JPH11322734A - Ruthenium-optically active phosphine complex, its production, and production of optically active 4-methyl-2-oxetanone by using the same - Google Patents

Ruthenium-optically active phosphine complex, its production, and production of optically active 4-methyl-2-oxetanone by using the same

Info

Publication number
JPH11322734A
JPH11322734A JP10142233A JP14223398A JPH11322734A JP H11322734 A JPH11322734 A JP H11322734A JP 10142233 A JP10142233 A JP 10142233A JP 14223398 A JP14223398 A JP 14223398A JP H11322734 A JPH11322734 A JP H11322734A
Authority
JP
Japan
Prior art keywords
formula
binap
optically active
segphos
rui
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10142233A
Other languages
Japanese (ja)
Inventor
Yoshiki Oketa
善樹 桶田
Yasushi Hori
容嗣 堀
Tsutomu Hashimoto
努 橋本
Toshimitsu Hagiwara
利光 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago International Corp
Original Assignee
Takasago International Corp
Takasago Perfumery Industry Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago International Corp, Takasago Perfumery Industry Co filed Critical Takasago International Corp
Priority to JP10142233A priority Critical patent/JPH11322734A/en
Priority to DE69933904T priority patent/DE69933904T2/en
Priority to EP99401120A priority patent/EP0955303B1/en
Priority to US09/307,750 priority patent/US6043380A/en
Publication of JPH11322734A publication Critical patent/JPH11322734A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Epoxy Compounds (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a new complex having a high catalytic activity, and useful as a catalyst capable of providing a high asymmetric yield in an asymmetric reaction, i.e., capable of providing a product having a high optical purity. SOLUTION: This new complex is the one of formula I [L is an optically active phosphine bidentate; T<1> is a carboxylate anion; T2 is a halogen or a carboxylate anion; (n) is 0 or 1; (m) is 1-3; (p) is 0-1; (q) is 1, or when (m) is 2, (q) is 1-1.5]. The complex is obtained, for example, by reacting a ruthenium- optically active phosphine complex of formula II (arene is a hydrocarbon having a benzene ring) with carboxylic acid salts of the formula (T<1> )aZ<1> (Z<1> is an alkali metal or the like; when Z<1> is the alkali metal, (a) is 1, or the like) or salts of the formula Z<2> b(T<2> )c (Z<2> is an alkali metal or mono- or dications; T<2> is a halogen, mono- or dianions; (b) and (c) and each 1 when Z<2> is monocations and T<2> is monoanion, or the like) in a polar solvent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規なルテニウム
−ヨ−ド−光学活性ホスフィン錯体、その製法およびそ
れを用いた光学活性4−メチル−2−オキセタノンの製
造方法に関し、さらに詳細には、各種の有機合成反応、
特に不斉水素化反応等の触媒として用いられる上記錯体
及びその製法、並びにこれを用いる、ポリマ−原料、医
薬の合成原料あるいは液晶材料等の有機合成化学工業に
おける中間体として有用な光学活性4−メチル−2−オ
キセタノンを製造する方法に関する。
The present invention relates to a novel ruthenium-iodine-optically active phosphine complex, a method for producing the same, and a method for producing optically active 4-methyl-2-oxetanone using the same. Various organic synthesis reactions,
In particular, the above-mentioned complex used as a catalyst for an asymmetric hydrogenation reaction or the like, a method for producing the same, and an optically active compound 4 which is useful as an intermediate in the organic synthetic chemistry industry such as a polymer raw material, a pharmaceutical synthesis raw material, or a liquid crystal material. The present invention relates to a method for producing methyl-2-oxetanone.

【0002】[0002]

【従来の技術】従来、多くの遷移金属錯体が有機合成反
応の触媒として使用されている。特にルテニウム金属と
光学活性な第三級ホスフィンによる金属錯体は、不斉水
素化反応の触媒として良く知られており、例えば、2,
2′−ビス(ジフェニルホスフィノ)−1,1′−ビナ
フチル(以下、BINAPと略記する)の様な光学活性
な第三級ホスフィンを配位子としたルテニウム−光学活
性ホスフィン錯体として、次のようなものが知られてい
る。
2. Description of the Related Art Conventionally, many transition metal complexes have been used as catalysts for organic synthesis reactions. In particular, metal complexes of ruthenium metal and an optically active tertiary phosphine are well known as catalysts for asymmetric hydrogenation reactions.
As a ruthenium-optically active phosphine complex having an optically active tertiary phosphine as a ligand such as 2'-bis (diphenylphosphino) -1,1'-binaphthyl (hereinafter abbreviated as BINAP), Something like that is known.

【0003】 Rux y Cl2 (第三級ホスフィン)2 (A)p (式中、Aは第三級アミンを示し、yが0のとき、xは
2、zは4、pは1を示し、yが1のとき、xは1、z
は1、pは0を示す)(特公平4−81596号公報、
特公平5−12354号公報)。
Ru x H y Cl 2 (tertiary phosphine) 2 (A) p (where A represents a tertiary amine, and when y is 0, x is 2, z is 4, and p is 1 Where y is 1, x is 1, z
Is 1 and p is 0) (Japanese Patent Publication No. 4-81596,
JP-B-5-12354).

【0004】[Ru r (第三級ホスフィン)x ]Ty (式中、TはClO4 、BF4 、PF6 を示し、rが0
のとき、x は1、y は2を示し、rが1のとき、x は
2、y は1を示す)(特公平5−12353号公報、特
公平5−12355号公報)。
[R u H r (tertiary phosphine) x ] T y (where T represents ClO 4 , BF 4 , PF 6 and r is 0
, X represents 1 and y represents 2. When r is 1, x represents 2 and y represents 1. (Japanese Patent Publication Nos. 5-12353 and 5-12355).

【0005】 [RuXa (Q)b (第三級ホスフィン)]Yc {式中、Xはハロゲン原子を示し、Qは置換基を有して
いてもよいベンゼンまたはアセトニトリルを示し、Yは
ハロゲン原子、ClO4 、PF6 、BPh4 (ここでP
hはフェニル基を示す。以下同様)またはBF4 を示
し、Qが置換基を有していてもよいベンゼンの場合、
a、b及びcはいずれも1を示し、Qがアセトニトリル
の場合、aが0のとき、bは4、cは2を示し、aが1
のとき、bは2、cは1を示す。尚、Qが置換基を有す
るベンゼンのうちp−シメンであり、X及びYがヨウ素
原子である場合は、a、b及びcがいずれも1であるほ
か、aが1、bが1、cが3であってもよい}(特公平
7−57758号公報、特開平5−111639号公
報)。
[RuX a (Q) b (tertiary phosphine)] Y c } wherein X represents a halogen atom, Q represents benzene or acetonitrile which may have a substituent, and Y represents halogen Atoms, ClO 4 , PF 6 , BPh 4 (where P
h represents a phenyl group. The same applies hereinafter) or BF 4, and when Q is benzene which may have a substituent,
a, b and c each represent 1, and when Q is acetonitrile, when a is 0, b represents 4, c represents 2, and a represents 1
In the case, b represents 2 and c represents 1. When Q is p-cymene among benzenes having a substituent and X and Y are iodine atoms, a, b and c are all 1, a is 1, b is 1, c May be 3 (JP-B-7-57758, JP-A-5-1111639).

【0006】(第三級ホスフィン)w Ru(OCO
R′)(OCOR″) (式中、R′およびR″は低級アルキル基、ハロゲン化
低級アルキル基、低級アルキル置換基を有してもよいフ
ェニル基、α−アミノアルキル基またはα−アミノフェ
ニルアルキル基を示すか、あるいはR′とR″が一緒に
なってアルキレン基を形成し、wは1または2を示す)
(特公平5−11119号公報、特公平5−12355
号公報)。
(Tertiary phosphine) w Ru (OCO
R ′) (OCOR ″) wherein R ′ and R ″ are a lower alkyl group, a halogenated lower alkyl group, a phenyl group optionally having a lower alkyl substituent, an α-aminoalkyl group or an α-aminophenyl Represents an alkyl group, or R 'and R "together form an alkylene group, and w represents 1 or 2)
(JP-B-5-11119, JP-B-5-12355)
No.).

【0007】RuJ2 (第3級ホスフィン) (式中、Jは塩素原子、臭素原子またはヨウ素原子を示
す)(R. Noyori etal.,J. Am. Chem. Soc., Vol. 109,
No. 19, pp. 5856-5859 (1987) ) RuG2 (第三級ホスフィン) (式中、Gはアリル基またはメタリル基を示す)(J.
P. Genet et al., Tetrahedron: Asymmetry, Vol. 2, N
o. 7, pp. 555-567 (1991) )しかし、これらのルテニ
ウム−光学活性ホスフィン錯体を用いても、対象とする
反応または反応基質によっては、触媒活性や不斉収率が
不十分である等、実際の工業化に当たっては問題がある
場合があった。
RuJ 2 (tertiary phosphine) (wherein J represents a chlorine atom, a bromine atom or an iodine atom) (R. Noyori et al., J. Am. Chem. Soc., Vol. 109,
No. 19, pp. 5856-5859 (1987)) RuG 2 (tertiary phosphine) (wherein G represents an allyl group or a methallyl group) (J.
P. Genet et al., Tetrahedron: Asymmetry, Vol. 2, N
o. 7, pp. 555-567 (1991)) However, even if these ruthenium-optically active phosphine complexes are used, their catalytic activity and asymmetric yield are insufficient depending on the target reaction or reaction substrate. There were cases where there was a problem in actual industrialization.

【0008】一方、4−メチル−2−オキセタノン
(「β−ブチロラクトン」または「β−メチル−β−プ
ロピオラクトン」とも言う)は、従来より、ポリマ−原
料等に用いられているが、近年になって、特開平6−2
56482号公報、特開平6−329768号公報、特
開平7−53694号公報、特開平8−53540号公
報、特開平8−127645号公報に記載されているよ
うに、特にその光学活性体が有用であるとして注目され
ている。
On the other hand, 4-methyl-2-oxetanone (also referred to as “β-butyrolactone” or “β-methyl-β-propiolactone”) has been conventionally used as a polymer raw material, but in recent years, And JP-A-6-2
As described in JP-A-56482, JP-A-6-329768, JP-A-7-53694, JP-A-8-53540 and JP-A-8-127645, the optically active substance is particularly useful. Is attracting attention.

【0009】光学活性な4−メチル−2−オキセタノン
の製法としては、次のような方法が報告されている。 (a)クロトン酸に臭化水素酸を付加して得られる3−
ブロモ酪酸を、光学活性なナフチルエチルアミンを用い
て光学分割し、次いで環化する方法(J. Reid Shelton
et al.; Polymer Letters, Vol. 9, pp. 173-178 (197
1) 及びT. Satoetal; Tetrahedron Lett., Vol. 21, p
p. 3377-3380 (1980)) 。
As a method for producing optically active 4-methyl-2-oxetanone, the following method has been reported. (A) 3-obtained by adding hydrobromic acid to crotonic acid
A method in which bromobutyric acid is optically resolved using optically active naphthylethylamine and then cyclized (J. Reid Shelton
et al .; Polymer Letters, Vol. 9, pp. 173-178 (197
1) and T. Satoetal; Tetrahedron Lett., Vol. 21, p.
p. 3377-3380 (1980)).

【0010】(b)光学活性な3−ヒドロキシ酪酸にト
リエチルオルト酢酸を反応させて光学活性な2−エトキ
シ−2,6−ジメチル−1,3−ジオキサン−4−オン
を得、これを熱分解する方法 (A. Griesbeck et al.; H
elv. Chim. Acta, Vol. 70, pp. 1320-1325 (1987)及び
R. Breitschuh et al.; Chimia, Vol. 44, pp. 216-218
(1990)) 。
(B) Reaction of optically active 3-hydroxybutyric acid with triethylorthoacetic acid to obtain optically active 2-ethoxy-2,6-dimethyl-1,3-dioxan-4-one, which is thermally decomposed (A. Griesbeck et al .; H
elv. Chim. Acta, Vol. 70, pp. 1320-1325 (1987) and
R. Breitschuh et al .; Chimia, Vol. 44, pp. 216-218
(1990)).

【0011】(c)光学活性な3−ヒドロキシ酪酸エス
テルをメタンスルホニルクロリドと反応させて水酸基を
メシル化した後、得られたエステルを加水分解し、次い
で炭酸水素ナトリウムで縮合環化する方法(Y. Zhang e
t al.; Macromolecules, Vol.23, pp. 3206-3212 (199
0)) 。
(C) A method of reacting an optically active 3-hydroxybutyrate with methanesulfonyl chloride to mesylate the hydroxyl group, hydrolyzing the obtained ester, and then condensing and cyclizing with sodium hydrogen carbonate (Y . Zhang e
t al .; Macromolecules, Vol.23, pp. 3206-3212 (199
0)).

【0012】更に、前記したルテニウム−光学活性ホス
フィン錯体を用いた例として次のような方法も報告され
ている (d)4−メチレン−2−オキセタノン(「ジケテン」
とも言う)を、塩化メチレンまたはテトラヒドロフラン
のような非プロトン性溶媒中で、[RuCl[(S)−
もしくは(R)−BINAP(ベンゼン)]Cl、また
は、Ru2 Cl4[(S)−もしくは(R)−BINA
P]2 (NEt3 )[ここで、Etはエチル基を示す]
を触媒として不斉水素化する方法(T. Ohta et al.; J.
Chem.Soc., Chem. Commun., 1725 (1992) )。
Further, as an example using the above-mentioned ruthenium-optically active phosphine complex, the following method has also been reported (d) 4-methylene-2-oxetanone ("diketene").
) In an aprotic solvent such as methylene chloride or tetrahydrofuran [RuCl [(S)-
Or (R) -BINAP (benzene)] Cl, or Ru 2 Cl4 [(S)-or (R) -BINA
P] 2 (NEt 3 ) [where Et represents an ethyl group]
Asymmetric hydrogenation using thiol as a catalyst (T. Ohta et al .; J.
Chem. Soc., Chem. Commun., 1725 (1992)).

【0013】しかしながら、これらの方法はそれぞれ次
のような問題点を有していた。すなわち、(a)の方法
は、光学分割剤として特殊な光学活性アミンを原料化合
物と等モル必要とし、また、不要な鏡像体が目的物と等
モル副生するので、無駄が多く経済的に有利な方法では
ない。また、(b)及び(c)の方法は、原料化合物で
ある光学活性な3−ヒドロキシ酪酸またはそのエステル
の合成が容易ではない。すなわち、微生物が産生する光
学活性なポリ−3−ヒドロキシ酪酸エステルを熱分解す
るか、或いは、4−メチレン−2−オキセタノンをアル
コ−リシス反応によってアセト酢酸エステルに導いた後
不斉還元を行なう必要があり、工程数が多く操作が煩雑
である。(d)の方法は、上述した(a)乃至(c)の
方法の問題点の多くを解決してはいるが、まだいくつか
の問題点を抱えている。すなわち、触媒活性が低く、反
応時間が長い。さらに得られる生成物の光学純度が70
〜92%e. e. と低かった。さらに、特開平6-128245
号公報、特開平7-188201号公報、特開平7-206885号公報
で報告されているようにこの方法は改良されてきている
が、未だ触媒活性が低いことから、工業的には十分満足
のいく方法ではなかった。
However, each of these methods has the following problems. In other words, the method (a) requires a special optically active amine as an optical resolving agent in an equimolar amount with the raw material compound, and an unnecessary enantiomer is by-produced in an equimolar amount with the target compound, so that the method is wasteful and economical. Not an advantageous method. Further, in the methods (b) and (c), it is not easy to synthesize optically active 3-hydroxybutyric acid or an ester thereof as a raw material compound. That is, it is necessary to thermally decompose the optically active poly-3-hydroxybutyrate produced by the microorganism, or to conduct asymmetric reduction after introducing 4-methylene-2-oxetanone into acetoacetate by an alcoholysis reaction. There are many steps and the operation is complicated. The method (d) solves many of the problems of the methods (a) to (c) described above, but still has some problems. That is, the catalyst activity is low and the reaction time is long. Further, the optical purity of the obtained product is 70.
~ 92% e.e. Furthermore, JP-A-6-128245
This method has been improved as reported in Japanese Unexamined Patent Application, First Publication No. Hei 7-182801, Japanese Unexamined Patent Application Publication No. 7-206885, but since the catalytic activity is still low, it is industrially satisfactory. It was not the way to go.

【0014】[0014]

【発明が解決しようとする課題】したがって、本発明の
目的は、触媒活性が高く、かつ、不斉反応における高い
不斉収率、すなわち、光学純度が高い生成物を得ること
ができる触媒を提供し、さらに、この触媒を用いて、ポ
リマ−原料等として有用な光学活性4−メチル−2−オ
キセタノンを、短時間で効率良く、しかも高い光学純度
で製造する方法を提供することにある。
Accordingly, an object of the present invention is to provide a catalyst having a high catalytic activity and a high asymmetric yield in an asymmetric reaction, that is, a catalyst capable of obtaining a product having a high optical purity. It is still another object of the present invention to provide a method for producing optically active 4-methyl-2-oxetanone useful as a polymer material or the like in a short time, efficiently and with high optical purity using the catalyst.

【0015】[0015]

【課題を解決するための手段】本発明者らは、前記課題
を解決するために鋭意研究を行なった結果、比較的簡単
な方法によって得られる、新規なルテニウム−ヨ−ド−
光学活性ホスフィン錯体が極めて高い触媒活性を有し、
不斉合成触媒として広く用いることができること、及
び、特にこれを4−メチレン−2−オキセタノンの不斉
水素化反応の触媒に用いれば、短時間で効率良く、高い
光学純度の光学活性4−メチル−2−オキセタノンを製
造できることを見い出し、本発明を完成した。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, a novel ruthenium-iodide obtained by a relatively simple method.
The optically active phosphine complex has extremely high catalytic activity,
It can be widely used as an asymmetric synthesis catalyst. In particular, if this is used as a catalyst for the asymmetric hydrogenation of 4-methylene-2-oxetanone, optically active 4-methyl with high optical purity can be efficiently prepared in a short time. It has been found that -2-oxetanone can be produced, and the present invention has been completed.

【0016】すなわち、本発明は式(1)That is, the present invention relates to formula (1)

【化8】 [Ru−(I)q −(T1 ) n (L)]m (T2 p ・・・(1) (式中、Lは光学活性2座ホスフィン配位子、T1 はカ
ルボン酸アニオン、T2はハロゲン原子、カルボン酸ア
ニオンを除くアニオンを示し、nは0乃至1,mは1乃
至3,pは0乃至1、qは1又はmが2のとき1乃至
1.5を示す)で表わされるルテニウムーヨードー光学
活性ホスフィン錯体である。
Embedded image [Ru- (I) q- (T 1 ) n (L)] m (T 2 ) p (1) (where L is an optically active bidentate phosphine ligand, T 1 Represents a carboxylate anion, T 2 represents an anion other than a halogen atom and a carboxylate anion, n is from 0 to 1, m is from 1 to 3, p is from 0 to 1, and q is 1 or 1 when m is 2 or 1 The compound is a ruthenium-iodo optically active phosphine complex represented by the following formula:

【0017】また、本発明は式(3) [RuI(arene )(L)]I ・・・(3) (式中、areneはベンゼン環を有する炭化水素、L
は上記の光学活性2座ホスフィン配位子を示す)で表さ
れるルテニウム−光学活性ホスフィン錯体と式(4) (T1 )aZ1 ・・・(4) (式中、Z1 はアルカリ金属、アルカリ土類金属を示
し、aはZ1 がアルカリ金属の場合1、Z1 がアルカリ
土類金属の場合2を示し、T1 は前記式(1)の定義と
同じ)表されるカルボン酸塩類または式(5) Z2 b(T2 )c ・・・(5) (式中、Z2 はアルカリ金属、アルカリ土類金属、アン
モニウム等のモノまたはジカチオン類を示し、T2 はハ
ロゲン原子、カルボン酸を除くモノまたはジアニオン類
を示し、Z2 がモノカチオン類の場合でT2 がモノアニ
オン類の場合にはbおよびcは1であり、Z2 がモノカ
チオン類の場合でT2 がジアニオン類の場合にはbは2
でcは1であり、Z2 がジカチオン類の場合でT2 がジ
アニオン類の場合にはbおよびcは1であり、Z2 がジ
カチオン類の場合でT2 がモノアニオン類の場合にはb
は1でcは2を示す)表される塩類を極性溶媒中で反応
させる前記ルテニウムーヨードー光学活性ホスフィン錯
体の製法である。
Further, the present invention provides a compound of the formula (3) [RuI (arene) (L)] I (3) wherein arene is a hydrocarbon having a benzene ring, L
Represents the above-mentioned optically active bidentate phosphine ligand) and a ruthenium-optically active phosphine complex represented by the following formula (4) (T 1 ) aZ 1 ... (4) (where Z 1 is an alkali metal , A represents an alkaline earth metal, a represents 1 when Z 1 is an alkali metal, 2 represents Z 1 when it is an alkaline earth metal, and T 1 is the same as defined in the above formula (1)) Salt or formula (5) Z 2 b (T 2 ) c (5) (wherein, Z 2 represents a mono- or dication such as an alkali metal, an alkaline earth metal, or ammonium, and T 2 represents a halogen atom represents mono- or dianion compound excluding carboxylic acids, b and c, if T 2 is a mono-anions when Z 2 is a mono-cations is 1, T 2 when Z 2 is mono cations When b is a dianion, b is 2
And c is 1; b and c are 1 when Z 2 is a dication and T 2 is a dianion; and when Z 2 is a dication and T 2 is a monoanion. b
Is 1 and c is 2). This is a method for producing the above-mentioned ruthenium-iodo optically active phosphine complex in which a salt represented by the following formula is reacted in a polar solvent.

【0018】さらに本発明は、式(6) [RuI2 (arene )]2 ・・・(6) (式中、areneはベンゼン環を有する炭化水素を表
す)とLで示される前記式(1)と同じ定義の光学活性
2座ホスフィン配位子と式(4) (T1 )aZ1 ・・・(4) (式中、Z1 、a、T1 は前記の定義と同じ)で表され
るカルボン酸塩類又は式(5) Z2 b(T2 )c ・・・(5) (式中、Z2 、b、T2 、cは前記の定義と同じ)で表
される塩類を極性溶媒中で反応させることによる前記式
(1)で表されるルテニウムーヨードー光学活性ホスフ
ィン錯体の製法である。
Further, the present invention provides a compound of the formula (1) [RuI 2 (arene)] 2 (6) (where arene represents a hydrocarbon having a benzene ring) and the above formula (1) Table in) the same definition of the optically active bidentate phosphine ligand of the formula and (4) (T 1) aZ 1 ··· (4) ( wherein, Z 1, a, T 1 is the same as previously defined) Or a salt represented by formula (5) Z 2 b (T 2 ) c (5) (wherein Z 2 , b, T 2 , and c are the same as defined above). This is a method for producing a ruthenium-iodo optically active phosphine complex represented by the above formula (1) by reacting in a polar solvent.

【0019】さらに、本発明は上記のルテニウム−ヨ−
ド−光学活性ホスフィン錯体を触媒とし、4−メチレン
−2−オキセタノンを不斉水素化する光学活性な4−メ
チル−2−オキセタノンの製造方法である。
Further, the present invention relates to the above-mentioned ruthenium-yo-
This is a method for producing optically active 4-methyl-2-oxetanone by asymmetric hydrogenation of 4-methylene-2-oxetanone using a de-optically active phosphine complex as a catalyst.

【0020】[0020]

【発明の実施の形態】本発明のルテニウムーヨードー光
学活性ホスフィン錯体(以下[Ru−(I)q
(T1 ) n (L)]m (T2 p は式(3)[RuI
(arene )(L)]Iルテニウム−光学活性ホスフィン
錯体と式(4)(T1 )aZ1 カルボン酸塩類又は式
(5)Z2 b(T2 )c 塩類を極性溶媒中で反応させ
ることにより製造するか、式(6)[RuI2 (arene
)]2 のルテニウム錯体と光学活性2座ホスフィン配
位子と式(4)(T1 )aZ1 カルボン酸塩類又は式
(5)Z2 b(T2 )c 塩類を極性溶媒中で反応させ
ることにより製造する二種類の製法で製造することがで
きる。
BEST MODE FOR CARRYING OUT THE INVENTION The ruthenium-iodo optically active phosphine complex of the present invention (hereinafter referred to as [Ru- (I) q-
(T 1 ) n (L)] m (T 2 ) p is given by the formula (3) [RuI
(Arene) (L)] I-Ruthenium-optically active phosphine complex is reacted with a formula (4) (T 1 ) aZ 1 carboxylate or a formula (5) Z 2 b (T 2 ) c salt in a polar solvent. Or a compound of the formula (6) [RuI 2 (arene
A) reacting a ruthenium complex of 2, an optically active bidentate phosphine ligand with a salt of formula (4) (T 1 ) aZ 1 carboxylate or a salt of formula (5) Z 2 b (T 2 ) c in a polar solvent; It can be manufactured by two kinds of manufacturing methods.

【0021】すなわち、窒素等の不活性ガスで置換を行
った反応容器中に上記のルテニウム錯体[RuI(aren
e )(L)]I(式(3))とカルボン酸塩類(T1
aZ1 (式(4))又は塩類Z2 b(T2 )c(式
(5))とを極性溶媒中で加熱、攪拌反応して極性溶媒
を留去し、さらに塩化メチレン−水の二層系溶媒中で室
温,攪拌し洗浄することによって得ることができ、ま
た、上記のルテニウム錯体[RuI(arene )(L)]
I(式(3))を極性溶媒中で加熱、攪拌反応して極性
溶媒を留去し中間体を得、さらに塩化メチレン−水の二
層系溶媒中でカルボン酸塩類(T1 )aZ1 (式
(4))又は塩類Z2 b(T2 )c(式(5))を加え
て室温で攪拌して反応することにより製造する事ができ
る。
That is, the above-mentioned ruthenium complex [RuI (aren) was placed in a reaction vessel replaced with an inert gas such as nitrogen.
e) (L)] I (formula (3)) and carboxylate (T 1 )
aZ 1 (formula (4)) or a salt Z 2 b (T 2 ) c (formula (5)) is heated and stirred in a polar solvent to remove the polar solvent, and further, methylene chloride-water is added. It can be obtained by stirring and washing at room temperature in a layer solvent, and the above-mentioned ruthenium complex [RuI (arene) (L)]
I (formula (3)) is heated and stirred in a polar solvent to carry out a stirring reaction to distill off the polar solvent to obtain an intermediate. Further, carboxylate (T 1 ) aZ 1 (Formula (4)) or a salt Z 2 b (T 2 ) c (Formula (5)), and the mixture can be stirred at room temperature to react.

【0022】また、上記のルテニウム錯体[RuI
2 (arene )]2 の式(6)と2座ホスフィン配位子
(L)及びカルボン酸塩類(T1 )aZ1 (式(4))
又は塩類Z2 b(T2 )c(式(5))とを極性溶媒中
で加熱、攪拌反応して極性溶媒を留去し、さらに塩化メ
チレン−水の二層系溶媒中で室温で攪拌をすることによ
って製造することができ、また、上記のルテニウム錯体
[RuI2 (arene )]2 (6)と2座ホスフィン配位
子(L)を極性溶媒中で加熱、攪拌反応して極性溶媒を
留去し中間体を得、さらに塩化メチレン−水の二層系溶
媒中でカルボン酸塩類(T1 )aZ1 (式(4))又は
塩類Z2 b(T2 )c(式(5))を加えて室温で攪拌
して反応することにより製造することができる。
The above ruthenium complex [RuI
2 (arene)] 2 of the formula (6) and bidentate phosphine ligand (L) and carboxylic acid salts (T 1) aZ 1 (formula (4))
Alternatively, the salt Z 2 b (T 2 ) c (formula (5)) is heated and stirred in a polar solvent to cause a reaction by stirring to distill off the polar solvent, and further stirred at room temperature in a two-layer solvent of methylene chloride-water. In addition, the ruthenium complex [RuI 2 (arene)] 2 (6) and the bidentate phosphine ligand (L) are heated and stirred in a polar solvent to react with the polar solvent. Is distilled off to obtain an intermediate, and the carboxylate (T 1 ) aZ 1 (formula (4)) or the salt Z 2 b (T 2 ) c (formula (5) )), And react by stirring at room temperature.

【0023】本発明の[Ru−(I)q −(T1 )
n (L)]m (T2 p を製造するための原料である、
ルテニウムー光学活性ホスフィン錯体[RuI(arene
)(L)]I(式(3))においてLで表される光学
活性2座ホスフィン配位子としては、式(2)
[Ru- (I) q- (T 1 )]
n (L)] m (T 2) which is a raw material for the production of p,
Ruthenium-optically active phosphine complex [RuI (arene
) (L)] I (in formula (3)), the optically active bidentate phosphine ligand represented by L is represented by formula (2)

【化9】 (以下、BIPHと記すことがある。式中、R1 は炭素
数1乃至4の低級アルキル基、炭素数1乃至4の低級ア
ルコキシ基、炭素数1乃至4の低級アルキルアミノ基お
よびハロゲン原子からなる群から選ばれる置換基を有し
てもよいアリ−ル基または炭素数3乃至8のシクロアル
キル基、R2 とR3 は各々同一または異なっても良い水
素原子、ハロゲン原子、炭素数1乃至4の低級アルキル
基、炭素数1乃至4の低級アルコキシ基又はR2 とR3
が一緒になって5乃至6員環を形成しても良い基を示
す)で示される光学活性なビフェニル第三級ホスフィン
が用いられる。
Embedded image (Hereinafter, it may be referred to as BIPH. In the formula, R 1 represents a lower alkyl group having 1 to 4 carbon atoms, a lower alkoxy group having 1 to 4 carbon atoms, a lower alkylamino group having 1 to 4 carbon atoms, and a halogen atom. which may have a substituent selected from the group consisting ant - group or a cycloalkyl group having a carbon number of 3 to 8, R 2 and R 3 are each the same or different and may a hydrogen atom, a halogen atom, a carbon number 1 To 4 lower alkyl groups, lower alkoxy groups having 1 to 4 carbon atoms, or R 2 and R 3
Represents a group which may form a 5- or 6-membered ring together).

【0024】BIPHとしては、式(2)において、R
1 がフェニル基、R2 が水素原子、R3 がメチル基の場
合BIPHEP(後記(ヌ))、R1 がシクロヘキシル
基、R2 が水素原子、R3 がメチル基の場合BICHE
P(後記(ネ))、R1 がフェニル基、R2 が水素原
子、R3 がメトキシ基の場合MBIPHEP(後記
(ノ))、R1 がシクロヘキシル基、R2 が水素原子、
3 がメトキシ基の場合MBICHEP(後記(ハ))
を挙げることができる。
In the formula (2), BIPH is represented by R
BIPHEP when 1 is a phenyl group, R 2 is a hydrogen atom, and R 3 is a methyl group (described below (nu)); BICHE when R 1 is a cyclohexyl group, R 2 is a hydrogen atom, and R 3 is a methyl group
P (described later), R 1 is a phenyl group, R 2 is a hydrogen atom, and when R 3 is a methoxy group, MBIPHEP (described later (No.)), R 1 is a cyclohexyl group, R 2 is a hydrogen atom,
MBICEP when R 3 is a methoxy group (described later (c))
Can be mentioned.

【0025】このような光学活性ビフェニル第三級ホス
フィンとしては、上記BIPHEP等のほかに、式
(7)
Such optically active biphenyl tertiary phosphines include, in addition to BIPHEP and the like, a compound represented by the formula (7)

【化10】 (以下、R1 −BINAPと記すことがある。式中、R
1 は炭素数1乃至4の低級アルキル基、炭素数1乃至4
の低級アルコキシ基、炭素数1乃至4の低級アルキルア
ミノ基およびハロゲン原子からなる群から選ばれる置換
基を有してもよいアリ−ル基または炭素数3乃至8のシ
クロアルキル基を示す)で示される光学活性な第三級ホ
スフィンと式(8)
Embedded image (Hereinafter sometimes referred to as R 1 -BINAP, where R
1 is a lower alkyl group having 1 to 4 carbon atoms, 1 to 4 carbon atoms
A lower alkoxy group, a lower alkylamino group having 1 to 4 carbon atoms and an aryl group which may have a substituent selected from the group consisting of halogen atoms or a cycloalkyl group having 3 to 8 carbon atoms). An optically active tertiary phosphine represented by the formula (8)

【0026】[0026]

【化11】 (以下、H8 −R1 −BINAPと記すことがある。式
中、R1 は上記のR1 ーBINAPと同じ定義である)
で示される光学活性な第三級ホスフィンと式(9)
Embedded image (Hereinafter,. In formula which may be referred to as H 8 -R 1 -BINAP, R 1 is the same definition as above for R 1 over BINAP)
And an optically active tertiary phosphine of the formula (9)

【化12】 (以下、R1 は上記のR1 −BINAPと同じ定義であ
る)で示される光学活性第三級ホスフィンを挙げること
ができる。
Embedded image (Hereinafter, R 1 has the same definition as the above R 1 -BINAP).

