JPH11320053A - Method for controlling fluid of molten steel in continuous casting - Google Patents

Method for controlling fluid of molten steel in continuous casting

Info

Publication number
JPH11320053A
JPH11320053A JP13808698A JP13808698A JPH11320053A JP H11320053 A JPH11320053 A JP H11320053A JP 13808698 A JP13808698 A JP 13808698A JP 13808698 A JP13808698 A JP 13808698A JP H11320053 A JPH11320053 A JP H11320053A
Authority
JP
Japan
Prior art keywords
molten steel
electromagnetic induction
flow
meniscus
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13808698A
Other languages
Japanese (ja)
Inventor
Takehiko Fuji
健彦 藤
Hajime Hasegawa
一 長谷川
Eiichi Takeuchi
栄一 竹内
Takahiro Isono
貴宏 磯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13808698A priority Critical patent/JPH11320053A/en
Publication of JPH11320053A publication Critical patent/JPH11320053A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control method of the fluid of molten steel, with which the impurity at the loose side of a slab with a bending type continuous caster can be reduced. SOLUTION: An electromagnetic induction stirring device is disposed at the interval between (L0 +H/2) to (2m-H/2), (wherein, L0 is the distance from a meniscus of the molten steel to a position, at where the solidified interface in the loose side becomes in the perpendicular state, and H is the height of the electromagnetic induction stirring device). Non-circular flow flowing to the same direction at both long wall sides is formed to the molten steel with the electromagnetic induction device, and the intensity of the non-circular flow is changed changed over into strong flow and weak flow in the following frequency (f). 1 sec <= f <=(10<3> W/F<1/2> ) sec, (wherein, L is the distance from the meniscus of the molten steel to the center of the height of the electromagnetic induction stirring device and F is the thrust of the electromagnetic induction stirring device). Further, instead of change-over into the strong flow and the weak flow, the non-circular flow can be changed over from the one direction to the reverse direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】湾曲モールド型連続鋳造やベ
ンディング型連続鋳造においては、垂直方向に溶鋼を注
入した後、鋳片を横向きに移動させる。以下本明細書で
はこれ等を湾曲式連続鋳造と総称する。本発明はこれ等
の湾曲式連続鋳造でスラブを製造する際の連続鋳造方法
に関する。
BACKGROUND OF THE INVENTION In the continuous casting of a curved mold or a bending type, after casting molten steel in a vertical direction, a slab is moved laterally. Hereinafter, these are collectively referred to as curved continuous casting. The present invention relates to a continuous casting method for producing a slab by such curved continuous casting.

【0002】[0002]

【従来の技術】図3は従来の湾曲式連続鋳造の模式図
で、(A)は縦断面図、(B),(C)はイ−イ横断面
図である。図中1は鋳型、2は溶鋼、3は凝固シェル、
4は浸漬ノズル、5−1,5−2は電磁誘導撹拌装置、
6はフラックスである。
2. Description of the Related Art FIG. 3 is a schematic view of a conventional curved continuous casting, in which (A) is a longitudinal sectional view, and (B) and (C) are II sectional views. In the figure, 1 is a mold, 2 is molten steel, 3 is a solidified shell,
4 is an immersion nozzle, 5-1 and 5-2 are electromagnetic induction stirrers,
6 is a flux.

【0003】浸漬ノズル4から供給される溶鋼2には前
工程例えばタンディッシュ中の溶鋼中の介在物が混入し
易く、また注入に際して溶鋼を覆っているフラックス6
を巻き込み易い。また鋳造に際して浸漬ノズル4内に不
活性ガスを吹き込む事が多いため、溶鋼2はガス気泡を
含有する場合がある。これ等の介在物やフラックスやガ
ス気泡(本明細書では不純物と略記する)は浸漬ノズル
から供給される溶鋼の注入流2’に巻き込まれて溶鋼中
に潜入する。
[0003] In the molten steel 2 supplied from the immersion nozzle 4, inclusions in the molten steel in a pre-process such as a tundish are liable to be mixed, and the flux 6 covering the molten steel during the injection.
Is easy to get involved. In addition, since an inert gas is often blown into the immersion nozzle 4 during casting, the molten steel 2 may contain gas bubbles. These inclusions, flux and gas bubbles (abbreviated as impurities in this specification) are involved in the molten steel injection flow 2 ′ supplied from the immersion nozzle and infiltrate into the molten steel.

