体としては、鋼球、セラミックス
球、超硬球など一般的な粉砕球が利用できる。
Although the time for the mechanical alloying is not specified, it is generally 50 to 200 hours. In addition, as the pressure transmission medium, general pulverized balls such as steel balls, ceramic balls, and carbide balls can be used.

【0011】機械的合金化法により合成された粉末は、
TiB2 とサブミクロンサイズに微細化された鉄とチタ
ンとボロン粉末から構成される。なお、機械的合金化処
理時にはチタン粉末とボロン粉末からTiB2 相が合成
されておらず、機械的合金化時の容器やボールからの汚
染は5重量%以下である。得られた粉末は発火の危険性
があるため、容器からの取り出しは不活性ガス雰囲気中
あるいは真空中で行うことが好ましい。
The powder synthesized by the mechanical alloying method is as follows:
It is composed of TiB 2 , iron, titanium, and boron powder refined to a submicron size. During the mechanical alloying process, the TiB 2 phase was not synthesized from the titanium powder and the boron powder, and the contamination from the container and the balls during the mechanical alloying was 5% by weight or less. Since the obtained powder has a risk of ignition, it is preferable to take out the powder from the container in an inert gas atmosphere or in a vacuum.

【0012】次に、得られた合金粉末を焼結することに
より成形する。得られた粉末を成形するための焼結雰囲
気は、チタンの酸化を防止するために不活性ガス雰囲気
あるいは真空にする必要がある。焼結方法としては、加
圧下での加熱が好ましく、より好ましくは通電加熱によ
る焼結が好適なものとして例示される。通電加熱は、高
速な昇温が可能であるため、チタン硼化物の粒成長を抑
制できる。加圧は、焼結時のチタンとボロンの反応性を
よくするために必要であり、その加圧量は特に指定しな
いが、一般的には30MPa以上である。
Next, the obtained alloy powder is formed by sintering. The sintering atmosphere for molding the obtained powder needs to be an inert gas atmosphere or a vacuum in order to prevent oxidation of titanium. As the sintering method, heating under pressure is preferable, and sintering by electric heating is more preferable. The electric heating can raise the temperature at a high speed, so that the grain growth of titanium boride can be suppressed. Pressing is necessary to improve the reactivity between titanium and boron during sintering, and the amount of pressing is not particularly specified, but is generally 30 MPa or more.

【0013】焼結温度は、遷移金属の量によって決定さ
れるが、その範囲は、800℃から1200℃が好まし
い。800℃以下では焼結が不十分であり、1200℃
以上ではチタン硼化物の結晶が大きく成長してしまう。
[0013] The sintering temperature is determined by the amount of the transition metal, and the range is preferably from 800 ° C to 1200 ° C. If the temperature is lower than 800 ° C, sintering is insufficient.
Above, crystals of titanium boride grow large.

【0014】得られた成形体は、静水圧雰囲気中で加熱
熱処理することにより、残留気孔を完全に除去すること
ができる。これにより、理論密度の95%以上の密度を
有する緻密な成形体が得られる。また、加熱後に急冷す
ることにより硬質相以外の結晶粒径を微細化することが
できる。これにより、焼結体の硬度をおよそ10%上昇
させた同じ組成の焼結体が得られる。
The obtained molded body is subjected to a heat treatment in a hydrostatic pressure atmosphere, so that residual pores can be completely removed. Thereby, a dense molded body having a density of 95% or more of the theoretical density can be obtained. Further, by rapidly cooling after heating, the crystal grain size other than the hard phase can be refined. As a result, a sintered body having the same composition in which the hardness of the sintered body has been increased by about 10% is obtained.