【0027】R1 −BINAP(式(7))のR1 で表
されるアリ−ル基としてはフェニル基、2−ナフチル
基、並びにp−置換フェニル基、m−置換フェニル基、
m−ジフェニル基、のような置換基を有するフェニル
基、6−置換−2−ナフチル基のような置換基を有する
2−ナフチル基を挙げることができる。フェニル基及び
ナフチル基に置換してもよい置換基とは、メチル基、t
ert−ブチル基のような低級アルキル基(「低級」と
は単素数1乃至4の直鎖又は分岐鎖を意味する。以下同
じ)、低級アルコキシ基、低級アルキルアミン基及びハ
ロゲン原子、例えば塩素原子を挙げることができる。ま
た、R1 で表される炭素数3乃至8のシクロアルキル基
で特にシクロペンチル基、シクロヘキシル基が好まし
い。
The aryl group represented by R 1 in R 1 -BINAP (formula (7)) includes phenyl, 2-naphthyl, p-substituted phenyl, m-substituted phenyl,
Examples include a phenyl group having a substituent such as an m-diphenyl group, and a 2-naphthyl group having a substituent such as a 6-substituted-2-naphthyl group. The substituents that may be substituted on the phenyl group and the naphthyl group include a methyl group, t
a lower alkyl group such as an tert-butyl group ("lower" means a straight or branched chain having 1 to 4 units; the same applies hereinafter), a lower alkoxy group, a lower alkylamine group, and a halogen atom such as a chlorine atom Can be mentioned. Further, a cycloalkyl group having 3 to 8 carbon atoms represented by R 1 is particularly preferably a cyclopentyl group or a cyclohexyl group.

【0028】R1 −BINAPで表される具体例として
は、つぎのものを挙げることができる。尚、いずれの第
三級ホスフィンも(R)体及び(S)体が存在するがそ
の表記は省略した。以下同じ。
Specific examples represented by R 1 -BINAP include the following. Although any of the tertiary phosphines has an (R) -form and an (S) -form, the notation is omitted. same as below.

【0029】(ア)2,2′−ビス(ジフェニルホスフ
ィノ)−1,1′−ビナフチル(以下、単に「BINA
P」と略記する) (イ)2,2′−ビス(ジ−p−トリルホスフィノ)−
1,1′−ビナフチル(以下、「T−BINAP」と略
記する) (ウ)2,2′−ビス[ジ−(p−tert−ブチルフ
ェニル)ホスフィノ]−1,1′−ビナフチル(以下、
「tBu−BINAP」と略記する) (エ)2,2′−ビス(ジ−m−トリルホスフィノ)−
1,1′−ビナフチル(以下、「m−T−BINAP」
と略記する) (オ)2,2′−ビス[ジ−(3,5−ジメチルフェニ
ル)ホスフィノ]−1,1′−ビナフチル(以下、「D
M−BINAP」と略記する) (カ)2,2′−ビス[ジ−(3,5−ジ−tert−
ブチルフェニル)ホスフィノ]−1,1′−ビナフチル
(以下、「DtBu−BINAP」と略記する) (キ)2,2′−ビス[ジ−(p−メトキシフェニル)
ホスフィノ]−1,1′−ビナフチル(以下、「MeO
−BINAP」と略記する) (ク)2,2′−ビス[ジ−(p−クロロフェニル)ホ
スフィノ]−1,1′−ビナフチル(以下、「p−Cl
−BINAP」と略記する) (ケ)2,2′−ビス(ジ−2−ナフチルホスフィノ)
−1,1′−ビナフチル(以下、「Naph−BINA
P」と略記する) (コ)2,2′−ビス(ジシクロペンチルホスフィノ)
−1,1′−ビナフチル(以下、「cpBINAP」と
略記する) (サ)2,2′−ビス(ジシクロヘキシルホスフィノ)
−1,1′−ビナフチル(以下、「CyBINAP」と
略記する)
(A) 2,2'-bis (diphenylphosphino) -1,1'-binaphthyl (hereinafter simply referred to as "BINA"
P). (A) 2,2'-bis (di-p-tolylphosphino)-
1,1′-binaphthyl (hereinafter abbreviated as “T-BINAP”) (c) 2,2′-bis [di- (p-tert-butylphenyl) phosphino] -1,1′-binaphthyl
(Abbreviated as "tBu-BINAP") (d) 2,2'-bis (di-m-tolylphosphino)-
1,1′-binaphthyl (hereinafter “m-T-BINAP”
(E) 2,2'-bis [di- (3,5-dimethylphenyl) phosphino] -1,1'-binaphthyl (hereinafter referred to as "D
M-BINAP) (f) 2,2'-bis [di- (3,5-di-tert-
[Butylphenyl) phosphino] -1,1′-binaphthyl (hereinafter abbreviated as “DtBu-BINAP”) (g) 2,2′-bis [di- (p-methoxyphenyl)
Phosphino] -1,1′-binaphthyl (hereinafter referred to as “MeO
-BINAP). (H) 2,2'-bis [di- (p-chlorophenyl) phosphino] -1,1'-binaphthyl (hereinafter, "p-Cl
-BINAP). (G) 2,2'-bis (di-2-naphthylphosphino)
-1,1'-binaphthyl (hereinafter "Naph-BINA"
Abbreviated as "P") (co) 2,2'-bis (dicyclopentylphosphino)
-1,1'-binaphthyl (hereinafter abbreviated as "cpBINAP") (sa) 2,2'-bis (dicyclohexylphosphino)
-1,1'-binaphthyl (hereinafter abbreviated as "CyBINAP")

【0030】これらの第三級ホスフィンは、特公平4−
81596号公報、特公平7−33392号公報、特公
平7−68260号公報、特開平1−68386号公報
または特開平4−74192号公報、特開平9−124
669号公報に記載されている方法によって調製するこ
とができる。
These tertiary phosphines are disclosed in
JP-A-81596, JP-B-7-33392, JP-B-7-68260, JP-A-1-68386 or JP-A-4-74192, JP-A-9-124
It can be prepared by the method described in US Pat.

【0031】ルテニウムー光学活性ホスフィン錯体[R
uI(arene )(L)]I(式(3))で表されるルテ
ニウム−光学活性ホスフィン錯体は、特公平7−577
58号公報および特開平5−111639号公報記載の
方法によって得ることができる。このようにして得られ
る上記式(3)で表されるルテニウム−光学活性ホスフ
ィン錯体の具体例としては次のものを挙げることができ
る。
Ruthenium-optically active phosphine complex [R
uI (arene) (L)] I (formula (3)) is a ruthenium-optically active phosphine complex represented by JP-B-7-577.
No. 58 and JP-A-5-1111639. Specific examples of the thus obtained ruthenium-optically active phosphine complex represented by the above formula (3) include the following.

【0032】[RuI(benzene )(BINAP)]I [RuI( benzene)(T−BINAP)]I [RuI( benzene)(tBu−BINAP)]I [RuI( benzene)(m−T−BINAP)]I [RuI( benzene)(DM−BINAP)]I [RuI( benzene)(DtBu−BINAP)]I [RuI( benzene)(MeO−BINAP)]I [RuI( benzene)(p−Cl−BINAP)]I [RuI( benzene)(Naph−BINAP)]I [RuI( benzene)(cpBINAP)]I [RuI( benzene)(CyBINAP)]I [RuI(p-cymene)(BINAP)]I [RuI( p-cymene )(T−BINAP)]I [RuI( p-cymene )(tBu−BINAP)]I [RuI( p-cymene )(m−T−BINAP)]I [RuI( p-cymene )(DM−BINAP)]I [RuI( p-cymene )(DtBu−BINAP)]I [RuI( p-cymene )(MeO−BINAP)]I [RuI( p-cymene )(p−Cl−BINAP)]I [RuI( p-cymene )(Naph−BINAP)]I [RuI( p-cymene )(cpBINAP)]I [RuI( p-cymene )(CyBINAP)]I[RuI (benzene) (BINAP)] I [RuI (benzene) (T-BINAP)] I [RuI (benzene) (tBu-BINAP)] I [RuI (benzene) (m-T-BINAP)] I [RuI (benzene) (DM-BINAP)] I [RuI (benzene) (DtBu-BINAP)] I [RuI (benzene) (MeO-BINAP)] I [RuI (benzene) (p-Cl-BINAP)] I [RuI (benzene) (Naph-BINAP)] I [RuI (benzene) (cpBINAP)] I [RuI (benzene) (CyBINAP)] I [RuI (p-cymene) (BINAP)] I [RuI (p- cymene) (T-BINAP)] I [RuI (p-cymene) (tBu-BINAP)] I [RuI (p-cymene) (m-T-BINAP)] I [RuI (p-cymene) (DM-BINAP)] I [RuI (p-cymene) (DtBu-BINAP)] I [RuI (p-cymene) (MeO-BINAP)] I [RuI (p-cymene) (p-Cl-BINAP)] I [RuI (p-cymene) (Naph-BINAP)] I [RuI (p-cymene) (cpBINAP)] I [RuI (p-cymene) (CyBINAP)] I

【0033】式(8)のH8 −R1 ーBINAPで示さ
れる2,2′−ビス(ジフェニルホスフィノ)−1,
1′−オクタヒドロビナフチルについても上記R1 −B
INAPと同様な化合物を示すことができる。
2,2'-bis (diphenylphosphino) -1, represented by H 8 -R 1 -BINAP of the formula (8)
For 1'-octahydrobinaphthyl, the above R 1 -B
Compounds similar to INAP can be shown.

【0034】R1 −SEGPHOS類は、特願平8−3
11211号に記載した方法の3,4−メチレンジオキ
シベンゼンから5工程で得られる。その第三級ホスフィ
ンの具体例としては、次のものを挙げることができる。
尚、いずれの第三級ホスフィンも(R)体及び(S)体
が存在するがその表記は省略した。以下同じ。
The R 1 -SEGPHOSs are disclosed in Japanese Patent Application No. Hei 8-3
It is obtained in 5 steps from 3,4-methylenedioxybenzene according to the method described in 11211. Specific examples of the tertiary phosphine include the following.
Although any of the tertiary phosphines has an (R) -form and an (S) -form, the notation is omitted. same as below.

【0035】(シ)[(5,6),(5′,6′)−ビ
ス(メチレンジオキシ)ビフェニル−2,2′−ジイ
ル]ビス(ジフェニルホスフィン)(以下、単に「SE
GPHOS」と略記する) (ス)[(5,6),(5′,6′)−ビス(メチレン
ジオキシ)ビフェニル−2,2′−ジイル]ビス(ジ−
p−トリルホスフィン)(以下、「T−SEGPHO
S」と略記する) (セ)[(5,6),(5′,6′)−ビス(メチレン
ジオキシ)ビフェニル−2,2′−ジイル]ビス[ジ−
(p−tert−ブチルフェニル)ホスフィン](以
下、「tBu−SEGPHOS」と略記する) (ソ)[(5,6),(5′,6′)−ビス(メチレン
ジオキシ)ビフェニル−2,2′−ジイル]ビス(ジ−
m−トリル−ホスフィン)(以下、「m−T−SEGP
HOS」と略記する) (タ)[(5,6),(5′,6′)−ビス(メチレン
ジオキシ)ビフェニル−2,2′−ジイル]ビス[ジ−
(3,5−ジメチルフェニル)ホスフィン](以下、
「DM−SEGPHOS」と略記する) (チ)[(5,6),(5′,6′)−ビス(メチレン
ジオキシ)ビフェニル−2,2′−ジイル]ビス[ジ−
(3,5−ジ−tert−ブチルフェニル)ホスフィ
ン](以下、「DtBu−SEGPHOS」と略記す
る) (ツ)[(5,6),(5′,6′)−ビス(メチレン
ジオキシ)ビフェニル−2,2′−ジイル]ビス[ジ−
(p−メトキシフェニル)ホスフィン](以下、「Me
O−SEGPHOS」と略記する) (テ)[(5,6),(5′,6′)−ビス(メチレン
ジオキシ)ビフェニル−2,2′−ジイル]ビス[ジ−
(p−クロロフェニル)ホスフィン](以下、「p−C
l−SEGPHOS」と略記する) (ト)[(5,6),(5′,6′)−ビス(メチレン
ジオキシ)ビフェニル−2,2′−ジイル]ビス(ジ−
2−ナフチルホスフィン)(以下、「Naph−SEG
PHOS」と略記する) (ナ)[(5,6),(5′,6′)−ビス(メチレン
ジオキシ)ビフェニル−2,2′−ジイル]ビス(ジシ
クロペンチルホスフィン)(以下、「cpSEGPHO
S」と略記する) (ニ)[(5,6),(5′,6′)−ビス(メチレン
ジオキシ)ビフェニル−2,2′−ジイル]ビス(ジシ
クロヘキシルホスフィン)(以下、「CySEGPHO
S」と略記する)
(S) [(5,6), (5 ', 6')-bis (methylenedioxy) biphenyl-2,2'-diyl] bis (diphenylphosphine) (hereinafter simply referred to as "SE
GPHSOS). (S) [(5,6), (5 ', 6')-bis (methylenedioxy) biphenyl-2,2'-diyl] bis (di-
p-tolylphosphine) (hereinafter referred to as “T-SEGPHO”
S) [(5), (5 ', 6')-bis (methylenedioxy) biphenyl-2,2'-diyl] bis [di-
(P-tert-butylphenyl) phosphine] (hereinafter abbreviated as “tBu-SEGPHOS”) (so) [(5,6), (5 ′, 6 ′)-bis (methylenedioxy) biphenyl-2, 2'-diyl] bis (di-
m-tolyl-phosphine) (hereinafter referred to as "m-T-SEGP"
(Abbreviated as HOS)) (t) [(5,6), (5 ', 6')-bis (methylenedioxy) biphenyl-2,2'-diyl] bis [di-
(3,5-dimethylphenyl) phosphine] (hereinafter, referred to as
(H) [(5), (5 ', 6')-bis (methylenedioxy) biphenyl-2,2'-diyl] bis [di-
(3,5-di-tert-butylphenyl) phosphine] (hereinafter abbreviated as “DtBu-SEGPHOS”) (T) [(5,6), (5 ′, 6 ′)-bis (methylenedioxy) Biphenyl-2,2'-diyl] bis [di-
(P-methoxyphenyl) phosphine] (hereinafter, “Me
O-SEGPHOS) (T) [(5,6), (5 ', 6')-bis (methylenedioxy) biphenyl-2,2'-diyl] bis [di-
(P-chlorophenyl) phosphine] (hereinafter, “p-C
(g). (g) [(5,6), (5 ′, 6 ′)-bis (methylenedioxy) biphenyl-2,2′-diyl] bis (di-
2-naphthylphosphine) (hereinafter, “Naph-SEG”
(NA) [(5,6), (5 ′, 6 ′)-bis (methylenedioxy) biphenyl-2,2′-diyl] bis (dicyclopentylphosphine) (hereinafter “cpSEGPHO”)
(D) [(5,6), (5 ', 6')-bis (methylenedioxy) biphenyl-2,2'-diyl] bis (dicyclohexylphosphine) (hereinafter referred to as "CYSEGPHO").
S ”)

【0036】(ヌ)[ビス(6,6′−ジメチルビフェ
ニル−2,2′−](ジフェニルホスフィン)(以下,
[BIPHEP」と略記する) (ネ)[ビス(6,6′−ジメチルビフェニルー2,
2′−](ジシクロヘキシルホスフィン)(以下、「B
ICHEP」と略記する) (ノ)[ビス(6,6′−ジメトキシビフェニルー2,
2′−](ジフェニルホスフィン)(以下,[MBIP
HEP」と略記する) (ハ)[ビス(6,6′−ジメトキシビフェニルー2,
2′−](ジシクロヘキシルホスフィン)(以下,[M
BICHEP」と略記する)
(Nu) [bis (6,6'-dimethylbiphenyl-2,2 '-] (diphenylphosphine) (hereinafter referred to as
(Abbreviated as "BIPHEP") (d) [bis (6,6'-dimethylbiphenyl-2,
2 ′-] (Dicyclohexylphosphine) (hereinafter referred to as “B
(Abbreviated as "ICHEP") (no) [bis (6,6'-dimethoxybiphenyl-2,
2'-] (diphenylphosphine) (hereinafter referred to as [MBIP
Abbreviated as "HEP") (c) [bis (6,6'-dimethoxybiphenyl-2,
2 '-] (dicyclohexylphosphine) (hereinafter referred to as [M
BICHEP ”)

【0037】本発明において、LがR1 −SEGPHO
Sである[RuI(arene )(L)]I(3)で表され
るルテニウム−光学活性ホスフィン錯体は、特開平2-19
1289号公報および特開平5-111639号公報記載の方法によ
って得ることができる。このようにして得られる上記式
(3)で得られるルテニウム−光学活性ホスフィン錯体
の具体例としては次のものを挙げることができる。
In the present invention, L is R 1 -SEGPHO.
The ruthenium-optically active phosphine complex represented by S [RuI (arene) (L)] I (3) is disclosed in
It can be obtained by the methods described in JP-A-1289 and JP-A-5-11639. Specific examples of the thus obtained ruthenium-optically active phosphine complex obtained by the above formula (3) include the following.

【0038】[RuI(benzene )(SEGPHO
S)]I [RuI( benzene)(T−SEGPHOS)]I [RuI( benzene)(tBu−SEGPHOS)]I [RuI( benzene)(m−T−SEGPHOS)]I [RuI( benzene)(DM−SEGPHOS)]I [RuI( benzene)(DtBu−SEGPHOS)]
I [RuI( benzene)(MeO−SEGPHOS)]I [RuI( benzene)(p−Cl−SEGPHOS)]
I [RuI( benzene)(Naph−SEGPHOS)]
I [RuI( benzene)(cpSEGPHOS)]I [RuI( benzene)(CySEGPHOS)]I [RuI(p-cymene)(SEGPHOS)]I [RuI( p-cymene )(T−SEGPHOS)]I [RuI( p-cymene )(tBu−SEGPHOS)]
I [RuI( p-cymene )(m−T−SEGPHOS)]
I [RuI( p-cymene )(DM−SEGPHOS)]I [RuI( p-cymene )(DtBu−SEGPHO
S)]I [RuI( p-cymene )(MeO−SEGPHOS)]
I [RuI( p-cymene )(p−Cl−SEGPHO
S)]I [RuI( p-cymene )(Naph−SEGPHO
S)]I [RuI( p-cymene )(cpSEGPHOS)]I [RuI( p-cymene )(CySEGPHOS)]I
[RuI (benzene) (SEGPHO)
S)] I [RuI (benzene) (T-SEGPHOS)] I [RuI (benzene) (tBu-SEGPHOS)] I [RuI (benzene) (m-T-SEGPHOS)] I [RuI (benzene) (DM- SEPGHOS)] I [RuI (benzene) (DtBu-SEGPHOS)]
I [RuI (benzene) (MeO-SEGPHOS)] I [RuI (benzene) (p-Cl-SEGPHOS)]
I [RuI (benzene) (Naph-SEGPHOS)]
I [RuI (benzene) (cpSEGPHOS)] I [RuI (benzene) (CySEGPHOS)] I [RuI (p-cymene) (SEGPHOS)] I [RuI (p-cymene) (T-SEGPHOS)] I [RuI ( p-cymene) (tBu-SEGPHOS)]
I [RuI (p-cymene) (m-T-SEGPHOS)]
I [Rul (p-cymene) (DM-SEGPHOS)] I [Rul (p-cymene) (DtBu-SEGPHO)
S)] I [RuI (p-cymene) (MeO-SEGPHOS)]
I [RuI (p-cymene) (p-Cl-SEGPHO)
S)] I [RuI (p-cymene) (Naph-SEGPHO)
S)] I [Rul (p-cymene) (cpSEGPHOS)] I [Rul (p-cymene) (CySEGPHOS)] I

【0039】BIPHEP,BICHEP、MBIPH
EP,MBICHEPについてもSEGPHOSと同様
な化合物を挙げることが出来る。
BIPHEP, BICHEP, MBIPH
EP and MBICHEP also include compounds similar to SEGPHOS.

【0040】上記のルテニウム錯体[RuI2 (arene
)]2 (6)で表されるルテニウム−ヨ−ド錯体は、
例えばZelonka(R.A. Zelonka et al.; Can. J.
Chem., Vol 50, 3063 (1972))の方法により得ることが
できる。得られるルテニウム−光学活性ホスフィン錯体
の具体例としては次のものを挙げることができる。 [RuI2 (benzene )]2 [RuI2 (p-cymene)]2
The above ruthenium complex [RuI 2 (arene)
The ruthenium-iodide complex represented by 2 ) (6)
For example, Zelonka (RA Zelonka et al .; Can. J.
Chem., Vol 50, 3063 (1972)). Specific examples of the obtained ruthenium-optically active phosphine complex include the following. [Ru 2 (benzene)] 2 [Ru 2 (p-cymene)] 2

【0041】一方、本発明の式(1)で表わされるルテ
ニウム−ヨード−光学活性2座ホスフィン錯体の製造法
は式(3)[RuI(arene )(L)]Iで示されるル
テニウム−光学活性ホスフィン錯体と式(4)(T1
aZ1 で示されるカルボン酸塩類又は式(5)Z2
(T2 )cで示される塩類を極性溶媒中で反応させるこ
とにより製造するか、式(6)[RuI2 (arene )]
2 で示されるルテニウム錯体とホスフィン配位子(L)
を極性溶媒中で反応させ、さらに式(4)(T1)aZ
1 又は式(5)Z2 b(T2 )cで示される塩類を反応
させることにより製造することができる。
On the other hand, the production method of the ruthenium-iodo-optically active bidentate phosphine complex represented by the formula (1) of the present invention is based on the ruthenium-optically active compound represented by the formula (3) [RuI (arene) (L)] I. Phosphine complex and formula (4) (T 1 )
a carboxylate represented by aZ 1 or Z 2 b represented by the formula (5):
It is prepared by reacting a salt represented by (T 2 ) c in a polar solvent, or prepared by reacting a salt represented by the formula (6) [RuI 2 (arene)]
Ruthenium complex represented by 2 and phosphine ligand (L)
Is reacted in a polar solvent, and the compound of the formula (4) (T 1 ) aZ
It can be produced by reacting 1 or a salt represented by the formula (5) Z 2 b (T 2 ) c.

【0042】上記式(4)で表されるカルボン酸塩類と
しては、例えば、ギ酸リチウム、酢酸リチウム、プロピ
オン酸リチウム、酪酸リチウム、ピルビン酸リチウム、
安息香酸リチウム、トリフルオロ酢酸リチウム、ギ酸ナ
トリウム、酢酸ナトリウム、プロピオン酸ナトリウム、
酪酸ナトリウム、ピルビン酸ナトリウム、安息香酸ナト
リウム、トリフルオロ酢酸ナトリウム、ギ酸カリウム、
酢酸カリウム、プロピオン酸カリウム、酪酸カリウム、
ピルビン酸カリウム、安息香酸カリウム、トリフルオロ
酢酸カリウム、のようなアルカリ金属のカルボン酸塩、
ギ酸カルシウム、酢酸カルシウム、プロピオン酸カルシ
ウム、酪酸カルシウム、ピルビン酸カルシウム、安息香
酸カルシウム、トリフルオロ酢酸カルシウムのようなア
ルカリ土類金属のカルボン酸塩、ギ酸銀、酢酸銀、プロ
ピオン酸銀、酪酸銀、ピルビン酸銀、安息香酸銀、トリ
フルオロ酢酸銀のようなその他のカルボン酸塩が挙げら
れるが、特に酢酸ナトリウム、トリフルオロ酢酸ナトリ
ウムが好ましい。
Examples of the carboxylate represented by the formula (4) include lithium formate, lithium acetate, lithium propionate, lithium butyrate, lithium pyruvate, and the like.
Lithium benzoate, lithium trifluoroacetate, sodium formate, sodium acetate, sodium propionate,
Sodium butyrate, sodium pyruvate, sodium benzoate, sodium trifluoroacetate, potassium formate,
Potassium acetate, potassium propionate, potassium butyrate,
Alkali metal carboxylate, such as potassium pyruvate, potassium benzoate, potassium trifluoroacetate,
Alkaline earth metal carboxylates such as calcium formate, calcium acetate, calcium propionate, calcium butyrate, calcium pyruvate, calcium benzoate, calcium trifluoroacetate, silver formate, silver acetate, silver propionate, silver butyrate, Other carboxylate salts such as silver pyruvate, silver benzoate and silver trifluoroacetate can be mentioned, and sodium acetate and sodium trifluoroacetate are particularly preferable.

【0043】一方、上記式(5)で表される塩類として
は、例えば、ナトリウムメタンスルフォネ−ト(ナトリ
ウムメシレ−ト)(以下、「NaOMs」と略記す
る)、メタンスルフォネ−ト(ナトリウムトシレ−ト)
(以下、「NaOTs」と略記する)、リチウムトリフ
ルオロメタンスルフォネ−ト(リチウムトリフレ−ト)
(以下、「LiOTf」と略記する)、カリウムノナフ
ルオロブタンスルフォネ−ト(以下、「KOS(O)2
4 9 」と略記する)、NaOTf、Mg(OTf)
2 、AgOTf、NH4 OTf、LiBF4 、NaBF
4 、KBF4 、AgBF4 、Ca(BF4 2 、NH4
BF4 、LiPF6 、NaPF6 、KPF6、AgPF
6 、Ca(PF6 2 、NH4 PF6 、LiClO4
NaClO4、KClO4 、AgClO4 、Ca(Cl
4 2 、NH4 ClO4 、LiBPh4 、NaBPh
4 、KBPh4 、AgBPh4 、Ca(BPh4 2
NH4BPh4 、Na2 SO4 、K2 SO4 、MgSO
4 、CaSO4 、(NH4 2SO4 、Na2 CO3
2 CO3 、MgCO3 、CaCO3 、(NH4)2
3 、カリウムヘプタデカフロロオクタンスルフォネ−
ト(以下、「KOS(O)2 8 17」と略記する)等
が挙げられるが、特にNaOTf、NaPF6 、NH4
PF6 、NaClO4 、NH4 ClO4 、KOS(O)
2 4 9 、KOS(O)2 8 17が好ましい。
On the other hand, as the salts represented by the above formula (5), for example, sodium methanesulfonate (sodium mesylate) (hereinafter abbreviated as “NaOMs”), methanesulfonate (sodium Tosylates)
(Hereinafter abbreviated as "NaOTs"), lithium trifluoromethanesulfonate (lithium triflate)
(Hereinafter abbreviated as “LiOTf”), potassium nonafluorobutane sulfonate (hereinafter “KOS (O) 2
C 4 F 9 ), NaOTf, Mg (OTf)
2, AgOTf, NH 4 OTf, LiBF 4, NaBF
4, KBF 4, AgBF 4, Ca (BF 4) 2, NH 4
BF 4 , LiPF 6 , NaPF 6 , KPF 6 , AgPF
6 , Ca (PF 6 ) 2 , NH 4 PF 6 , LiClO 4 ,
NaClO 4 , KClO 4 , AgClO 4 , Ca (Cl
O 4 ) 2 , NH 4 ClO 4 , LiBPh 4 , NaBPh
4 , KBPh 4 , AgBPh 4 , Ca (BPh 4 ) 2 ,
NH 4 BPh 4 , Na 2 SO 4 , K 2 SO 4 , MgSO
4 , CaSO 4 , (NH 4 ) 2 SO 4 , Na 2 CO 3 ,
K 2 CO 3 , MgCO 3 , CaCO 3 , (NH4) 2 C
O 3 , potassium heptadecafluorooctane sulfone
(Hereinafter abbreviated as “KOS (O) 2 C 8 F 17 ”) and the like, particularly NaOTf, NaPF 6 , NH 4
PF 6 , NaClO 4 , NH 4 ClO 4 , KOS (O)
2 C 4 F 9 and KOS (O) 2 C 8 F 17 are preferred.

【0044】この式(4)(T1 )aZ1 カルボン酸塩
類又は式(5)Z2 b(T2 )c塩類の使用量は、式
(3)[RuI(arene )(L)]Iルテニウム−光学
活性ホスフィン錯体又は式(6)[RuI2 (arene
)]2 ルテニウム錯体1モルに対し約0. 5乃至5倍
モルの範囲とするのがよく、特に好ましくは約1乃至4
倍モルの範囲とするとよい。
The amount of the formula (4) (T 1 ) aZ 1 carboxylate or the formula (5) Z 2 b (T 2 ) c salt used is determined by the formula (3) [RuI (arene) (L)] I Ruthenium-optically active phosphine complex or formula (6) [RuI 2 (arene
)] The amount is preferably in the range of about 0.5 to 5 moles per mole of 2 ruthenium complex, and particularly preferably about 1 to 4 moles.
The molar ratio is preferably in the range of 2 times.

【0045】反応に用いられる極性溶媒としては、メタ
ノ−ル、エタノ−ルのような低級アルコ−ル類、ジメチ
ルホルムアミド、ジメチルスルホキシド、ジオキサン、
テトラヒドロフラン、メタノ−ル−塩化メチレン混合溶
媒等が挙げられる。本発明の式(1)[Ru−(I)q
−(T1 ) n (L)]m (T2 p のルテニウム−ヨー
ド−光学活性2座ホスフィン錯体を製造するための温度
は式(4)(T1 )aZ1 カルボン酸塩類の場合は約4
0又乃至60℃、好ましくは50乃至55℃であり、又
は式(5)Z2 b(T2 )c塩類の場合は約60乃至9
0℃、好ましくは70乃至80℃であり、また、反応時
間は約10〜40時間、好ましくは約15〜20時間と
するとよい。反応終了後、疎水性有機溶媒層を取出し、
溶媒を留去、乾燥等の方法により精製して得られる。
Examples of the polar solvent used in the reaction include lower alcohols such as methanol and ethanol, dimethylformamide, dimethylsulfoxide, dioxane, and the like.
Examples thereof include tetrahydrofuran and a mixed solvent of methanol and methylene chloride. Formula (1) of the present invention [Ru- (I) q
- (T 1) n (L )] m (T 2) p ruthenium - iodo - temperature to produce the optically active bidentate phosphine complex in the case of formula (4) (T 1) aZ 1 -carboxylic acid salts About 4
0 Further to 60 ° C., preferably from 50 to 55 ° C., or Formula (5) Z 2 b (T 2) in the case of c salts about 60 to 9
The temperature is 0 ° C., preferably 70 to 80 ° C., and the reaction time is about 10 to 40 hours, preferably about 15 to 20 hours. After the reaction, remove the hydrophobic organic solvent layer,
It is obtained by purification by a method such as evaporation of the solvent and drying.

【0046】目的とする本発明の式(1)[Ru−
(I)q −(T1 ) n (L)]m (T2p で示される
ルテニウム−ヨード−光学活性2座ホスフィン錯体は、
式(3)[RuI(arene )(L)]Iで示されるルテ
ニウム−光学活性ホスフィン錯体と式(4)の(T1
a Z1 カルボン酸塩または式(5)Z2 b(T2 )塩類
を反応させて錯体のarene分子が脱離した構造を有
しており、または式(6)[RuI2 (arene )]2
示されるルテニウム錯体と光学活性2座ホスフィン、そ
れに式(4)(T1 )a Z1 カルボン酸塩または式
(5)Z2 b(T2 )塩類を反応させて前記同様にar
eneが脱離した構造を有している。また、カルボン酸
塩の場合はヨウ素原子がカルボキシル基と置換した構造
を有する錯体である。すなわち、本発明の錯体の最低限
の構成要素であるルテニウム、ヨウ素、カルボキシル基
または塩類のT2 基および光学活性第三級ホスフィンか
らなる化合物であり、一般式で示せば式(1)[ Ru−
(I)q −(T1 ) n (L)]m (T2 p である。
The desired formula (1) of the present invention [Ru-
(I) The ruthenium-iodo-optically active bidentate phosphine complex represented by q- (T 1 ) n (L)] m (T 2 ) p is
A ruthenium-optically active phosphine complex represented by the formula (3) [RuI (arene) (L)] I and (T 1 ) of the formula (4)
a has a structure in which an arene molecule of a complex is eliminated by reacting a Z 1 carboxylate or a salt of the formula (5) Z 2 b (T 2 ), or a compound of the formula (6) [RuI 2 (arene)] The ruthenium complex represented by formula ( 2 ) is reacted with an optically active bidentate phosphine and a salt of formula (4) (T 1 ) a Z 1 carboxylate or a salt of formula (5) Z 2 b (T 2 ) in the same manner as described above.
ene has a detached structure. In the case of a carboxylate, it is a complex having a structure in which an iodine atom is substituted with a carboxyl group. That is, it is a compound comprising ruthenium, iodine, a carboxyl group or a T 2 group of a salt and an optically active tertiary phosphine which are the minimum constituents of the complex of the present invention. −
(I) q- (T 1 ) n (L)] m (T 2 ) p .