【0004】溶鋼中に潜入した不純物は溶鋼よりも軽い
ために溶鋼2中を浮上し、フラックス6に達しフラック
スに吸収されて溶鋼から除去される。図3(A)の7及
び8は不純物の例である。図3(A)のフィックスサイ
ド側の凝固シェル界面に存在する不純物8は、浮上を妨
げるものがないため溶鋼2中を浮上して除去される。一
方ルーズサイド側の凝固シェル界面に存在する不純物7
は、その上部に張り出した凝固シェル3がその上昇を妨
げる。この結果不純物7は除去されないで凝固シェルに
捕えられて、凝固完了後の鋳片の欠陥となるという問題
点がある。
The impurities infiltrated into the molten steel float in the molten steel 2 because they are lighter than the molten steel, reach the flux 6 and are absorbed by the flux and removed from the molten steel. 7A and 8 in FIG. 3A are examples of impurities. The impurities 8 existing at the solidified shell interface on the fixed side in FIG. 3A are removed by floating in the molten steel 2 because there is nothing that hinders the floating. On the other hand, impurities 7 present at the solidified shell interface on the loose side side
As a result, the solidified shell 3 protruding from the upper part prevents the ascent. As a result, there is a problem in that the impurities 7 are not removed and are caught by the solidified shell, resulting in defects of the slab after the solidification is completed.

【0005】湾曲型連続鋳造に特定されるものではない
が、鋳造中の鋳片の長辺面を挟むようにリニアモーター
式の移動磁場を発生させる電磁誘導撹拌装置を配し、凝
固シェル内部の溶鋼に旋回流を形成する技術が知られて
いる。図3の5−1及び5−2はこの電磁誘導撹拌装置
の例である。電磁誘導撹拌装置5−1は移動磁場を形成
する事により5−1側の溶鋼を矢印9−1方向に移動さ
せ、電磁誘導撹拌装置5−2は5−1が形成した移動磁
場とは移動方向が逆の移動磁場を形成する事により5−
2側の溶鋼を矢印9−2方向に移動させる。この結果、
溶鋼2には図の如く例えば左回りの、旋回速度が常に一
定の定常の旋回流が形成される。
[0005] Although not limited to curved continuous casting, a linear motor type electromagnetic induction stirrer for generating a moving magnetic field of a linear motor is provided so as to sandwich the long side surface of the slab being cast, and the inside of the solidified shell is provided. A technique for forming a swirling flow in molten steel is known. 5-1 and 5-2 in FIG. 3 are examples of the electromagnetic induction stirrer. The electromagnetic induction stirrer 5-1 moves the molten steel on the 5-1 side in the direction of arrow 9-1 by forming a moving magnetic field, and the electromagnetic induction stirrer 5-2 moves with the moving magnetic field formed by the 5-1. By forming a moving magnetic field in the opposite direction, 5-
The molten steel on the second side is moved in the direction of arrow 9-2. As a result,
As shown in the figure, a steady swirling flow with a constant swirling speed is formed in the molten steel 2 as shown in the figure.

【0006】本発明者等は、電磁誘導撹拌装置5−1,
5−2により未凝固溶鋼2に矢印9−1,9−2の定常
の旋回流を形成し、図3のルーズサイド側の不純物7を
この旋回流によってフィックスサイド側に移行させ、浮
上除去する試みを行なった。しかしながら本発明者等の
知見によると旋回速度が常に一定の定常の旋回流を用い
る方法では不純物7はフィックスサイドに回らないで局
所的に集積し、不純物7が集積した部分が鋳片に発生す
るという問題点が発生する。この理由は詳かではない
が、定常の旋回流には流速が大きい所と例えば図3
(C)の7’で示した淀んだ所があり、不純物7はフィ
ックスサイド側に移動しないで、淀んだ所7’に集積す
るためと想考される。
The present inventors have proposed an electromagnetic induction stirrer 5-1.
A steady swirling flow of arrows 9-1 and 9-2 is formed in the unsolidified molten steel 2 by 5-2, and the impurities 7 on the loose side in FIG. 3 are transferred to the fixed side by this swirling flow and floated and removed. An attempt was made. However, according to the knowledge of the present inventors, in the method using a steady swirling flow in which the swirling speed is always constant, the impurities 7 are locally accumulated without turning to the fixed side, and a portion where the impurities 7 are accumulated is generated in the slab. The problem occurs. The reason for this is not clear, but the steady swirling flow has a large flow velocity, as shown in FIG.
(C) There is a stagnant place indicated by 7 ', and it is considered that the impurity 7 does not move to the fixed side, but accumulates in the stagnant place 7'.