【0015】機械的合金化処理により合成された粉末を
加熱熱処理することにより、粉末形状のままTiB2
を生成させることができる。それにより、TiB2 粒子
と金属が微細混合した複合粒子が得られ、金属相の展延
性を利用した粉末どうしの溶着が可能となる。この粉末
は、数ミクロン〜数十ミクロンの緻密な粉末であり、こ
のまま溶射用材料として利用が可能である。本発明によ
り、TiB2 の熱的特性と高硬度を併せ持った複合材料
が提供される。また、本発明は、機械的合金化時のTi
2 をチタン粉末とボロン粉末に置き換える量を変化さ
せることにより、緻密化温度を変えることが可能であ
り、例えば、異種材料の接合、傾斜機能材料等の作製に
好適に応用することが可能である。
By subjecting the powder synthesized by the mechanical alloying treatment to heat treatment, a TiB 2 phase can be generated in the powder form. As a result, composite particles in which the TiB 2 particles and the metal are finely mixed are obtained, and welding of the powders using the ductility of the metal phase becomes possible. This powder is a dense powder of several microns to several tens of microns, and can be used as it is as a material for thermal spraying. According to the present invention, a composite material having both the thermal properties of TiB 2 and high hardness is provided. In addition, the present invention provides a method for producing Ti
By the B 2 varying amounts to replace the titanium powder and boron powder, it is possible to vary the densification temperature, for example, bonding of dissimilar materials, can be suitably applied to the production of such FGM is there.

【0016】[0016]

【実施例】以下、実施例に基づいて本発明をさらに具体
的に説明する。しかし、本発明は該実施例によって何ら
限定されるものではない。 実施例1 TiB2 粉末(スタルク製)18.4gに、チタン粉末
(和光純薬製試薬)1.8g、ボロン粉末(和光純薬製
非晶質)0.8g、鉄粉末(神戸製鋼製)9gを添加し
て、遊星型ボールミルによる100時間の機械的合金化
処理を施した。機械的合金化の雰囲気は、減圧アルゴン
とし、粉末とボール重量比が約0.1になるようにし
た。容器と10mm径の粉砕球にはクロム鋼を用いた。
得られた材料は、微細な粉末であり、容器やボールから
のコンタミネーションは1重量%以下であった。
EXAMPLES The present invention will be described below more specifically based on examples. However, the present invention is not limited by the examples. Example 1 1.8 g of titanium powder (reagent made by Wako Pure Chemical), 0.8 g of boron powder (amorphous made by Wako Pure Chemical), iron powder (made by Kobe Steel) to 18.4 g of TiB 2 powder (made by Starck) 9 g was added, and a mechanical alloying treatment was performed for 100 hours by a planetary ball mill. The atmosphere for the mechanical alloying was argon under reduced pressure so that the weight ratio of the powder to the ball was about 0.1. Chromium steel was used for the container and the crushing balls having a diameter of 10 mm.
The obtained material was a fine powder, and contamination from a container or a ball was 1% by weight or less.

【0017】得られた材料を直径15mmの黒鉛型に入
れ、10-2Torrの真空中で通電加熱を行って焼結し
た。焼結温度は1000℃で3分間保持し、加圧力は3
5MPaで成形した。得られた成形体は、割れなどはな
く、理論密度の90%以上の密度を有する緻密な焼結体
であった。成形体は1000Hv以上の硬度を示した。
The obtained material was placed in a graphite mold having a diameter of 15 mm, and was heated and heated in a vacuum of 10 -2 Torr for sintering. The sintering temperature is maintained at 1000 ° C. for 3 minutes, and the pressing force is 3
It was molded at 5 MPa. The obtained molded body was a dense sintered body having no crack and having a density of 90% or more of the theoretical density. The molded body showed a hardness of 1000 Hv or more.

