JPH11320072A - Differential pressure casting method - Google Patents

Differential pressure casting method

Info

Publication number
JPH11320072A
JPH11320072A JP13235698A JP13235698A JPH11320072A JP H11320072 A JPH11320072 A JP H11320072A JP 13235698 A JP13235698 A JP 13235698A JP 13235698 A JP13235698 A JP 13235698A JP H11320072 A JPH11320072 A JP H11320072A
Authority
JP
Japan
Prior art keywords
molten metal
pressure
gas
hot water
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13235698A
Other languages
Japanese (ja)
Inventor
Minoru Uozumi
稔 魚住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP13235698A priority Critical patent/JPH11320072A/en
Publication of JPH11320072A publication Critical patent/JPH11320072A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PROBLEM TO BE SOLVED: To make controlled returning molten metal by reducing pressure in a cavity, sucking the molten metal through a molten metal supplying tube, filling it into the cavity, holding till solidified, and when passing the molten metal through the molten metal supplying tube and introducing a prescribed quantity of inert gas, releasing the pressure reduction of the cavity and opening the die. SOLUTION: The pressure in an air-tight chamber 4 is reduced from a communicating hole 4-3 with a pressure reducing device 8, and the molten metal 2 is filled up into the cavity 5-3 through a molten metal supplying tube 3. The tip part of a lance 6-1 is lowered to the position faced to the lower part of the molten metal supplying tube 3 after the elapse of time corresponding to the solidification and a valve is opened and the gas is pushed into the molten metal 2 with a fixed quantity gas supplying device. The gas if formed as bubble 6-3 and comes in the molten metal supplying tube 3 and raised to the solidified portion of a product and the unsolidified molten metal 2 is returned back into a molten metal vessel 1 according to the introducing gas. At the time of introducing the prescribed gas quantity, the pressure reduction of the air-tight chamber 4 is released and the die is opened and the product is taken out to complete the casting. Natural dropping is prevented the reduced pressure is kept also, the oxidation of the molten metal 2 is prevented with the inert gas atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、差圧鋳造方法に関
する。
[0001] The present invention relates to a differential pressure casting method.

【0002】[0002]

【従来の技術】炉を加圧して溶湯を鋳型に押し上げる加
圧式差圧鋳造(低鋳)や、鋳型を減圧して溶湯を吸い上
げる減圧式差圧鋳造は、差圧で鋳込みが制御され、品質
の良い鋳造品を提供できる。いずれも鋳造完了時に差圧
を解除し未凝固溶湯を炉に戻すので、製品歩留りが高い
特徴がある。減圧式は充填能力に優れるので、中子の少
ない薄肉部品に適用され、加圧式はその他の中子の多い
部分、超大物製品と、それぞれ適切に使い分けている。
2. Description of the Related Art Pressure differential pressure casting (low casting), in which a furnace is pressurized to press molten metal into a mold, and pressure reducing differential pressure casting, in which a mold is depressurized and a molten metal is sucked, are controlled by differential pressure, and the quality is controlled. Can provide good castings. In any case, the differential pressure is released when the casting is completed, and the unsolidified molten metal is returned to the furnace, so that the product yield is high. The decompression type is applied to thin-walled parts with few cores because of its excellent filling capacity, and the pressure type is appropriately used for other parts with many cores and super-large products.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の差圧鋳
造方法には、つぎの問題があった。鋳造完了時、差圧を
解除しても製品と溶湯で気密状態が形成され、溶湯の戻
りが起こらず、型抜き等で気密が破られると自然落下す
る。かなりの高さを落下するので炉内溶湯が攪拌され、
底に溜まった介在物が溶湯中に巻き込まれたり、落下途
上で酸化物を形成し新たな介在物を形成したりする。こ
れら溶湯中に巻き込まれた介在物は、次回の鋳込みで製
品内に入り込み、欠陥となる。金網等のフィルタで防止
をはかるが、限界があった。自然落下の防止のため差圧
の解除をゆっくり行うことも試みられたが、上記のよう
に溶湯が気密状態であるので作用を及ぼさなかった。給
湯管の鋳型接合部に閉塞空間を設け、ここに気体の導入
孔を設け、鋳造終了後気体を導入し、給湯管内の溶湯を
静かに下げることも提案されている。しかし、この機構
での気体導入孔は溶湯の侵入で閉塞したりするので、閉
塞空間の溶湯面の上限を決める液面センサを設置して溶
湯の侵入を防止している。また、鋳込み、保持中はこの
空間から気体が漏れると製品内に入りガス欠陥となるの
で、閉塞空間の溶湯面の下限を決める液面センサも取り
付けられており、安定な運転には問題であった。また、
この構造の給湯管は、形状も複雑で寿命等も問題であっ
た。また、鋳型の湯口近傍に多孔質の気体導入口を設け
た場合もあるが、直接溶湯と接触することと鋳込み毎に
大気にさらされる事で、耐久性に問題があった。また、
型自体にセットされるので、型の寿命にも影響を与えて
いた。本発明の目的は、安定で、給湯系の構造を変えな
いで制御された戻し湯ができる差圧鋳造法を加圧式、減
圧式それぞれに提供することにある。また、同時に酸化
防止のための不活性雰囲気の形成を提供することにあ
る。
However, the conventional differential pressure casting method has the following problems. At the completion of casting, even if the differential pressure is released, an airtight state is formed between the product and the molten metal, the molten metal does not return, and falls when the airtightness is broken by die cutting or the like. As it falls a considerable height, the molten metal in the furnace is stirred,
Inclusions accumulated at the bottom are caught in the molten metal, or form oxides during the fall to form new inclusions. The inclusions entangled in the molten metal enter the product in the next casting and become defects. A filter such as a wire mesh is used to prevent this, but there are limitations. Attempts were made to release the differential pressure slowly to prevent natural fall, but this had no effect since the melt was airtight as described above. It has also been proposed to provide a closed space at a mold joining portion of a hot water supply pipe, provide a gas introduction hole therein, introduce a gas after completion of casting, and gently lower the molten metal in the hot water supply pipe. However, since the gas introduction hole in this mechanism is closed by the intrusion of the molten metal, a liquid level sensor that determines the upper limit of the molten metal level in the closed space is installed to prevent the intrusion of the molten metal. Also, during casting and holding, if gas leaks from this space, it will enter the product and cause gas defects, so a liquid level sensor that determines the lower limit of the molten metal level in the closed space is also installed, which is a problem for stable operation. Was. Also,
The hot water supply pipe of this structure has a complicated shape and has a problem in life and the like. In some cases, a porous gas inlet is provided near the gate of the mold, but there is a problem in durability due to direct contact with the molten metal and exposure to the air at each casting. Also,
Since it was set on the mold itself, it also affected the life of the mold. SUMMARY OF THE INVENTION An object of the present invention is to provide a differential pressure casting method capable of producing a controlled return hot water without changing the structure of a hot water supply system, for both a pressure type and a pressure reducing type. Another object of the present invention is to provide an inert atmosphere for preventing oxidation.