【0007】スラブ連続鋳造とは異なるが、特開平3−
44858号公報は、円柱または角柱ビレットを連続鋳
造で製造する際に、鋳片中心部のポロシティを伴う最終
凝固部を改善する方法として、例えば鋳型下16m〜2
7mの最終凝固部近傍に電磁誘導撹拌装置を配し、向き
が反転する旋回流を用いる事を記載している。しかしこ
の方法は最終凝固部を改善する方法であるため、電磁誘
導撹拌装置を配する場所は最終凝固部近傍の鋳型下16
〜27mであり、例えば鋳型内溶鋼のメニスカスから2
m以内の、連続鋳造装置の上方に配することはない。
Although different from slab continuous casting, Japanese Patent Application Laid-Open
No. 44858 discloses a method for improving a final solidified portion accompanied by porosity at the center of a slab when a cylindrical or prismatic billet is manufactured by continuous casting.
It describes that an electromagnetic induction stirrer is arranged near the final solidification part of 7 m, and a swirling flow whose direction is reversed is used. However, since this method is a method for improving the final solidified portion, the place where the electromagnetic induction stirrer is provided is located below the mold near the final solidified portion.
From the meniscus of the molten steel in the mold.
m above the continuous casting device.

【0008】[0008]

【発明が解決しようとする課題】本発明は、湾曲式連続
鋳造機でスラブを製造する際に、ルーズサイド側のスラ
ブの不純物を低減し、かつこれ等の欠陥の集積を低減防
止する事ができる溶鋼の連続鋳造方法の提供を課題とし
ている。
SUMMARY OF THE INVENTION It is an object of the present invention to reduce impurities in the slab on the loose side and prevent the accumulation of such defects when manufacturing a slab with a curved continuous casting machine. An object is to provide a continuous casting method for molten steel that can be produced.

【0009】[0009]

【課題を解決するための手段および発明の実施の形態】
図1は本発明の例の模式説明図で、(A)は縦断面、
(B),(C),(D)は横断面図である。本発明は湾
曲式連続鋳造機によるスラブ連続鋳造に関する。本発明
においては、溶鋼のメニスカス10までの距離が下記
(1)式のLとなる高さに鋳片の長辺面を挟むように配
された一対の電磁誘導撹拌装置を用いる。即ち、溶鋼の
メニスカスと電磁誘導撹拌装置の装置高さの中心までの
距離Lが、下記(1)式の範囲内となる位置に電磁誘導
撹拌装置を配する。
Means for Solving the Problems and Embodiments of the Invention
FIG. 1 is a schematic explanatory view of an example of the present invention, and FIG.
(B), (C), and (D) are cross-sectional views. The present invention relates to continuous slab casting by a curved continuous casting machine. In the present invention, a pair of electromagnetic induction stirrers arranged so as to sandwich the long side surface of the slab at a height where the distance to the meniscus 10 of the molten steel is L in the following formula (1) is used. That is, the electromagnetic induction stirrer is disposed at a position where the distance L between the meniscus of the molten steel and the center of the height of the electromagnetic induction stirrer is within the range of the following expression (1).

【0010】 L0+(H/2)<L<2m−(H/2)…………(1) 図1(A)でP点より上方では、ルーズサイドの凝固シ
ェルと溶鋼の界面11は上広がりに傾斜し、P点より下
方では下広がりに傾斜し、P点で垂直になっている。
(1)式でL0はメニスカス10からP点までの距離で
ある。尚P点は計算により、あるいはブレークアウトし
た鋳片の頂部を観察する事等により、鋳造条件と関連づ
けて把握されている。また(1)式でHは電磁誘導撹拌
装置5−1あるいは5−2の装置高さである。
L 0 + (H / 2) <L <2m− (H / 2) (1) Above point P in FIG. 1 (A), the interface 11 between the loose-side solidified shell and the molten steel Is inclined upward and downward below the point P, and downward at the point P.
In the equation (1), L 0 is the distance from the meniscus 10 to the point P. The point P is grasped in association with the casting conditions by calculation or by observing the top of the broken-out slab. In the equation (1), H is the height of the electromagnetic induction stirrer 5-1 or 5-2.