【0018】実施例2 TiB2 粉末(スタルク製)10.5gに、チタン粉末
(和光純薬製試薬)7.2g、ボロン粉末(和光純薬製
非晶質)3.3g、鉄粉末(神戸製鋼製)9gを添加し
て、遊星型ボールミルによる200時間の機械的合金化
処理を施した。機械的合金化の雰囲気は、減圧アルゴン
とし、粉末とボール重量比が約0.1になるようにし
た。容器と10mm径の粉砕球にはクロム鋼を用いた。
得られた材料は、微細な粉末であり、容器やボールから
のコンタミネーションは1重量%以下であった。
Example 2 To 10.5 g of TiB 2 powder (manufactured by Starck), 7.2 g of titanium powder (reagent made by Wako Pure Chemical), 3.3 g of boron powder (amorphous manufactured by Wako Pure Chemical), iron powder (Kobe) 9 g of steelmaking) and subjected to a mechanical alloying treatment with a planetary ball mill for 200 hours. The atmosphere for the mechanical alloying was argon under reduced pressure so that the weight ratio of the powder to the ball was about 0.1. Chromium steel was used for the container and the crushing balls having a diameter of 10 mm.
The obtained material was a fine powder, and contamination from a container or a ball was 1% by weight or less.

【0019】得られた材料を内径15mmの黒鉛型に入
れ、10-2Torrの真空中で通電加熱を行って焼結し
た。焼結温度は1000℃で3分間保持し、加圧力は3
5MPaで成形した。得られた成形体は、割れなどがな
く、理論密度の95%以上の密度を有する緻密な焼結体
であった。成形体は2111Hvの硬度を示した。
The obtained material was placed in a graphite mold having an inner diameter of 15 mm, and was heated and heated in a vacuum of 10 -2 Torr for sintering. The sintering temperature is maintained at 1000 ° C. for 3 minutes, and the pressing force is 3
It was molded at 5 MPa. The obtained molded body was a dense sintered body having no crack and a density of 95% or more of the theoretical density. The molded body showed a hardness of 2111 Hv.

【0020】実施例3 TiB2 粉末(スタルク製)10.5gに、TiC粉末
(スタルク製)2.1g、チタン粉末(和光純薬製試
薬)7.2g、ボロン粉末(和光純薬製)3.3g、ニ
ッケル粉末(和光純薬製)9gを添加して、遊星型ボー
ルミルによる100時間の機械的合金化処理を施した。
機械的合金化の雰囲気は、減圧アルゴンとし、粉末とボ
ール重量比が約0.1になるようにした。容器と10m
m径の粉砕球にはクロム鋼を用いた。得られた材料は、
微細な粉末であり、容器やボールからのコンタミネーシ
ョンは2重量%以下であった。
Example 3 To 10.5 g of TiB 2 powder (manufactured by Starck), 2.1 g of TiC powder (manufactured by Stark), 7.2 g of titanium powder (reagent manufactured by Wako Pure Chemical), and boron powder (manufactured by Wako Pure Chemical) 3 0.3 g and 9 g of nickel powder (manufactured by Wako Pure Chemical Industries, Ltd.) were added, and a mechanical alloying treatment was performed for 100 hours by a planetary ball mill.
The atmosphere for the mechanical alloying was argon under reduced pressure so that the weight ratio of the powder to the ball was about 0.1. Container and 10m
Chrome steel was used for the crushing balls having a diameter of m. The resulting material is
It was a fine powder, and the contamination from containers and balls was 2% by weight or less.

【0021】得られた材料を内径15mmの黒鉛型に入
れ、10-2Torrの真空中で通電加熱を行って焼結し
た。焼結温度は1000℃で3分間保持し、加圧力は3
5MPaで成形した。得られた成形体は、割れなどは観
察されず、理論密度の90%以上の比較的緻密な焼結体
が得られた。成形体をアルゴンガス雰囲気中で1000
℃に加熱し、水中で急冷した。得られた材料は、NiTi相
を含んでおり、その硬度は1200Hv以上であった。
The obtained material was placed in a graphite mold having an inner diameter of 15 mm, and was heated and heated in a vacuum of 10 -2 Torr for sintering. The sintering temperature is maintained at 1000 ° C. for 3 minutes, and the pressing force is 3
It was molded at 5 MPa. No cracks were observed in the obtained molded body, and a relatively dense sintered body having a theoretical density of 90% or more was obtained. The molded body is placed in an argon gas atmosphere at 1000
C. and quenched in water. The obtained material contained a NiTi phase and had a hardness of 1200 Hv or more.