【0004】[0004]

【課題を解決するための手段】上記目的を達成する本発
明はつぎの通りである。 (1) 鋳型内キャビティを減圧し給湯管を経由して溶
湯容器の溶湯を前記キャビティに吸い上げ鋳型内キャビ
ティに充填し、製品凝固まで保持し、その後給湯管内に
溶湯内を通して不活性気体を所定流量で導入し、所定量
導入した時点で鋳型内キャビティの減圧を解除し、型開
きを行う、工程からなる減圧式差圧鋳造法。 (2) 気密炉を加圧し鋳型内キャビティに連通する給
湯管を経由して溶湯を鋳型内キャビティに充填し、製品
凝固まで保持し、その後気密炉内の圧力をあらかじめ設
定した速度で低下させて大気圧に戻し、このとき同時に
給湯管内に溶湯内を通して不活性気体を気密炉内の圧力
が大気圧に達する時間に合わせて所定量を所定流量で導
入し、気密炉内の圧力が大気圧に達した後型開きを行い
製品を取り出すことを特徴とする加圧式差圧鋳造法。
The present invention to achieve the above object is as follows. (1) The cavity in the mold is depressurized, the molten metal in the molten metal container is sucked into the cavity via the hot water supply pipe, filled into the cavity in the mold, and maintained until the product solidifies, and then the inert gas is passed through the molten metal into the hot water supply pipe at a predetermined flow rate And a pressure-reducing differential pressure casting method comprising the steps of releasing the pressure in the cavity in the mold and opening the mold when a predetermined amount is introduced. (2) The molten metal is filled into the mold cavity via a hot water supply pipe communicating with the cavity in the mold by pressurizing the hermetic furnace, holding until the product solidifies, and then reducing the pressure in the hermetic furnace at a preset speed. At the same time, the inert gas is introduced into the hot water supply pipe at a predetermined flow rate at the same time as the pressure in the hermetic furnace reaches the atmospheric pressure, and the pressure in the hermetic furnace is raised to the atmospheric pressure. A pressure-type differential pressure casting method characterized in that the mold is opened and the product is taken out after reaching.

【0005】上記(1)または(2)の方法では、従来
外部の差圧だけでは制御できなかった戻し湯が完全に制
御可能であって、さらに減圧、加圧それぞれに対して減
圧の保持、加圧の漸減等を付与すること、自然落下の防
止、をはかることができ、安定な運転が可能となる。ま
た、減圧、加圧の双方にそれぞれに適用する方式によっ
て、製品の特徴に合わせて鋳造法の選択が従来と同じく
可能である。また、導入気体が溶湯中を浮上していくの
で、十分に溶湯から加熱され給湯管の上部の空間の温度
が、従来のような直接空間に導入する場合や上部空間近
傍から溶湯を介して供給する方法に比べ安定し、気体の
量だけで湯戻しが制御できる利点がある。すなわち、空
間内部の湯面センサ等は不用である。また、気体の導入
がランスの位置変更によって行われ、鋳込みから保持中
に気体の混入の可能性が皆無となり、従来の固定式の導
入口のもつ問題が解消された。また、溶湯面を保護する
不活性ガスも溶湯容器内、給湯管内の両方に導入可能と
なった。気体導入装置が給湯管等の鋳造装置とは別体で
あり、保全性に優れる。また、この気体導入装置によっ
て背圧から溶湯容器内の溶湯レベルが常時測定可能であ
り、実施例では圧力制御に利用したが、これは特に密閉
炉体であるので、加圧式では従来の推測方式に比べ実測
のため安定な鋳造が実現できる。また、気体導入装置自
体も自己診断可能で、予期しない閉塞や突然のリークの
検出が可能で、安定な操業が可能となる。さらに、量産
前の試験鋳造において、時間を決めて気体を給湯管を経
由して型キャビティ内に導入することができるので、製
品凝固の進行がトラップ気泡の位置で確実に継続的に実
測できる。また、溶湯の脱ガスも促進可能である。
[0005] In the above method (1) or (2), the returning hot water, which could not be controlled only by the external pressure difference, can be completely controlled. It is possible to provide a gradual decrease in pressurization and the like, and to prevent a natural fall, thereby enabling a stable operation. In addition, by adopting a method that is applied to both pressure reduction and pressure application, it is possible to select a casting method according to the characteristics of the product as in the past. In addition, since the introduced gas floats in the molten metal, it is sufficiently heated from the molten metal and the temperature of the space above the hot water supply pipe is supplied through the molten metal from the case where it is directly introduced into the conventional space or from the vicinity of the upper space. There is an advantage that the hot water can be controlled only by the amount of gas and is more stable than the method of performing hot water refining. That is, a level sensor or the like inside the space is unnecessary. Further, the introduction of the gas is performed by changing the position of the lance, and there is no possibility that the gas is mixed during the casting to the holding, thereby solving the problem of the conventional fixed type introduction port. In addition, an inert gas for protecting the molten metal surface can be introduced into both the molten metal container and the hot water supply pipe. The gas introduction device is separate from the casting device such as a hot water supply pipe, and is excellent in maintainability. Further, the level of the molten metal in the molten metal container can be constantly measured from the back pressure by this gas introducing device. In the embodiment, the molten metal level is used for pressure control. Stable casting can be realized because of actual measurement. In addition, the gas introducing device itself can perform a self-diagnosis, detect an unexpected blockage or a sudden leak, and perform a stable operation. Furthermore, in test casting before mass production, since gas can be introduced into the mold cavity via the hot water supply pipe at a fixed time, the progress of product solidification can be reliably and continuously measured at the position of the trap bubble. In addition, degassing of the molten metal can be promoted.