【0047】本発明の式(1)で示されるルテニウム−
ヨード−光学活性2座ホスフィン錯体の代表的な化合物
としては、下記の化合物を挙げることができる。なお、
本発明の錯体の絶対配置は用いたホスフィンの絶対配置
の(R)体または(S)体により、そのいずれも得る事
ができるが、その表示は省略した。
The ruthenium represented by the formula (1) of the present invention
Representative compounds of the iodine-optically active bidentate phosphine complex include the following compounds. In addition,
Although the absolute configuration of the complex of the present invention can be obtained depending on the absolute configuration (R) or (S) of the phosphine used, their representation is omitted.

【0048】[RuI(HCOO)(BINAP)]2 [RuI(HCOO)(T−BINAP)]2 [RuI(CH3 COO)(BINAP)]2 [RuI(CH3 COO)(T−BINAP)]2 [RuI(CH3 COO)(tBu−BINAP)]2 [RuI(CH3 COO)(m−T−BINAP)]2 [RuI(CH3 COO)(DM−BINAP)]2 [RuI(CH3 COO)(DtBu−BINAP)]
2 [RuI(CH3 COO)(MeO−BINAP)]2 [RuI(CH3 COO)(p−Cl−BINAP)]
2 [RuI(CH3 COO)(Naph−BINAP)]
2 [RuI(CH3 COO)(cpBINAP)]2 [RuI(CH3 COO)(CyBINAP)]2 [RuI(CH3 CH2 COO)(BINAP)]2 [RuI(CH3 CH2 COO)(T−BINAP)]
2 [RuI(CH3 CH2 CH2 COO)(BINA
P)]2 [RuI(CH3 CH2 CH2 COO)(T−BINA
P)]2 [RuI(CH3 COCOO)(BINAP)]2 [RuI(CH3 COCOO)(T−BINAP)]2 [RuI(PhCOO)(BINAP)]2 [RuI(PhCOO)(T−BINAP)]2 [RuI(CF3 COO)(BINAP)]2 [RuI(CF3 COO)(T−BINAP)]2
[Rul (HCOO) (BINAP)] 2 [Rul (HCOO) (T-BINAP)] 2 [Rul (CH 3 COO) (BINAP)] 2 [Rul (CH 3 COO) (T-BINAP)] 2 [RuI (CH 3 COO) (tBu-BINAP)] 2 [RuI (CH 3 COO) (m-T-BINAP)] 2 [RuI (CH 3 COO) (DM-BINAP)] 2 [RuI (CH 3 COO) (DtBu-BINAP)]
2 [RuI (CH 3 COO) (MeO-BINAP)] 2 [RuI (CH 3 COO) (p-Cl-BINAP)]
2 [RuI (CH 3 COO) (Naph-BINAP)]
2 [RuI (CH 3 COO) (cpBINAP)] 2 [RuI (CH 3 COO) (CyBINAP)] 2 [RuI (CH 3 CH 2 COO) (BINAP)] 2 [RuI (CH 3 CH 2 COO) (T -BINAP)]
2 [RuI (CH 3 CH 2 CH 2 COO) (BINA
P)] 2 [RuI (CH 3 CH 2 CH 2 COO) (T-BINA)
P)] 2 [RuI (CH 3 COOO) (BINAP)] 2 [RuI (CH 3 COOO) (T-BINAP)] 2 [RuI (PhCOO) (BINAP)] 2 [RuI (PhCOO) (T-BINAP) ] 2 [RuI (CF 3 COO) (BINAP)] 2 [RuI (CF 3 COO) (T-BINAP)] 2

【0049】[Ru−I−(BINAP)](OMs) [Ru−I−(BINAP)](OTs) [Ru−I−(BINAP)](OTf) [Ru−I−(BINAP)]{OS(O)2
4 9 } [Ru−I−(BINAP)](BF4 ) [Ru−I−(BINAP)](PF6 ) [Ru−I−(BINAP)](ClO4 ) [Ru−I−(BINAP)](BPh4 ) [Ru−I−(BINAP)](SO4 ) [Ru−I−(BINAP)](CO3 ) [Ru−I−(T−BINAP)](OMs) [Ru−I−(T−BINAP)](OTs) [Ru−I−(T−BINAP)](OTf) [Ru−I−(T−BINAP)]{OS(O)2 4
9 } [Ru−I−(T−BINAP)](BF4 ) [Ru−I−(T−BINAP)](PF6 ) [Ru−I−(T−BINAP)](ClO4 ) [Ru−I−(T−BINAP)](BPh4 ) [Ru−I−(T−BINAP)](SO4 ) [Ru−I−(T−BINAP)](CO3
[Ru-I- (BINAP)] (OMs) [Ru-I- (BINAP)] (OTs) [Ru-I- (BINAP)] (OTf) [Ru-I- (BINAP)] @ OS (O) 2 C
4 F 9 } [Ru-I- (BINAP)] (BF 4 ) [Ru-I- (BINAP)] (PF 6 ) [Ru-I- (BINAP)] (ClO 4 ) [Ru-I- (BINAP) )] (BPh 4 ) [Ru-I- (BINAP)] (SO 4 ) [Ru-I- (BINAP)] (CO 3 ) [Ru-I- (T-BINAP)] (OMs) [Ru-I − (T-BINAP)] (OTs) [Ru-I- (T-BINAP)] (OTf) [Ru-I- (T-BINAP)] {OS (O) 2 C 4
F 9 } [Ru-I- (T-BINAP)] (BF 4 ) [Ru-I- (T-BINAP)] (PF 6 ) [Ru-I- (T-BINAP)] (ClO 4 ) [Ru -I- (T-BINAP)] ( BPh 4) [Ru-I- (T-BINAP)] (SO 4) [Ru-I- (T-BINAP)] (CO 3)

【0050】 [Ru−I−(tBu−BINAP)](OMs) [Ru−I−(tBu−BINAP)](OTs) [Ru−I−(tBu−BINAP)](OTf) [Ru−I−(tBu−BINAP)]{OS(O)2
4 9 } [Ru−I−(tBu−BINAP)](BF4 ) [Ru−I−(tBu−BINAP)](PF6 ) [Ru−I−(tBu−BINAP)](ClO4 ) [Ru−I−(tBu−BINAP)](BPh4 ) [Ru−I−(tBu−BINAP)](SO4 ) [Ru−I−(tBu−BINAP)](CO3 ) [Ru−I−(m−T−BINAP)](OMs) [Ru−I−(m−T−BINAP)](OTs) [Ru−I−(m−T−BINAP)](OTf) [Ru−I−(m−T−BINAP)]{OS(O)2
4 9 } [Ru−I−(m−T−BINAP)](BF4 ) [Ru−I−(m−T−BINAP)](PF6 ) [Ru−I−(m−T−BINAP)](ClO4 ) [Ru−I−(m−T−BINAP)](BPh4 ) [Ru−I−(m−T−BINAP)](SO4 ) [Ru−I−(m−T−BINAP)](CO3 ) [Ru−I−(DM−BINAP)](OMs) [Ru−I−(DM−BINAP)](OTs) [Ru−I−(DM−BINAP)](OTf) [Ru−I−(DM−BINAP)]{OS(O)2
4 9 } [Ru−I−(DM−BINAP)](BF4 ) [Ru−I−(DM−BINAP)](PF6 ) [Ru−I−(DM−BINAP)](ClO4 ) [Ru−I−(DM−BINAP)](BPh4 ) [Ru−I−(DM−BINAP)](SO4 ) [Ru−I−(DM−BINAP)](CO3
[Ru-I- (tBu-BINAP)] (OMs) [Ru-I- (tBu-BINAP)] (OTs) [Ru-I- (tBu-BINAP)] (OTf) [Ru-I- (TBu-BINAP)] {OS (O) 2
C 4 F 9} [Ru- I- (tBu-BINAP)] (BF 4) [Ru-I- (tBu-BINAP)] (PF 6) [Ru-I- (tBu-BINAP)] (ClO 4) [Ru-I- (tBu-BINAP )] (BPh 4) [Ru-I- (tBu-BINAP)] (SO 4) [Ru-I- (tBu-BINAP)] (CO 3) [Ru-I- (M-T-BINAP)] (OMs) [Ru-I- (m-T-BINAP)] (OTs) [Ru-I- (m-T-BINAP)] (OTf) [Ru-I- (m −T-BINAP)] {OS (O) 2
C 4 F 9 } [Ru-I- (m-T-BINAP)] (BF 4 ) [Ru-I- (m-T-BINAP)] (PF 6 ) [Ru-I- (m-T-BINAP) )] (ClO 4 ) [Ru-I- (m-T-BINAP)] (BPh 4 ) [Ru-I- (m-T-BINAP)] (SO 4 ) [Ru-I- (m-T- (BINAP)] (CO 3 ) [Ru-I- (DM-BINAP)] (OMs) [Ru-I- (DM-BINAP)] (OTs) [Ru-I- (DM-BINAP)] (OTf) [ Ru-I- (DM-BINAP)] @ OS (O) 2 C
4 F 9} [Ru-I- (DM-BINAP)] (BF 4) [Ru-I- (DM-BINAP)] (PF 6) [Ru-I- (DM-BINAP)] (ClO 4) [ Ru-I- (DM-BINAP) ] (BPh 4) [Ru-I- (DM-BINAP)] (SO 4) [Ru-I- (DM-BINAP)] (CO 3)

【0051】[Ru−I−(DtBu−BINAP)]
(OMs) [Ru−I−(DtBu−BINAP)](OTs) [Ru−I−(DtBu−BINAP)](OTf) [Ru−I−(DtBu−BINAP)]{OS(O)
2 4 9 } [Ru−I−(DtBu−BINAP)](BF4 ) [Ru−I−(DtBu−BINAP)](PF6 ) [Ru−I−(DtBu−BINAP)](ClO4 ) [Ru−I−(DtBu−BINAP)](BPh4 ) [Ru−I−(DtBu−BINAP)](SO4 ) [Ru−I−(DtBu−BINAP)](CO3 ) [Ru−I−(MeO−BINAP)](OMs) [Ru−I−(MeO−BINAP)](OTs) [Ru−I−(MeO−BINAP)](OTf) [Ru−I−(MeO−BINAP)]{OS(O)2
4 9} [Ru−I−(MeO−BINAP)](BF4 ) [Ru−I−(MeO−BINAP)](PF6 ) [Ru−I−(MeO−BINAP)](ClO4 ) [Ru−I−(MeO−BINAP)](BPh4 ) [Ru−I−(MeO−BINAP)](SO4 ) [Ru−I−(MeO−BINAP)](CO3
[Ru-I- (DtBu-BINAP)]
(OMs) [Ru-I- (DtBu-BINAP)] (OTs) [Ru-I- (DtBu-BINAP)] (OTf) [Ru-I- (DtBu-BINAP)] @ OS (O)
2 C 4 F 9 } [Ru-I- (DtBu-BINAP)] (BF 4 ) [Ru-I- (DtBu-BINAP)] (PF 6 ) [Ru-I- (DtBu-BINAP)] (ClO 4 ) [Ru-I- (DtBu- BINAP)] (BPh 4) [Ru-I- (DtBu-BINAP)] (SO 4) [Ru-I- (DtBu-BINAP)] (CO 3) [Ru-I -(MeO-BINAP)] (OMs) [Ru-I- (MeO-BINAP)] (OTs) [Ru-I- (MeO-BINAP)] (OTf) [Ru-I- (MeO-BINAP)]} OS (O) 2
C 4 F 9} [Ru- I- (MeO-BINAP)] (BF 4) [Ru-I- (MeO-BINAP)] (PF 6) [Ru-I- (MeO-BINAP)] (ClO 4) [Ru-I- (MeO-BINAP)] (BPh 4 ) [Ru-I- (MeO-BINAP)] (SO 4 ) [Ru-I- (MeO-BINAP)] (CO 3 )

【0052】 [Ru−I−(p−Cl−BINAP)](OMs) [Ru−I−(p−Cl−BINAP)](OTs) [Ru−I−(p−Cl−BINAP)](OTf) [Ru−I−(p−Cl−BINAP)]{OS(O)
2 4 9 } [Ru−I−(p−Cl−BINAP)](BF4 ) [Ru−I−(p−Cl−BINAP)](PF6 ) [Ru−I−(p−Cl−BINAP)](ClO4 ) [Ru−I−(p−Cl−BINAP)](BPh4 ) [Ru−I−(p−Cl−BINAP)](SO4 ) [Ru−I−(p−Cl−BINAP)](CO3
[Ru-I- (p-Cl-BINAP)] (OMs) [Ru-I- (p-Cl-BINAP)] (OTs) [Ru-I- (p-Cl-BINAP)] (OTf ) [Ru-I- (p-Cl-BINAP)] @ OS (O)
2 C 4 F 9 } [Ru-I- (p-Cl-BINAP)] (BF 4 ) [Ru-I- (p-Cl-BINAP)] (PF 6 ) [Ru-I- (p-Cl- BINAP)] (ClO 4 ) [Ru-I- (p-Cl-BINAP)] (BPh 4 ) [Ru-I- (p-Cl-BINAP)] (SO 4 ) [Ru-I- (p-Cl -BINAP)] (CO 3 )

【0053】 [Ru−I−(Naph−BINAP)](OMs) [Ru−I−(Naph−BINAP)](OTs) [Ru−I−(Naph−BINAP)](OTf) [Ru−I−(Naph−BINAP)]{OS(O)
2 4 9 } [Ru−I−(Naph−BINAP)](BF4 ) [Ru−I−(Naph−BINAP)](PF6 ) [Ru−I−(Naph−BINAP)](ClO4 ) [Ru−I−(Naph−BINAP)](BPh4 ) [Ru−I−(Naph−BINAP)](SO4 ) [Ru−I−(Naph−BINAP)](CO3 ) [Ru−I−(cpBINAP)](OMs) [Ru−I−(cpBINAP)](OTs) [Ru−I−(cpBINAP)](OTf) [Ru−I−(cpBINAP)]{OS(O)2 4
9 } [Ru−I−(cpBINAP)](BF4 ) [Ru−I−(cpBINAP)](PF6 ) [Ru−I−(cpBINAP)](ClO4 ) [Ru−I−(cpBINAP)](BPh4 ) [Ru−I−(cpBINAP)](SO4 ) [Ru−I−(cpBINAP)](CO3
[Ru-I- (Naph-BINAP)] (OMs) [Ru-I- (Naph-BINAP)] (OTs) [Ru-I- (Naph-BINAP)] (OTf) [Ru-I- (Naph-BINAP)] @ OS (O)
2 C 4 F 9 } [Ru-I- (Naph-BINAP)] (BF 4 ) [Ru-I- (Naph-BINAP)] (PF 6 ) [Ru-I- (Naph-BINAP)] (ClO 4 ) [Ru-I- (Naph- BINAP)] (BPh 4) [Ru-I- (Naph-BINAP)] (SO 4) [Ru-I- (Naph-BINAP)] (CO 3) [Ru-I - (cpBINAP)] (OMs) [Ru-I- (cpBINAP)] (OTs) [Ru-I- (cpBINAP)] (OTf) [Ru-I- (cpBINAP)] {OS (O) 2 C 4
F 9 } [Ru-I- (cpBINAP)] (BF 4 ) [Ru-I- (cpBINAP)] (PF 6 ) [Ru-I- (cpBINAP)] (ClO 4 ) [Ru-I- (cpBINAP) ] (BPh 4 ) [Ru-I- (cpBINAP)] (SO 4 ) [Ru-I- (cpBINAP)] (CO 3 )

【0054】 [Ru−I−(CyBINAP)](OMs) [Ru−I−(CyBINAP)](OTs) [Ru−I−(CyBINAP)](OTf) [Ru−I−(CyBINAP)]{OS(O)2 4
8 } [Ru−I−(CyBINAP)](BF4 ) [Ru−I−(CyBINAP)](PF6 ) [Ru−I−(CyBINAP)](ClO4 ) [Ru−I−(CyBINAP)](BPh4 ) [Ru−I−(CyBINAP)](SO4 ) [Ru−I−(CyBINAP)](CO3
[Ru-I- (CyBINAP)] (OMs) [Ru-I- (CyBINAP)] (OTs) [Ru-I- (CyBINAP)] (OTf) [Ru-I- (CyBINAP)] @ OS (O) 2 C 4
F 8 } [Ru-I- (CyBINAP)] (BF 4 ) [Ru-I- (CyBINAP)] (PF 6 ) [Ru-I- (CyBINAP)] (ClO 4 ) [Ru-I- (CyBINAP) ] (BPh 4 ) [Ru-I- (CyBINAP)] (SO 4 ) [Ru-I- (CyBINAP)] (CO 3 )

【0055】 [Ru(I)1.5 (BINAP)]2 (OMs) [Ru(I)1.5 (BINAP)]2 (OTs) [Ru(I)1.5 (BINAP)]2 (OTf) [Ru(I)1.5 (BINAP)]2 {OS(O)2
4 9 } [Ru(I)1.5 (BINAP)]2 (BF4 ) [Ru(I)1.5 (BINAP)]2 (PF6 ) [Ru(I)1.5 (BINAP)]2 (ClO4 ) [Ru(I)1.5 (BINAP)]2 (BPh4 ) [Ru(I)1.5 (T−BINAP)]2 (OMs) [Ru(I)1.5 (T−BINAP)]2 (OTs) [Ru(I)1.5 (T−BINAP)]2 (OTf) [Ru(I)1.5 (T−BINAP)]2 {OS(O)
2 4 9 } [Ru(I)1.5 (T−BINAP)]2 (BF4 ) [Ru(I)1.5 (T−BINAP)]2 (PF6 ) [Ru(I)1.5 (T−BINAP)]2 (ClO4 ) [Ru(I)1.5 (T−BINAP)]2 (BPh4 ) [Ru(I)1.5 (tBu−BINAP)]2 (OM
s) [Ru(I)1.5 (tBu−BINAP)]2 (OT
s) [Ru(I)1.5(tBu−BINAP)]2 (OTf) [Ru(I)1.5 (tBu−BINAP)]2 {OS
(O)2 4 9 } [Ru(I)1.5 (tBu−BINAP)]2 (B
4 ) [Ru(I)1.5 (tBu−BINAP)]2 (P
6 ) [Ru(I)1.5 (tBu−BINAP)]2 (ClO
4 ) [Ru(I)1.5 (tBu−BINAP)]2 (BPh
4
[Ru (I) 1.5 (BINAP)] 2 (OMs) [Ru (I) 1.5 (BINAP)] 2 (OTs) [Ru (I) 1.5 (BINAP)] 2 (OTf) [Ru (I) 1.5 (BINAP)] 2 {OS (O) 2 C
4 F 9 } [Ru (I) 1.5 (BINAP)] 2 (BF 4 ) [Ru (I) 1.5 (BINAP)] 2 (PF 6 ) [Ru (I) 1.5 (BINAP)] 2 (ClO 4 ) [ Ru (I) 1.5 (BINAP)] 2 (BPh 4 ) [Ru (I) 1.5 (T-BINAP)] 2 (OMs) [Ru (I) 1.5 (T-BINAP)] 2 (OTs) [Ru (I ) 1.5 (T-BINAP)] 2 (OTf) [Ru (I) 1.5 (T-BINAP)] 2 {OS (O)
2 C 4 F 9 } [Ru (I) 1.5 (T-BINAP)] 2 (BF 4 ) [Ru (I) 1.5 (T-BINAP)] 2 (PF 6 ) [Ru (I) 1.5 (T-BINAP) )] 2 (ClO 4 ) [Ru (I) 1.5 (T-BINAP)] 2 (BPh 4 ) [Ru (I) 1.5 (tBu-BINAP)] 2 (OM
s) [Ru (I) 1.5 (tBu-BINAP)] 2 (OT
s) [Ru (I) 1.5 (tBu-BINAP)] 2 (OTf) [Ru (I) 1.5 (tBu-BINAP)] 2 {OS
(O) 2 C 4 F 9 } [Ru (I) 1.5 (tBu-BINAP)] 2 (B
F 4 ) [Ru (I) 1.5 (tBu-BINAP)] 2 (P
F 6 ) [Ru (I) 1.5 (tBu-BINAP)] 2 (ClO
4 ) [Ru (I) 1.5 (tBu-BINAP)] 2 (BPh
4 )

【0056】[Ru(I)1.5 (m−T−BINA
P)]2 (OMs) [Ru(I)1.5 (m−T−BINAP)]2 (OT
s) [Ru(I)1.5 (m−T−BINAP)]2 (OT
f) [Ru(I)1.5 (m−T−BINAP)]2 {OS
(O)2 4 9 } [Ru(I)1.5 (m−T−BINAP)]2 (B
4 ) [Ru(I)1.5 (m−T−BINAP)]2 (P
6 ) [Ru(I)1.5 (m−T−BINAP)]2 (ClO
4 ) [Ru(I)1.5 (m−T−BINAP)]2 (BPh
4 ) [Ru(I)1.5 (DM−BINAP)]2 (OMs) [Ru(I)1.5 (DM−BINAP)]2 (OTs) [Ru(I)1.5 (DM−BINAP)]2 (OTf) [Ru(I)1.5 (DM−BINAP)]2 {OS
(O)2 4 9 } [Ru(I)1.5 (DM−BINAP)]2 (BF4 ) [Ru(I)1.5 (DM−BINAP)]2 (PF6 ) [Ru(I)1.5 (DM−BINAP)]2 (Cl
4 ) [Ru(I)1.5 (DM−BINAP)]2 (BPh
4) [Ru(I)1.5 (DtBu−BINAP)]2 (OM
s) [Ru(I)1.5 (DtBu−BINAP)]2(OT
s) [Ru(I)1.5 (DtBu−BINAP)]2 (OT
f) [Ru(I)1.5 (DtBu−BINAP)]2 (BF
4 ) [Ru(I)1.5 (DtBu−BINAP)]2 (PF
6 ) [Ru(I)1.5 (DtBu−BINAP)]2 (Cl
4 ) [Ru(I)1.5 (DtBu−BINAP)]2 (BP
4
[Ru (I) 1.5 (m-T-BINA)
P)] 2 (OMs) [Ru (I) 1.5 (m-T-BINAP)] 2 (OT
s) [Ru (I) 1.5 (m-T-BINAP)] 2 (OT
f) [Ru (I) 1.5 (m-T-BINAP)] 2 @ OS
(O) 2 C 4 F 9 } [Ru (I) 1.5 (m-T-BINAP)] 2 (B
F 4 ) [Ru (I) 1.5 (m-T-BINAP)] 2 (P
F 6 ) [Ru (I) 1.5 (m-T-BINAP)] 2 (ClO
4 ) [Ru (I) 1.5 (m-T-BINAP)] 2 (BPh
4 ) [Ru (I) 1.5 (DM-BINAP)] 2 (OMs) [Ru (I) 1.5 (DM-BINAP)] 2 (OTs) [Ru (I) 1.5 (DM-BINAP)] 2 (OTf) [Ru (I) 1.5 (DM-BINAP)] 2 @ OS
(O) 2 C 4 F 9 } [Ru (I) 1.5 (DM-BINAP)] 2 (BF 4 ) [Ru (I) 1.5 (DM-BINAP)] 2 (PF 6 ) [Ru (I) 1.5 ( DM-BINAP)] 2 (Cl
O 4 ) [Ru (I) 1.5 (DM-BINAP)] 2 (BPh
4) [Ru (I) 1.5 (DtBu-BINAP)] 2 (OM
s) [Ru (I) 1.5 (DtBu-BINAP)] 2 (OT
s) [Ru (I) 1.5 (DtBu-BINAP)] 2 (OT
f) [Ru (I) 1.5 (DtBu-BINAP)] 2 (BF
4 ) [Ru (I) 1.5 (DtBu-BINAP)] 2 (PF
6 ) [Ru (I) 1.5 (DtBu-BINAP)] 2 (Cl
O 4 ) [Ru (I) 1.5 (DtBu-BINAP)] 2 (BP
h 4)

【0057】[Ru(I)1.5 (MeO−BINA
P)]2 (OMs) [Ru(I)1.5 (MeO−BINAP)]2 (OT
s) [Ru(I)1.5 (MeO−BINAP)]2 (OT
f) [Ru(I)1.5 (MeO−BINAP)]2 {OS
(O)2 4 9 } [Ru(I)1.5 (MeO−BINAP)]2 (B
4 ) [Ru(I)1.5 (MeO−BINAP)]2 (P
6 ) [Ru(I)1.5 (MeO−BINAP)]2 (ClO
4 ) [Ru(I)1.5 (MeO−BINAP)]2 (BPh
4 ) [Ru(I)1.5 (p−Cl−BINAP)]2 (OM
s) [Ru(I)1.5 (p−Cl−BINAP)]2 (OT
s) [Ru(I)1.5 (p−Cl−BINAP)]2 (OT
f) [Ru(I)1.5 (p−Cl−BINAP)]2 {OS
(O)2 4 9 } [Ru(I)1.5 (p−Cl−BINAP)]2 (BF
4 ) [Ru(I)1.5 (p−Cl−BINAP)]2 (PF
6 ) [Ru(I)1.5 (p−Cl−BINAP)]2 (Cl
4 ) [Ru(I)1.5 (p−Cl−BINAP)]2 (BP
4
[Ru (I) 1.5 (MeO-BINA)
P)] 2 (OMs) [Ru (I) 1.5 (MeO-BINAP)] 2 (OT
s) [Ru (I) 1.5 (MeO-BINAP)] 2 (OT
f) [Ru (I) 1.5 (MeO-BINAP)] 2 @ OS
(O) 2 C 4 F 9 } [Ru (I) 1.5 (MeO-BINAP)] 2 (B
F 4 ) [Ru (I) 1.5 (MeO-BINAP)] 2 (P
F 6 ) [Ru (I) 1.5 (MeO-BINAP)] 2 (ClO
4 ) [Ru (I) 1.5 (MeO-BINAP)] 2 (BPh
4 ) [Ru (I) 1.5 (p-Cl-BINAP)] 2 (OM
s) [Ru (I) 1.5 (p-Cl-BINAP)] 2 (OT
s) [Ru (I) 1.5 (p-Cl-BINAP)] 2 (OT
f) [Ru (I) 1.5 (p-Cl-BINAP)] 2 @ OS
(O) 2 C 4 F 9 } [Ru (I) 1.5 (p-Cl-BINAP)] 2 (BF
4 ) [Ru (I) 1.5 (p-Cl-BINAP)] 2 (PF
6 ) [Ru (I) 1.5 (p-Cl-BINAP)] 2 (Cl
O 4 ) [Ru (I) 1.5 (p-Cl-BINAP)] 2 (BP
h 4)

【0058】[Ru(I)1.5 (Naph−BINA
P)]2 (OMs) [Ru(I)1.5 (Naph−BINAP)]2 (OT
s) [Ru(I)1.5 (Naph−BINAP)]2 (OT
f) [Ru(I)1.5 (Naph−BINAP)]2 {OS
(O)2 4 9 } [Ru(I)1.5 (Naph−BINAP)]2 (BF
4 ) [Ru(I)1.5 (Naph−BINAP)]2 (PF
6 ) [Ru(I)1.5 (Naph−BINAP)]2 (Cl
4 ) [Ru(I)1.5 (Naph−BINAP)]2 (BP
4 ) [Ru(I)1.5 (cpBINAP)]2 (OMs) [Ru(I)1.5 (cpBINAP)]2 (OTs) [Ru(I)1.5 (cpBINAP)]2 (OTf) [Ru(I)1.5 (cpBINAP)]2 {OS(O)
2 4 9 } [Ru(I)1.5 (cpBINAP)]2 (BF4 ) [Ru(I)1.5 (cpBINAP)]2 (PF6 ) [Ru(I)1.5 (cpBINAP)]2 (ClO4 ) [Ru(I)1.5 (cpBINAP)]2(BPh4
[Ru (I) 1.5 (Naph-BINA)
P)] 2 (OMs) [Ru (I) 1.5 (Naph-BINAP)] 2 (OT
s) [Ru (I) 1.5 (Naph-BINAP)] 2 (OT
f) [Ru (I) 1.5 (Naph-BINAP)] 2 @ OS
(O) 2 C 4 F 9 } [Ru (I) 1.5 (Naph-BINAP)] 2 (BF
4 ) [Ru (I) 1.5 (Naph-BINAP)] 2 (PF
6 ) [Ru (I) 1.5 (Naph-BINAP)] 2 (Cl
O 4 ) [Ru (I) 1.5 (Naph-BINAP)] 2 (BP
h 4 ) [Ru (I) 1.5 (cpBINAP)] 2 (OMs) [Ru (I) 1.5 (cpBINAP)] 2 (OTs) [Ru (I) 1.5 (cpBINAP)] 2 (OTf) [Ru (I) 1.5 (cpBINAP)] 2 @OS (O)
2 C 4 F 9 } [Ru (I) 1.5 (cpBINAP)] 2 (BF 4 ) [Ru (I) 1.5 (cpBINAP)] 2 (PF 6 ) [Ru (I) 1.5 (cpBINAP)] 2 (ClO 4 ) [Ru (I) 1.5 (cpBINAP)] 2 (BPh 4 )

【0059】[Ru(I)1.5 (CyBINAP)]2
(OMs) [Ru(I)1.5 (CyBINAP)]2 (OTs) [Ru(I)1.5 (CyBINAP)]2 (OTf) [Ru(I)1.5 (CyBINAP)]2 {OS(O)
2 4 9 } [Ru(I)1.5 (CyBINAP)]2 (BF4 ) [Ru(I)1.5 (CyBINAP)]2 (PF6 ) [Ru(I)1.5 (CyBINAP)]2 (ClO4 ) [Ru(I)1.5 (CyBINAP)]2 (BPh4 ) [Ru(I)1.5 (BINAP)]2 {OS(O)2
8 17} [Ru(I)1.5 (T−BINAP)]2 {OS(O)
2 8 17} [Ru(I)1.5 (tBu−BINAP)]2 {OS
(O)2C8 17} [Ru(I)1.5 (m−T−BINAP)]2 {OS
(O)2 8 17} [Ru(I)1.5 (DM−BINAP)]2 {OS
(O)2 8 17} [Ru(I)1.5 (DtBu−BINAP)]2 {OS
(O)2 8 17} [Ru(I)1.5 (MeO−BINAP)]2 {OS
(O)2 8 17} [Ru(I)1.5 (p−Cl−BINAP)]2 {OS
(O)2 8 17} [Ru(I)1.5 (cpBINAP)]2 {OS(O)
2 8 17} [Ru(I)1.5 (CyBINAP)]2 {OS(O)
2 8 17
[Ru (I) 1.5 (CyBINAP)] 2
(OMs) [Ru (I) 1.5 (CyBINAP)] 2 (OTs) [Ru (I) 1.5 (CyBINAP)] 2 (OTf) [Ru (I) 1.5 (CyBINAP)] 2 {OS (O)
2 C 4 F 9 } [Ru (I) 1.5 (CyBINAP)] 2 (BF 4 ) [Ru (I) 1.5 (CyBINAP)] 2 (PF 6 ) [Ru (I) 1.5 (CyBINAP)] 2 (ClO 4 ) ) [Ru (I) 1.5 (CyBINAP)] 2 (BPh 4 ) [Ru (I) 1.5 (BINAP)] 2 {OS (O) 2 C
8 F 17 } [Ru (I) 1.5 (T-BINAP)] 2 {OS (O)
2 C 8 F 17 } [Ru (I) 1.5 (tBu-BINAP)] 2 {OS
(O) 2C 8 F 17} [Ru (I) 1.5 (m-T-BINAP)] 2 {OS
(O) 2 C 8 F 17 } [Ru (I) 1.5 (DM-BINAP)] 2 {OS
(O) 2 C 8 F 17 } [Ru (I) 1.5 (DtBu-BINAP)] 2 {OS
(O) 2 C 8 F 17 } [Ru (I) 1.5 (MeO-BINAP)] 2 {OS
(O) 2 C 8 F 17 } [Ru (I) 1.5 (p-Cl-BINAP)] 2 {OS
(O) 2 C 8 F 17 } [Ru (I) 1.5 (cpBINAP)] 2 {OS (O)
2 C 8 F 17 } [Ru (I) 1.5 (CyBINAP)] 2 {OS (O)
2 C 8 F 17

【0060】[Ru(I)1.5 (BINAP)]2 {O
S(O)2 (iso −C3 7 )} [Ru(I)1.5 (T−BINAP)]2 {OS(O)
2(iso −C3 7 )} [Ru(I)1.5 (BINAP)]2 {OS(O)
2 (tert−C4 9 )} [Ru(I)1.5(T−BINAP)]2 {OS(O)2
(tert−C4 9 )} [Ru(I)1.5 (BINAP)]2 {OS(O)
2 (cyclo −C6 11)} [Ru(I)1.5(T−BINAP)]2 {OS(O)2
(cyclo−C6 11)}
[Ru (I) 1.5 (BINAP)] 2 {O
S (O) 2 (iso-C 3 F 7 )} [Ru (I) 1.5 (T-BINAP)] 2 {OS (O)
2 (iso-C 3 F 7 )} [Ru (I) 1.5 (BINAP)] 2 {OS (O)
2 (tert-C 4 F 9 )} [Ru (I) 1.5 (T-BINAP)] 2 {OS (O) 2
(Tert-C 4 F 9 )} [Ru (I) 1.5 (BINAP)] 2 {OS (O)
2 (cyclo-C 6 F 11 )} [Ru (I) 1.5 (T-BINAP)] 2 {OS (O) 2
(cyclo-C 6 F 11 )}