【0022】[0022]

【発明の効果】本発明は、チタン硼化物を含む複合材料
を低温で緻密に成形する方法およびその製品に係り、本
発明によれば、遷移金属材料を結合相とする緻密なチタ
ン硼化物分散硬質材料を提供することができる。本発明
のチタン硼化物分散硬質材料の製造方法を用いて、チタ
ン硼化物を分散した硬質材料を合成する際に、焼結時に
TiB2 を生成させることにより低温で緻密な高硬度材
料を作製することができる。特に、機械的合金化時のT
iB2 をチタン粉末とボロン粉末に置き換える量を変化
させることにより、緻密化温度を変えられることから、
異種材料の接合や傾斜機能材料の作製にも本技術が応用
できるものと期待される。本発明により、TiB2 の熱
的特性と高硬度を併せ持った複合材料の開発に貢献でき
るものと考えられる。
The present invention relates to a method for densely forming a composite material containing titanium boride at a low temperature and a product thereof. According to the present invention, a dense titanium boride dispersion containing a transition metal material as a binder phase is provided. A hard material can be provided. When the titanium boride-dispersed hard material production method of the present invention is used to synthesize a titanium boride-dispersed hard material, a dense high-hardness material is produced at a low temperature by generating TiB 2 during sintering. be able to. In particular, T at the time of mechanical alloying
By changing the amount of replacing iB 2 with titanium powder and boron powder, the densification temperature can be changed.
It is expected that this technology can be applied to the joining of different materials and the production of functionally graded materials. It is considered that the present invention can contribute to the development of a composite material having both the thermal characteristics and high hardness of TiB 2 .

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年5月24日[Submission date] May 24, 1999

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Correction target item name] Name of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【発明の名称】 チタン硼化物分散硬質材料 [Title of the Invention] Titanium boride dispersed hard material

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 38/00 304 C22C 38/00 304 (72)発明者 尾崎 公洋 愛知県名古屋市名東区平和が丘1丁目70番 地 猪子石住宅6棟503号──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C22C 38/00 304 C22C 38/00 304 (72) Inventor Kimihiro Ozaki 1-70 Heiwagaoka, Meito-ku, Nagoya City, Aichi Prefecture Inokoishi 6 houses, 503

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 50重量%以上のTiB2 と残部が鉄あ
るいはニッケル、コバルトなどの遷移金属より構成され
る複合材料で、該TiB2 の10重量%〜50重量%を
Ti粉末とB粉末で置き換え、機械的合金化処理した合
金粉末。
1. A composite material comprising 50% by weight or more of TiB 2 and the balance being a transition metal such as iron or nickel or cobalt. 10% to 50% by weight of TiB 2 is composed of Ti powder and B powder. Replaced and mechanically alloyed alloy powder.
【請求項2】 請求項1で作製した合金粉末を加圧下で
焼結することにより成形したチタン硼化物を含む複合材
料。
2. A composite material containing titanium boride formed by sintering the alloy powder produced in claim 1 under pressure.
【請求項3】 請求項1または請求項2で作製した合金
粉末または成形体を加熱熱処理し、必要により、その後
急冷した材料。
3. A material obtained by subjecting the alloy powder or the compact produced in claim 1 or 2 to heat treatment and, if necessary, quenching.
【請求項4】 TiB2 の5重量%〜50重量%をチタ
ン炭化物またはチタン窒化物粉末に置き換えた請求項1
記載の合金粉末。
4. The method of claim 1, wherein 5% to 50% by weight of TiB 2 is replaced by titanium carbide or titanium nitride powder.
The described alloy powder.
【請求項5】 請求項4で作製した粉末を加圧下で焼結
することにより成形したチタン硼化物を含む複合材料。
5. A composite material containing titanium boride formed by sintering the powder produced in claim 4 under pressure.
JP10146542A 1998-05-11 1998-05-11 Titanium boride dispersed hard material Expired - Lifetime JP3032818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10146542A JP3032818B2 (en) 1998-05-11 1998-05-11 Titanium boride dispersed hard material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10146542A JP3032818B2 (en) 1998-05-11 1998-05-11 Titanium boride dispersed hard material