【0006】[0006]

【発明の実施の形態】本発明の実施例に係る鋳造方法を
説明する。図1は本発明を減圧式差圧鋳造へ適用した場
合の実施例で、鋳造完了時の湯戻しの開始の場合を示
す。図1において、1は溶湯容器(加圧の場合の炉に対
応)、2は溶湯、3は給湯管、4は気密チャンバであ
る。気密チャンバ4は、定盤4−1、気密ボックス4−
2、で構成され、連通口4−3で図示していない真空ポ
ンプ等で構成される減圧装置に接続する。5は鋳型で、
下型5−1、上型5−2で構成され、給湯管3に連通す
るキャビティ5−3を形成する。6は気体導入装置で、
吹き込みランス(以下ランス)6−1、シリンダ等で構
成されるランス移動機構6−2で構成される。7は気体
導入装置の制御盤で、加圧不活性気体源8とランス6−
1を接続している。6−3は導入気体の気泡を示す。ま
た制御盤7には、図示していない鋳造装置からの気体導
入開始信号が入力される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A casting method according to an embodiment of the present invention will be described. FIG. 1 shows an embodiment in which the present invention is applied to a reduced-pressure differential pressure casting, and shows a case in which refilling is started upon completion of casting. In FIG. 1, 1 is a molten metal container (corresponding to a furnace in the case of pressurization), 2 is molten metal, 3 is a hot water supply pipe, and 4 is an airtight chamber. The airtight chamber 4 includes a surface plate 4-1 and an airtight box 4-
The communication port 4-3 is connected to a pressure reducing device such as a vacuum pump (not shown). 5 is a mold,
A cavity 5-3 is formed by the lower mold 5-1 and the upper mold 5-2 and communicates with the hot water supply pipe 3. 6 is a gas introduction device,
It comprises a blowing lance (hereinafter referred to as a lance) 6-1 and a lance moving mechanism 6-2 including a cylinder and the like. Reference numeral 7 denotes a control panel of the gas introduction device, which includes a pressurized inert gas source 8 and a lance 6
1 are connected. 6-3 indicates bubbles of the introduced gas. The control panel 7 receives a gas introduction start signal from a casting device (not shown).

【0007】図2は本発明を加圧式差圧鋳造へ適用した
場合の実施例で、図1と同じ工程の状況を示す。図2に
おいて図1と同一番号は同一内容を示す。図2では炉1
が定盤4−1とで気密構造を構成する。加圧気体導入口
1−1は、鋳造機制御盤9を経由して加圧不活性気体源
8に接続されている。6−5は気密シールを内蔵したラ
ンス6−1の挿入口である。図3は減圧式の場合の湯戻
し工程以外の場合の状況を示す。図4は加圧式の場合の
湯戻し工程以外の工程の状況を示す。
FIG. 2 shows an embodiment in which the present invention is applied to a pressure differential pressure casting, and shows the same steps as in FIG. 2, the same numbers as those in FIG. 1 indicate the same contents. In FIG. 2, furnace 1
Constitutes an airtight structure with the surface plate 4-1. The pressurized gas inlet 1-1 is connected to a pressurized inert gas source 8 via a casting machine control panel 9. Reference numeral 6-5 denotes an insertion port of the lance 6-1 having a built-in airtight seal. FIG. 3 shows a situation other than the hot water return step in the case of the reduced pressure type. FIG. 4 shows the status of steps other than the hot water return step in the case of the pressure type.