【0061】 [Ru−I−(SEGPHOS)](OMs) [Ru−I−(SEGPHOS)](OTs) [Ru−I−(SEGPHOS)](OTf) [Ru−I−(SEGPHOS)]{OS(O)2 4
9 } [Ru−I−(SEGPHOS)](BF4 ) [Ru−I−(SEGPHOS)](PF6 ) [Ru−I−(SEGPHOS)](ClO4 ) [Ru−I−(SEGPHOS)](BPh4 ) [Ru−I−(SEGPHOS)](SO4 ) [Ru−I−(SEGPHOS)](CO3
[Ru-I- (SEGPHOS)] (OMs) [Ru-I- (SEGPHOS)] (OTs) [Ru-I- (SEGPHOS)] (OTf) [Ru-I- (SEGPHOS)] {OS (O) 2 C 4
F 9 } [Ru-I- (SEGPHOS)] (BF 4 ) [Ru-I- (SEGPHOS)] (PF 6 ) [Ru-I- (SEGPHOS)] (ClO 4 ) [Ru-I- (SEGPHOS) ] (BPh 4 ) [Ru-I- (SEGPHOS)] (SO 4 ) [Ru-I- (SEGPHOS)] (CO 3 )

【0062】 [Ru−I−(T−SEGPHOS)](OMs) [Ru−I−(T−SEGPHOS)](OTs) [Ru−I−(T−SEGPHOS)](OTf) [Ru−I−(T−SEGPHOS)]{OS(O)2
4 9 } [Ru−I−(T−SEGPHOS)](BF4 ) [Ru−I−(T−SEGPHOS)](PF6 ) [Ru−I−(T−SEGPHOS)](ClO4 ) [Ru−I−(T−SEGPHOS)](BPh4 ) [Ru−I−(T−SEGPHOS)](SO4 ) [Ru−I−(T−SEGPHOS)](CO3
[Ru-I- (T-SEGPHOS)] (OMs) [Ru-I- (T-SEGPHOS)] (OTs) [Ru-I- (T-SEGPHOS)] (OTf) [Ru-I- (T-SEGPHOS)] {OS (O) 2
C 4 F 9 } [Ru-I- (T-SEGPHOS)] (BF 4 ) [Ru-I- (T-SEGPHOS)] (PF 6 ) [Ru-I- (T-SEGPHOS)] (ClO 4 ) [Ru-I- (T-SEGPHOS)] (BPh 4 ) [Ru-I- (T-SEGPHOS)] (SO 4 ) [Ru-I- (T-SEGPHOS)] (CO 3 )

【0063】 [Ru−I−(tBu−SEGPHOS)](OMs) [Ru−I−(tBu−SEGPHOS)](OTs) [Ru−I−(tBu−SEGPHOS)](OTf) [Ru−I−(tBu−SEGPHOS)]{OS
(O)2 4 0 } [Ru−I−(tBu−SEGPHOS)](BF4 ) [Ru−I−(tBu−SEGPHOS)](PF6 ) [Ru−I−(tBu−SEGPHOS)](Cl
4 ) [Ru−I−(tBu−SEGPHOS)](BP
4 ) [Ru−I−(tBu−SEGPHOS)](SO4 ) [Ru−I−(tBu−SEGPHOS)](CO3
[Ru-I- (tBu-SEGPHOS)] (OMs) [Ru-I- (tBu-SEGPHOS)] (OTs) [Ru-I- (tBu-SEGPHOS)] (OTf) [Ru-I- (TBu-SEGPHOS)] @ OS
(O) 2 C 4 F 0 } [Ru-I- (tBu-SEGPHOS)] (BF 4 ) [Ru-I- (tBu-SEGPHOS)] (PF 6 ) [Ru-I- (tBu-SEGPHOS)] (Cl
O 4 ) [Ru-I- (tBu-SEGPHOS)] (BP
h 4 ) [Ru-I- (tBu-SEGPHOS)] (SO 4 ) [Ru-I- (tBu-SEGPHOS)] (CO 3 )

【0064】 [Ru−I−(m−T−SEGPHOS)](OMs) [Ru−I−(m−T−SEGPHOS)](OTs) [Ru−I−(m−T−SEGPHOS)](OTf) [Ru−I−(m−T−SEGPHOS)]{OS
(O)2 4 9 } [Ru−I−(m−T−SEGPHOS)](BF4 ) [Ru−I−(m−T−SEGPHOS)](PF6 ) [Ru−I−(m−T−SEGPHOS)](Cl
4 ) [Ru−I−(m−T−SEGPHOS)](BP
4 ) [Ru−I−(m−T−SEGPHOS)](SO4 ) [Ru−I−(m−T−SEGPHOS)](CO3
[Ru-I- (m-T-SEGPHOS)] (OMs) [Ru-I- (m-T-SEGPHOS)] (OTs) [Ru-I- (m-T-SEGPHOS)] (OTf ) [Ru-I- (mT-SEGPHOS)] {OS
(O) 2 C 4 F 9 } [Ru-I- (m-T-SEGPHOS)] (BF 4 ) [Ru-I- (m-T-SEGPHOS)] (PF 6 ) [Ru-I- (m -T-SEGPHOS)] (Cl
O 4 ) [Ru-I- (mT-SEGPHOS)] (BP
h 4) [Ru-I- ( m-T-SEGPHOS)] (SO 4) [Ru-I- (m-T-SEGPHOS)] (CO 3)

【0065】[Ru−I−(DM−SEGPHOS)]
(OMs) [Ru−I−(DM−SEGPHOS)](OTs) [Ru−I−(DM−SEGPHOS)](OTf) [Ru−I−(DM−SEGPHOS)]{OS(O)
2 4 9 } [Ru−I−(DM−SEGPHOS)](BF4 ) [Ru−I−(DM−SEGPHOS)](PF6 ) [Ru−I−(DM−SEGPHOS)](ClO4 ) [Ru−I−(DM−SEGPHOS)](BPh4 ) [Ru−I−(DM−SEGPHOS)](SO4 ) [Ru−I−(DM−SEGPHOS)](CO3 ) [Ru−I−(DtBu−SEGPHOS)](OM
s) [Ru−I−(DtBu−SEGPHOS)](OT
s) [Ru−I−(DtBu−SEGPHOS)](OT
f) [Ru−I−(DtBu−SEGPHOS)]{OS
(O)2 4 9 } [Ru−I−(DtBu−SEGPHOS)](B
4 ) [Ru−I−(DtBu−SEGPHOS)](P
6 ) [Ru−I−(DtBu−SEGPHOS)](ClO
4 ) [Ru−I−(DtBu−SEGPHOS)](BPh
4 ) [Ru−I−(DtBu−SEGPHOS)](S
4 ) [Ru−I−(DtBu−SEGPHOS)](C
3
[Ru-I- (DM-SEGPHOS)]
(OMs) [Ru-I- (DM-SEGPHOS)] (OTs) [Ru-I- (DM-SEGPHOS)] (OTf) [Ru-I- (DM-SEGPHOS)] {OS (O)
2 C 4 F 9 } [Ru-I- (DM-SEGPHOS)] (BF 4 ) [Ru-I- (DM-SEGPHOS)] (PF 6 ) [Ru-I- (DM-SEGPHOS)] (ClO 4 ) [Ru-I- (DM-SEGPHOS)] (BPh 4 ) [Ru-I- (DM-SEGPHOS)] (SO 4 ) [Ru-I- (DM-SEGPHOS)] (CO 3 ) [Ru-I − (DtBu-SEGPHOS)] (OM
s) [Ru-I- (DtBu-SEGPHOS)] (OT
s) [Ru-I- (DtBu-SEGPHOS)] (OT
f) [Ru-I- (DtBu-SEGPHOS)] {OS
(O) 2 C 4 F 9 } [Ru-I- (DtBu-SEGPHOS)] (B
F 4 ) [Ru-I- (DtBu-SEGPHOS)] (P
F 6 ) [Ru-I- (DtBu-SEGPHOS)] (ClO
4 ) [Ru-I- (DtBu-SEGPHOS)] (BPh
4 ) [Ru-I- (DtBu-SEGPHOS)] (S
O 4 ) [Ru-I- (DtBu-SEGPHOS)] (C
O 3 )

【0066】 [Ru−I−(MeO−SEGPHOS)](OMs) [Ru−I−(MeO−SEGPHOS)](OTs) [Ru−I−(MeO−SEGPHOS)](OTf) [Ru−I−(MeO−SEGPHOS)]{OS
(O)2 4 9 } [Ru−I−(MeO−SEGPHOS)](BF4 ) [Ru−I−(MeO−SEGPHOS)](PF6 ) [Ru−I−(MeO−SEGPHOS)](Cl
4 ) [Ru−I−(MeO−SEGPHOS)](BP
4 ) [Ru−I−(MeO−SEGPHOS)](SO4 ) [Ru−I−(MeO−SEGPHOS)](CO3
[Ru-I- (MeO-SEGPHOS)] (OMs) [Ru-I- (MeO-SEGPHOS)] (OTs) [Ru-I- (MeO-SEGPHOS)] (OTf) [Ru-I- (MeO-SEGPHOS)] @ OS
(O) 2 C 4 F 9 } [Ru-I- (MeO-SEGPHOS)] (BF 4 ) [Ru-I- (MeO-SEGPHOS)] (PF 6 ) [Ru-I- (MeO-SEGPHOS)] (Cl
O 4 ) [Ru-I- (MeO-SEGPHOS)] (BP
h 4 ) [Ru-I- (MeO-SEGPHOS)] (SO 4 ) [Ru-I- (MeO-SEGPHOS)] (CO 3 )

【0067】[Ru−I−(p−Cl−SEGPHO
S)](OMs) [Ru−I−(p−Cl−SEGPHOS)](OT
s) [Ru−I−(p−Cl−SEGPHOS)](OT
f) [Ru−I−(p−Cl−SEGPHOS)]{OS
(O)2 4 9 } [Ru−I−(p−Cl−SEGPHOS)](B
4 ) [Ru−I−(p−Cl−SEGPHOS)](P
6 ) [Ru−I−(p−Cl−SEGPHOS)](ClO
4 ) [Ru−I−(p−Cl−SEGPHOS)](BPh
4 ) [Ru−I−(p−Cl−SEGPHOS)](S
4 ) [Ru−I−(p−Cl−SEGPHOS)](C
3
[Ru-I- (p-Cl-SEGPHO)
S)] (OMs) [Ru-I- (p-Cl-SEGPHOS)] (OT
s) [Ru-I- (p-Cl-SEGPHOS)] (OT
f) [Ru-I- (p-Cl-SEGPHOS)] @ OS
(O) 2 C 4 F 9 } [Ru-I- (p-Cl-SEGPHOS)] (B
F 4 ) [Ru-I- (p-Cl-SEGPHOS)] (P
F 6 ) [Ru-I- (p-Cl-SEGPHOS)] (ClO
4 ) [Ru-I- (p-Cl-SEGPHOS)] (BPh
4 ) [Ru-I- (p-Cl-SEGPHOS)] (S
O 4 ) [Ru-I- (p-Cl-SEGPHOS)] (C
O 3 )

【0068】[Ru−I−(Naph−SEGPHO
S)](OMs) [Ru−I−(Naph−SEGPHOS)](OT
s) [Ru−I−(Naph−SEGPHOS)](OT
f) [Ru−I−(Naph−SEGPHOS)]{OS
(O)2 4 9 } [Ru−I−(Naph−SEGPHOS)](B
4 ) [Ru−I−(Naph−SEGPHOS)](P
6 ) [Ru−I−(Naph−SEGPHOS)](ClO
4 ) [Ru−I−(Naph−SEGPHOS)](BPh
4 ) [Ru−I−(Naph−SEGPHOS)](S
4 ) [Ru−I−(Naph−SEGPHOS)](C
3
[Ru-I- (Naph-SEGPHO)
S)] (OMs) [Ru-I- (Naph-SEGPHOS)] (OT
s) [Ru-I- (Naph-SEGPHOS)] (OT
f) [Ru-I- (Naph-SEGPHOS)] {OS
(O) 2 C 4 F 9 } [Ru-I- (Naph-SEGPHOS)] (B
F 4 ) [Ru-I- (Naph-SEGPHOS)] (P
F 6 ) [Ru-I- (Naph-SEGPHOS)] (ClO
4 ) [Ru-I- (Naph-SEGPHOS)] (BPh
4 ) [Ru-I- (Naph-SEGPHOS)] (S
O 4 ) [Ru-I- (Naph-SEGPHOS)] (C
O 3 )

【0069】 [Ru−I−(cpSEGPHOS)](OMs) [Ru−I−(cpSEGPHOS)](OTs) [Ru−I−(cpSEGPHOS)](OTf) [Ru−I−(cpSEGPHOS)]{OS(O)2
4 9 } [Ru−I−(cpSEGPHOS)](BF4 ) [Ru−I−(cpSEGPHOS)](PF6 ) [Ru−I−(cpSEGPHOS)](ClO4 ) [Ru−I−(cpSEGPHOS)](BPh4 ) [Ru−I−(cpSEGPHOS)](SO4 ) [Ru−I−(cpSEGPHOS)](CO3 ) [Ru−I−(CySEGPHOS)](OMs) [Ru−I−(CySEGPHOS)](OTs) [Ru−I−(CySEGPHOS)](OTf) [Ru−I−(CySEGPHOS)]{OS(O)2
4 9 } [Ru−I−(CySEGPHOS)](BF4 ) [Ru−I−(CySEGPHOS)](PF6 ) [Ru−I−(CySEGPHOS)](ClO4 ) [Ru−I−(CySEGPHOS)](BPh4 ) [Ru−I−(CySEGPHOS)](SO4 ) [Ru−I−(CySEGPHOS)](CO3
[Ru-I- (cpSEGPHOS)] (OMs) [Ru-I- (cpSEGPHOS)] (OTs) [Ru-I- (cpSEGPHOS)] (OTf) [Ru-I- (cpSEGPHOS)] @ OS (O) 2
C 4 F 9 } [Ru-I- (cpSEGPHOS)] (BF 4 ) [Ru-I- (cpSEGPHOS)] (PF 6 ) [Ru-I- (cpSEGPHOS)] (ClO 4 ) [Ru-I- ( cpSEGPHOS)] (BPh 4 ) [Ru-I- (cpSEGPHOS)] (SO 4 ) [Ru-I- (cpSEGPHOS)] (CO 3 ) [Ru-I- (CySEGPHOS)] (OMs) [Ru-I- (CySEGPHOS)] (OTs) [Ru-I- (CySEGPHOS)] (OTf) [Ru-I- (CySEGPHOS)] {OS (O) 2
C 4 F 9} [Ru- I- (CySEGPHOS)] (BF 4) [Ru-I- (CySEGPHOS)] (PF 6) [Ru-I- (CySEGPHOS)] (ClO 4) [Ru-I- ( CySEGPHOS)] (BPh 4 ) [Ru-I- (CySEGPHOS)] (SO 4 ) [Ru-I- (CySEGPHOS)] (CO 3 )

【0070】[Ru−I−(SEGPHOS)]{OS
(O)2 8 17} [Ru−I−(T−SEGPHOS)]{OS(O)2
8 17} [Ru−I−(tBu−SEGPHOS)]{OS
(O)2 8 17} [Ru−I−(m−T−SEGPHOS)]{OS
(O)2 8 17} [Ru−I−(DM−SEGPHOS)]{OS(O)
2 8 17} [Ru−I−(DtBu−SEGPHOS)]{OS
(O)2 8 17} [Ru−I−(MeO−SEGPHOS)]{OS
(O)2 8 17} [Ru−I−(p−Cl−SEGPHOS)]{OS
(O)2 8 17} [Ru−I−(cpSEGPHOS)]{OS(O)2
8 17} [Ru−I−(CySEGPHOS)]{OS(O)2
8 17
[Ru-I- (SEGPHOS)] {OS
(O) 2 C 8 F 17 } [Ru-I- (T-SEGPHOS)] {OS (O) 2
C 8 F 17 } [Ru-I- (tBu-SEGPHOS)] {OS
(O) 2 C 8 F 17 } [Ru-I- (mT-SEGPHOS)] {OS
(O) 2 C 8 F 17 } [Ru-I- (DM-SEGPHOS)] {OS (O)
2 C 8 F 17 } [Ru-I- (DtBu-SEGPHOS)] {OS
(O) 2 C 8 F 17 } [Ru-I- (MeO-SEGPHOS)] {OS
(O) 2 C 8 F 17 } [Ru-I- (p-Cl-SEGPHOS)] {OS
(O) 2 C 8 F 17 } [Ru-I- (cpSEGPHOS)] {OS (O) 2
C 8 F 17 } [Ru-I- (CySEGPHOS)] {OS (O) 2
C 8 F 17

【0071】 [Ru(I)1.5 (SEGPHOS)]2 (OMs) [Ru(I)1.5 (SEGPHOS)]2 (OTs) [Ru(I)1.5 (SEGPHOS)]2 (OTf) [Ru(I)1.5 (SEGPHOS)]2 {OS(O)
2 4 9 } [Ru(I)1.5 (SEGPHOS)]2 (BF4 ) [Ru(I)1.5 (SEGPHOS)]2 (PF6 ) [Ru(I)1.5 (SEGPHOS)]2 (ClO4 ) [Ru(I)1.5 (SEGPHOS)]2 (BPh4 ) [Ru(I)1.5 (T−SEGPHOS)]2 (OM
s) [Ru(I)1.5 (T−SEGPHOS)]2 (OT
s) [Ru(I)1.5 (T−SEGPHOS)]2 (OT
f) [Ru(I)1.5 (T−SEGPHOS)]2 {OS
(O)2 4 9 } [Ru(I)1.5 (T−SEGPHOS)]2 (B
4 ) [Ru(I)1.5 (T−SEGPHOS)]2 (P
6 ) [Ru(I)1.5 (T−SEGPHOS)]2 (ClO
4 ) [Ru(I)1.5 (T−SEGPHOS)]2 (BPh
4
[Ru (I) 1.5 (SEGPHOS)] 2 (OMs) [Ru (I) 1.5 (SEGPHOS)] 2 (OTs) [Ru (I) 1.5 (SEGPHOS)] 2 (OTf) [Ru (I) 1.5 (SEGPHOS)] 2 @OS (O)
2 C 4 F 9 } [Ru (I) 1.5 (SEGPHOS)] 2 (BF 4 ) [Ru (I) 1.5 (SEGPHOS)] 2 (PF 6 ) [Ru (I) 1.5 (SEGPHOS)] 2 (ClO 4 ) [Ru (I) 1.5 (SEGPHOS)] 2 (BPh 4 ) [Ru (I) 1.5 (T-SEGPHOS)] 2 (OM
s) [Ru (I) 1.5 (T-SEGPHOS)] 2 (OT
s) [Ru (I) 1.5 (T-SEGPHOS)] 2 (OT
f) [Ru (I) 1.5 (T-SEGPHOS)] 2 @ OS
(O) 2 C 4 F 9 } [Ru (I) 1.5 (T-SEGPHOS)] 2 (B
F 4 ) [Ru (I) 1.5 (T-SEGPHOS)] 2 (P
F 6 ) [Ru (I) 1.5 (T-SEGPHOS)] 2 (ClO
4 ) [Ru (I) 1.5 (T-SEGPHOS)] 2 (BPh
4 )

【0072】[Ru(I)1.5 (tBu−SEGPHO
S)]2 (OMs) [Ru(I)1.5 (tBu−SEGPHOS)]2 (O
Ts) [Ru(I)1.5 (tBu−SEGPHOS)]2 (O
Tf) [Ru(I)1.5 (tBu−SEGPHOS)]2 {O
S(O)2 4 9 } [Ru(I)1.5 (tBu−SEGPHOS)]2 (B
4 ) [Ru(I)1.5 (tBu−SEGPHOS)]2 (P
6 ) [Ru(I)1.5 (tBu−SEGPHOS)]2 (C
lO4 ) [Ru(I)1.5 (tBu−SEGPHOS)]2 (B
Ph4 ) [Ru(I)1.5 (m−T−SEGPHOS)]2 (O
Ms) [Ru(I)1.5 (m−T−SEGPHOS)]2 (O
Ts) [Ru(I)1.5 (m−T−SEGPHOS)]2 (O
Tf) [Ru(I)1.5 (m−T−SEGPHOS)]2 {O
S(O)2 4 9 } [Ru(I)1.5 (m−T−SEGPHOS)]2 (B
4 ) [Ru(I)1.5 (m−T−SEGPHOS)]2 (P
6 ) [Ru(I)1.5 (m−T−SEGPHOS)]2 (C
lO4 ) [Ru(I)1.5 (m−T−SEGPHOS)]2 (B
Ph4
[Ru (I) 1.5 (tBu-SEGPHO)
S)] 2 (OMs) [Ru (I) 1.5 (tBu-SEGPHOS)] 2 (O
Ts) [Ru (I) 1.5 (tBu-SEGPHOS)] 2 (O
Tf) [Ru (I) 1.5 (tBu-SEGPHOS)] 2 {O
S (O) 2 C 4 F 9 } [Ru (I) 1.5 (tBu-SEGPHOS)] 2 (B
F 4 ) [Ru (I) 1.5 (tBu-SEGPHOS)] 2 (P
F 6 ) [Ru (I) 1.5 (tBu-SEGPHOS)] 2 (C
lO 4 ) [Ru (I) 1.5 (tBu-SEGPHOS)] 2 (B
Ph 4 ) [Ru (I) 1.5 (m-T-SEGPHOS)] 2 (O
Ms) [Ru (I) 1.5 (mT-SEGPHOS)] 2 (O
Ts) [Ru (I) 1.5 (m-T-SEGPHOS)] 2 (O
Tf) [Ru (I) 1.5 (m-T-SEGPHOS)] 2 {O
S (O) 2 C 4 F 9 } [Ru (I) 1.5 (m-T-SEGPHOS)] 2 (B
F 4 ) [Ru (I) 1.5 (m-T-SEGPHOS)] 2 (P
F 6 ) [Ru (I) 1.5 (m-T-SEGPHOS)] 2 (C
lO 4 ) [Ru (I) 1.5 (m-T-SEGPHOS)] 2 (B
Ph 4 )

【0073】[Ru( I) 1.5 (DM−SEGPHO
S)]2 (OMs) [Ru( I) 1.5 (DM−SEGPHOS)]2 (OT
s) [Ru( I) 1.5 (DM−SEGPHOS)]2 (OT
f) [Ru(I)1.5 (DM−SEGPHOS)]2 {OS
(O)2 4 9 } [Ru(I)1.5 (DM−SEGPHOS)]2 (BF
4 ) [Ru(I)1.5 (DM−SEGPHOS)]2 (PF
6 ) [Ru(I)1.5 (DM−SEGPHOS)]2 (Cl
4 ) [Ru(I)1.5 (DM−SEGPHOS)]2 (BP
4 ) [Ru(I)1.5 (DtBu−SEGPHOS)]
2 (OMs) [Ru(I)1.5 (DtBu−SEGPHOS)]
2 (OTs) [Ru(I)1.5 (DtBu−SEGPHOS)]
2 (OTf) [Ru(I)1.5 (DtBu−SEGPHOS)]
2 {OS(O)2 4 9 } [Ru(I)1.5 (DtBu−SEGPHOS)]
2 (BF4 ) [Ru(I)1.5 (DtBu−SEGPHOS)]
2 (PF6 ) [Ru(I)1.5 (DtBu−SEGPHOS)]
2 (ClO4 ) [Ru(I)1.5 (DtBu−SEGPHOS)]
2 (BPh4
[Ru (I) 1.5 (DM-SEGPHO)
S)] 2 (OMs) [Ru (I) 1.5 (DM-SEGPHOS)] 2 (OT
s) [Ru (I) 1.5 (DM-SEGPHOS)] 2 (OT
f) [Ru (I) 1.5 (DM-SEGPHOS)] 2 @ OS
(O) 2 C 4 F 9 } [Ru (I) 1.5 (DM-SEGPHOS)] 2 (BF
4 ) [Ru (I) 1.5 (DM-SEGPHOS)] 2 (PF
6 ) [Ru (I) 1.5 (DM-SEGPHOS)] 2 (Cl
O 4 ) [Ru (I) 1.5 (DM-SEGPHOS)] 2 (BP
h 4) [Ru (I) 1.5 (DtBu-SEGPHOS)]
2 (OMs) [Ru (I) 1.5 (DtBu-SEGPHOS)]
2 (OTs) [Ru (I) 1.5 (DtBu-SEGPHOS)]
2 (OTf) [Ru (I) 1.5 (DtBu-SEGPHOS)]
2 {OS (O) 2 C 4 F 9 } [Ru (I) 1.5 (DtBu-SEGPHOS)]
2 (BF 4 ) [Ru (I) 1.5 (DtBu-SEGPHOS)]
2 (PF 6 ) [Ru (I) 1.5 (DtBu-SEGPHOS)]
2 (ClO 4 ) [Ru (I) 1.5 (DtBu-SEGPHOS)]
2 (BPh 4)

【0074】[Ru(I)1.5 (MeO−SEGPHO
S)]2 (OMs) [Ru(I)1.5 (MeO−SEGPHOS)]2 (O
Ts) [Ru(I)1.5 (MeO−SEGPHOS)]2 (O
Tf) [Ru(I)1.5 (MeO−SEGPHOS)]2 {O
S(O)2 4 9 } [Ru(I)1.5 (MeO−SEGPHOS)]2 (B
4 ) [Ru(I)1.5 (MeO−SEGPHOS)]2 (P
6 ) [Ru(I)1.5 (MeO−SEGPHOS)]2 (C
lO4 ) [Ru(I)1.5 (MeO−SEGPHOS)]2 (B
Ph4 ) [Ru(I)1.5 (p−Cl−SEGPHOS)]
2 (OMs) [Ru(I)1.5 (p−Cl−SEGPHOS)]
2 (OTs) [Ru(I)1.5 (p−Cl−SEGPHOS)]
2 (OTf) [Ru(I)1.5 (p−Cl−SEGPHOS)]
2 {OS(O)2 4 9 } [Ru(I)1.5 (p−Cl−SEGPHOS)]
2 (BF4 ) [Ru(I)1.5 (p−Cl−SEGPHOS)]
2 (PF6
[Ru (I) 1.5 (MeO-SEGPHO)
S)] 2 (OMs) [Ru (I) 1.5 (MeO-SEGPHOS)] 2 (O
Ts) [Ru (I) 1.5 (MeO-SEGPHOS)] 2 (O
Tf) [Ru (I) 1.5 (MeO-SEGPHOS)] 2 {O
S (O) 2 C 4 F 9 } [Ru (I) 1.5 (MeO-SEGPHOS)] 2 (B
F 4 ) [Ru (I) 1.5 (MeO-SEGPHOS)] 2 (P
F 6 ) [Ru (I) 1.5 (MeO-SEGPHOS)] 2 (C
lO 4 ) [Ru (I) 1.5 (MeO-SEGPHOS)] 2 (B
Ph 4 ) [Ru (I) 1.5 (p-Cl-SEGPHOS)]
2 (OMs) [Ru (I) 1.5 (p-Cl-SEGPHOS)]
2 (OTs) [Ru (I) 1.5 (p-Cl-SEGPHOS)]
2 (OTf) [Ru (I) 1.5 (p-Cl-SEGPHOS)]
2 {OS (O) 2 C 4 F 9 } [Ru (I) 1.5 (p-Cl-SEGPHOS)]
2 (BF 4 ) [Ru (I) 1.5 (p-Cl-SEGPHOS)]
2 (PF 6 )

【0075】 [RuI(HCOO)(BIPHEP)]2 [RuI(HCOO)(BICHEP)]2 [RuI(HCOO)(MBIPHEP)]2 [RuI(HCOO)(MBICHEP)]2 [RuI(CH3 COO)(BIPHEP)]2 [RuI(CH3 COO)(BICHEP)]2 [RuI(CH3 COO)(MBIPHEP)]2 [RuI(CH3 COO)(MBICHEP)]2 [RuI(CH3 CH2 COO)(BIPHEP)2 [RuI(CH3 CH2 COO)(BICHEP)]2 [RuI(CH3 CH2 COO)(MBIPHEP)]
2 [RuI(CH3 CH2 COO)(MBICHEP)]
2 [RuI(CH3 CH2 CH2 COO)(BIPHE
P)]2 [RuI(CH3 CH2 CH2 COO)(BICHE
P)]2 [RuI(CH3 CH2 CH2 COO)(MBIPHE
P)]2 [RuI(CH3 CH2 CH2 COO)(MBICHE
P)]2
[RuI (HCOO) (BIPHEP)] 2 [RuI (HCOO) (BICHEP)] 2 [RuI (HCOO) (MBIPHEP)] 2 [RuI (HCOO) (MBICHEP)] 2 [RuI (CH 3 COO) (BIPHEP)] 2 [RuI (CH 3 COO) (BICHEP)] 2 [RuI (CH 3 COO) (MBIPHEP)] 2 [RuI (CH 3 COO) (MBICHEP)] 2 [RuI (CH 3 CH 2 COO) (BIPHEP) 2 [RuI (CH 3 CH 2 COO) (BICHEP)] 2 [RuI (CH 3 CH 2 COO) (MBIPHEP)]
2 [RuI (CH 3 CH 2 COO) (MBICEP)]
2 [RuI (CH 3 CH 2 CH 2 COO) (BIPHE
P)] 2 [RuI (CH 3 CH 2 CH 2 COO) (BICHE
P)] 2 [RuI (CH 3 CH 2 CH 2 COO) (MBIPHE
P)] 2 [RuI (CH 3 CH 2 CH 2 COO) (MBICHE
P)] 2

【0076】 [RuI(CH3 COCOO)(BIPHEP)]2 [RuI(CH3 COCOO)(BICHEP)]2 [RuI(CH3 COCOO)(MBIPHEP)]2 [RuI(CH3 COCOO)(MBICHEP)]2 [RuI(PhCOO)(BIPHEP)]2 [RuI(PhCOO)(BICHEP)]2 [RuI(PhCOO)(MBIPHEP)]2 [RuI(PhCOO)(MBICHEP)]2 [RuI(CF3 COO)(BIPHEP)]2 [RuI(CF3 COO)(BICHEP)]2 [RuI(CF3 COO)(MBIPHEP)]2 [RuI(CF3 COO)(MBICHEP)]2 [RuI (CH 3 COCO) (BIPHEP)] 2 [RuI (CH 3 COCO) (BICHEP)] 2 [RuI (CH 3 COCO) (MBIPHEP)] 2 [RuI (CH 3 COCO) (MBICEP)] 2 [RuI (PhCOO) (BIPHEP)] 2 [RuI (PhCOO) (BICHEP)] 2 [RuI (PhCOO) (MBIPHEP)] 2 [RuI (PhCOO) (MBICHEP)] 2 [RuI (CF 3 COO) (BIPHEP) )] 2 [RuI (CF 3 COO) (BICHEP)] 2 [RuI (CF 3 COO) (MBIPHEP)] 2 [RuI (CF 3 COO) (MBICHEP)] 2

【0077】 [Ru−I−(BIPHEP)]2 (OMs) [Ru−I−(BIPHEP)]2 (OTs) [Ru−I−(BIPHEP)]2 (OTf) [Ru−I−(BIPHEP)]2 {OS(O)2 4
9 } [Ru−I−(BIPHEP)]{OS(O)2 8
17} [Ru−I−(BIPHEP)]2 (BF4 ) [Ru−I−(BIPHEP)]2 (PF6 ) [Ru−I−(BIPHEP)]2 (ClO4 ) [Ru−I−(BIPHEP)]4 (BPh4 ) [Ru−I−(BIPHEP)](SO4 ) [Ru−I−(BIPHEP)](CO3
[Ru-I- (BIPHEP)] 2 (OMs) [Ru-I- (BIPHEP)] 2 (OTs) [Ru-I- (BIPHEP)] 2 (OTf) [Ru-I- (BIPHEP) ] 2 @OS (O) 2 C 4
F 9 } [Ru-I- (BIPHEP)] {OS (O) 2 C 8 F
17 } [Ru-I- (BIPHEP)] 2 (BF 4 ) [Ru-I- (BIPHEP)] 2 (PF 6 ) [Ru-I- (BIPHEP)] 2 (ClO 4 ) [Ru-I- ( BIPHEP)] 4 (BPh 4 ) [Ru-I- (BIPHEP)] (SO 4 ) [Ru-I- (BIPHEP)] (CO 3 )