Publications (2)

Publication Number Publication Date
JPH11323401A true JPH11323401A (en) 1999-11-26
JP3032818B2 JP3032818B2 (en) 2000-04-17

Family

ID=15410017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10146542A Expired - Lifetime JP3032818B2 (en) 1998-05-11 1998-05-11 Titanium boride dispersed hard material

Country Status (1)

Country Link
JP (1) JP3032818B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290530A (en) * 2004-04-06 2005-10-20 Kubota Corp Metal boride-dispersed sintered compact
JP2012001755A (en) * 2010-06-15 2012-01-05 National Institute Of Advanced Industrial Science & Technology High thermal conductivity hard material light in weight and excellent in oxidation resistance, and its manufacturing method
JP2017088972A (en) * 2015-11-13 2017-05-25 新日本電工株式会社 Titanium boride-containing powder and manufacturing method therefor and manufacturing method of sintered metal
EP3835443A4 (en) * 2018-08-07 2022-07-20 Hiroshima University Fe-based sintered body, fe-based sintered body production method, and hot-pressing die

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290530A (en) * 2004-04-06 2005-10-20 Kubota Corp Metal boride-dispersed sintered compact
JP2012001755A (en) * 2010-06-15 2012-01-05 National Institute Of Advanced Industrial Science & Technology High thermal conductivity hard material light in weight and excellent in oxidation resistance, and its manufacturing method
JP2017088972A (en) * 2015-11-13 2017-05-25 新日本電工株式会社 Titanium boride-containing powder and manufacturing method therefor and manufacturing method of sintered metal
EP3835443A4 (en) * 2018-08-07 2022-07-20 Hiroshima University Fe-based sintered body, fe-based sintered body production method, and hot-pressing die
US11858045B2 (en) * 2018-08-07 2024-01-02 Hiroshima University Fe-based sintered body, Fe-based sintered body production method, and hot-pressing die

Also Published As

Publication number Publication date
JP3032818B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
US4097275A (en) Cemented carbide metal alloy containing auxiliary metal, and process for its manufacture
Luo et al. Recent advances in the design and fabrication of strong and ductile (tensile) titanium metal matrix composites
JP2010236060A (en) Nitride dispersion ti-al based target and method for producing the same
US5640666A (en) Composite silicide/silicon carbide mechanical alloy
JPS6289803A (en) Powdery particle for fine granular hard alloy and its production
CN107056304A (en) A kind of TiB2Based composite ceramic material and preparation method thereof
JPH0578107A (en) Nitride powder
JPH02197535A (en) Manufacture of intermetallic compound
JP3032818B2 (en) Titanium boride dispersed hard material
EP0591305A1 (en) Cermets based on transition metal borides, their production and use.
JP3837332B2 (en) In-situ powder metallurgy manufacturing method for wear-resistant composite materials
JP3793813B2 (en) High strength titanium alloy and method for producing the same
US20030145685A1 (en) Process for producing titanium carbide, titanium nitride, or tungsten carbide hardened materials
JPH08120352A (en) Method for reproducing cemented carbide composition and production of cemented carbide
JP2005281769A (en) High hardness high carbon nanocrystal iron alloy powder and bulk material and production method therefor
Jõeleht The influence of sintering temperature of reactive sintered (Ti, Mo) C-Ni cermets
JP2877999B2 (en) Method for producing TiAl-based composite intermetallic compound
US4092156A (en) Process for preparing titanium carbide base powder for cemented carbide alloys
WO2012046773A1 (en) Titanium-hydroxyapatite composite material having high strength and excellent biocompatibility
Tarraste et al. High Energy Milling of WС-FeСr Cemented Carbide
JPH0252681B2 (en)
JPS6119593B2 (en)
JPH07188874A (en) Ferrous alloy with high rigidity and its manufacture
JP3413921B2 (en) Method for producing Ti-Al based intermetallic compound sintered body
JPH11172364A (en) Production of sintered tool steel

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term