【0008】図5は図1の気体導入装置の制御盤7の内
容を示す。7−1はCPU(セントラルプロセッサユニ
ット)、メモリー、電源等の電子回路で構成される制御
回路で、気体導入開始信号を鋳造装置制御盤から入力す
る。制御回路7−1は、出力はサーボモータ7−2に出
力され、開閉弁7−4、7−5、7−8に接続され、ま
た気体導入装置6のランス移動機構6−2に接続され
る。7−3は定量気体供給装置で、ピストン7−31が
内蔵されサーボモータ7−2で駆動される。7−7は減
圧弁、7−6は流動調節弁、である。7−9はランスの
背圧を計測する圧力センサで、出力は制御回路7−1に
入力される。図の太線は気体の経路を示し、加圧不活性
気体源8から気体導入装置の制御盤7を経由してランス
6−1に連結される。
FIG. 5 shows the contents of the control panel 7 of the gas introduction device of FIG. A control circuit 7-1 is constituted by an electronic circuit such as a CPU (Central Processor Unit), a memory, and a power supply, and inputs a gas introduction start signal from a control panel of the casting apparatus. The output of the control circuit 7-1 is output to the servomotor 7-2, connected to the on-off valves 7-4, 7-5, 7-8, and connected to the lance moving mechanism 6-2 of the gas introducing device 6. You. Reference numeral 7-3 denotes a fixed-quantity gas supply device, which has a built-in piston 7-31 and is driven by a servomotor 7-2. 7-7 is a pressure reducing valve, and 7-6 is a flow control valve. 7-9 is a pressure sensor for measuring the back pressure of the lance, and the output is input to the control circuit 7-1. The bold line in the figure indicates the path of the gas, and is connected to the lance 6-1 from the pressurized inert gas source 8 via the control panel 7 of the gas introduction device.

【0009】図6は図5の各弁7−4、7−5、7−8
とランス6−1の動作を各工程毎に示した動作図であ
る。○は開、×は閉を示し、ランスの「上」は先端が給
湯管下端より上の位置にあることを、「下」は給湯管の
直下で給湯管内に臨む位置であることを示す。図7は、
図2の加圧式の実施例の鋳造機制御盤9の内容を示す。
図5と同一番号は同一内容を示す。図中、9−1は圧力
制御装置で、圧力パターン発生回路9−2からの設定信
号が入力され、圧力センサ7−9からの測定信号が入力
され、給気弁9−3、排気弁9−4に出力される。ま
た、圧力パターン発生回路9−2からの設定信号は、制
御回路7−1に出力される。加圧不活性気体源8から給
気弁9−3を経由して炉1の加圧気体導入口1−1に接
続に接続され、同時に排気弁9−4にも接続する。圧力
センサ9−5が加圧気体導入口1−1の手前に配置さ
れ、その出力は加圧制御装置9−1に入力される。図8
は図1の実施例の場合(減圧式の場合)の気密チャンバ
4減圧度の変化とランス6−1の気体流量の変化を示す
特性図である。図9は図2の実施例の場合(加圧式の場
合)の気密チャンバ4内の内圧の変化とランス6−1の
流量変化を示す特性図である。
FIG. 6 shows the valves 7-4, 7-5, 7-8 of FIG.
FIG. 6 is an operation diagram showing the operation of the lance 6-1 for each process. O indicates open and X indicates closed, and "up" of the lance indicates that the tip is above the lower end of the hot water supply pipe, and "down" indicates that the position is directly below the hot water supply pipe and faces the inside of the hot water supply pipe. FIG.
The contents of the casting machine control panel 9 of the pressurized embodiment of FIG. 2 are shown.
The same numbers as those in FIG. 5 indicate the same contents. In the figure, reference numeral 9-1 denotes a pressure control device, which receives a setting signal from a pressure pattern generation circuit 9-2, receives a measurement signal from a pressure sensor 7-9, and supplies an air supply valve 9-3 and an exhaust valve 9. -4 is output. The setting signal from the pressure pattern generation circuit 9-2 is output to the control circuit 7-1. It is connected from the pressurized inert gas source 8 to the pressurized gas inlet 1-1 of the furnace 1 via the supply valve 9-3, and is also connected to the exhaust valve 9-4 at the same time. The pressure sensor 9-5 is arranged in front of the pressurized gas inlet 1-1, and the output is input to the pressurization control device 9-1. FIG.
FIG. 3 is a characteristic diagram showing a change in the degree of pressure reduction of the airtight chamber 4 and a change in the gas flow rate of the lance 6-1 in the case of the embodiment of FIG. FIG. 9 is a characteristic diagram showing a change in the internal pressure in the hermetic chamber 4 and a change in the flow rate of the lance 6-1 in the case of the embodiment of FIG.