【0011】P点より上方では凝固シェルの界面11近
傍に不純物があっても凝固シェルの界面は上広がりであ
るため上昇浮上が妨げられることなく、浮上除去され
て、凝固シェルに把えられる事がない。このため電磁誘
導撹拌装置はL0+(H/2)よりも下方に配する。ま
た溶鋼の注入流2’に巻き込まれた品質上問題となるよ
うなサイズの不純物はメニスカスから2m下方までは溶
鋼中に潜入するが、それ以上深くまで潜入する事はな
い。このため電磁誘導撹拌装置は2m−(H/2)より
も上方に配する。
Above the point P, even if impurities are present in the vicinity of the interface 11 of the solidified shell, the interface of the solidified shell is widened, so that the rising and floating is not hindered, and the solidified shell is removed by the solidified shell. There is no. For this reason, the electromagnetic induction stirrer is disposed below L 0 + (H / 2). In addition, impurities of a size that causes a problem in quality, which are involved in the molten steel injection flow 2 ′, penetrate into the molten steel up to 2 m below the meniscus, but do not penetrate deeper. For this reason, the electromagnetic induction stirrer is arranged above 2 m- (H / 2).

【0012】本発明では、凝固シェル3の内部の未凝固
溶鋼2に、何れの長辺側も同じ方向に流れる非旋回流9
−1’,9−2’を形成する。この非旋回流は、電磁誘
導撹拌装置5−2が形成する移動磁場の移動方向と、電
磁誘導撹拌装置5−1が形成する移動磁場の移動方向と
が同じ移動方向となるように通電する事によって得られ
る。
According to the present invention, the non-swirling flow 9 flowing in the same direction on any long side of the unsolidified molten steel 2 inside the solidified shell 3.
-1 ', 9-2' are formed. This non-rotating flow is energized so that the moving direction of the moving magnetic field formed by the electromagnetic induction stirrer 5-2 and the moving direction of the moving magnetic field formed by the electromagnetic induction stirrer 5-1 are the same. Obtained by

【0013】本発明では更に、この非旋回流の強さを、
図1(B)の強流9−1',9−2'と図1(C)の弱流
9−1",9−2"に周期的に切り替える。この切り替え
は、電磁誘導撹拌装置5−1,5−2に流す電流値を、
高い電流値(アンペア)と低い電流値(アンペア)とに
周期的に切り替える事により行なう事ができる。
According to the present invention, the strength of the non-swirling flow is
The strong currents 9-1 'and 9-2' in FIG. 1B and the weak currents 9-1 "and 9-2" in FIG. 1C are periodically switched. This switching is performed by changing the current value flowing through the electromagnetic induction stirrers 5-1 and 5-2,
This can be performed by periodically switching between a high current value (ampere) and a low current value (ampere).

【0014】本発明では更に、強流と弱流に切り替える
周期f(秒)を下記(2)式の範囲内にする。
Further, in the present invention, the period f (second) for switching between the strong flow and the weak flow is set within the range of the following equation (2).

【0015】 1秒≦f≦(103・L/√F)秒…………(2) 撹拌の周期fが1秒未満では、溶鋼2は移動磁場の強さ
の変化に追従できないで、溶鋼の流れは所望の如くに変
えられないために効果が少ない。本発明者等は周期fを
変えて電磁誘導撹拌を行い、製造した鋳片を調査して不
純物の集積の発生の有無を調査したが、周期が(103
・L/√F)秒以上の場合には不純物の集積が発生する
事を知得した。この理由は詳かではないが、周期が(1
3・L/√F)超で長くなり過ぎると、9−1’,9
−2’はまた9−1”,9−2”は定常流の如くに流れ
て溶鋼流には淀む場所が発生しこの部分に不純物が集積
する事によるものと想考される。
1 second ≦ f ≦ (10 3 · L / ΔF) seconds (2) If the period f of stirring is less than 1 second, the molten steel 2 cannot follow the change in the strength of the moving magnetic field. The flow of molten steel is less effective because it cannot be changed as desired. The present inventors have carried out an electromagnetic induction stirring by changing the period f, but examines the slab produced was investigated whether the occurrence of accumulation of impurities, cycle (10 3
It has been found that accumulation of impurities occurs when the time is longer than L / ΔF) seconds. The reason for this is not clear, but the period is (1
0 3 · L / √F), it becomes 9-1 ', 9
It is considered that -2 'is due to the fact that 9-1 "and 9-2" flow like a steady flow, and a place where stagnation occurs in the molten steel flow, and impurities accumulate in this part.