【0078】 [Ru(I)1.5 (BIPHEP)]2 (OMs) [Ru(I)1.5 (BIPHEP)]2 (OTs) [Ru(I)1.5 (BIPHEP)]2 (OTf) [Ru(I)1.5 (BIPHEP)]2 {OS(O)2
4 9 } [Ru(I)1.5 (BIPHEP)]2 (BF4 ) [Ru(I)1.5 (BIPHEP)]2 (PF6 ) [Ru(I)1.5 (BIPHEP)]2 (ClO4 ) [Ru(I)1.5 (BIPHEP)]2 (BPh4 ) [Ru(I)1.5 (BIPHEP)]2 {OS(O)2
8 17
[Ru (I) 1.5 (BIP HEP)] 2 (OMs) [Ru (I) 1.5 (BIP HEP)] 2 (OTs) [Ru (I) 1.5 (BIP HEP)] 2 (OTf) [Ru (I) 1.5 (BIPHEP)] 2 {OS (O) 2
C 4 F 9 } [Ru (I) 1.5 (BIPHEP)] 2 (BF 4 ) [Ru (I) 1.5 (BIPHEP)] 2 (PF 6 ) [Ru (I) 1.5 (BIPHEP)] 2 (ClO 4 ) [Ru (I) 1.5 (BIPHEP)] 2 (BPh 4 ) [Ru (I) 1.5 (BIPHEP)] 2 {OS (O) 2
C 8 F 17

【0079】 [Ru−I−(BICHEP)]2 (OMs) [Ru−I−(BICHEP)]2 (OTs) [Ru−I−(BICHEP)]2 (OTf) [Ru−I−(BICHEP)]2 {OS(O)2 4
9 } [Ru−I−(BICHEP)]{OS(O)2 8
17} [Ru−I−(BICHEP)]2 (BF4 ) [Ru−I−(BICHEP)]2 (PF6 ) [Ru−I−(BICHEP)]2 (ClO4 ) [Ru−I−(BICHEP)]2 (BPh4 ) [Ru−I−(BICHEP)](SO4 ) [Ru−I−(BICHEP)](CO3
[Ru-I- (BICHEP)] 2 (OMs) [Ru-I- (BICHEP)] 2 (OTs) [Ru-I- (BICHEP)] 2 (OTf) [Ru-I- (BICHEP) ] 2 @OS (O) 2 C 4
F 9 } [Ru-I- (BICHEP)] {OS (O) 2 C 8 F
17 } [Ru-I- (BICHEP)] 2 (BF 4 ) [Ru-I- (BICHEP)] 2 (PF 6 ) [Ru-I- (BICHEP)] 2 (ClO 4 ) [Ru-I- ( [BICHEP)] 2 (BPh 4 ) [Ru-I- (BICHEP)] (SO 4 ) [Ru-I- (BICHEP)] (CO 3 )

【0080】 [Ru(I)1.5 (BICHEP)]2 (OMs) [Ru(I)1.5 (BICHEP)]2 (OTs) [Ru(I)1.5 (BICHEP)]2 (OTf) [Ru(I)1.5 (BICHEP)]2 {OS(O)2
4 9 } [Ru(I)1.5 (BICHEP)]2 (BF4 ) [Ru(I)1.5 (BICHEP)]2 (PF6 ) [Ru(I)1.5 (BICHEP)]2 (ClO4 ) [Ru(I)1.5 (BICHEP)]2 (BPh4 ) [Ru(I)1.5 (BICHEP)]2 {OS(O)2
8 17
[Ru (I) 1.5 (BICHEP)] 2 (OMs) [Ru (I) 1.5 (BICHEP)] 2 (OTs) [Ru (I) 1.5 (BICHEP)] 2 (OTf) [Ru (I) 1.5 (BICHEP)] 2 {OS (O) 2
C 4 F 9 } [Ru (I) 1.5 (BICHEP)] 2 (BF 4 ) [Ru (I) 1.5 (BICHEP)] 2 (PF 6 ) [Ru (I) 1.5 (BICHEP)] 2 (ClO 4 ) [Ru (I) 1.5 (BICHEP)] 2 (BPh 4 ) [Ru (I) 1.5 (BICHEP)] 2 {OS (O) 2
C 8 F 17

【0081】 [Ru−I−(MBIPHEP)]2 (OMs) [Ru−I−(MBIPHEP)]2 (OTs) [Ru−I−(MBIPHEP)]2 (OTf) [Ru−I−(MBIPHEP)]2 {OS(O)2
4 9 } [Ru−I−(MBIPHEP)]{OS(O)2 8
17} [Ru−I−(MBIPHEP)]2 (BF4 ) [Ru−I−(MBIPHEP)]2 (PF6 ) [Ru−I−(MBIPHEP)]2 (ClO4 ) [Ru−I−(MBIPHEP)]2 (BPh4 ) [Ru−I−(MBIPHEP)](SO4 ) [Ru−I−(MBIPHEP)](CO3
[Ru-I- (MBIPHEP)] 2 (OMs) [Ru-I- (MBIPHEP)] 2 (OTs) [Ru-I- (MBIPHEP)] 2 (OTf) [Ru-I- (MBIPHEP) ] 2 @OS (O) 2 C
4 F 9} [Ru-I- (MBIPHEP)] {OS (O) 2 C 8
F 17 } [Ru-I- (MBIPHEP)] 2 (BF 4 ) [Ru-I- (MBIPHEP)] 2 (PF 6 ) [Ru-I- (MBIPHEP)] 2 (ClO 4 ) [Ru-I- (MBIPHEP)] 2 (BPh 4 ) [Ru-I- (MBIPHEP)] (SO 4 ) [Ru-I- (MBIPHEP)] (CO 3 )

【0082】 [Ru(I)1.5 (MBIPHEP)]2 (OMs) [Ru(I)1.5 (MBIPHEP)]2 (OTs) [Ru(I)1.5 (MBIPHEP)]2 (OTf) [Ru(I)1.5 (MBIPHEP)]2 {OS(O)
2 4 9 } [Ru(I)1.5 (MBIPHEP)]2 (BF4 ) [Ru(I)1.5 (MBIPHEP)]2 (PF6 ) [Ru(I)1.5 (MBIPHEP)]2 (ClO4 ) [Ru(I)1.5 (MBIPHEP)]2 (BPh4 ) [Ru(I)1.5 (MBIPHEP)]2 {OS(O)
2 8 17
[Ru (I) 1.5 (MBIPHEP)] 2 (OMs) [Ru (I) 1.5 (MBIPHEP)] 2 (OTs) [Ru (I) 1.5 (MBIPHEP)] 2 (OTf) [Ru (I) 1.5 (MBIPHEP)] 2 @OS (O)
2 C 4 F 9 } [Ru (I) 1.5 (MBIPHEP)] 2 (BF 4 ) [Ru (I) 1.5 (MBIPHEP)] 2 (PF 6 ) [Ru (I) 1.5 (MBIPHEP)] 2 (ClO 4 ) [Ru (I) 1.5 (MBIPHEP)] 2 (BPh 4 ) [Ru (I) 1.5 (MBIPHEP)] 2 {OS (O)
2 C 8 F 17

【0083】 [Ru−I−(MBICHEP)]2 (OMs) [Ru−I−(MBICHEP)]2 (OTs) [Ru−I−(MBICHEP)]2 (OTf) [Ru−I−(MBICHEP)]2 {OS(O)2
4 9 } [Ru−I−(MBICHEP)]{OS(O)2 8
17} [Ru−I−(MBICHEP)]2 (BF4 ) [Ru−I−(MBICHEP)]2 (PF6 ) [Ru−I−(MBICHEP)]2 (ClO4 ) [Ru−I−(MBICHEP)]2 (BPh4 ) [Ru−I−(MBICHEP)](SO4 ) [Ru−I−(MBICHEP)](CO3
[Ru-I- (MBICHEP)] 2 (OMs) [Ru-I- (MBICHEP)] 2 (OTs) [Ru-I- (MBICHEP)] 2 (OTf) [Ru-I- (MBICHEP) ] 2 @OS (O) 2 C
4 F 9 } [Ru-I- (MBICEP)] {OS (O) 2 C 8
F 17 } [Ru-I- (MBICHEP)] 2 (BF 4 ) [Ru-I- (MBICHEP)] 2 (PF 6 ) [Ru-I- (MBICHEP)] 2 (ClO 4 ) [Ru-I- (MBICHEP)] 2 (BPh 4 ) [Ru-I- (MBICHEP)] (SO 4 ) [Ru-I- (MBICHEP)] (CO 3 )

【0084】 [Ru(I)1.5 (MBICHEP)]2 (OMs) [Ru(I)1.5 (MBICHEP)]2 (OTs) [Ru(I)1.5 (MBICHEP)]2 (OTf) [Ru(I)1.5 (MBICHEP)]2 {OS(O)
2 4 9 } [Ru(I)1.5 (MBICHEP)]2 (BF4 ) [Ru(I)1.5 (MBICHEP)]2 (PF6 ) [Ru(I)1.5 (MBICHEP)]2 (ClO4 ) [Ru(I)1.5 (MBICHEP)]2 (BPh4 ) [Ru(I)1.5(MBICHEP)]2 {OS(O)2
8 17
[Ru (I) 1.5 (MBICHEP)] 2 (OMs) [Ru (I) 1.5 (MBICHEP)] 2 (OTs) [Ru (I) 1.5 (MBICHEP)] 2 (OTf) [Ru (I) 1.5 (MBICEP)] 2 @OS (O)
2 C 4 F 9 } [Ru (I) 1.5 (MBICHEP)] 2 (BF 4 ) [Ru (I) 1.5 (MBICHEP)] 2 (PF 6 ) [Ru (I) 1.5 (MBICHEP)] 2 (ClO 4 ) [Ru (I) 1.5 (MBICHEP)] 2 (BPh 4 ) [Ru (I) 1.5 (MBICHEP)] 2 {OS (O) 2
C 8 F 17

【0085】斯くして得られる本発明の式(1)[Ru
−(I)q −(T1 ) n (L)]m(T2 p は、極め
て高い触媒活性を有し、不斉合成用触媒として広く用い
ることができる化合物である。特にこの化合物を4−メ
チレン−2−オキセタノンの不斉水素化反応の触媒に用
いれば、短時間で効率良く、高い光学純度の光学活性4
−メチル−2−オキセタノンを製造できる。
The thus obtained formula (1) of the present invention [Ru
-(I) q- (T 1 ) n (L)] m (T 2 ) p has extremely high catalytic activity and is a compound that can be widely used as a catalyst for asymmetric synthesis. In particular, if this compound is used as a catalyst for the asymmetric hydrogenation of 4-methylene-2-oxetanone, the optical activity of high optical purity can be improved in a short time.
-Methyl-2-oxetanone can be produced.

【0086】本発明の[Ru−(I)q −(T1 )
n (L)]m (T2 p 式(1)を用いて光学活性4−
メチル−2−オキセタノンを製造するには、例えば耐圧
容器に、窒素雰囲気下、上記した特定の例で説明する
と、[RuI(RCOO)(R1 −BINAP)]2
原料化合物である4−メチレン−2−オキセタノンおよ
び溶媒を加えて、水素圧5乃至150kg/cm2で反応さ
せる。原料化合物として用いられる4−メチレン−2−
オキセタノンは、例えば、R.J.クレメンスらが報告
した方法(R. J. Clemens et al., Chem. Rev., Vol. 8
6, pp. 241-318 (1986) )によって、酢酸または無水酢
酸を熱分解することによって容易に合成により得ること
ができるものである。
[Ru- (I) q- (T 1 )]
n (L)] m (T 2 ) p Optical activity 4-
To produce methyl-2-oxetanone, for example, in a pressure vessel under a nitrogen atmosphere, as described in the above specific example, [RuI (RCOO) (R 1 -BINAP)] 2 ,
4-Methylene-2-oxetanone as a raw material compound and a solvent are added, and the mixture is reacted at a hydrogen pressure of 5 to 150 kg / cm 2 . 4-methylene-2-used as a starting compound
Oxetanone is described, for example, in R.S. J. The method reported by Clemens et al. (RJ Clemens et al., Chem. Rev., Vol. 8
6, pp. 241-318 (1986)), and can be easily obtained by synthesis by thermally decomposing acetic acid or acetic anhydride.

【0087】不斉水素化触媒である[RuI(RCO
O)(R1 −BINAP)]2 は、(R)体または
(S)体のいずれかを選択することにより、所望する絶
対配置の4−メチル−2−オキセタノンを得ることがで
きる。
The asymmetric hydrogenation catalyst [RuI (RCO
O) (R 1 -BINAP)] 2 can obtain 4-methyl-2-oxetanone having a desired absolute configuration by selecting either the (R) form or the (S) form.

【0088】また、光学活性4−メチル−2−オキセタ
ノンの製造を有利に実施するには、[RuI(RCO
O)(R1 −BINAP)]2 が、金属ルテニウムと光
学活性ホスフィンのモル比が1:1. 05乃至1:0.
95の割合で調製されたものを用いるとよい。通常、式
(3)で示される光学活性錯体を調製する場合、ルテニ
ウム1当量に対し光学活性ホスフィン配位子を約1. 0
5乃至1. 2当量用いるが、これを1. 05当量以内に
抑えたものを用いることによって、副反応である4−メ
チレン−2−オキセタノンの重合反応を防ぐことができ
る。尚、光学活性ホスフィン配位子が0. 95当量より
少ないと、金属ルテニウムが過剰になり、不経済とな
る。
In order to advantageously carry out the production of optically active 4-methyl-2-oxetanone, [RuI (RCO
O) (R 1 -BINAP)] 2 has a molar ratio of metal ruthenium to optically active phosphine of 1: 1.05 to 1: 0.
It is preferable to use one prepared at a ratio of 95. Usually, when preparing the optically active complex represented by the formula (3), about 1.0 equivalent of the optically active phosphine ligand is added to 1 equivalent of ruthenium.
Although 5 to 1.2 equivalents are used, the use of one having an amount less than 1.05 equivalents can prevent a polymerization reaction of 4-methylene-2-oxetanone which is a side reaction. If the amount of the optically active phosphine ligand is less than 0.95 equivalent, the amount of metal ruthenium becomes excessive, which is uneconomical.

【0089】触媒である[RuI(RCOO)(R1
BINAP)]2 の使用量は、原料化合物である4−メ
チレン−2−オキセタノン1モルに対して通常約0. 0
001乃至0. 01モルの範囲、特に好ましくは、約
0. 0002〜0. 0005モルの範囲とするとよい。
触媒が0. 0001モルより少ない量では触媒としての
効果を充分奏さず、また、0. 0005モルより多い量
では不経済となる。
The catalyst [RuI (RCOO) (R 1-
BINAP)] 2 is used in an amount of usually about 0.0 with respect to 1 mol of 4-methylene-2-oxetanone as the starting compound.
It is preferably in the range of 001 to 0.01 mol, particularly preferably in the range of about 0.0002 to 0.0005 mol.
When the amount of the catalyst is less than 0.0001 mol, the effect as a catalyst is not sufficiently exhibited, and when the amount is more than 0.0005 mol, it becomes uneconomical.

【0090】溶媒としては、通常の不斉水素化に使用さ
れる溶媒であれば特に限定されないが、具体的には、ジ
エチルエ−テル、テトラヒドロフラン、ジオキサン等の
直鎖状または環状エ−テル類、塩化メチレン、臭化メチ
レン、ジクロロエタン等の有機ハロゲン化物、アセト
ン、メチルエチルケトン、メチルブチルケトン等のケト
ン類、酢酸、プロピオン酸等のカルボン酸類、酢酸エチ
ル、酢酸ブチル、3−ヒドロキシ酪酸メチル等のエステ
ル類、トルエン、ベンゼン等の芳香族化合物、メタノ−
ル、エタノ−ル、イソプロパノ−ル、tert−ブチル
アルコ−ル、1,3−ブタンジオ−ル等のアルコ−ル類
及びこれらの混合溶媒を挙げることができる。さらに、
不斉水素化反応の速度を上げるために上記溶媒に1%程
度の水を添加してもよい。
The solvent is not particularly limited as long as it is a solvent used for ordinary asymmetric hydrogenation, and specific examples thereof include linear or cyclic ethers such as diethyl ether, tetrahydrofuran and dioxane; Organic halides such as methylene chloride, methylene bromide and dichloroethane; ketones such as acetone, methyl ethyl ketone and methyl butyl ketone; carboxylic acids such as acetic acid and propionic acid; esters such as ethyl acetate, butyl acetate and methyl 3-hydroxybutyrate. , Toluene, benzene and other aromatic compounds, methano-
And alcohols such as ethanol, ethanol, isopropanol, tert-butyl alcohol and 1,3-butanediol, and mixed solvents thereof. further,
To increase the speed of the asymmetric hydrogenation reaction, about 1% of water may be added to the above solvent.

【0091】不斉水素化の反応温度、反応時間は触媒の
種類やその他の反応条件により異なるが、通常、室温乃
至100℃、特に好ましくは約30乃至60℃の温度
で、約0. 5〜40時間反応させると良い。また、水素
圧は、約5乃至150kg/cm2、好ましくは約20乃至
100kg/cm2 とすると良い、反応終了後、溶媒留去、
蒸留等の方法により反応生成物を精製することにより目
的とする光学活性4−メチル−2−オキセタノンを得る
ことができる。その他の触媒についても同様な条件で反
応できる。
The reaction temperature and reaction time for the asymmetric hydrogenation vary depending on the type of the catalyst and other reaction conditions, but are usually from room temperature to 100 ° C., particularly preferably from about 30 to 60 ° C., and from about 0.5 to about 0.5 to about 60 to about 60 ° C. It is good to react for 40 hours. The hydrogen pressure is about 5 to 150 kg / cm 2 , preferably about 20 to 100 kg / cm 2 .
The desired optically active 4-methyl-2-oxetanone can be obtained by purifying the reaction product by a method such as distillation. Other catalysts can be reacted under similar conditions.

【0092】[0092]

【実施例】以下、実施例及び比較例を挙げて本発明を具
体的に説明するが、本発明はこれらになんら制約される
ものではない。尚、以下の実施例において、得られた化
合物の物性の測定には、次の機器を用いた。31 P−NMRスペクトル:AM−400型装置(ブルカ
−社製) 外部標準物質;85%リン酸 溶媒;クロロホルム (光学純度測定) ガスクロマトグラフ装置: HEWLETT PACKARD 5890 SERIE
S II 光学活性カラム(Chraldex G-TA 30m (ASTEC社製) )
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In the following examples, the following instruments were used for measuring the physical properties of the obtained compounds. 31 P-NMR spectrum: AM-400 type device (manufactured by Bruker) External standard substance; 85% phosphoric acid solvent; chloroform (optical purity measurement) Gas chromatograph: HEWLETT PACKARD 5890 SERIE
S II optically active column (Chraldex G-TA 30m (ASTEC))

【0093】〔実施例1〕 [RuI(CH3 COO)((S)−T−BINA
P)]2 の製造:80 ml のシュレンク管を窒素置換した
後、[RuI2 (p-cymene)]2 を1.0g (1.02 mmol),
(S)−T−BINAPを1.41 g (2.07 mmol), メタノ
ールを40 ml入れ、55℃で16時間撹拌した。その後、室
温まで冷却しメタノールを回収後、窒素下で酢酸ソーダ
を0.172 g (2.09 mmol) を入れ塩化メチレン20 ml,脱気
水20 ml を加えて16時間撹拌した。塩化メチレン層を注
射器で取り、脱気水20 mlで洗浄し塩化メチレンを減圧
留去した後、得られた錯体を30℃で4 時間減圧乾燥し
た。標題の化合物 1.9g(収率96.4%)を得た。31 P−NMRスペクトル: 20.5(d, J=45Hz), 74.6(d,
46Hz)
Example 1 [RuI (CH 3 COO) ((S) -T-BINA]
P)] Production of 2 : After replacing 80 ml of Schlenk tube with nitrogen, 1.0 g (1.02 mmol) of [RuI 2 (p-cymene)] 2 was added.
1.41 g (2.07 mmol) of (S) -T-BINAP and 40 ml of methanol were added, and the mixture was stirred at 55 ° C for 16 hours. Then, after cooling to room temperature and collecting methanol, 0.172 g (2.09 mmol) of sodium acetate was added under nitrogen, 20 ml of methylene chloride and 20 ml of degassed water were added, and the mixture was stirred for 16 hours. The methylene chloride layer was removed with a syringe, washed with 20 ml of degassed water, and methylene chloride was distilled off under reduced pressure. The obtained complex was dried under reduced pressure at 30 ° C. for 4 hours. 1.9 g (96.4% yield) of the title compound were obtained. 31 P-NMR spectrum: 20.5 (d, J = 45 Hz), 74.6 (d,
46Hz)

【0094】〔実施例2〕 [RuI(CH3 COO)((S)−T−BINA
P)]2 の製造:200 mlの反応容器を窒素置換した後、
[RuI(p-cymene)((S)−T−BINAP)]I
を2.7g(2.31mmol)、メタノールを110ml入
れ、55℃で16時間撹拌した。その後、室温まで冷却
しメタノールを回収後、窒素下で酢酸ソーダを0.199 g
(2.42 mmol) を入れ塩化メチレン20 ml,脱気水20 ml を
加えて16時間撹拌した。塩化メチレン層を注射器で取
り、脱気水20 ml で洗浄し塩化メチレンを減圧留去した
後、得られた錯体を30℃で4 時間減圧乾燥した。標題の
化合物 2.2g(収率98.6%)を得た。
Example 2 [RuI (CH 3 COO) ((S) -T-BINA]
P)] Production of 2 : After replacing a 200 ml reaction vessel with nitrogen,
[RuI (p-cymene) ((S) -T-BINAP)] I
2.7 g (2.31 mmol) and 110 ml of methanol were added, and the mixture was stirred at 55 ° C. for 16 hours. After cooling to room temperature and collecting methanol, 0.199 g of sodium acetate was added under nitrogen.
(2.42 mmol), 20 ml of methylene chloride and 20 ml of degassed water were added, and the mixture was stirred for 16 hours. The methylene chloride layer was removed with a syringe, washed with 20 ml of degassed water, and methylene chloride was distilled off under reduced pressure. The obtained complex was dried under reduced pressure at 30 ° C. for 4 hours. 2.2 g (98.6% yield) of the title compound were obtained.

【0095】〔実施例3〕 [RuI(CH3 COO)((S)−T−BINA
P)]2 の製造:80 ml のシュレンク管を窒素置換した
後、[RuI2 (p-cymene)]2 を1.0g (1.02 mmol),
(S)−T−BINAPを1.41 g (2.07 mmol), 酢酸ソ
ーダを0.1 72 g (2.09 mmol)、メタノールを40 ml 入
れ、55℃で16時間撹拌した。その後室温まで冷却しメタ
ノールを減圧回収後、窒素下で塩化メチレン20 ml,脱気
水20 mlを加えて10分間撹拌した。塩化メチレン層を注
射器で取り、脱気水20 ml で洗浄し塩化メチレンを減圧
留去した後、得られた錯体を室温で4 時間減圧乾燥し
た。標題の化合物 1.9g(収率96.4%)を得た。
Example 3 [RuI (CH 3 COO) ((S) -T-BINA]
P)] Production of 2 : After replacing 80 ml of Schlenk tube with nitrogen, 1.0 g (1.02 mmol) of [RuI 2 (p-cymene)] 2 was added.
1.41 g (2.07 mmol) of (S) -T-BINAP, 0.172 g (2.09 mmol) of sodium acetate and 40 ml of methanol were added, and the mixture was stirred at 55 ° C. for 16 hours. Thereafter, the mixture was cooled to room temperature, and methanol was recovered under reduced pressure. Then, 20 ml of methylene chloride and 20 ml of degassed water were added under nitrogen, and the mixture was stirred for 10 minutes. The methylene chloride layer was removed with a syringe, washed with degassed water (20 ml), and methylene chloride was distilled off under reduced pressure. The obtained complex was dried under reduced pressure at room temperature for 4 hours. 1.9 g (96.4% yield) of the title compound were obtained.

【0096】〔実施例4〕 [RuI(CH3 COO)((S)−T−BINA
P)]2 の製造:200 mlの反応容器を窒素置換した後、
[RuI(p-cymene)((S)−T−BINAP)]I
を2.7 g (2.31 mmol),酢酸ソーダを0.199 g (2.42 mmo
l) 、メタノールを110 ml入れ、55℃で16時間撹拌し
た。その後、室温まで冷却しメタノールを回収後、窒素
下で塩化メチレン20 ml,脱気水20 ml を加えて30分撹拌
した。塩化メチレン層を注射器で取り、脱気水20 ml で
洗浄し塩化メチレンを減圧留去した後、得られた錯体を
30℃で4 時間減圧乾燥した。標題の化合物 2.2g(収率
98.6%)を得た。
Example 4 [RuI (CH 3 COO) ((S) -T-BINA]
P)] Production of 2 : After replacing a 200 ml reaction vessel with nitrogen,
[RuI (p-cymene) ((S) -T-BINAP)] I
2.7 g (2.31 mmol) and 0.199 g (2.42 mmo
l), 110 ml of methanol was added, and the mixture was stirred at 55 ° C for 16 hours. Then, after cooling to room temperature and collecting methanol, 20 ml of methylene chloride and 20 ml of degassed water were added under nitrogen, and the mixture was stirred for 30 minutes. The methylene chloride layer is removed with a syringe, washed with 20 ml of degassed water, and methylene chloride is distilled off under reduced pressure.
It was dried under reduced pressure at 30 ° C. for 4 hours. 2.2 g of the title compound (yield
98.6%).

【0097】〔実施例5〕 [RuI(CH3 CH2 COO)((S)−T−BIN
AP)]2 の製造:80 ml のシュレンク管を窒素置換し
た後、[RuI2 (p-cymene)]2 を1.0g (1.02 mmo
l),(S)−T−BINAPを1.41 g (2.07 mmol), メ
タノールを40ml入れ、55℃で16時間撹拌した。その後、
室温まで冷却しメタノールを回収後、窒素下でプロピオ
ン酸ソーダを0.2 g (2.08 mmol) を入れ塩化メチレン20
ml,脱気水20 ml を加えて16時間撹拌した。塩化メチレ
ン層を注射器で取り、脱気水20mlで洗浄し塩化メチレン
を減圧留去した後、得られた錯体を30℃で4 時間減圧乾
燥した。標題の化合物を 1.9g(収率95.0%)を得た。31 P−NMRスペクトル:20.5(d, J=43Hz), 73.9(d,
J =43Hz)
Example 5 [RuI (CH 3 CH 2 COO) ((S) -T-BIN]
AP)] 2 : After replacing 80 ml of Schlenk tube with nitrogen, 1.0 g (1.02 mmo) of [RuI 2 (p-cymene)] 2 was added.
l), 1.41 g (2.07 mmol) of (S) -T-BINAP and 40 ml of methanol were added, and the mixture was stirred at 55 ° C for 16 hours. afterwards,
After cooling to room temperature and collecting methanol, 0.2 g (2.08 mmol) of sodium propionate was added under nitrogen, and methylene chloride 20
ml and 20 ml of degassed water were added and stirred for 16 hours. The methylene chloride layer was removed with a syringe, washed with 20 ml of degassed water, and methylene chloride was distilled off under reduced pressure. The obtained complex was dried under reduced pressure at 30 ° C. for 4 hours. 1.9 g (95.0% yield) of the title compound was obtained. 31 P-NMR spectrum: 20.5 (d, J = 43 Hz), 73.9 (d,
J = 43Hz)

【0098】〔実施例6〕 [RuI(PhCOO)((S)−T−BINAP)]
2 の製造:80 ml のシュレンク管を窒素置換した後、
[RuI2 (p-cymene)]2 を1.0g (1. 02 mmol),
(S)−T−BINAPを1.41 g (2.07 mmol), メタノ
ールを40 ml 入れ、55℃で16時間撹拌した。その後、室
温まで冷却しメタノールを回収後、窒素下で安息香酸ソ
ーダを0.301 g (2.09 mmol) を入れ塩化メチレン20 ml,
脱気水20 ml を加えて16時間撹拌した。塩化メチレン層
を注射器で取り、脱気水20 ml で洗浄し塩化メチレンを
減圧留去した後、得られた錯体を30℃で4 時間減圧乾燥
した。標題の化合物を 2.0g(収率95.4%)を得た。31 P−NMRスペクトル:21.1(d, J=44Hz), 74.2
(d, J=44Hz)
Example 6 [RuI (PhCOO) ((S) -T-BINAP)]
Production of 2 : After replacing the 80 ml Schlenk tube with nitrogen,
[RuI 2 (p-cymene)] 2 (1.0 g, 1.02 mmol),
1.41 g (2.07 mmol) of (S) -T-BINAP and 40 ml of methanol were added, and the mixture was stirred at 55 ° C for 16 hours. After cooling to room temperature and recovering methanol, 0.301 g (2.09 mmol) of sodium benzoate was added under nitrogen, and 20 ml of methylene chloride was added.
20 ml of degassed water was added and stirred for 16 hours. The methylene chloride layer was removed with a syringe, washed with 20 ml of degassed water, and methylene chloride was distilled off under reduced pressure. The obtained complex was dried under reduced pressure at 30 ° C. for 4 hours. 2.0 g (95.4% yield) of the title compound was obtained. 31 P-NMR spectrum: 21.1 (d, J = 44 Hz), 74.2
(D, J = 44Hz)

【0099】〔実施例7〕 [RuI(CF3 COO)((S)−T−BINA
P)]2 の製造:80 ml のシュレンク管を窒素置換した
後、[RuI2 (p-cymene)]2 を1.0g (1.02 mmol),
(S)−T−BINAPを1.41 g (2.07 mmol), メタノ
ールを40ml 入れ、55℃で16時間撹拌した。その後、室
温まで冷却しメタノールを回収後、窒素下でトリフルオ
ロ酢酸ソーダを1.11 g (8.16 mmol)を入れ塩化メチレン
20ml,脱気水20 ml を加えて16時間撹拌した。塩化メチ
レン層を注射器で取り、脱気水20 ml で洗浄し塩化メチ
レンを減圧留去した後、得られた錯体を30℃で4 時間減
圧乾燥した。標題の化合物を 1.9g(収率91.3%)を得
た。
Example 7 [RuI (CF 3 COO) ((S) -T-BINA]
P)] Production of 2 : After replacing 80 ml of Schlenk tube with nitrogen, 1.0 g (1.02 mmol) of [RuI 2 (p-cymene)] 2 was added.
1.41 g (2.07 mmol) of (S) -T-BINAP and 40 ml of methanol were added, and the mixture was stirred at 55 ° C for 16 hours. After cooling to room temperature and collecting methanol, methylene chloride was charged with 1.11 g (8.16 mmol) of sodium trifluoroacetate under nitrogen.
20 ml and 20 ml of degassed water were added and stirred for 16 hours. The methylene chloride layer was removed with a syringe, washed with 20 ml of degassed water, and methylene chloride was distilled off under reduced pressure. The obtained complex was dried under reduced pressure at 30 ° C. for 4 hours. 1.9 g (91.3% yield) of the title compound was obtained.

【0100】〔実施例8〕 [RuI(CH3 COCOO)((S)−T−BINA
P)]2 の製造:80 ml のシュレンク管を窒素置換した
後、[RuI2 (p-cymene)]2 を1.0g (1.02 mmol),
(S)−T−BINAPを1.41 g (2.07 mmol), メタノ
ールを40ml 入れ、55℃で16時間撹拌した。その後、室
温まで冷却しメタノールを回収後、窒素下でピルビン酸
ソーダを0.228 g (2.07 mmol) を入れ塩化メチレン20 m
l,脱気水20 ml を加えて16時間撹拌した。塩化メチレン
層を注射器で取り、脱気水20mlで洗浄し塩化メチレンを
減圧留去した後、得られた錯体を30℃で4 時間減圧乾燥
した。標題の化合物を 1.9g(収率93.7%)を得た。31 P−NMRスペクトル:21.5(d, J=44Hz), 72.8
(d, J=44Hz)
Example 8 [RuI (CH 3 COOO) ((S) -T-BINA]
P)] Production of 2 : After replacing 80 ml of Schlenk tube with nitrogen, 1.0 g (1.02 mmol) of [RuI 2 (p-cymene)] 2 was added.
1.41 g (2.07 mmol) of (S) -T-BINAP and 40 ml of methanol were added, and the mixture was stirred at 55 ° C for 16 hours. Then, after cooling to room temperature and collecting methanol, 0.228 g (2.07 mmol) of sodium pyruvate was added under nitrogen, and methylene chloride 20 m
l, 20 ml of degassed water was added and stirred for 16 hours. The methylene chloride layer was removed with a syringe, washed with 20 ml of degassed water, and methylene chloride was distilled off under reduced pressure. The obtained complex was dried under reduced pressure at 30 ° C. for 4 hours. 1.9 g (93.7% yield) of the title compound was obtained. 31 P-NMR spectrum: 21.5 (d, J = 44 Hz), 72.8
(D, J = 44Hz)

【0101】〔実施例9〕 [RuI(CH3 COO)((S)−BINAP)]2
の製造:80 ml のシュレンク管を窒素置換した後、[R
uI2 (p-cymene)]2 を1.0g (1.02 mmol),(S)−
BINAPを1.28 g (2.06 mmol), メタノールを40 ml
入れ、55℃で16時間撹拌した。その後、室温まで冷却し
メタノールを回収後、窒素下で酢酸ソーダを0.172 g
(2.09 mmol) を入れ塩化メチレン20 ml,脱気水20 ml を
加えて16時間撹拌した。塩化メチレン層を注射器で取
り、脱気水20 ml で洗浄し塩化メチレンを減圧留去した
後、得られた錯体を30℃で4 時間減圧乾燥した。標題の
化合物を 1.8g(収率97.0%)を得た。
Example 9 [RuI (CH 3 COO) ((S) -BINAP)] 2
Production: After replacing the 80 ml Schlenk tube with nitrogen, [R
uI 2 (p-cymene)] 2 (1.0 g, 1.02 mmol), (S)-
1.28 g (2.06 mmol) of BINAP, 40 ml of methanol
And stirred at 55 ° C. for 16 hours. After cooling to room temperature and collecting methanol, 0.172 g of sodium acetate was added under nitrogen.
(2.09 mmol), 20 ml of methylene chloride and 20 ml of degassed water were added, and the mixture was stirred for 16 hours. The methylene chloride layer was removed with a syringe, washed with 20 ml of degassed water, and methylene chloride was distilled off under reduced pressure. The obtained complex was dried under reduced pressure at 30 ° C. for 4 hours. 1.8 g (97.0% yield) of the title compound was obtained.