【0010】つぎに、作用を説明する。図1の実施例に
おいて、鋳込み前は図3に示すようにランス6−1は、
その先端が給湯管3の外部の位置にあり、図6の型開き
工程にあって、「上」の位置にある。この時不活性気体
が、加圧不活性気体源8から気体導入装置の制御盤7に
よって図5の減圧弁7−7、流量調節弁7−6、弁7−
8を経由してランス6−1によって溶湯容器1内の溶湯
2中に吹き込まれ、気泡6−3となって溶湯2内を上昇
し、液面から放出される。このとき、気体導入装置の制
御盤7の圧力センサ7−9はランス6−1の背圧を測定
し、制御回路7−1に出力する。このときの背圧はラン
ス6−1の先端の溶湯2中の深さに比例するので、先端
位置を固定すれば溶湯2中の液面高さが測定できる。鋳
造を継続すると、溶湯容器1内の溶湯2が減少し液面高
さが低下するので、背圧による液面高さの測定値は減圧
度の補正、後述の気体導入の補正に使用する。制御回路
7−1では、この液面測定値から導入気体量を予め設定
した演算式、もしくは表から求め、定量気体供給装置7
−3のピストン7−31のストロークを設定し、サーボ
モータ7−2によって後退させる。また、弁7−5は閉
じられ、ランス6−1を「上」の位置に戻した時点で弁
7−4を開いて、ピストン7−31の後退によって定量
気体供給装置7−3に定量の不活性気体を取り込む。弁
7−4は十分な時間経過後閉じる。
Next, the operation will be described. In the embodiment of FIG. 1, before casting, the lance 6-1 is, as shown in FIG.
The tip is at a position outside the hot water supply pipe 3, and is in the "up" position in the mold opening step of FIG. At this time, the inert gas is supplied from the pressurized inert gas source 8 by the control panel 7 of the gas introduction device to the pressure reducing valve 7-7, the flow control valve 7-6, and the valve 7- in FIG.
The air is blown into the molten metal 2 in the molten metal container 1 by the lance 6-1 through the molten metal 8, and rises in the molten metal 2 as bubbles 6-3 and is discharged from the liquid surface. At this time, the pressure sensor 7-9 of the control panel 7 of the gas introducing device measures the back pressure of the lance 6-1 and outputs it to the control circuit 7-1. Since the back pressure at this time is proportional to the depth of the tip of the lance 6-1 in the molten metal 2, the liquid level in the molten metal 2 can be measured by fixing the position of the distal end. When the casting is continued, the molten metal 2 in the molten metal container 1 is reduced and the liquid level is lowered. Therefore, the measured value of the liquid level due to the back pressure is used for correcting the degree of pressure reduction and correcting gas introduction described later. The control circuit 7-1 obtains the amount of gas to be introduced from the liquid level measurement value from a preset arithmetic expression or a table, and obtains the quantitative gas supply device 7.
The stroke of the piston 7-31 is set, and the servo motor 7-2 moves the piston 7-31 backward. Further, the valve 7-5 is closed, and when the lance 6-1 is returned to the “up” position, the valve 7-4 is opened, and the fixed amount gas is supplied to the fixed amount gas supply device 7-3 by retreating the piston 7-31. Intake inert gas. Valve 7-4 closes after a sufficient time has elapsed.

【0011】型締めし、気密ボックス4−2をかぶせ、
気密チャンバ4内を連通口4−3から減圧装置8で減圧
し、溶湯2を給湯管3を経由してキャビティ5−3に充
填する。充填後製品の凝固まで減圧を保持する。図1に
示すように、タイマー等で設定される製品凝固相当時間
で、まず図5の弁7−8を閉じ、ランス6−1を給湯管
3の下端直下でその先端が給湯管3内に臨む位置に下げ
る。弁7−5を開き、制御回路7−1に記憶された予め
設定したパターンで、サーボモータ7−2で気体定量供
給装置7−3のピストン7−31を前進させ、ランス6
−1を経由して気体を溶湯2中に押し出す。
[0011] Close the mold, cover the airtight box 4-2,
The pressure inside the airtight chamber 4 is reduced by the pressure reducing device 8 through the communication port 4-3, and the molten metal 2 is filled into the cavity 5-3 via the hot water supply pipe 3. After filling, the vacuum is maintained until the product solidifies. As shown in FIG. 1, the valve 7-8 in FIG. 5 is first closed and the lance 6-1 is placed immediately below the lower end of the hot water supply pipe 3 and the tip thereof is inserted into the hot water supply pipe 3 at a time corresponding to the product solidification set by a timer or the like. Lower to face. The valve 7-5 is opened, and the piston 7-31 of the gas quantitative supply device 7-3 is advanced by the servo motor 7-2 according to a preset pattern stored in the control circuit 7-1.
The gas is pushed out into the melt 2 via -1.

【0012】押し出された気体は気泡6−3となって給
湯管3内に入り製品凝固部分まで上昇し、大気圧とバラ
ンスする空間が形成される。この結果、給湯管3を含む
給湯系の凝固していない溶湯は、導入気体量に応じて溶
湯容器1中に戻る。すなわち、導入気体量によって戻り
湯の速さが制御できる。また、この時気密チャンバ4内
は減圧を保持しておく。これは気体導入によってのみ戻
り湯を起こさせ、予期しない気密のリークによる自然落
下を防止するためである。保持する減圧度は最高圧その
ままでも、湯口相当減圧度まで低下させてもよく、さら
に徐々に大気圧まで低下させてもよい。いずれにしても
減圧度がそのときの給湯管内溶湯高さ相当以上あればよ
い。実際操業上では最高圧に保持するのが、付加的な制
御が不用な利点がある。ピストン7−31が前進端に達
し、所定の気体量が導入された時点で、弁7−5を閉
じ、気密チャンバ4の減圧を解除し、型開きを行い、製
品を取り出す。また、弁7−8を開き、給湯管3内に不
活性気体を導入し、溶湯酸化を防止する。その後、ラン
ス6−1を上げ、つぎの鋳込みを待つ。この経過は図7
に示される。気体の導入は一定量の場合を示したが、戻
し湯速度を一定にするように漸次流量を増加させるよう
なパターンで実施してもよい。
The extruded gas forms bubbles 6-3 and enters the hot water supply pipe 3 and rises to a solidified portion of the product, thereby forming a space balanced with the atmospheric pressure. As a result, the unsolidified molten metal of the hot water supply system including the hot water supply pipe 3 returns to the molten metal container 1 according to the amount of introduced gas. That is, the speed of the return hot water can be controlled by the amount of the introduced gas. At this time, the inside of the airtight chamber 4 is kept under reduced pressure. This is to prevent the hot water from being returned only by gas introduction and to prevent the natural fall due to an unexpected airtight leak. The degree of reduced pressure to be held may be the maximum pressure as it is, may be reduced to the equivalent of a gate, or may be gradually reduced to atmospheric pressure. In any case, it is sufficient that the degree of pressure reduction is equal to or higher than the molten metal height in the hot water supply pipe at that time. In practice, maintaining the highest pressure has the advantage that no additional control is required. When the piston 7-31 reaches the forward end and a predetermined amount of gas is introduced, the valve 7-5 is closed, the pressure in the airtight chamber 4 is released, the mold is opened, and the product is taken out. Further, the valve 7-8 is opened, and an inert gas is introduced into the hot water supply pipe 3 to prevent oxidation of the molten metal. Thereafter, the lance 6-1 is raised, and the next casting is awaited. This progress is shown in FIG.
Is shown in Although the case of introducing the gas at a constant amount is shown, the gas may be introduced in a pattern in which the flow rate is gradually increased so as to keep the speed of returning hot water constant.