【0016】更に本発明者等の知見によると、例えば図
1(B)の9−1’,9−2’の非旋回流を、9−
1’,9−2’とは反対の、図1Dの9−1"',9−
2"'の向きに周期的に切り替える不純物の低減、不純物
の集積防止に顕著な効果が得られる。即ち本発明はま
た、電磁誘導撹拌装置を前記(1)式と同じ下記(3)
式の間に配し、前記(2)式と同じ下記(4)式と同じ
周期で、非旋回流の向きを1の短辺に向かう向きと他の
短辺に向かう向きに切り替える方法である。尚、式
(3)及び式(4)の如くに特定する理由は、前記式
(1)及び式(2)における特定理由と同様である。
According to the findings of the present inventors, for example, the non-swirl flows 9-1 'and 9-2' in FIG.
1 ', 9-2' in FIG. 1D, which is opposite to 1 ', 9-2'.
A remarkable effect is obtained in the reduction of impurities that are periodically switched to the direction of 2 ″ ′ and the prevention of accumulation of impurities. That is, the present invention also provides an electromagnetic induction stirrer using the same (3)
In this method, the direction of the non-swirling flow is switched between the direction toward one short side and the direction toward the other short side at the same cycle as the following equation (4) same as the above equation (2). . In addition, the reason for specifying as in Expressions (3) and (4) is the same as the reason for specifying in Expressions (1) and (2).

【0017】 L0+H/2<L<2m−H/2………(3) 但しL:溶鋼のメニスカスと電磁誘導撹拌装置の装置高
さの中心までの距離 L0:溶鋼のメニスカスからルーズサイドの凝固シェル
と溶鋼の界面が垂直になる位置までの距離 H:電磁誘導撹拌装置の装置高さ 1秒≦f≦(103・L/√F)秒…………(4) 但しf:一の短辺に向かう非旋回流と他の短辺に向かう
非旋回流の周期(秒) L:溶鋼のメニスカスと電磁誘導撹拌装置の高さの中心
までの距離 F:電磁誘導撹拌装置の推力(N/m2
L 0 + H / 2 <L <2 m−H / 2 (3) where L: distance between the meniscus of the molten steel and the center of the height of the electromagnetic induction stirrer L 0 : loose from the meniscus of the molten steel Distance to the position where the interface between the solidified shell on the side and the molten steel is vertical H: Height of the electromagnetic induction stirrer 1 second ≤ f ≤ (10 3 · L / √F) seconds ………………………………………………………………………………………………………………………………………… (4) : Period (second) of non-whirl flow toward one short side and non-whirl flow toward another short side L: Distance between meniscus of molten steel and center of height of electromagnetic induction stirrer F: Electromagnetic induction stirrer Thrust (N / m 2 )

【0018】[0018]

【実施例】本発明者等は、曲げ半径が10.5mの湾曲
型連続鋳造機を用いて、板幅:1000mmmm、板厚
が250mmの低炭素鋼スラブを1.3m/分の鋳造速
度で連続鋳造する際に、本発明を試験した。尚浸漬ノズ
ルは吐出角が下向き25度の吐出孔を有する浸漬ノズル
で、内部にはノズル閉塞防止用のArガスを5L/分の
割合で吹き込んだ。電磁誘導撹拌装置は幅1500m
m、高さ250mmのもので、装置高さの1/2の箇所
が溶鋼メニスカスから1500mm下方の位置に配され
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present inventors used a curved continuous casting machine having a bending radius of 10.5 m to cast a low carbon steel slab having a width of 1000 mm and a thickness of 250 mm at a casting speed of 1.3 m / min. The invention was tested during continuous casting. Note that the immersion nozzle was an immersion nozzle having a discharge hole having a discharge angle of 25 degrees downward, into which Ar gas for preventing nozzle blockage was blown at a rate of 5 L / min. The electromagnetic induction stirrer is 1500m wide
m and a height of 250 mm, and a half of the device height is arranged at a position 1500 mm below the molten steel meniscus.