【0102】〔実施例10〕 [RuI(CH3 COO)((S)−tBu−BINA
P)]2 の製造:80 ml のシュレンク管を窒素置換した
後、[RuI2 (p-cymene)]2 を1.0g (1.02 mmol),
(S)−tBu−BINAPを1.75 g (2.06 mmol), メ
タノールを40 ml 入れ、55℃で16時間撹拌した。その
後、室温まで冷却しメタノールを回収後、窒素下で酢酸
ソーダを0.172 g (2.09 mmol) を入れ塩化メチレン20 m
l,脱気水20 ml を加えて16時間撹拌した。塩化メチレン
層を注射器で取り、脱気水20ml で洗浄し塩化メチレン
を減圧留去した後、得られた錯体を40℃で4 時間減圧乾
燥した。標題の化合物 2.2 g(収率95.1%)を得た。
Example 10 [RuI (CH 3 COO) ((S) -tBu-BINA]
P)] Production of 2 : After replacing 80 ml of Schlenk tube with nitrogen, 1.0 g (1.02 mmol) of [RuI 2 (p-cymene)] 2 was added.
1.75 g (2.06 mmol) of (S) -tBu-BINAP and 40 ml of methanol were added, and the mixture was stirred at 55 ° C for 16 hours. Then, after cooling to room temperature and collecting methanol, 0.172 g (2.09 mmol) of sodium acetate was added under nitrogen, and methylene chloride 20 m
l, 20 ml of degassed water was added and stirred for 16 hours. The methylene chloride layer was taken with a syringe, washed with 20 ml of degassed water, and methylene chloride was distilled off under reduced pressure. The obtained complex was dried under reduced pressure at 40 ° C. for 4 hours. This gave 2.2 g (yield 95.1%) of the title compound.

【0103】〔実施例11〕 [RuI(CH3 COO)((S)−DM−BINA
P)]2 の製造:80 ml のシュレンク管を窒素置換した
後、[RuI2 (p-cymene)]2 を1.0g (1.02 mmo
l),(S)−DM−BINAPを1.52 g (2.07 mmol),
メタノールを40 ml 入れ、55℃で16時間撹拌した。その
後、室温まで冷却しメタノールを回収後、窒素下で酢酸
ソーダを0.172 g (2.09 mmol) を入れ塩化メチレン20 m
l,脱気水20 ml を加えて16時間撹拌した。塩化メチレン
層を注射器で取り、脱気水20mlで洗浄し塩化メチレンを
減圧留去した後、得られた錯体を30℃で4 時間減圧乾燥
した。標題の化合物 2.0g(収率95.9%)を得た。
Example 11 RuI (CH 3 COO) ((S) -DM-BINA
Production of P)] 2 : After replacing 80 ml of Schlenk tube with nitrogen, 1.0 g (1.02 mmo) of [RuI 2 (p-cymene)] 2 was added.
l), 1.52 g (2.07 mmol) of (S) -DM-BINAP,
40 ml of methanol was added, and the mixture was stirred at 55 ° C for 16 hours. Then, after cooling to room temperature and collecting methanol, 0.172 g (2.09 mmol) of sodium acetate was added under nitrogen, and methylene chloride 20 m
l, 20 ml of degassed water was added and stirred for 16 hours. The methylene chloride layer was removed with a syringe, washed with 20 ml of degassed water, and methylene chloride was distilled off under reduced pressure. The obtained complex was dried under reduced pressure at 30 ° C. for 4 hours. 2.0 g (95.9% yield) of the title compound was obtained.

【0104】〔実施例12〕 (R)−4−メチル−2−オキセタノンの製造:500 ml
容量のステンレス製オートクレーブに、窒素雰囲気下、
[RuI(CH3 COO)((S)−BINAP)]2
76.65 mg (0.0794 mmol)、4−メチレン−2−オキセ
タノン20.1 g(239.3 mmol) 、テトラヒドロフラン80 m
l 、脱気水0.45mlを仕込み、水素圧 50kg/cm2 、反応温
度50℃で15時間撹拌した。得られた反応液をクライゼン
管蒸留装置を用いて蒸留し、沸点71〜73℃/29 mmHgの留
分18.0g(収率87.5%)を得た。この反応の転化率は87.
5%、触媒活性はターンオーバー数2630であった。生成
物は、ガスクロマトグラフィーによる標品との比較分析
の結果、4−メチル−2−オキセタノンであることが確
認され、ASTEC 社製光学活性カラム(Chiraldex G-TA 30
m) を用いたガスクロマトグラフィー(GC)測定から絶対
配置は(R)体で光学純度は94.3%e.e.であることが確
認された。
Example 12 Production of (R) -4-methyl-2-oxetanone: 500 ml
In a stainless steel autoclave of capacity, under nitrogen atmosphere,
[RuI (CH 3 COO) ((S) -BINAP)] 2
76.65 mg (0.0794 mmol), 20.1 g (239.3 mmol) of 4-methylene-2-oxetanone, 80 m of tetrahydrofuran
and 0.45 ml of degassed water, and stirred at a hydrogen pressure of 50 kg / cm 2 and a reaction temperature of 50 ° C. for 15 hours. The obtained reaction solution was distilled using a Claisen tube distillation apparatus to obtain 18.0 g (yield: 87.5%) of a fraction having a boiling point of 71 to 73 ° C / 29 mmHg. The conversion of this reaction is 87.
The catalyst activity was 5630 and the turnover number was 2630. The product was confirmed to be 4-methyl-2-oxetanone as a result of comparative analysis with a sample by gas chromatography, and was found to be an optically active column (Chiraldex G-TA30) manufactured by ASTEC.
Gas chromatography (GC) measurement using m) confirmed that the absolute configuration was (R) and the optical purity was 94.3% ee.

【0105】〔実施例13 〕 (R)−4−メチル−2−オキセタノンの製造:[Ru
I(PhCOO)((S)−T−BINAP)]2 81.
58 mg (0.0794mmol)、4-メチレン-2- オキセタノン20.
69 g (246.31 mmol)を用いたほかは実施例12と同様
に反応を行い、標題の化合物17.0 g(収率80.3%)を得
た。この反応の転化率は80.1%、触媒活性はターンオー
バー数2480であった。生成物の絶対配置は(R)体で光
学純度は95.3%e.e.であった。
Example 13 Production of (R) -4-methyl-2-oxetanone: [Ru
I (PhCOO) ((S) -T-BINAP)] 2 81.
58 mg (0.0794 mmol), 4-methylene-2-oxetanone 20.
The reaction was carried out in the same manner as in Example 12 except that 69 g (246.31 mmol) was used to obtain 17.0 g (yield: 80.3%) of the title compound. The conversion of this reaction was 80.1%, and the catalytic activity was 2,480 turnovers. The absolute configuration of the product was (R) -form and the optical purity was 95.3% ee.

【0106】〔実施例14 〕 (R)−4−メチル−2−オキセタノンの製造:[Ru
I(CH3 CH2 COO)((S)−T−BINA
P)]2 77.76 mg(0.0794 mmol)、4-メチレン-2- オ
キセタノン20.37 g (242.5 mmol) を用いたほかは実施
例12と同様に反応を行い、標題の化合物15.6 g(収率
74.8 %)を得た。この反応の転化率は74.97 %、触媒
活性はターンオーバー数2290であった。生成物の絶対配
置は(R)体で光学純度は94.9%e.e.であった。
Example 14 Production of (R) -4-methyl-2-oxetanone: [Ru
I (CH 3 CH 2 COO) ((S) -T-BINA
P)] 2 77.76 mg (0.0794 mmol), 4- methylene-2-oxetanone 20.37 g (242.5 mmol) except using the A reaction was conducted in the same manner as in Example 12, the title compound 15.6 g (yield:
74.8%). The conversion of this reaction was 74.97% and the catalytic activity was 2290 turnovers. The absolute configuration of the product was (R) -form and the optical purity was 94.9% ee.

【0107】〔実施例15 〕 (R)−4−メチル−2−オキセタノンの製造:[Ru
I(CH3 COCOO)((S)−T−BINAP)]
2 47.32 mg (0.0 476 mmol) 、4-メチレン-2- オキセ
タノン20.42 g (243.1 mmol) を用いたほかは実施例1
2と同様に反応を行い、標題の化合物10.6 g(収率50.7
%)を得た。この反応の転化率は50.73 %、触媒活性は
ターンオーバー数2590であった。生成物の絶対配置は
(R)体で光学純度は94.3%e.e.であった。
Example 15 Preparation of (R) -4-methyl-2-oxetanone: [Ru
I (CH 3 COCOO) (( S) -T-BINAP)]
2 47.32 mg (0.0 476 mmol) , 4-methylene-2-oxetanone 20.42 g (243.1 mmol) but using Example 1
Reaction was carried out in the same manner as in Example 2 to obtain 10.6 g of the title compound (yield 50.7 g).
%). The conversion of this reaction was 50.73% and the catalytic activity was 2590 turnovers. The absolute configuration of the product was (R) -form and the optical purity was 94.3% ee.

【0108】〔実施例16 〕 (R)−4−メチル−2−オキセタノンの製造:[Ru
I(CF3 COO)((S)−T−BINAP)]2 6
8.42 mg(0.068mmol) 、4-メチレン-2- オキセタノン2
0.0 g(238.1 mmol) を用いたほかは実施例12と同様
に反応を行い、標題の化合物15.3 g(収率74.7%)を得
た。この反応の転化率は75.0%、触媒活性はターンオー
バー数2630であった。生成物の絶対配置は(R)体で光
学純度は94.0%e.e.であった。
Example 16 Preparation of (R) -4-methyl-2-oxetanone: [Ru
I (CF 3 COO) (( S) -T-BINAP)] 2 6
8.42 mg (0.068 mmol), 4-methylene-2-oxetanone 2
The reaction was carried out in the same manner as in Example 12 except that 0.0 g (238.1 mmol) was used to obtain 15.3 g (yield: 74.7%) of the title compound. The conversion of this reaction was 75.0%, and the catalytic activity was 2630 turnovers. The absolute configuration of the product was (R) -form and the optical purity was 94.0% ee.

【0109】〔実施例17 〕 (R)−4−メチル−2−オキセタノンの製造:[Ru
I(CH3 COO)((S)−BINAP)]2 61.81
mg (0.068 mmol) 、4-メチレン-2- オキセタノン20.2
7 g (241.3 mmol) を用いたほかは実施例12と同様に
反応を行い、標題の化合物14.5 g(収率69.9%)を得
た。この反応の転化率は69.9%、触媒活性はターンオー
バー数2480であった。生成物の絶対配置は(R)体で光
学純度は94.0%e.e.であった。
Example 17 Production of (R) -4-methyl-2-oxetanone: [Ru
I (CH 3 COO) (( S) -BINAP)] 2 61.81
mg (0.068 mmol), 4-methylene-2-oxetanone 20.2
The reaction was carried out in the same manner as in Example 12 except that 7 g (241.3 mmol) was used to obtain 14.5 g (yield 69.9%) of the title compound. The conversion of this reaction was 69.9%, and the catalyst activity was 2,480 turnovers. The absolute configuration of the product was (R) -form and the optical purity was 94.0% ee.

【0110】〔実施例18 〕 (R)−4−メチル−2−オキセタノンの製造:[Ru
I(CH3 COO)((S)−tBu−BINAP)]
2 77.12 mg(0.068 mmol) 、4-メチレン-2- オキセタノ
ン20.5 g(244.0 mmol) を用いたほかは実施例12と同
様に反応を行い、標題の化合物14.6 g(収率69.5%)を
得た。この反応の転化率は69.7%、触媒活性はターンオ
ーバー数2500であった。生成物の絶対配置は(R)体で
光学純度は94.1%e.e. であった。
Example 18 Production of (R) -4-methyl-2-oxetanone: [Ru
I (CH 3 COO) ((S) -tBu-BINAP)]
2 77.12 mg (0.068 mmol), 4- methylene-2-oxetanone 20.5 g (244.0 mmol) except using the A reaction was conducted in the same manner as in Example 12 to give the title compound 14.6 g (69.5% yield) . The conversion of this reaction was 69.7%, and the catalytic activity was 2500 turnover. The absolute configuration of the product was (R) -form and the optical purity was 94.1% ee.

【0111】〔実施例19〕 (R)−4−メチル−2−オキセタノンの製造:[Ru
I(CH3 COO)((S)−DM−BINAP)]2
69.5 mg(0.068mmol)、4-メチレン-2- オキセタノン2
0.0 g(238.1 mmol) を用いたほかは実施例12と同様
に反応を行い、標題の化合物15.2 g(収率74.2%)を得
た。この反応の転化率は74.2%、触媒活性はターンオー
バー数2600であった。生成物の絶対配置は(R)体で光
学純度は94.2%e.e.であった。
Example 19 Production of (R) -4-methyl-2-oxetanone: [Ru
I (CH 3 COO) (( S) -DM-BINAP)] 2
69.5 mg (0.068 mmol), 4-methylene-2-oxetanone 2
The reaction was carried out in the same manner as in Example 12 except that 0.0 g (238.1 mmol) was used, thereby obtaining 15.2 g (yield: 74.2%) of the title compound. The conversion of this reaction was 74.2%, and the catalytic activity was 2600 turnovers. The absolute configuration of the product was (R) -form and the optical purity was 94.2% ee.

【0112】〔実施例20〕 [Ru−I1.5 −{(S)−T−BINAP}]2 (O
Tf)の製造:80mlのシュレンク管を窒素置換した後、
[RuI2 (p-cymene)]2 を0.5g(0.51 mmol),
(S)−T−BINAPを0.7 g (1.03 mmol),メタノー
ルを20ml入れ、55℃で16時間撹拌した。その後、室温ま
で冷却しメタノールを回収後、窒素下でNaOTf88ml
(0.51 mmol)を入れ塩化メチレン20ml, 脱気水20mlを加
えて16時間撹拌した。塩化メチレン層を注射器で取り、
脱気水20mlで洗浄し塩化メチレンを減圧留去した後、得
られた錯体を30℃で4 時間減圧乾燥した。標題の化合物
1.05g(収率97.5%)を得た。生成化合物の31P−NM
Rスペクトルを次に示す。31 P−NMRスペクトル:1.8(d, J=35Hz), 4.6(d, J
=33Hz),75.0(d, J=34Hz), 76.4(d, J=36Hz)
Example 20 [Ru-I 1.5 -{(S) -T-BINAP}] 2 (O
Production of Tf): After replacing the 80 ml Schlenk tube with nitrogen,
0.5 g (0.51 mmol) of [RuI 2 (p-cymene)] 2
0.7 g (1.03 mmol) of (S) -T-BINAP and 20 ml of methanol were added, and the mixture was stirred at 55 ° C. for 16 hours. Thereafter, the mixture was cooled to room temperature, and methanol was recovered.
(0.51 mmol), methylene chloride (20 ml) and degassed water (20 ml) were added, and the mixture was stirred for 16 hours. Take the methylene chloride layer with a syringe,
After washing with 20 ml of degassed water and distilling off methylene chloride under reduced pressure, the obtained complex was dried under reduced pressure at 30 ° C. for 4 hours. Title compound
1.05 g (97.5% yield) was obtained. 31 P-NM of product compound
The R spectrum is shown below. 31 P-NMR spectrum: 1.8 (d, J = 35 Hz), 4.6 (d, J
= 33Hz), 75.0 (d, J = 34Hz), 76.4 (d, J = 36Hz)

【0113】また、生成化合物のLCマススペクトルの
全体図を図1に、その分子量1950〜2030の部分の拡大図
を図2に示す。(LCマススペクトルの測定条件は、H
PLC条件:装置;HP1100、移動相;ジクロロメ
タン、サンプル希釈溶媒;ジクロロメタン、MS条件:
装置;Micromass QUATTRO LC、イオン化モード;ESI+で
ある。) 図2中、1972.9のピークは下記に示す構造、す
なわち生成化合物のカチオン部分のみにメタノールが付
加したものと考えられる。
FIG. 1 is an overall view of the LC mass spectrum of the produced compound, and FIG. 2 is an enlarged view of a portion having a molecular weight of 1950 to 2030. (The measurement condition of the LC mass spectrum is H
PLC conditions: apparatus; HP1100, mobile phase; dichloromethane, sample diluting solvent; dichloromethane, MS conditions:
Equipment: Micromass QUATTRO LC, ionization mode; ESI +. In FIG. 2, the peak at 1972.9 is considered to be due to the structure shown below, that is, methanol added only to the cation portion of the product compound.

【化13】[Ru−I1.5 −{(S)−T−BINA
P}]2 + +(CH3 OH)
[Ru-I 1.5 -{(S) -T-BINA]
P}] 2 ++ (CH 3 OH)

【0114】〔実施例21 〕 [Ru−I1.5 −{(S)−T−BINAP}]2 (O
Tf)の製造:200ml の反応容器を窒素置換した後、
[RuI( p-cymene ){(S)T−BINAP}]I
を2.7g (2.31 mmol),メタノールを110ml 入れ、55℃で
16時間撹拌した。その後、室温まで冷却しメタノールを
回収後、窒素下でNaOTfを0.416g(2.42 mmol) を加
えて16時間撹拌した。塩化メチレン層を注射器で取り、
脱気水20mlで洗浄し塩化メチレンを減圧留去した後、得
られた錯体を30℃で4 時間減圧乾燥した。標題の化合物
2.2 g(収率90.2) を得た。
[Example 21] [Ru-I 1.5 -{(S) -T-BINAP}] 2 (O
Production of Tf): After replacing a 200 ml reaction vessel with nitrogen,
[RuI (p-cymene) {(S) T-BINAP}] I
2.7 g (2.31 mmol) and methanol (110 ml) at 55 ° C
Stirred for 16 hours. Then, after cooling to room temperature and collecting methanol, 0.416 g (2.42 mmol) of NaOTf was added under nitrogen, and the mixture was stirred for 16 hours. Take the methylene chloride layer with a syringe,
After washing with 20 ml of degassed water and distilling off methylene chloride under reduced pressure, the obtained complex was dried under reduced pressure at 30 ° C. for 4 hours. Title compound
2.2 g (90.2 yield) was obtained.

【0115】〔実施例22〕 [Ru−I1.5 −{(S)−T−BINAP}]2 (O
Tf)の製造:80mlのシュレンク管を窒素置換した後、
[RuI2 (p-cymene)]2 を1.0g(1. 02 mmol),
(S)−T−BINAPを1.41g (2.07 mmol),NaOT
fを0.36g (2. 09mmol) 、メタノールを40ml入れ、55℃
で16時間撹拌した。その後、室温まで冷却しメタノール
を減圧回収後、窒素下で塩化メチレン20ml, 脱気水20ml
を加えて1 0 分間撹拌した。塩化メチレン層を注射器で
取り、脱気水20mlで洗浄し塩化メチレンを減圧留去した
後、得られた錯体を30℃で4 時間減圧乾燥した。標題の
化合物 1.9 g(収率88.2%)を得た。
Example 22 [Ru-I 1.5 -{(S) -T-BINAP}] 2 (O
Production of Tf): After replacing the 80 ml Schlenk tube with nitrogen,
[RuI 2 (p-cymene)] 2 was 1.0 g (1.02 mmol),
1.41 g (2.07 mmol) of (S) -T-BINAP, NaOT
0.36 g (2.09 mmol) of f and 40 ml of methanol
For 16 hours. After cooling to room temperature and collecting methanol under reduced pressure, 20 ml of methylene chloride and 20 ml of degassed water under nitrogen
Was added and stirred for 10 minutes. The methylene chloride layer was removed with a syringe, washed with 20 ml of degassed water, and methylene chloride was distilled off under reduced pressure. The obtained complex was dried under reduced pressure at 30 ° C. for 4 hours. 1.9 g (88.2% yield) of the title compound were obtained.

【0116】〔実施例23〕 [Ru−I1.5 −{(S)−T−BINAP}]2 (O
Tf)の製造:200ml の反応容器を窒素置換した後、
[RuI( p-cymene ){(S)T−BINAP}]I
を2.7g (2.31 mmol),NaOTfを0.416 g (2.42 mmo
l) 、メタノールを110ml 入れ、55℃で16時間撹拌し
た。その後、室温まで冷却しメタノールを回収後、窒素
下で塩化メチレン20ml, 脱気水20mlを加えて30分撹拌し
た。塩化メチレン層を注射器で取り、脱気水20mlで洗浄
し塩化メチレンを減圧留去した後、得られた錯体を30℃
で4 時間減圧乾燥した、標題の化合物 2.2g(収率90.
2%)を得た。
Example 23 [Ru-I 1.5 -{(S) -T-BINAP}] 2 (O
Production of Tf): After replacing a 200 ml reaction vessel with nitrogen,
[RuI (p-cymene) {(S) T-BINAP}] I
2.7 g (2.31 mmol) and 0.416 g (2.42 mmo) NaOTf
l), 110 ml of methanol was added, and the mixture was stirred at 55 ° C for 16 hours. Then, after cooling to room temperature and collecting methanol, 20 ml of methylene chloride and 20 ml of degassed water were added under nitrogen, followed by stirring for 30 minutes. The methylene chloride layer was taken with a syringe, washed with 20 ml of degassed water, and methylene chloride was distilled off under reduced pressure.
2.2 g of the title compound (yield 90.
2%).

【0117】〔実施例24〕 [Ru−I1.5 −{(S)−T−BINAP}]2 (O
Ts)の製造:80mlのシュレンク管を窒素置換した後、
[RuI2 (p-cymene)]2 を1.0g(1. 02 mmol),
(S)−T−BINAPを1.41g (2.07 mmol),メタノー
ルを40ml入れ、55℃で16時間撹拌した。その後、室温ま
で冷却しメタノールを回収後、窒素下でNaOTs0.40
4g (2.08mmol)を入れ塩化メチレン20ml, 脱気水20mlを
加えて16時間撹拌した。塩化メチレン層を注射器で取
り、脱気水20mlで洗浄し塩化メチレンを減圧留去した
後、得られた錯体を30℃で4 時間減圧乾燥した。標題の
化合物 2.03g(収率92.3%)を得た。31 P−NMRスペクトル:1.8(d, J=36Hz), 4.6(d, J
=34Hz),75.0(d, J=34Hz), 76.4(d, J=36Hz)
Example 24 [Ru-I 1.5 -{(S) -T-BINAP}] 2 (O
Production of Ts): After replacing the 80 ml Schlenk tube with nitrogen,
[RuI 2 (p-cymene)] 2 was 1.0 g (1.02 mmol),
1.41 g (2.07 mmol) of (S) -T-BINAP and 40 ml of methanol were added, and the mixture was stirred at 55 ° C. for 16 hours. Thereafter, the mixture was cooled to room temperature, and methanol was recovered.
4 g (2.08 mmol) was added, methylene chloride (20 ml) and degassed water (20 ml) were added, and the mixture was stirred for 16 hours. The methylene chloride layer was removed with a syringe, washed with 20 ml of degassed water, and methylene chloride was distilled off under reduced pressure. The obtained complex was dried under reduced pressure at 30 ° C. for 4 hours. 2.03 g (yield 92.3%) of the title compound was obtained. 31 P-NMR spectrum: 1.8 (d, J = 36 Hz), 4.6 (d, J
= 34Hz), 75.0 (d, J = 34Hz), 76.4 (d, J = 36Hz)

【0118】〔実施例25〕 [Ru−I1.5 −{(S)−T−BINAP}]2 (O
Ms)の製造:80mlのシュレンク管を窒素置換した後、
[RuI2 (p-cymene)]2 を1.0 g(1.02 mmol),
(S)−T−BINAPを1.41g (2.07 mmol),メタノー
ルを40ml入れ、55℃で16時間撹拌した。その後、室温ま
で冷却しメタノールを回収後、窒素下でNaOMsを0.
247 g (2.09 mmol) 入れ塩化メチレン20ml, 脱気水20ml
を加えて16時間撹拌した。塩化メチレン層を注射器で取
り、脱気水20mlで洗浄し塩化メチレンを減圧留去した
後、得られた錯体を30℃で4 時間減圧乾燥した。標題の
化合物 2.03g(収率99.3%)を得た。31 P−NMRスペクトル:1.8(d, J=36Hz), 4.6(d, J
=35Hz),75.0(d, J=35Hz), 76.4(d, J=36Hz)
Example 25 [Ru-I 1.5 -{(S) -T-BINAP}] 2 (O
Production of Ms): After replacing the 80 ml Schlenk tube with nitrogen,
[RuI 2 (p-cymene)] 2 was added in an amount of 1.0 g (1.02 mmol),
1.41 g (2.07 mmol) of (S) -T-BINAP and 40 ml of methanol were added, and the mixture was stirred at 55 ° C. for 16 hours. Then, after cooling to room temperature and collecting methanol, NaOMs was reduced to 0.
247 g (2.09 mmol) in methylene chloride 20ml, degassed water 20ml
Was added and stirred for 16 hours. The methylene chloride layer was removed with a syringe, washed with 20 ml of degassed water, and methylene chloride was distilled off under reduced pressure. The obtained complex was dried under reduced pressure at 30 ° C. for 4 hours. 2.03 g (yield 99.3%) of the title compound was obtained. 31 P-NMR spectrum: 1.8 (d, J = 36 Hz), 4.6 (d, J
= 35Hz), 75.0 (d, J = 35Hz), 76.4 (d, J = 36Hz)

【0119】〔実施例26〕 [Ru−I1.5 −{(S)−T−BINAP}]2 (P
6 )の製造:80mlのシュレンク管を窒素置換した後、
[RuI2 (p-cymene)]2 を1.0g(1.02 mmol),(S)
−T−BINAPを1.41g (2.07 mmol),メタノールを40
ml入れ、55℃で16時間撹拌した。その後、室温まで冷却
しメタノールを回収後、窒素下でNH4 PF6 を0.166
g (1.02 mmol) を入れ塩化メチレン20ml, 脱気水20mlを
加えて16時間撹拌した。塩化メチレン層を注射器で取
り、脱気水20mlで洗浄し塩化メチレンを減圧留去した
後、得られた錯体を30℃で4 時間減圧乾燥した。標題の
化合物 2.1g (収率97.8%)を得た。31 P−NMRスペクトル:1.8(d, J=36Hz), 4.6(d, J
=34Hz),75.0(d, J=34Hz), 76.4(d, J=36Hz)
Example 26 [Ru-I 1.5 -{(S) -T-BINAP}] 2 (P
Production of F 6 ): After replacing the 80 ml Schlenk tube with nitrogen,
1.0 g (1.02 mmol) of [Ru 2 (p-cymene)] 2 , (S)
1.41 g (2.07 mmol) of T-BINAP and 40
ml and stirred at 55 ° C. for 16 hours. Then, after recovering the methanol was cooled to room temperature, the NH 4 PF 6 under nitrogen 0.166
g (1.02 mmol), methylene chloride (20 ml) and degassed water (20 ml) were added, and the mixture was stirred for 16 hours. The methylene chloride layer was removed with a syringe, washed with 20 ml of degassed water, and methylene chloride was distilled off under reduced pressure. The obtained complex was dried under reduced pressure at 30 ° C. for 4 hours. 2.1 g (yield 97.8%) of the title compound was obtained. 31 P-NMR spectrum: 1.8 (d, J = 36 Hz), 4.6 (d, J
= 34Hz), 75.0 (d, J = 34Hz), 76.4 (d, J = 36Hz)

【0120】〔実施例27〕 [Ru−I1.5 −{(S)−T−BINAP}]2 (C
lO4 )の製造:80mlのシュレンク管を窒素置換した
後、[RuI2 (p-cymene)]2 を1.0 g(1. 02 mmol),
(S)−T−BINAPを1.4g (2.06 mmol),メタノ
ールを40ml入れ、55℃で16時間撹拌した。その後、室温
まで冷却しメタノールを回収後、窒素下で過塩素酸ソー
ダを 0.256g(2.09 mmol)入れ塩化メチレン20ml, 脱気水
20mlを加えて16時間撹拌した。塩化メチレン層を注射器
で取り、脱気水20mlで洗浄し塩化メチレンを減圧留去し
た後、得られた錯体を30℃で4 時間減圧乾燥した。標題
の化合物を1.95 g(収率95.0%)を得た。31 P−NMRスペクトル:-15.1(sep, J=712Hz), 1.8
(d, J=35Hz),4.6(d, J=34Hz), 75.0(d, J=34Hz), 7
6.4(d, J=35Hz)
Example 27 [Ru-I 1.5 -{(S) -T-BINAP}] 2 (C
Production of lO 4 ): After replacing the 80 ml Schlenk tube with nitrogen, 1.0 g (1.02 mmol) of [RuI 2 (p-cymene)] 2 was added.
1.4 g (2.06 mmol) of (S) -T-BINAP and 40 ml of methanol were added, and the mixture was stirred at 55 ° C. for 16 hours. After cooling to room temperature and collecting methanol, add 0.256 g (2.09 mmol) of sodium perchlorate under nitrogen, 20 ml of methylene chloride, degassed water
20 ml was added and stirred for 16 hours. The methylene chloride layer was removed with a syringe, washed with 20 ml of degassed water, and methylene chloride was distilled off under reduced pressure. The obtained complex was dried under reduced pressure at 30 ° C. for 4 hours. 1.95 g (yield 95.0%) of the title compound was obtained. 31 P-NMR spectrum: -15.1 (sep, J = 712 Hz), 1.8
(d, J = 35 Hz), 4.6 (d, J = 34 Hz), 75.0 (d, J = 34 Hz), 7
6.4 (d, J = 35Hz)

【0121】〔実施例28〕 [Ru−I1.5 −{(S)−BINAP}]2 (OT
f)の製造:80mlのシュレンク管を窒素置換した後、
[RuI2 (p-cymene)]2 を1.0 g(1.02 mmol),
(S)−BINAPを1.28g (2.06 mmol),メタノールを
40ml入れ、55℃で16時間撹拌した。その後、室温まで冷
却しメタノールを回収後、窒素下でNaOTfを0.36g
(2.09 mmol) 入れ塩化メチレン20ml, 脱気水20mlを加え
て16時間攪拌し、脱気水20mlで洗浄し塩化メチレンを減
圧留去した後、得られた錯体を30℃で4 時間減圧乾燥し
た。標題の化合物 1.95g(収率95.7%)を得た。
Example 28 [Ru-I 1.5 -{(S) -BINAP}] 2 (OT
Production of f): After replacing the 80 ml Schlenk tube with nitrogen,
[RuI 2 (p-cymene)] 2 was added in an amount of 1.0 g (1.02 mmol),
1.28 g (2.06 mmol) of (S) -BINAP and methanol
40 ml was added and stirred at 55 ° C. for 16 hours. After cooling to room temperature and collecting methanol, 0.36 g of NaOTf was added under nitrogen.
(2.09 mmol), methylene chloride (20 ml) and degassed water (20 ml) were added, the mixture was stirred for 16 hours, washed with degassed water (20 ml), methylene chloride was distilled off under reduced pressure, and the obtained complex was dried under reduced pressure at 30 ° C. for 4 hours. . 1.95 g (95.7% yield) of the title compound were obtained.