【0013】加圧式の差圧鋳造に対する実施例を図2、
図4に示す。また、制御装置を図7に、特性図を図9に
示す。減圧式とほぼ同じ作用をなすので、加圧式に特異
な事項のみを説明する。減圧式では、凝固後減圧は給湯
管3内の溶湯には直接作用しなかったが、加圧式におい
ては、炉内圧力が直接作用する。図2、図4において、
減圧式の場合の気体導入装置の制御盤7の代わりに、鋳
造機制御盤9が炉内圧および気体導入装置6を制御す
る。図9において、鋳込みから保持の間は圧力パターン
発生回路9−2の設定信号を目標値とし、開いた弁7−
8を経由したランス6−1の背圧を圧力センサ7−9で
測定し、圧力制御装置9−1が給気弁9−3、排気弁9
−4を開閉し、加圧不活性気体源8から不活性気体を炉
内に入れたり大気に排気することで、設定パターンに背
圧を追従させる。
FIG. 2 shows an embodiment for a pressure type differential pressure casting.
As shown in FIG. FIG. 7 shows a control device, and FIG. 9 shows a characteristic diagram. Since the operation is almost the same as that of the depressurization type, only the matters unique to the pressurization type will be described. In the decompression type, the decompression after solidification did not directly act on the molten metal in the hot water supply pipe 3, but in the pressurization type, the furnace pressure directly acts. 2 and 4,
A casting machine control panel 9 controls the furnace pressure and the gas introduction device 6 instead of the control panel 7 of the gas introduction device in the case of the reduced pressure type. In FIG. 9, the setting signal of the pressure pattern generation circuit 9-2 is set to the target value during the period from casting to holding, and the valve 7-
The back pressure of the lance 6-1 via the pressure sensor 8 is measured by the pressure sensor 7-9, and the pressure control device 9-1 controls the supply valve 9-3 and the exhaust valve 9
-4 is opened and closed, and the inert gas is introduced into the furnace from the pressurized inert gas source 8 or exhausted to the atmosphere, so that the back pressure follows the set pattern.

【0014】ランス6−1の背圧から前記のように溶湯
レベルが測定できるので、鋳込み湯面が設定信号に追従
できる。また、このとき気体導入装置6での供給圧力
は、炉1加圧の最高値以上にセットする。また、この結
果、鋳込み毎の炉1内溶湯の減少による補正が不要とな
る。湯戻し工程では、弁7−8を閉じる。同時に、圧力
センサ7−9出力から圧力センサ9−5入力に切り替
え、炉1内圧を直接制御する。
Since the molten metal level can be measured from the back pressure of the lance 6-1 as described above, the level of the cast metal can follow the set signal. At this time, the supply pressure in the gas introducing device 6 is set to be equal to or higher than the maximum value of the furnace 1 pressurization. Further, as a result, it is not necessary to perform correction by reducing the amount of molten metal in the furnace 1 at each casting. In the hot water return step, the valves 7-8 are closed. At the same time, the output of the pressure sensor 7-9 is switched to the input of the pressure sensor 9-5, and the internal pressure of the furnace 1 is directly controlled.

【0015】つぎに、ランス6−1を下げ、気体を給湯
管3に導入する。炉1の内圧を設定パターンで減少さ
せ、同時に定量気体供給装置7−3のピストン7−31
の移動速度を連動させる。この結果、給湯管3内の溶湯
は炉1内圧の減少に従って湯面を下げ、炉1内に戻り、
圧力の減少速度で戻り湯の速度が制御できる。このと
き、給湯管3内の気体圧力は常に1気圧になるように導
入気体流量を設定し、炉1の内圧は給湯管内部の溶湯ヘ
ッド相当の圧力として、所定の速度で減ずるのが望まし
い。すなわち、加圧式では給湯管内に気体を導入するこ
とで、炉1内圧で湯を制御して戻すことを可能にしてあ
る。
Next, the lance 6-1 is lowered, and gas is introduced into the hot water supply pipe 3. The internal pressure of the furnace 1 is reduced in a set pattern, and at the same time, the piston 7-31 of the fixed gas supply device 7-3.
Link the moving speed of As a result, the molten metal in the hot water supply pipe 3 lowers its surface level as the internal pressure of the furnace 1 decreases, and returns to the furnace 1.
The speed of the returning hot water can be controlled by the pressure decreasing speed. At this time, it is desirable that the flow rate of the introduced gas is set so that the gas pressure in the hot water supply pipe 3 is always 1 atm, and the internal pressure of the furnace 1 is reduced at a predetermined speed as a pressure equivalent to the molten metal head inside the hot water supply pipe. That is, in the pressurized type, it is possible to control and return the hot water by the internal pressure of the furnace 1 by introducing gas into the hot water supply pipe.

【0016】減圧式と同じように加圧を保持して給湯管
3に気体を送り込み湯面を下げても、炉1内圧を解除す
る場合給湯管3内の圧力が高いので、溶湯が溶湯容器内
に噴出したり気体が噴き出したりして、本発明の目的を
損なう。また、炉1への加圧を解除した状態では、湯戻
し中の何らかのリークで溶湯の自然落下の可能性があ
り、実際上使用できない。また、この実施例では、背圧
で鋳込みの制御を行ったが、炉1における内圧でも実施
可能である。不活性ガスは炉1加圧と、ランス6−1
と、共通であったが、たとえば給湯管3にはアルゴン
を、炉1内には窒素ガスと、別にしてもよい。図9に加
圧式の圧力変化、流量の変化を示す。湯戻しの場合の導
入気体の流量は、炉1の圧力を一定速度で下げる場合
は、図9のように一定流量でよい。
As in the case of the depressurization type, even if gas is sent to the hot water supply pipe 3 while maintaining the pressurization and the level of the hot water is lowered, the internal pressure of the hot water supply pipe 3 is high when the internal pressure of the furnace 1 is released. Spouting into the inside or gas, spoiling the object of the present invention. Further, in a state in which the pressurization of the furnace 1 is released, there is a possibility that the molten metal will naturally drop due to some leak during the reflow of the molten metal, so that the molten metal cannot be practically used. In this embodiment, the casting is controlled by the back pressure. However, the casting can be performed by the internal pressure in the furnace 1. The inert gas is pressurized in the furnace 1 and the lance 6-1.
For example, argon may be provided in the hot water supply pipe 3 and nitrogen gas may be provided in the furnace 1 separately. FIG. 9 shows a pressure change and a flow rate change in a pressurized system. When the pressure of the furnace 1 is reduced at a constant speed, the flow rate of the introduced gas in the case of hot water reconstitution may be a constant flow rate as shown in FIG.

【0017】両実施例では、気体の導入にピストンタイ
プの定量供給装置を使用したが、他の流量を測定して積
算値を使用する方式でもよい。また、ランス6−1が上
下動する方式であったが、その他水平方向等の移動手段
でもよい。両方式で、ランス6−1はその閉塞を防止す
るため常時気体を流しておくことが望ましい。また、常
時溶湯に浸漬して使用されるので、金属部材よりセラミ
ック製品が望ましい。
In both embodiments, the piston type quantitative supply device is used for introducing the gas. However, another type may be used in which the flow rate is measured and the integrated value is used. Further, the lance 6-1 moves up and down, but other moving means such as a horizontal direction may be used. In both cases, it is desirable that the lance 6-1 always flow a gas in order to prevent the lance 6-1 from being closed. Further, since it is always used by being immersed in the molten metal, a ceramic product is preferable to a metal member.

【0018】[0018]

【発明の効果】請求項1、2の差圧鋳造法によれば、給
湯管内に溶湯を通して不活性気体を導入するので、戻し
湯を制御することができ、減圧、加圧それぞれに対し
て、減圧の保持、加圧の漸減等の付与、自然落下の防
止、をはかることができ、安定な差圧鋳造法を提供でき
る。また、気体の導入がランスの位置変更によって行わ
れるので、鋳込みから保持中に気体の混入の可能性が皆
無となる。気体導入装置自体は、背圧から炉内の溶湯レ
ベルが常時測定可能であり、また、予期しない閉塞や突
然のリークの検出が可能であり、安定な操業が可能であ
る。
According to the differential pressure casting method of claims 1 and 2, since the inert gas is introduced into the hot water supply pipe through the molten metal, the returning hot water can be controlled. It is possible to maintain the reduced pressure, to gradually reduce the applied pressure, and to prevent the natural fall, and to provide a stable differential pressure casting method. Further, since the introduction of the gas is performed by changing the position of the lance, there is no possibility that the gas is mixed during casting and holding. The gas introduction device itself can constantly measure the molten metal level in the furnace from the back pressure, can detect an unexpected blockage or a sudden leak, and can operate stably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】減圧式の場合における、鋳造完了時の湯戻し開
始時の断面図である。
FIG. 1 is a cross-sectional view of a depressurization type at the start of hot water refining upon completion of casting.

【図2】加圧式の場合における、鋳造完了時の湯戻し開
始時の断面図である。
FIG. 2 is a cross-sectional view of a pressurized type at the start of hot water replenishment upon completion of casting.

【図3】減圧式の場合における、湯戻し工程以外の場合
の状況を示す断面図である。
FIG. 3 is a cross-sectional view showing a situation other than a hot water return step in the case of a reduced pressure type.

【図4】加圧式の場合における、湯戻し工程以外の場合
の状況を示す断面図である。
FIG. 4 is a cross-sectional view showing a situation other than a hot water return step in the case of a pressure type.

【図5】図1の気体導入装置の制御盤の内容を示したも
のである。
FIG. 5 shows the contents of a control panel of the gas introduction device of FIG.

【図6】図5における弁とランスの動作を各工程毎に示
した動作図である。
FIG. 6 is an operation diagram showing operations of a valve and a lance in FIG. 5 for each process.

【図7】図2の鋳造機制御盤の内容を示したものであ
る。
FIG. 7 shows the contents of the casting machine control panel of FIG. 2;

【図8】減圧式の場合の気密チャンバ減圧度の変化とラ
ンスの気体流量の変化を示す特性図である。
FIG. 8 is a characteristic diagram showing a change in the degree of pressure reduction of the airtight chamber and a change in the gas flow rate of the lance in the case of the pressure reducing method.