【0122】〔実施例29〕 [Ru−I1.5 −{(S)−tBu−BINAP}]2
(OTf)の製造:80mlのシュレンク管を窒素置換した
後、[RuI2 (p-cymene)]2 を1.0 g(1.02 mmol),
(S)−p−tBu−BINAPを1.75g (2.06 mmol),
メタノールを40ml入れ、55℃で16時間撹拌した。その
後、室温まで冷却しメタノールを回収後、窒素下でNa
OTfを0.36g(2.09mmol) 入れ塩化メチレン20ml,脱気
水20mlを加えて16時間攪拌した。塩化メチレン層を注
射器で取り、脱気水20mlで洗浄し塩化メチレンを減圧留
去した後、得られた錯体を30℃で4時間減圧乾燥し
た。標題の化合物2.4g(収率96.1%)を得た。
Example 29 [Ru-I 1.5 -{(S) -tBu-BINAP}] 2
Production of (OTf): After replacing an 80 ml Schlenk tube with nitrogen, 1.0 g (1.02 mmol) of [RuI 2 (p-cymene)] 2 was added.
1.75 g (2.06 mmol) of (S) -ptBu-BINAP,
40 ml of methanol was added, and the mixture was stirred at 55 ° C. for 16 hours. Then, after cooling to room temperature and collecting methanol, Na was added under nitrogen.
0.36 g (2.09 mmol) of OTf was added, 20 ml of methylene chloride and 20 ml of degassed water were added, and the mixture was stirred for 16 hours. The methylene chloride layer was removed with a syringe, washed with 20 ml of degassed water, and methylene chloride was distilled off under reduced pressure. The obtained complex was dried under reduced pressure at 30 ° C. for 4 hours. 2.4 g (yield 96.1%) of the title compound was obtained.

【0123】〔実施例30〕 [Ru−I1.5 −{(S)−DM−BINAP}]
2 (OTf)の製造:80mlのシュレンク管を窒素置換し
た後、[RuI2 (p-cymene)]2 を1.0 g(1. 02 mmo
l), (S)−DM−BINAPを1.52g(2.07 mmol),メ
タノールを40ml入れ、55℃で16時間撹拌した。その後、
室温まで冷却しメタノールを回収後、窒素下でNaOT
fを0.344g (2.0 mmol)入れ塩化メチレン20ml, 脱気水
20mlを加えて16時間撹拌した。塩化メチレン層を注射器
で取り、脱気水20mlで洗浄し塩化メチレンを減圧留去し
た後、得られた錯体を30℃で4時間減圧乾燥した。標題
の化合物 2.2g(収率96.99 %)を得た。
Example 30 Ru-I 1.5 -{(S) -DM-BINAP}
Production of 2 (OTf): After replacing 80 ml of Schlenk tube with nitrogen, 1.0 g (1.02 mmo) of [RuI 2 (p-cymene)] 2 was added.
l), 1.52 g (2.07 mmol) of (S) -DM-BINAP and 40 ml of methanol were added, and the mixture was stirred at 55 ° C for 16 hours. afterwards,
After cooling to room temperature and collecting methanol, NaOT under nitrogen
0.344 g (2.0 mmol) of f in methylene chloride 20 ml, degassed water
20 ml was added and stirred for 16 hours. The methylene chloride layer was removed with a syringe, washed with 20 ml of degassed water, and methylene chloride was distilled off under reduced pressure. The obtained complex was dried under reduced pressure at 30 ° C. for 4 hours. 2.2 g (96.99% yield) of the title compound were obtained.

【0124】〔実施例31〕 (R)−4−メチル−2−オキセタノンの製造:500ml
容量のステンレス製オートクレーブに、窒素雰囲気下、
[Ru−I1.5 −{(S)−T−BINAP}]2 (O
Tf)45.71 g (0.0433 mmol)、4−メチレン−2−オ
キセタノン20.32 g (241.905 mmol) 、テトラヒドロフ
ラン80ml、脱気水0.45mlを仕込み、水素圧50kg/cm2、反
応温度50℃で15時間撹拌した。得られた反応液をクライ
ゼン管蒸留装置を用いて蒸留し、沸点71〜73℃/29 mmHg
の留分16.9(収率81.2%)を得た。この反応の転化率は
81.42 %、触媒活性はターンオーバー数4550であった。
生成物は、ガスクロマトグラフィーによる標品との比較
分析の結果、4−メチル−2−オキセタノンであること
が確認され、ASTEC 社製光学活性カラム(Chiraldex G-T
A 30m)を用いたガスクロマトグラフィー(GC)測定から絶
対配置は(R)体で光学純度は94.5%e.e.であることが
確認された。
Example 31 Production of (R) -4-methyl-2-oxetanone: 500 ml
In a stainless steel autoclave of capacity, under nitrogen atmosphere,
[Ru-I 1.5 -{(S) -T-BINAP}] 2 (O
Tf) 45.71 g (0.0433 mmol), 20.32 g (241.905 mmol) of 4-methylene-2-oxetanone, 80 ml of tetrahydrofuran and 0.45 ml of degassed water were charged, and the mixture was stirred at a hydrogen pressure of 50 kg / cm 2 and a reaction temperature of 50 ° C. for 15 hours. . The obtained reaction solution was distilled using a Claisen tube distillation apparatus, and the boiling point was 71 to 73 ° C / 29 mmHg.
A fraction 16.9 (81.2% yield) was obtained. The conversion of this reaction is
The catalyst activity was 81.42% and the turnover number was 4550.
The product was confirmed to be 4-methyl-2-oxetanone as a result of comparative analysis with a sample by gas chromatography.
Gas chromatography (GC) measurement using A30m) confirmed that the absolute configuration was (R) and the optical purity was 94.5% ee.

【0125】〔実施例32〕 (R)−4−メチル−2−オキセタノンの製造:[Ru
−I1.5 −{(S)−T−BINAP}]2 (OTs)
85.55mg (0.0794mmol) 、4−メチレン−2−オキセタ
ノン 20.25g(241.07 mmol)を用いたほかは実施例31
と同様に反応を行い、標題の化合物20.45g(収率98.64
%)を得た。この反応の転化率は98.64 %、触媒活性は
ターンオーバー数2990であった。生成物の絶対配置は
(R)体で光学純度は95.6%e.e.であった。
Example 32 Production of (R) -4-methyl-2-oxetanone: [Ru
−I 1.5 − {(S) -T-BINAP}] 2 (OTs)
Example 31 except that 85.55 mg (0.0794 mmol) and 20.25 g (241.07 mmol) of 4-methylene-2-oxetanone were used.
The reaction was carried out in the same manner as described above, and the title compound (20.45 g, yield 98.64) was obtained.
%). The conversion of this reaction was 98.64% and the catalytic activity was 2,990 turnovers. The absolute configuration of the product was (R) -form and the optical purity was 95.6% ee.

【0126】〔実施例33〕 (R)−4−メチル−2−オキセタノンの製造:[Ru
−I1.5 −{(S)−T−BINAP}]2 (OMs)
47.71mg (0.0476mmol)、4−メチレン−2−オキセタ
ノン 20.42g(243.1 mmol) を用いたほかは実施例31
と同様に反応を行い、標題の化合物11.1 g(収率53.1
%)を得た。この反応の転化率は53.1%、触媒活性はタ
ーンオーバー数2710であった。生成物の絶対配置は
(R)体で光学純度は94.1%e.e.であった。
Example 33 Production of (R) -4-methyl-2-oxetanone: [Ru
−I 1.5 − {(S) -T-BINAP}] 2 (OMs)
Example 31 except that 47.71 mg (0.0476 mmol) and 20.42 g (243.1 mmol) of 4-methylene-2-oxetanone were used.
The reaction was carried out in the same manner as described above to obtain 11.1 g of the title compound (yield 53.1 g).
%). The conversion of this reaction was 53.1%, and the catalytic activity was 2710 in turnover number. The absolute configuration of the product was (R) -form and the optical purity was 94.1% ee.

【0127】〔実施例34〕 (R)−4−メチル−2−オキセタノンの製造:[Ru
−I1.5 −{(S)−T−BINAP}]2 (PF6
50.94mg (0.0484mmol)、4−メチレン−2−オキセタ
ノン 20.46g(243.57 mmol)を用いたほかは実施例31
と同様に反応を行い、標題の化合物 16.3g(収率77.8
%)を得た。この反応の転化率は77.80 %、触媒活性は
ターンオーバー数3910であった。生成物の絶対配置は
(R)体で光学純度は94.7%e.e.であった。
Example 34 Production of (R) -4-methyl-2-oxetanone [Ru
−I 1.5 − {(S) -T-BINAP}] 2 (PF 6 )
Example 31 except that 50.94 mg (0.0484 mmol) and 20.46 g (243.57 mmol) of 4-methylene-2-oxetanone were used.
The reaction was carried out in the same manner as described above to obtain 16.3 g of the title compound (yield: 77.8 g).
%). The conversion of this reaction was 77.80% and the catalytic activity was 3910 turnovers. The absolute configuration of the product was (R) -form and the optical purity was 94.7% ee.

【0128】〔実施例35〕 (R)−4−メチル−2−オキセタノンの製造:[Ru
−I1.5 −{(S)−T−BINAP}]2 (Cl
4 )47.91mg (0.0476mmol) 、4−メチレン−2−オ
キセタノン 20.29g (241.55 mmol)を用いたほかは実施
例31と同様に反応を行い、標題の化合物 15.9g(収率
76.5%)を得た。この反応の転化率は76.5%、触媒活性
はターンオーバー数3880であった。生成物の絶対配置は
(R)体で光学純度は95.8%e.e.であった。
Example 35 Production of (R) -4-methyl-2-oxetanone: [Ru
-I 1.5 -{(S) -T-BINAP}] 2 (Cl
The reaction was carried out in the same manner as in Example 31 except that 47.91 mg (0.0476 mmol) of O 4 ) and 20.29 g (241.55 mmol) of 4-methylene-2-oxetanone were used, and 15.9 g of the title compound (yield)
76.5%). The conversion of this reaction was 76.5%, and the catalytic activity was 3880 turnovers. The absolute configuration of the product was (R) -form and the optical purity was 95.8% ee.

【0129】〔実施例36〕 (R)−4−メチル−2−オキセタノンの製造:[Ru
−I1.5 −{(S)−BINAP}]2 (OTf)47.9
1mg ( 0.0479 mmol)、4−メチレン−2−オキセタノン
20.0g(238.1 mmol) を用いたほかは実施例31と同様
に反応を行い、標題の化合物15.9g(収率77.65 %)を
得た。この反応の転化率は77.65 %、触媒活性はターン
オーバー数3860であった。生成物の絶対配置は(R)体
で光学純度は95.0%e.e.であった。
Example 36 Production of (R) -4-methyl-2-oxetanone [Ru
−I 1.5 − {(S) -BINAP}] 2 (OTf) 47.9
1 mg (0.0479 mmol), 4-methylene-2-oxetanone
The reaction was carried out in the same manner as in Example 31 except that 20.0 g (238.1 mmol) was used to obtain 15.9 g (yield 77.65%) of the title compound. The conversion of this reaction was 77.65% and the catalytic activity was 3860 turnovers. The absolute configuration of the product was (R) -form and the optical purity was 95.0% ee.

【0130】〔実施例37〕 (R)−4−メチル−2−オキセタノンの製造:[Ru
−I1.5 −{(S)−p−tBu−BINAP}]
2 (OTf)70.73 mg(0.047 6 mmol) 、4−メチレン
−2−オキセタノン 20.34g(242.14 mmol)を用いたほ
かは実施例31と同様に反応を行い、標題の化合物12.4
g(収率59.55%)を得た。この反応の転化率は59.65
%、触媒活性はターンオーバー数3030であった。生成物
の絶対配置は(R)体で光学純度は95.8%e.e.であっ
た。
Example 37 Production of (R) -4-methyl-2-oxetanone: [Ru
-I 1.5 -{(S) -ptBu-BINAP}]
The reaction was carried out in the same manner as in Example 31 except that 70.73 mg (0.0476 mmol) of 2 (OTf) and 20.34 g (242.14 mmol) of 4-methylene-2-oxetanone were used, and the title compound 12.4 was obtained.
g (yield 59.55%) was obtained. The conversion of this reaction is 59.65
%, Catalytic activity was 3030 turnovers. The absolute configuration of the product was (R) -form and the optical purity was 95.8% ee.

【0131】〔実施例38〕 (R)−4−メチル−2−オキセタノンの製造:[Ru
−I1.5 −{(S)−DM−BINAP}]2 (OT
f)69.5mg(0.0625mmol)、4−メチレン−2−オキセ
タノン20.0g (238.1 mmol) を用いたほかは実施例31
と同様に反応を行い、標題の化合物19.3g (収率94.2
%)を得た。この反応の転化率は94.2%、触媒活性はタ
ーンオーバー数3580であった。生成物の絶対配置は
(R)体で光学純度は94.0%e.e.であった。
Example 38 Production of (R) -4-methyl-2-oxetanone [Ru
-I 1.5 -{(S) -DM-BINAP}] 2 (OT
f) Example 31 except that 69.5 mg (0.0625 mmol) and 20.0 g (238.1 mmol) of 4-methylene-2-oxetanone were used.
The reaction was carried out in the same manner as described above, and the title compound (19.3 g, yield 94.2 g) was obtained.
%). The conversion of this reaction was 94.2%, and the catalytic activity was 3580 turnovers. The absolute configuration of the product was (R) -form and the optical purity was 94.0% ee.

【0132】〔実施例39〕 [Ru−I1.5 −{(S)−SEGPHOS)}]
2 (OTf)の製造:80mlのシュレンク管を窒素置換し
た後、[RuI2 (p-cymene)]2 を0.5g(0.51 mmol),
(S)−SEGPHOSを0.63mg(1.03 mmol),脱気DMF
を20ml入れ、75℃で16時間撹拌した。その後、40℃まで
冷却しDMF を回収後、窒素下でNaOTfを88mg (0.51
mmol)を入れ塩化メチレン20ml, 脱気水20mlを加えて16
時間撹拌した。塩化メチレン層を注射器で取り、脱気水
20mlで洗浄し塩化メチレンを減圧留去した後、得られた
錯体を30℃で4 時間減圧乾燥した。標題の化合物を0.95
g(収率94.3%)を得た。生成化合物の31P−NMRス
ペクトルを図3に示す。
[Embodiment 39] [Ru-I 1.5 -{(S) -SEGPHOS)}
Production of 2 (OTf): After replacing 80 ml of Schlenk tube with nitrogen, 0.5 g (0.51 mmol) of [RuI 2 (p-cymene)] 2 was added.
0.63 mg (1.03 mmol) of (S) -SEGPHOS, degassed DMF
Was added and stirred at 75 ° C. for 16 hours. Then, after cooling to 40 ° C. and collecting DMF, 88 mg of NaOTf (0.51
mmol) in 20 ml of methylene chloride and 20 ml of degassed water.
Stirred for hours. Remove the methylene chloride layer with a syringe and remove
After washing with 20 ml and distilling off methylene chloride under reduced pressure, the obtained complex was dried under reduced pressure at 30 ° C. for 4 hours. 0.95 title compound
g (94.3% yield) was obtained. FIG. 3 shows the 31 P-NMR spectrum of the resulting compound.

【0133】〔実施例40〕 [Ru−I1.5 −{(S)−SEGPHOS)}]
2 (OTf)の製造:200ml の反応容器を窒素置換した
後、[RuI(p-cymene){(S)−SEGPHO
S)]Iを2.7 g (2.45 mmol),脱気DMF を110ml 入れ、
75℃で16時間撹拌した。その後、40℃まで冷却しDMF を
回収後、窒素下でNaOTfを0.42 2g(2.45mmol) を入
れ塩化メチレン20ml, 脱気水20mlを加えて16時間撹拌し
た。塩化メチレン層を注射器で取り、脱気水 20ml で洗
浄し塩化メチレンを減圧留去した後、得られた錯体を30
℃で4 時間減圧乾燥した。標題の化合物を2.3 g (収率
95.0%)を得た。
Embodiment 40 [Ru-I 1.5 -{(S) -SEGPHOS)}
2 Production of (OTf): After replacing a 200 ml reaction vessel with nitrogen, [RuI (p-cymene) {(S) -SEGPHO
S)] 2.7 g (2.45 mmol) of I and 110 ml of degassed DMF were added.
Stirred at 75 ° C. for 16 hours. Then, after cooling to 40 ° C. and collecting DMF, 0.422 g (2.45 mmol) of NaOTf was added under nitrogen, 20 ml of methylene chloride and 20 ml of degassed water were added, and the mixture was stirred for 16 hours. The methylene chloride layer was removed with a syringe, washed with 20 ml of degassed water, and methylene chloride was distilled off under reduced pressure.
It was dried under reduced pressure at 4 ° C for 4 hours. 2.3 g of the title compound (yield
95.0%).

【0134】〔実施例41〕 [Ru−I1.5 −{(S)−SEGPHOS)}]
2 (OTf)の製造:80mlのシュレンク管を窒素置換し
た後、[RuI2 (p-cymene)]2 を1.0 g(1. 02 mmo
l), (S)−SEGPHOSを1.26 g(2.06 mmol),Na
OTfを 0.36 g(2.09 mmol)、脱気DMF を40ml入れ、75
℃で16時間撹拌した。その後、40℃まで冷却しDMF を減
圧回収後、窒素下で塩化メチレン20ml, 脱気水20mlを加
えて10分間撹拌した。塩化メチレン層を注射器で取り、
脱気水20mlで洗浄し塩化メチレンを減圧留去した後、得
られた錯体を30℃で4 時間減圧乾燥した。標題の化合物
1.9 g (収率94.3%)を得た。
[Example 41] [Ru-I 1.5 -{(S) -SEGPHOS)}
Production of 2 (OTf): After replacing 80 ml of Schlenk tube with nitrogen, 1.0 g (1.02 mmo) of [RuI 2 (p-cymene)] 2 was added.
l), 1.26 g (2.06 mmol) of (S) -SEGPHOS, Na
0.36 g (2.09 mmol) of OTf and 40 ml of degassed DMF were added.
Stirred at C for 16 hours. Thereafter, the mixture was cooled to 40 ° C., and after collecting DMF under reduced pressure, 20 ml of methylene chloride and 20 ml of degassed water were added under nitrogen, followed by stirring for 10 minutes. Take the methylene chloride layer with a syringe,
After washing with 20 ml of degassed water and distilling off methylene chloride under reduced pressure, the obtained complex was dried under reduced pressure at 30 ° C. for 4 hours. Title compound
1.9 g (94.3% yield) was obtained.

【0135】〔実施例42〕 [Ru−I1.5 −{(S)−SEGPHOS)}]
2 (OTf)の製造:200ml の反応容器を窒素置換した
後、[RuI(p-cymene){(S)−SEGPHO
S)]Iを2.7 g (2.45 mmol),NaOTfを0.421g
(2.45 mmol) 、脱気DMF を110ml 入れ、75℃で16時間撹
拌した。その後、40℃まで冷却しDMF を回収後、窒素下
で塩化メチレン20ml, 脱気水20mlを加えて30分撹拌し
た。塩化メチレン層を注射器で取り、脱気水20mlで洗浄
し塩化メチレンを減圧留去した後得られた錯体を30℃で
4時間減圧乾燥した。標題の化合物を2.2 g (収率90.9
%)を得た。
[Example 42] [Ru-I 1.5 -{(S) -SEGPHOS)}
2 Production of (OTf): After replacing a 200 ml reaction vessel with nitrogen, [RuI (p-cymene) {(S) -SEGPHO
S)] I 2.7 g (2.45 mmol), NaOTf 0.421 g
(2.45 mmol) and 110 ml of degassed DMF were added and stirred at 75 ° C. for 16 hours. Then, after cooling to 40 ° C. and collecting DMF, 20 ml of methylene chloride and 20 ml of degassed water were added under nitrogen, followed by stirring for 30 minutes. The methylene chloride layer was removed with a syringe, washed with 20 ml of degassed water, and methylene chloride was distilled off under reduced pressure. The obtained complex was dried under reduced pressure at 30 ° C. for 4 hours. 2.2 g of the title compound (90.9 yield)
%).

【0136】〔実施例43〕 [Ru−I1.5 −{(S)−SEGPHOS)}]
2 (PF6 )の製造:80mlのシュレンク管を窒素置換し
た後、[RuI2 (p-cymene)]2 を 1.0 g(1.02 mmo
l), (S)−SEGPHOSを1.26g (2.06 mmol),脱気
DMF を40ml入れ、75℃で16時間撹拌した。その後、40℃
まで冷却しDMF を回収後、窒素下でNH4 PF6 を0.17
1g (1.02 mmol)入れ塩化メチレン20ml, 脱気水20mlを加
えて16時間撹拌した。塩化メチレン層を注射器で取り、
脱気水20mlで洗浄し塩化メチレンを減圧留去した後、得
られた錯体を30℃で4 時間減圧乾燥した。標題の化合物
2.0g(収率99.7%)を得た。
[Example 43] [Ru-I 1.5 -{(S) -SEGPHOS)}
Production of 2 (PF 6 ): After replacing 80 ml of Schlenk tube with nitrogen, 1.0 g (1.02 mmo) of [RuI 2 (p-cymene)] 2 was added.
l), 1.26 g (2.06 mmol) of (S) -SEGPHOS, degassed
40 ml of DMF was added and the mixture was stirred at 75 ° C. for 16 hours. Then 40 ° C
After collecting the cooled DMF until the NH 4 PF 6 under nitrogen 0.17
1 g (1.02 mmol), methylene chloride (20 ml) and degassed water (20 ml) were added and the mixture was stirred for 16 hours. Take the methylene chloride layer with a syringe,
After washing with 20 ml of degassed water and distilling off methylene chloride under reduced pressure, the obtained complex was dried under reduced pressure at 30 ° C. for 4 hours. Title compound
2.0 g (99.7% yield) was obtained.

【0137】〔実施例44〕 [Ru−I1.5 −{(S)−SEGPHOS)}]
2 (OTs)の製造:80mlのシュレンク管を窒素置換し
た後、[RuI2 (p-cymene)]2 を1.0g(1.02 mmol),
(S)−SEGPHOSを1.26g (2.06 mmol),脱気DMF
を40ml入れ、75℃で16時間撹拌した。その後、40℃まで
冷却しDMF を回収後、窒素下でNaOTsを0.404g
(2.08 mmol) 入れ塩化メチレン20ml, 脱気水20mlを加え
て16時間撹拌した。塩化メチレン層を注射器で取り、脱
気水20mlで洗浄し塩化メチレンを減圧留去した後、得ら
れた錯体を30℃で4 時間減圧乾燥した。標題の化合物2.
03g (収率98.5%)を得た。
[Example 44] [Ru-I 1.5 -{(S) -SEGPHOS)}
Production of 2 (OTs): After replacing a 80 ml Schlenk tube with nitrogen, 1.0 g (1.02 mmol) of [RuI 2 (p-cymene)] 2 was added.
1.26 g (2.06 mmol) of (S) -SEGPHOS, degassed DMF
Was added and stirred at 75 ° C. for 16 hours. After cooling to 40 ° C and collecting DMF, 0.404 g of NaOTs was added under nitrogen.
(2.08 mmol), 20 ml of methylene chloride and 20 ml of degassed water were added, and the mixture was stirred for 16 hours. The methylene chloride layer was removed with a syringe, washed with 20 ml of degassed water, and methylene chloride was distilled off under reduced pressure. The obtained complex was dried under reduced pressure at 30 ° C. for 4 hours. Title compound 2.
03 g (98.5% yield) was obtained.

【0138】〔実施例45〕 [Ru−I1.5 −{(S)−SEGPHOS)}]
2 (OMs)の製造:80mlのシュレンク管を窒素置換し
た後、[RuI2 (p-cymene)]2 を1.0 g(1.02 mmo
l), (S)−SEGPHOSを1.26g (2.06 mmol),脱気
DMF を40ml入れ、75℃で16時間撹拌した。その後、40℃
まで冷却しDMF を回収後、窒素下でNaOMsを0.247g
(2.09 mmol) 入れ塩化メチレン20ml, 脱気水20mlを加
えて16時間撹拌した。塩化メチレン層を注射器で取り、
脱気水20mlで洗浄し塩化メチレンを減圧留去した後、得
られた錯体を30℃で4 時間減圧乾燥した。標題の化合物
1.8g(収率94.5%)を得た。
[Example 45] [Ru-I 1.5 -{(S) -SEGPHOS)}
Production of 2 (OMs): After replacing 80 ml of Schlenk tube with nitrogen, 1.0 g (1.02 mmo) of [RuI 2 (p-cymene)] 2 was added.
l), 1.26 g (2.06 mmol) of (S) -SEGPHOS, degassed
40 ml of DMF was added and the mixture was stirred at 75 ° C. for 16 hours. Then 40 ° C
After cooling to recover DMF, 0.247 g of NaOMs was added under nitrogen.
(2.09 mmol), 20 ml of methylene chloride and 20 ml of degassed water were added, and the mixture was stirred for 16 hours. Take the methylene chloride layer with a syringe,
After washing with 20 ml of degassed water and distilling off methylene chloride under reduced pressure, the obtained complex was dried under reduced pressure at 30 ° C. for 4 hours. Title compound
1.8 g (94.5% yield) was obtained.

【0139】〔実施例46〕 [Ru−I1.5 −{(S)−SEGPHOS)}]
2 {OS(O)2 4 9 }の製造:80 ml のシュレン
ク管を窒素置換した後、[RuI2 (p-cymene)]2
1.2g (1.23 mmol),(S)−SEGPHOSを1.51 g
(2.47 mmol), KOS(O)24 9 を0.47 g (1.39 m
mol), 脱気DMF を36 ml 入れ、75℃で16時間撹拌した。
その後、40℃まで冷却しDMF を減圧回収後、窒素下で塩
化メチレン30 ml,脱気水30 ml を加えて10分間撹拌し
た。塩化メチレン層を注射器で取り、脱気水30 ml で洗
浄し塩化メチレンを減圧留去した後、得られた錯体を30
℃で4 時間減圧乾燥した。標題の化合物3.09 g(収率11
9.4 %)を得た。
Example 46 [Ru-I 1.5 -{(S) -SEGPHOS)}
Production of 2 {OS (O) 2 C 4 F 9 }: After replacing 80 ml of Schlenk tube with nitrogen, [RuI 2 (p-cymene)] 2 was added.
1.2 g (1.23 mmol), 1.51 g of (S) -SEGPHOS
(2.47 mmol), 0.47 g of KOS (O) 2 C 4 F 9 (1.39 m
mol), 36 ml of degassed DMF was added, and the mixture was stirred at 75 ° C for 16 hours.
Thereafter, the mixture was cooled to 40 ° C., and after collecting DMF under reduced pressure, 30 ml of methylene chloride and 30 ml of degassed water were added under nitrogen, followed by stirring for 10 minutes. The methylene chloride layer was removed with a syringe, washed with 30 ml of degassed water, and methylene chloride was distilled off under reduced pressure.
It was dried under reduced pressure at 4 ° C for 4 hours. 3.09 g of the title compound (yield 11
9.4%).

【0140】〔実施例47〕 [Ru−I1.5 −{(S)−SEGPHOS)}]
2 {OS(O)2 8 17}の製造:80 ml のシュレン
ク管を窒素置換した後、[RuI2 (p-cymene)]2
0.304g (0.311 mmol), (S)−SEGPHOSを0.389
g (0.638 mmol), KOS(O)2 8 17 を0.191 g
(0.355 mmol), 脱気DMF を10 ml 入れ、75℃で16時間
撹拌した。その後、40℃まで冷却しDMF を減圧回収後、
窒素下で塩化メチレン20ml, 脱気水10 ml を加えて10分
間撹拌した。塩化メチレン層を注射器で取り、脱気水10
ml で洗浄し塩化メチレンを減圧留去した後、得られた
錯体を30℃で4 時間減圧乾燥した。標題の化合物0.87 g
(収率121.6 %)を得た。
[Example 47] [Ru-I 1.5 -{(S) -SEGPHOS)}
Production of 2 {OS (O) 2 C 8 F 17 }: After replacing 80 ml of Schlenk tube with nitrogen, [RuI 2 (p-cymene)] 2 was added.
0.304 g (0.311 mmol), 0.389 of (S) -SEGPHOS
g (0.638 mmol), 0.191 g of KOS (O) 2 C 8 F 17
(0.355 mmol) and 10 ml of degassed DMF were added, and the mixture was stirred at 75 ° C for 16 hours. After cooling to 40 ° C and collecting DMF under reduced pressure,
Under nitrogen, 20 ml of methylene chloride and 10 ml of degassed water were added, and the mixture was stirred for 10 minutes. Remove the methylene chloride layer with a syringe and remove
After washing with ml and distilling off methylene chloride under reduced pressure, the obtained complex was dried under reduced pressure at 30 ° C. for 4 hours. 0.87 g of the title compound
(121.6% yield).

【0141】〔実施例48〕 (R)−4−メチル−2−オキセタノンの製造:500ml
容量のステンレス製オートクレーブに、窒素雰囲気下、
[Ru−I1.5−{(S)−SEGPHOS)}]
2 (OTf)33.59 g (0.034 mmol) 、4−メチレン−
2−オキセタノン20.55g (244.6 mmol) 、テトラヒド
ロフラン80ml、脱気水0.45g を仕込み、水素圧50kgc
m3 、反応温度50℃で15時間撹拌した。得られた反応液
をクライゼン管蒸留装置を用いて蒸留し、沸点71〜73℃
/29 mmHgの留分19.1 g(収率90.8%)を得た。この反応
の転化率は90.8%、触媒活性はターンオーバー数6530で
あった。生成物は、ガスクロマトグラフィーによる標品
との比較分析の結果、4−メチル−2−オキセタノンで
あることが確認されASTEC社製光学活性カラム(Chiralde
x G-TA 30m)を用いたガスクロマトグラフィー(GC)測定
から絶対配置は(R)体で光学純度は94.5%e.e.である
ことが確認された
Example 48 Production of (R) -4-methyl-2-oxetanone: 500 ml
In a stainless steel autoclave of capacity, under nitrogen atmosphere,
[Ru-I 1.5 -{(S) -SEGPHOS)}
2 (OTf) 33.59 g (0.034 mmol), 4-methylene-
20.55 g (244.6 mmol) of 2-oxetanone, 80 ml of tetrahydrofuran and 0.45 g of degassed water were charged, and the hydrogen pressure was 50 kgc.
The mixture was stirred at m 3 and a reaction temperature of 50 ° C. for 15 hours. The obtained reaction solution was distilled using a Claisen tube distillation apparatus, and the boiling point was 71 to 73 ° C.
19.1 g (90.8% yield) of a / 29 mmHg fraction was obtained. The conversion of this reaction was 90.8%, and the catalytic activity was 6530 in turnover number. The product was confirmed to be 4-methyl-2-oxetanone as a result of comparative analysis with a sample by gas chromatography, and it was confirmed that the product was an optically active column manufactured by ASTEC (Chiralde).
x G-TA 30m) from gas chromatography (GC) measurement confirmed that the absolute configuration was (R) and the optical purity was 94.5% ee.

【0142】〔実施例49〕 (R)−4−メチル−2−オキセタノンの製造:[Ru
−I1.5 −{(S)−SEGPHOS)}]2 (P
6 )35.84mg (0.0368 mmol)、4−メチレン−2−オ
キセタノン20.38g(242.62 mmol)を用いたほかは実施例
48と同様に反応を行い、標題の化合物13.7 g(収率6
5.6%)を得た。この反応の転化率は65.6%、触媒活性
はターンオーバー数4320であった。生成物の絶対配置は
(R)体で光学純度は95.5%e.e.であった。
Example 49 Production of (R) -4-methyl-2-oxetanone: [Ru
-I 1.5 -{(S) -SEGPHOS)}] 2 (P
The reaction was carried out in the same manner as in Example 48 except that 35.84 mg (0.0368 mmol) of F 6 ) and 20.38 g (242.62 mmol) of 4-methylene-2-oxetanone were used to obtain 13.7 g of the title compound (yield: 6).
5.6%). The conversion of this reaction was 65.6%, and the catalytic activity was 4,320 turnovers. The absolute configuration of the product was (R) -form and the optical purity was 95.5% ee.

【0143】〔実施例50〕 (R)−4−メチル−2−オキセタノンの製造:[Ru
−I1.5 −{(S)−SEGPHOS)}]2 (OT
s)36.75 mg(0.0364 mmol)、4−メチレン−2−オキ
セタノン20.0g (238.1 mmol) を用いたほかは実施例4
8と同様に反応を行い、標題の化合物13.88g(収率67.7
8 %)を得た。この反応の転化率は68.79 %、触媒活性
はターンオーバー数4500であった。生成物の絶対配置は
(R)体で光学純度は95.6%e.e.であった。
Example 50 Production of (R) -4-methyl-2-oxetanone [Ru
-I 1.5 -{(S) -SEGPHOS)}] 2 (OT
s) Example 4 except that 36.75 mg (0.0364 mmol) and 20.0 g (238.1 mmol) of 4-methylene-2-oxetanone were used.
The reaction was carried out in the same manner as in Example 8, and the title compound (13.88 g, yield 67.7) was obtained.
8%). The conversion of this reaction was 68.79% and the catalytic activity was 4500 turnovers. The absolute configuration of the product was (R) -form and the optical purity was 95.6% ee.