【図9】加圧式の場合の気密チャンバ内の内圧の変化と
ランスの流量変化を示す特性図である。
FIG. 9 is a characteristic diagram showing a change in the internal pressure in the airtight chamber and a change in the flow rate of the lance in the case of the pressurized type.

【符号の説明】[Explanation of symbols]

1 溶湯容器 2 溶湯 3 給湯管 4 気密チャンバ 5 鋳型 5−3 キャビティ 6 気体導入装置 7 気体導入装置の制御盤 8 加圧不活性気体源 9 鋳造機制御盤 Reference Signs List 1 molten metal container 2 molten metal 3 hot water supply pipe 4 airtight chamber 5 mold 5-3 cavity 6 gas introduction device 7 gas introduction device control panel 8 pressurized inert gas source 9 casting machine control panel

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋳型内キャビティを減圧し給湯管を経由
して溶湯容器の溶湯を前記キャビティに吸い上げ鋳型内
キャビティに充填し、製品凝固まで保持し、その後給湯
管内に溶湯内を通して不活性気体を所定流量で導入し、
所定量導入した時点で鋳型内キャビティの減圧を解除
し、型開きを行う、工程からなる減圧式差圧鋳造法。
1. Depressurizing a cavity in a mold, sucking molten metal in a molten metal container into the cavity via a hot water supply pipe, filling the cavity in the mold, holding the product until solidification, and then passing inert gas through the molten metal into the hot water supply pipe. Introduce at a predetermined flow rate,
A reduced-pressure differential pressure casting method comprising the steps of releasing the decompression of the cavity in the mold and opening the mold when a predetermined amount is introduced.
【請求項2】 気密炉を加圧し鋳型内キャビティに連通
する給湯管を経由して溶湯を鋳型内キャビティに充填
し、製品凝固まで保持し、その後気密炉内の圧力をあら
かじめ設定した速度で低下させて大気圧に戻し、このと
き同時に給湯管内に溶湯内を通して不活性気体を気密炉
内の圧力が大気圧に達する時間に合わせて所定量を所定
流量で導入し、気密炉内の圧力が大気圧に達した後型開
きを行い製品を取り出すことを特徴とする加圧式差圧鋳
造法。
2. An airtight furnace is pressurized and filled with a molten metal into a cavity in a mold via a hot water supply pipe communicating with the cavity in the mold. The molten metal is held until solidification of the product. Thereafter, the pressure in the airtight furnace is reduced at a preset speed. At the same time, a predetermined amount of an inert gas is introduced at a predetermined flow rate at the same time as the time when the pressure in the hermetic furnace reaches the atmospheric pressure by passing the inert gas through the molten metal into the hot water supply pipe, and the pressure in the hermetic furnace is increased. A pressure-type differential pressure casting method characterized in that the mold is opened and the product is taken out after reaching the atmospheric pressure.
JP13235698A 1998-05-14 1998-05-14 Differential pressure casting method Pending JPH11320072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13235698A JPH11320072A (en) 1998-05-14 1998-05-14 Differential pressure casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13235698A JPH11320072A (en) 1998-05-14 1998-05-14 Differential pressure casting method

Publications (1)

Publication Number Publication Date
JPH11320072A true JPH11320072A (en) 1999-11-24

Family

ID=15079457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13235698A Pending JPH11320072A (en) 1998-05-14 1998-05-14 Differential pressure casting method

Country Status (1)

Country Link
JP (1) JPH11320072A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012091215A (en) * 2010-10-28 2012-05-17 Honda Motor Co Ltd Low-pressure casting furnace, and low-pressure casting method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012091215A (en) * 2010-10-28 2012-05-17 Honda Motor Co Ltd Low-pressure casting furnace, and low-pressure casting method using the same

Similar Documents

Publication Publication Date Title
JP5076724B2 (en) Suction open / close hot water supply method and hot water supply apparatus
JP2001321914A (en) Metal casting apparatus
KR20110071439A (en) Pressure control casting device and casting method
JPH11320072A (en) Differential pressure casting method
JP2000271723A (en) Holding furnace for casting metal
JP3727444B2 (en) Differential pressure casting apparatus and differential pressure casting method
JP3219778B2 (en) Method and apparatus for casting a metal object in a casting cavity adapted to be filled upward
JPH0924454A (en) Casting device
JP2008073714A (en) Casting method and casting device
JP2008044008A (en) Low-pressure casting apparatus, and inert gas filling method
JPH1147905A (en) Ladle and method for feeding molten metal
JP2002273564A (en) Apparatus for supplying molten metal
JPH05228604A (en) Suction pressurized casting apparatus
JP3794033B2 (en) Vacuum suction casting method and apparatus
JP2003145261A (en) Method for suction-supplying molten metal in die casting machine and suction-supplying apparatus using this method
JPH11147170A (en) Differential pressure casting method
JP2003225748A (en) Vacuum die casting apparatus
JP2005118813A (en) Molten metal supplying method in die casting machine
JPH1147912A (en) Differential pressure casting device
JPH11291015A (en) Method for supplying molten metal and device for supplying molten metal
JPH07290223A (en) Feeding tube type molten metal supplying device and molten metal feeding method
JPH1147911A (en) Differential pressure casting method
JPH1157978A (en) Differential pressure casting apparatus
JPH07155927A (en) Method for supplying molten metal in die casting
JP4431078B2 (en) Holding furnace for molten metal supply