【0144】〔実施例51〕 (R)−4−メチル−2−オキセタノンの製造:[Ru
−I1.5 −{(S)−SEGPHOS)}]2 (OM
s) 33.98mg(0.0364mmol) 、4−メチレン−2−オキ
セタノン20.42mg (243.1 mmol) を用いたほかは実施例
48と同様に反応を行い、標題の化合物14.55g(収率6
9.6%)を得。この反応の転化率は69.6%、触媒活性は
ターンオーバー数4650であった。生成物の絶対配置は
(R)体で光学純度は94.8%e.e.であった。
Example 51 Production of (R) -4-methyl-2-oxetanone [Ru
-I 1.5 -{(S) -SEGPHOS)}] 2 (OM
s) The reaction was carried out in the same manner as in Example 48 except that 33.98 mg (0.0364 mmol) and 20.42 mg (243.1 mmol) of 4-methylene-2-oxetanone were used to obtain 14.55 g of the title compound (yield: 6).
9.6%). The conversion of this reaction was 69.6%, and the catalytic activity was 4,650 turnovers. The absolute configuration of the product was (R) -form and the optical purity was 94.8% ee.

【0145】〔実施例52〕 (R)−4−メチル−2−オキセタノンの製造:[Ru
−I1.5 −{(S)−SEGPHOS)}]2 (ClO
4 ) 44.65 mg(0.0476 mmol) 、4−メチレン−2−オ
キセタノン20.29mg (241.55 mmol)を用いたほかは実施
例48と同様に反応を行い、標題の化合物 17.59g(収
率84.7%)を得た。この反応の転化率は84.7%、触媒活
性はターンオーバー数4300であった。生成物の絶対配置
は(R)体で光学純度は95.4%e.e.であった。
Example 52 Production of (R) -4-methyl-2-oxetanone: [Ru
-I 1.5 -{(S) -SEGPHOS)}] 2 (ClO
4 ) The reaction was conducted in the same manner as in Example 48 except that 44.65 mg (0.0476 mmol) and 20.29 mg (241.55 mmol) of 4-methylene-2-oxetanone were used to obtain 17.59 g (yield: 84.7%) of the title compound. Was. The conversion of this reaction was 84.7%, and the catalytic activity was 4,300 turnovers. The absolute configuration of the product was (R) -form and the optical purity was 95.4% ee.

【0146】〔実施例53〕 (R)−4−メチル−2−オキセタノンの製造:[Ru
−I1.5 −{(S)−SEGPHOS)}]2 {OS
(O)2 4 9 }25.0 mg (0.0238 mmol)、4−メチ
レン−2−オキセタノン20.34 mg(242.1 mmol) を用
い、水素圧40kg/cm2、反応温度60℃で15時間撹拌したほ
かは実施例48と同様に反応を行い、標題の化合物18.9
9 g (収率91.2%)を得た。この反応の転化率は100
%、触媒活性はターンオーバー数10180 であった。生成
物の絶対配置は(R)体で光学純度は94.4%e.e.であっ
た。
Example 53 Production of (R) -4-methyl-2-oxetanone: [Ru
−I 1.5 − {(S) -SEGPHOS)}] 2 {OS
(O) 2 C 4 F 9 } 25.0 mg (0.0238 mmol) and 4-methylene-2-oxetanone 20.34 mg (242.1 mmol) were stirred at a hydrogen pressure of 40 kg / cm 2 and a reaction temperature of 60 ° C. for 15 hours. The reaction was conducted in the same manner as in Example 48, and the title compound (18.9) was obtained.
9 g (91.2% yield) was obtained. The conversion of this reaction is 100
%, Catalytic activity was 10180 turnovers. The absolute configuration of the product was (R) -form and the optical purity was 94.4% ee.

【0147】〔実施例54〕 (R)−4−メチル−2−オキセタノンの製造:[Ru
−I1.5 −{(S)−SEGPHOS)}]2 {OS
(O)2 8 17}22.85 mg(0.0198 mmol)、4−メチ
レン−2−オキセタノン20.54g(244.5 mmol) を用い、
水素圧40kg/cm2、反応温度60℃で15時間撹拌したほかは
実施例48と同様に反応を行い、標題の化合物18.45 g
(収率87.7%)を得た。この反応の転化率は87.7%、触
媒活性はターンオーバー数10830 であった。生成物の絶
対配置は(R)体で光学純度は93.8%e.e.であった。
Example 54 Production of (R) -4-methyl-2-oxetanone: [Ru
−I 1.5 − {(S) -SEGPHOS)}] 2 {OS
(O) 2 C 8 F 17 } 22.85 mg (0.0198 mmol) and 4-methylene-2-oxetanone 20.54 g (244.5 mmol) were used.
The reaction was carried out in the same manner as in Example 48 except that the mixture was stirred at a hydrogen pressure of 40 kg / cm 2 and a reaction temperature of 60 ° C. for 15 hours, thereby obtaining 18.45 g of the title compound
(87.7% yield). The conversion of this reaction was 87.7%, and the catalyst activity was 10830. The absolute configuration of the product was (R) -form and the optical purity was 93.8% ee.

【0148】〔比較例1〕 (R)−4−メチル−2−オキセタノンの製造:特開平
7−206885号公報に記載されているルテニウム−
ヨ−ド−光学活性ホスフィン錯体を製造し、これを触媒
として用いて光学活性4−メチル−2−オキセタノンを
製造した。すなわち、あらかじめ窒素置換した300 ml容
量の反応容器に、Ru2 Cl4 [(S)−T−BINA
P]2 NEt3 0.57 g (0.632mmol) 、NaI0.95g
(6.34 mmol) )、(C4 9 4 NBr2. 0 mg (0.0
063 mmol) 、塩化メチレン50 ml および蒸留水20 ml を
入れ、室温で44時間攪拌した。反応後、塩化メチレン層
を注射器で採取し、塩化メチレンを減圧留去した後、得
られた錯体を50℃で4 時間減圧乾燥して、Ru−I−
[(S)−T−BINAP]を0.65 g得た。この錯体R
u−I−[(S)−T−BINAP]82.0 mg(0.0794 m
mol) 、4−メチレン−2−オキセタノン20.1 g(239.3
mmol) を用いたほかは実施例12と同様に反応を行
い、標題の化合物10.0 g(収率48.8%)を得た。この反
応の転化率は50.0%、触媒活性はタ−ンオ−バ−数で15
00であった。生成物の絶対配置は(R)体で光学純度は
93.4%e.e. であった。
Comparative Example 1 Production of (R) -4-methyl-2-oxetanone: Ruthenium described in JP-A-7-206885
An iodo-optically active phosphine complex was produced, and this was used as a catalyst to produce optically active 4-methyl-2-oxetanone. That is, Ru 2 Cl 4 [(S) -T-BINA was added to a 300 ml reaction vessel which had been purged with nitrogen in advance.
P] 2 NEt 3 0.57 g (0.632 mmol), NaI 0.95 g
(6.34 mmol)), (C 4 H 9 ) 4 NBr 2.0 mg (0.0
063 mmol), methylene chloride (50 ml) and distilled water (20 ml) were added, and the mixture was stirred at room temperature for 44 hours. After the reaction, the methylene chloride layer was collected with a syringe, methylene chloride was distilled off under reduced pressure, and the obtained complex was dried under reduced pressure at 50 ° C. for 4 hours to obtain Ru-I-.
0.65 g of [(S) -T-BINAP] was obtained. This complex R
uI-[(S) -T-BINAP] 82.0 mg (0.0794 m
mol), 20.1 g of 4-methylene-2-oxetanone (239.3
The reaction was carried out in the same manner as in Example 12 except that (mmol) was used to obtain 10.0 g (yield: 48.8%) of the title compound. The conversion of this reaction was 50.0%, and the catalytic activity was 15% in turnover.
00. The absolute configuration of the product is the (R) form and the optical purity is
93.4% ee.

【0149】〔比較例2〕 (R)−4−メチル−2−オキセタノンの製造:[Ru
I(p−cymene)((S)−T−BINAP)]
I 139. mg (0.119 mmol)、4−メチレン−2−オキセ
タノン 20.0 g (238.1 mmol) を用いたほかは実施例1
2と同様に反応を行い、標題の化合物9.50 g(収率47.5
%)を得た。この反応の転化率は48.0%、触媒活性はタ
−ンオ−バ−数で960 であった。生成物の絶対配置は
(R)体で光学純度は92.8%e.e. であった。
Comparative Example 2 Production of (R) -4-methyl-2-oxetanone: [Ru
I (p-cymene) ((S) -T-BINAP)]
Example 1 except that 139. mg (0.119 mmol) of I and 20.0 g (238.1 mmol) of 4-methylene-2-oxetanone were used.
Reaction was carried out in the same manner as in Example 2 to give 9.50 g of the title compound (yield 47.5 g).
%). The conversion of this reaction was 48.0%, and the catalytic activity was 960 in turnover number. The absolute configuration of the product was (R) -form and the optical purity was 92.8% ee.

【0150】〔比較例3〕 (R)−4−メチル−2−オキセタノンの製造:Ru
(CH3 COO)2 [(S)−T−BINAP]215.5
mg (0.238 mmol)、4−メチレン−2−オキセタノン20.
0 g (238.1 mmol) を用いたほかは実施例12と同様に
反応を行い、標題の化合物11.0 g(収率55.0%)を得
た。この反応の転化率は56.6%、触媒活性はタ−ンオ−
バ−で570 であった。生成物の絶対配置は(R)体で光
学純度は93.6%e.e. であった。
Comparative Example 3 Production of (R) -4-methyl-2-oxetanone: Ru
(CH 3 COO) 2 [(S) -T-BINAP] 215.5
mg (0.238 mmol), 4-methylene-2-oxetanone 20.
The reaction was carried out in the same manner as in Example 12 except that 0 g (238.1 mmol) was used to obtain 11.0 g (yield: 55.0%) of the title compound. The conversion of this reaction was 56.6% and the catalytic activity was turn-on.
It was 570 at the bar. The absolute configuration of the product was (R) -form and the optical purity was 93.6% ee.

【0151】実施例12乃至19,31乃至38、46
乃至50、比較例1乃至3の触媒活性(タ−ンオ−バ−
数)と得られた4−メチル−2−オキセタノンの立体配
置と光学純度(%e. e. )は表1にまとめて示す。
Embodiments 12 to 19, 31 to 38, 46
To 50 and Comparative Examples 1 to 3 (turnover)
) And the steric configuration and optical purity (% ee) of the obtained 4-methyl-2-oxetanone are summarized in Table 1.

【0152】[0152]

【表1】 [Table 1]

【0153】以上の結果より、本発明のルテニウム−ヨ
ード−光学活性ホスフィン錯体[Ru−(I)q −(T
1 ) n (L)]m (T2 p を触媒として用いた実施例
のほうが、従来より知られているルテニウム−光学活性
ホスフィン錯体よりも、はるかに高い速度で反応を進行
させることができ、また、光学純度の高い生成物を得る
ことができることが明らかである。
From the above results, the ruthenium-iodo-optically active phosphine complex of the present invention [Ru- (I) q- (T
1 ) n (L)] m (T 2 ) p can be used as a catalyst to promote the reaction at a much higher rate than the conventionally known ruthenium-optically active phosphine complex. It is also clear that high optical purity products can be obtained.

【0154】[0154]

【発明の効果】本発明の製法によって得られるルテニウ
ム−ヨ−ド−光学活性ホスフィン錯体は、極めて高い触
媒活性を有し、かつ、不斉反応における高い不斉収率、
すなわち、光学純度が高い生成物を得ることができるた
め、経済的に有利な不斉合成用触媒として広く用いるこ
とができるものである。特に、この錯体を触媒として用
いて、4−メチレン−2−オキセタノンを不斉水素化す
ることにより、ポリマ−原料等として有用な光学活性4
−メチル−2−オキセタノンを、短時間で効率良く、し
かも高い光学純度のものとして得ることができる。
The ruthenium-iodine-optically active phosphine complex obtained by the process of the present invention has an extremely high catalytic activity and a high asymmetric yield in an asymmetric reaction.
That is, since a product with high optical purity can be obtained, it can be widely used as an economically advantageous catalyst for asymmetric synthesis. In particular, by using this complex as a catalyst to asymmetrically hydrogenate 4-methylene-2-oxetanone, the optical activity 4 useful as a polymer material or the like is obtained.
-Methyl-2-oxetanone can be efficiently obtained in a short time and at a high optical purity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例20の生成物のLCマススペクトルの全
体を示す図である。
FIG. 1 is a diagram showing the entire LC mass spectrum of the product of Example 20.

【図2】図1のLCマススペクトルの分子量1950〜
2030の部分の拡大図である。
FIG. 2 shows the molecular weight of the LC mass spectrum of FIG.
It is an enlarged view of the part of 2030.

【図3】実施例39で得た[Ru−I1.5 −{(S)−
SEGPHOS)}]2 (OTf)の31P−NMRスペ
クトルを示す図である。
FIG. 3 [Ru-I 1.5 -{(S)-] obtained in Example 39
FIG. 3 is a diagram showing a 31 P-NMR spectrum of (SEGPHOS)}] 2 (OTf).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 萩原 利光 神奈川県平塚市西八幡1丁目4番11号 高 砂香料工業株式会社総合研究所内 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Toshimitsu Hagiwara 1-4-11 Nishi-Hachiman, Hiratsuka-shi, Kanagawa Prefecture Takasago International Corporation

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 式(1) 【化1】 〔Ru−(I)q −(T1 ) n (L)〕m (T2 p ・・・(1) (式中、Lは光学活性2座ホスフィン配位子、T1 はカ
ルボン酸アニオン、T2はハロゲン原子、カルボン酸ア
ニオンを除くアニオンを示し、nは0乃至1,mは1乃
至3,pは0乃至1、qは1又はmが2のとき1乃至
1.5を示す)で表わされるルテニウムーヨードー光学
活性2座ホスフィン錯体。
(1) Formula (1) [Ru- (I) q- (T 1 ) n (L)] m (T 2 ) p (1) wherein L is optical activity A bidentate phosphine ligand, T 1 is a carboxylate anion, T 2 is a halogen atom, an anion excluding a carboxylate anion, n is 0 to 1, m is 1 to 3, p is 0 to 1, and q is 1 Or 1 to 1.5 when m is 2), a ruthenium-iodo optically active bidentate phosphine complex represented by the formula:
【請求項2】 光学活性2座ホスフィン配位子Lが式
(2) 【化2】 (以下、R1 ーBIPHと記すことがある。式中、R1
が炭素数1乃至4の低級アルキル基、炭素数1乃至4の
低級アルコキシ基、炭素数1乃至4の低級アルキルアミ
ノ基およびハロゲン原子からなる群から選ばれる置換基
を有してもよいアリール基または炭素数3乃至8のシク
ロアルキル基、R2 とR3 は各々同一または異なっても
良い水素原子、ハロゲン原子、炭素数1乃至4の低級ア
ルキル基、炭素数1乃至4の低級アルコキシ基又はR2
とR3 が一緒になって5乃至6員環を形成しても良い基
を示す)で表される光学活性な第三級ホスフィンである
請求項1記載のルテニウムーヨードー光学活性2座ホス
フィン錯体。
2. The optically active bidentate phosphine ligand L is represented by the formula (2): (Hereinafter sometimes referred to as R 1 over BIPH in. Formula, R 1
Is a lower alkyl group having 1 to 4 carbon atoms, a lower alkoxy group having 1 to 4 carbon atoms, an aryl group which may have a substituent selected from the group consisting of a lower alkylamino group having 1 to 4 carbon atoms and a halogen atom. Or a cycloalkyl group having 3 to 8 carbon atoms, R 2 and R 3 may be the same or different and each may be a hydrogen atom, a halogen atom, a lower alkyl group having 1 to 4 carbon atoms, a lower alkoxy group having 1 to 4 carbon atoms, or R 2
And R 3 together represent a group which may form a 5- or 6-membered ring). The optically active ruthenium-iodo bidentate phosphine according to claim 1, wherein Complex.
【請求項3】 式(3) [RuI(arene )(L)]I ・・・(3) (式中、areneはベンゼン環を有する炭化水素、L
は請求項1記載の光学活性2座ホスフィン配位子を示
す)で表されるルテニウム−光学活性ホスフィン錯体と
式(4) (T1 )aZ1 ・・・(4) (式中、Z1 はアルカリ金属、アルカリ土類金属を示
し、aはZ1 がアルカリ金属の場合1、Z1 がアルカリ
土類金属の場合2を示し、T1 は請求項1記載の式
(1)の定義と同じ)で表されるカルボン酸塩類または
式(5) Z2 b(T2 )c ・・・(5) (式中、Z2 はアルカリ金属、アルカリ土類金属、アン
モニウム等のモノまたはジカチオン類を示し、T2 はハ
ロゲン原子、カルボン酸を除くモノまたはジアニオン類
を示し、Z2 がモノカチオン類の場合でT2 がモノアニ
オン類の場合にはbおよびcは1であり、Z2 がモノカ
チオン類の場合でT2 がジアニオン類の場合にはbは2
でcは1であり、Z2 がジカチオン類の場合でT2 がジ
アニオン類の場合にはbおよびcは1であり、Z2 がジ
カチオン類の場合でT2 がモノアニオン類の場合にはb
は1でcは2を示す)で表される塩類を極性溶媒中で反
応させることを特徴とする、請求項1又は2記載のルテ
ニウムーヨードー光学活性2座ホスフィン錯体の製法。
3. Formula (3) [RuI (arene) (L)] I (3) wherein arene is a hydrocarbon having a benzene ring, L
Ruthenium is expressed by showing the optically active bidentate phosphine ligand of claim 1 wherein) - optically active phosphine complex of formula (4) (T 1) aZ 1 ··· (4) ( wherein, Z 1 Represents an alkali metal or an alkaline earth metal, a represents 1 when Z 1 is an alkali metal, 2 represents when Z 1 is an alkaline earth metal, and T 1 is defined as the formula (1) according to claim 1. A) a carboxylate represented by the same formula or a formula (5) Z 2 b (T 2 ) c (5) (wherein Z 2 is a mono- or di-cation such as an alkali metal, an alkaline earth metal, and ammonium) And T 2 represents a mono- or dianion other than a halogen atom and a carboxylic acid, b and c are 1 when Z 2 is a monocation and T 2 is a mono-anion, and Z 2 is When T 2 is a dianion in the case of monocations, b is 2
And c is 1; b and c are 1 when Z 2 is a dication and T 2 is a dianion; and when Z 2 is a dication and T 2 is a monoanion. b
3. The method for producing an optically active ruthenium-iodo bidentate phosphine complex according to claim 1 or 2, wherein a salt represented by the formula (1) and c represents 2) is reacted in a polar solvent.
【請求項4】 式(6) [RuI2 (arene )]2 ・・・(6) (式中、areneはベンゼン環を有する炭化水素を表
す)とLで示される式(1)と同じ定義の光学活性2座
ホスフィン配位子と式(4) (T1 )aZ1 ・・・(4) (式中、Z1 、a、T1 は請求項3記載の式(4)の定
義と同じ)で表されるカルボン酸塩類または式(5) Z2 b(T2 )c ・・・(5) (式中、Z2 、b、T2 、cは請求項3記載の式(5)
の定義と同じ)で表される塩類を極性溶媒中で反応させ
ることを特徴とする、請求項1又は2記載のルテニウム
ーヨードー光学活性2座ホスフィン錯体の製法。
4. The same definition as in formula (1) represented by formula (6) [RuI 2 (arene)] 2 ... (6) wherein arene represents a hydrocarbon having a benzene ring. And an optically active bidentate phosphine ligand of the formula (4) (T 1 ) aZ 1 ... (4) wherein Z 1 , a and T 1 are the same as defined in the formula (4) according to claim 3. A carboxylate represented by the same formula) or a formula (5) Z 2 b (T 2 ) c (5) (where Z 2 , b, T 2 , and c are the formula (5) )
3. The method for producing an optically active ruthenium-iodo bidentate phosphine complex according to claim 1 or 2, wherein the salt represented by the formula (1) is reacted in a polar solvent.
【請求項5】 請求項1又は2記載のルテニウム−ヨ−
ド−光学活性2座ホスフィン錯体を触媒とし、4−メチ
レン−2−オキセタノンを不斉水素化することを特徴と
する光学活性4−メチル−2−オキセタノンの製造方
法。
5. The ruthenium-iodo according to claim 1 or 2.
A process for producing optically active 4-methyl-2-oxetanone, comprising asymmetrically hydrogenating 4-methylene-2-oxetanone using a de-optically active bidentate phosphine complex as a catalyst.
【請求項6】 光学活性2座ホスフィン配位子Lが、 式(2)のR2 とR3 が一緒になって6員環のベンゼ
ン環を形成した式(7)(R1 ーBINAP) 【化3】 (ここでR1 は炭素数1乃至4の低級アルキル基、炭素
数1乃至4の低級アルコキシ基、炭素数1乃至4の低級
アルキルアミノ基およびハロゲン原子からなる群から選
ばれる置換基を有してもよいアリ−ル基または炭素数3
乃至8のシクロアルキル基を示す)で表される光学活性
な第三級ホスフィンと 式(2)のR2 とR3 が一緒になって6員環のシクロ
ヘキシル環を形成した式(8)(H8 −R1 ーBINA
P) 【化4】 (式中、R1 は炭素数1乃至4の低級アルキル基、炭素
数1乃至4の低級アルコキシ基、炭素数1乃至4の低級
アルキルアミノ基およびハロゲン原子からなる群から選
ばれる置換基を有してもよいアリ−ル基または炭素数3
乃至8のシクロアルキル基を示す)で示される光学活性
な第三級ホスフィンと 式(2)のR2 とR3 が一緒になって5員環の1,3
−ジオキソラン環を形成した式(9)(R1 ーSEGP
HOS) 【化5】 (式中、R1 は炭素数1乃至4の低級アルキル基、炭素
数1乃至4の低級アルコキシ基、炭素数1乃至4の低級
アルキルアミノ基およびハロゲン原子からなる群から選
ばれる置換基を有してもよいアリ−ル基または炭素数3
乃至8のシクロアルキル基を示す)で示される光学活性
な第三級ホスフィンから選ばれる一種である請求項1ま
たは2記載のルテニウムーヨードー光学活性ホスフィン
錯体。
6. An optically active bidentate phosphine ligand L represented by the formula (7) wherein R 2 and R 3 in the formula (2) together form a 6-membered benzene ring (R 1 -BINAP) Embedded image (Where R 1 has a substituent selected from the group consisting of a lower alkyl group having 1 to 4 carbon atoms, a lower alkoxy group having 1 to 4 carbon atoms, a lower alkylamino group having 1 to 4 carbon atoms, and a halogen atom. Aryl group or 3 carbon atoms
Wherein R 2 and R 3 of the formula (2) together with an optically active tertiary phosphine represented by the following formulas (8) to (8) represent a cycloalkyl group of 6 members: H 8 -R 1 over BINA
P) (Wherein, R 1 has a substituent selected from the group consisting of a lower alkyl group having 1 to 4 carbon atoms, a lower alkoxy group having 1 to 4 carbon atoms, a lower alkylamino group having 1 to 4 carbon atoms, and a halogen atom. Aryl group or carbon number 3
And R 2 and R 3 of the formula (2) together form an optically active tertiary phosphine represented by the following formula:
Formula (9) having a dioxolane ring (R 1 -SEGP)
HOS) (Wherein, R 1 has a substituent selected from the group consisting of a lower alkyl group having 1 to 4 carbon atoms, a lower alkoxy group having 1 to 4 carbon atoms, a lower alkylamino group having 1 to 4 carbon atoms, and a halogen atom. Aryl group or carbon number 3
3 to 8), wherein the compound is one selected from optically active tertiary phosphines represented by the following formulas (1) to (3).
【請求項7】 請求項6記載のルテニウム−ヨ−ド−光
学活性ホスフィン錯体を触媒とする請求項5記載の光学
活性4−メチル−2−オキセタノンの製造方法。
7. The method for producing optically active 4-methyl-2-oxetanone according to claim 5, wherein the ruthenium-iodine-optically active phosphine complex according to claim 6 is used as a catalyst.
【請求項8】 式(10) 【化6】 [RuI(arene )(R1 −BINAP)]I ・・・(10) (式中、areneはベンゼン環を有する炭化水素、R
1 −BINAPは式(7)を示す)で表されるルテニウ
ム−ヨード錯体と式(4) (T1 )aZ1 ・・・(4) (式中、Z1 、a、T1 は請求項3記載の式(4)の定
義と同じ)で表されるカルボン酸塩類または式(5) Z2 b(T2 )c ・・・(5) (式中、Z2 、b、T2 、cは請求項3記載の式(5)
の定義と同じ)で表される塩類を極性溶媒中で反応させ
ることを特徴とする、請求項3記載のルテニウム−ヨ−
ド−光学活性2座ホスフィン錯体の製法。
8. [RuI (arene) (R 1 -BINAP)] I (10) wherein arene is a hydrocarbon having a benzene ring, R
1- BINAP represents a ruthenium-iodo complex represented by the formula (7)) and a formula (4) (T 1 ) aZ 1 ... (4) (wherein Z 1 , a and T 1 are claims) (5) Z 2 b (T 2 ) c (5) wherein Z 2 , b, T 2 , c is the expression (5) according to claim 3
Wherein the salt represented by the formula (1) is reacted in a polar solvent.
Preparation of de-optically active bidentate phosphine complexes.
【請求項9】 式(6) [RuI2 (arene )]2 ・・・(6) (式中、areneはベンゼン環を有する炭化水素を表
す)で表されるルテニウム−ヨード錯体とR1 −BIN
APで示される光学活性ホスフィンと前記式(4)又は
式(5)で表される塩類とを極性溶媒中で反応させるこ
とを特徴とする、請求項4記載のルテニウム−ヨ−ド−
光学活性2座ホスフィン錯体の製法。
9. A ruthenium-iodo complex represented by the formula (6) [RuI 2 (arene)] 2 ... (6) wherein arene represents a hydrocarbon having a benzene ring, and R 1- BIN
The ruthenium-iodide according to claim 4, wherein the optically active phosphine represented by AP is reacted with the salt represented by the formula (4) or (5) in a polar solvent.
A method for producing an optically active bidentate phosphine complex.
【請求項10】 式(11) 【化7】 [RuI(arene )(R1 ーSEGPHOS)]I ・・・(11) (式中、areneはベンゼン環を有する炭化水素、R
1 ーSEGPHOSは請求項6の式(9)の定義と同
じ)で表されるルテニウムー光学活性三級ホスフィン錯
体と前記式(5)で表される塩類を極性溶媒中で反応さ
せることを特徴とする請求項3記載のルテニウム−ヨ−
ド−光学活性2座ホスフィン錯体の製法。
10. A compound represented by the formula (11): [RuI (arene) (R 1 -SEGPHOS)] I (11) wherein arene is a hydrocarbon having a benzene ring, R
1 -SEGPHOS is the same as defined in the formula (9) of claim 6), wherein a ruthenium-optically active tertiary phosphine complex represented by the formula (5) is reacted with a salt represented by the formula (5) in a polar solvent. The ruthenium-yo- according to claim 3,
Preparation of de-optically active bidentate phosphine complexes.
【請求項11】 式(6) [RuI2 (arene )]2 ・・・(6) (式中、areneはベンゼン環を有する炭化水素を表
す)で表されるルテニウム錯体とR1 −SEGPHOS
(請求項6の式(9)の定義と同じ)で示される光学活
性ホスフィンと前記式(5)で表される塩類とを極性溶
媒中で反応させることを特徴とする、請求項4記載のの
ルテニウム−ヨ−ド−光学活性ホスフィン錯体の製法。
11. A ruthenium complex represented by the formula (6) [RuI 2 (arene)] 2 ... (6), wherein arene represents a hydrocarbon having a benzene ring, and R 1 -SEGPHOS.
5. The method according to claim 4, wherein the optically active phosphine represented by the formula (9) is reacted with the salt represented by the formula (5) in a polar solvent. For producing a ruthenium-iodine-optically active phosphine complex of
JP10142233A 1998-05-08 1998-05-08 Ruthenium-optically active phosphine complex, its production, and production of optically active 4-methyl-2-oxetanone by using the same Pending JPH11322734A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10142233A JPH11322734A (en) 1998-05-08 1998-05-08 Ruthenium-optically active phosphine complex, its production, and production of optically active 4-methyl-2-oxetanone by using the same
DE69933904T DE69933904T2 (en) 1998-05-08 1999-05-07 Ruthenium-iodo optically active phosphine complex
EP99401120A EP0955303B1 (en) 1998-05-08 1999-05-07 Ruthenium-iodo-optically active phosphine complex
US09/307,750 US6043380A (en) 1998-05-08 1999-05-10 Ruthenium-I0D0-optically active phosphine complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10142233A JPH11322734A (en) 1998-05-08 1998-05-08 Ruthenium-optically active phosphine complex, its production, and production of optically active 4-methyl-2-oxetanone by using the same

Publications (1)

Publication Number Publication Date
JPH11322734A true JPH11322734A (en) 1999-11-24

Family

ID=15310531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10142233A Pending JPH11322734A (en) 1998-05-08 1998-05-08 Ruthenium-optically active phosphine complex, its production, and production of optically active 4-methyl-2-oxetanone by using the same

Country Status (1)

Country Link
JP (1) JPH11322734A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008503507A (en) * 2004-06-25 2008-02-07 ロンザ ア−ゲ− Process for the preparation of asymmetrically substituted biaryldiphosphines
JP2008503508A (en) * 2004-06-25 2008-02-07 ロンザ ア−ゲ− Process for the preparation of asymmetrically substituted biaryldiphosphines
JP2008503506A (en) * 2004-06-25 2008-02-07 ロンザ ア−ゲ− Process for the preparation of asymmetrically substituted biaryldiphosphines

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008503507A (en) * 2004-06-25 2008-02-07 ロンザ ア−ゲ− Process for the preparation of asymmetrically substituted biaryldiphosphines
JP2008503508A (en) * 2004-06-25 2008-02-07 ロンザ ア−ゲ− Process for the preparation of asymmetrically substituted biaryldiphosphines
JP2008503506A (en) * 2004-06-25 2008-02-07 ロンザ ア−ゲ− Process for the preparation of asymmetrically substituted biaryldiphosphines

Similar Documents

Publication Publication Date Title
Mashima et al. Cationic BINAP-Ru (II) halide complexes: highly efficient catalysts for stereoselective asymmetric hydrogenation of. alpha.-and. beta.-functionalized ketones
EP0592552B1 (en) Chiral phospholanes via chiral 1,4-diol cyclic sulfates
EP0918781B1 (en) Asymmetric synthesis catalyzed by transition metal complexes with cyclic chiral phosphine ligands
DE69106703T2 (en) CHIRAL PHOSPHOLAN TRANSITION METAL CATALYSTS.
US7378560B2 (en) Ruthenium complex and process for producing tert-alkyl alcohol therewith
KR100384411B1 (en) Chiral ligand in heteroaromatic diphosphine
JPH0782282A (en) New bisphosphine for asymmetrical hydrogenation catalyst
JP2736947B2 (en) Water-soluble alkali metal sulfonic acid salt-substituted binaphthylphosphine transition metal complex and asymmetric hydrogenation method using the same
JPH0713076B2 (en) Rhodium-diphosphine complex and method for producing the same
JP3313805B2 (en) Phosphine compounds and transition metal-phosphine complexes having the same as ligands
US5202473A (en) Ruthenium-binap asymmetric hydrogenation catalyst
US6043380A (en) Ruthenium-I0D0-optically active phosphine complex
CN101253183B (en) Process for preparing optically active diphosphanes
US6583312B2 (en) Process for preparing optically active trimethyllactic acid and its esters
US6333291B1 (en) Optically active diphosphine compound, production intermediate thereof, transition metal complex containing the compound as ligand and asymmetric hydrogenation catalyst containing the complex
JPH11322734A (en) Ruthenium-optically active phosphine complex, its production, and production of optically active 4-methyl-2-oxetanone by using the same
US7015342B2 (en) Ferrocenyl ligands and method for the production of such ligands
EP1419815B1 (en) Phosphine compounds, transition metal complexes with the compounds contained as ligands therein, and asymmetric synthesis catalysts containing the complexes
JP3919268B2 (en) Ruthenium-optically active phosphine complex, process for producing the same, and process for producing optically active 4-methyl-2-oxetanone using the same
JP3441605B2 (en) Novel optically active diphosphine, transition metal complex obtained from the compound, and method for obtaining optically active substance in the presence of the complex
CA2176304C (en) Optically active phosphines, their preparation and their metal complexes, and use in asymmetric synthesis
JP3437623B2 (en) Method for producing ruthenium-iodo-optically active phosphine complex and method for producing optically active 4-methyl-2-oxetanone using this complex
JPH11302226A (en) Production of optically active alcohol
JP3640565B2 (en) Ruthenium-optically active phosphine complex mixture, process for producing the same, and asymmetric hydrogenation catalyst using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090303