【0019】本発明者等は、鋳造開始から全鋳造量の約
1/4鋳造するまでに相当する第1鋳造期は電磁誘導撹
拌は全く行わない従来法とし、約1/4〜約1/2の第
2鋳造期は10kN/m2で図3(B)の定常の旋回流
を形成して撹拌し、約1/2〜約3/4の第3鋳造期は
第1図の(B)と(C)を3秒周期で切り替える本発明
を行なった。尚第3鋳造期の(B)の推力は10kN/
2で(C)の推力は5kN/m2である。また第3鋳造
期後鋳造終了までの第4鋳造期には第1図の(B)と
(D)を3秒周期で切り替える本発明を行なった。尚第
4鋳造期の(B)と(D)の推力は何れも10kN/m
2である。
The inventors of the present invention assumed that the first casting period corresponding to about 1/4 of the total casting amount from the start of casting to the conventional method in which electromagnetic induction stirring was not performed at all, and about 1/4 to about 1 / In the second casting period of No. 2 at 10 kN / m 2 , a steady swirling flow of FIG. 3 (B) is formed and agitated, and in the third casting period of about 1/2 to about 3/4, (B) of FIG. ) And (C) are switched at a cycle of 3 seconds. The thrust of (B) in the third casting period is 10 kN /
In m 2 , the thrust of (C) is 5 kN / m 2 . In the fourth casting period after the third casting period until the end of the casting, the present invention in which (B) and (D) of FIG. 1 are switched at a cycle of 3 seconds was performed. The thrusts of (B) and (D) in the fourth casting period were both 10 kN / m.
2

【0020】鋳造完了後に、各鋳造期の鋳片から試料を
採取し、ルーズサイド側の長辺表面下20mm〜40m
mの部分の不純物の存在量を評価した。図2はその結果
である。尚図中幅端部は、短辺から40mmの鋳片表面
下20〜40mmで幅中央は、スラブ幅の中央部であ
る。
After the casting is completed, a sample is taken from the slab in each casting period, and is 20 mm to 40 m below the long side surface on the loose side.
The abundance of impurities in the portion m was evaluated. FIG. 2 shows the result. The width end in the figure is 20 to 40 mm below the surface of the slab 40 mm from the short side, and the center of the width is the center of the slab width.

【0021】図2にみられる如く、電磁誘導撹拌を行わ
ない第1鋳造期は、不純物評価は全体に高く、不純物量
が多い。従来の定常の旋回流を形成する第2鋳造期は、
中央部と1方の幅端部の不純物評点は低いが旋回流の下
流になる幅端部の不純物評点が極めて高く、この部分に
不純物が集積している。本発明の第3鋳造期、第4鋳造
期は、第1鋳造期に比べて不純物の評点が顕著に低く、
かつ不純物の集積もない。
As shown in FIG. 2, during the first casting period in which electromagnetic induction stirring is not performed, the evaluation of impurities is generally high and the amount of impurities is large. The second casting stage, which forms a conventional steady swirl flow,
The impurity score at the center and one of the width ends is low, but the impurity score at the width end downstream of the swirling flow is extremely high, and impurities are accumulated in this portion. In the third casting period and the fourth casting period of the present invention, the scores of impurities are significantly lower than those in the first casting period,
And there is no accumulation of impurities.

【0022】本発明の第3鋳造期、第4鋳造期において
は不純物が少なく且つ不純物の集積がない理由は詳かで
はないが、本発明で形成される溶鋼の流動は長辺と平行
な向きに繰り返される揺動であり、この揺動は溶鋼をま
んべんなく撹拌し淀みを発生させなかった事によると想
考される。またこの揺動により、図3の不純物7は凝固
シェルと溶鋼との界面11から離れて浮上除去されたも
のと想考される。
In the third casting period and the fourth casting period of the present invention, the reason why the amount of impurities is small and there is no accumulation of impurities is not clear, but the flow of the molten steel formed by the present invention is in a direction parallel to the long side. This oscillation is thought to be due to the fact that the molten steel was stirred evenly and did not generate stagnation. It is considered that the impurity 7 in FIG. 3 was floated and removed away from the interface 11 between the solidified shell and the molten steel due to the swing.

【0023】[0023]

【発明の効果】本発明によると、湾曲式連続鋳造機でス
ラブを製造する際に、スラブのルーズサイド側の不純物
を低減する事ができる。また不純物の集積部が発生する
事を有効に防止する事ができる。
According to the present invention, when a slab is manufactured by a curved continuous casting machine, impurities on the loose side of the slab can be reduced. In addition, it is possible to effectively prevent generation of an impurity accumulation portion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は本発明の溶鋼流動の制御方法の説明図。FIG. 1 is an explanatory diagram of a method for controlling molten steel flow according to the present invention.

【図2】は従来の湾曲式連続鋳造の模式説明図。FIG. 2 is a schematic explanatory view of a conventional curved continuous casting.

【図3】は本発明の効果の説明図。FIG. 3 is an explanatory diagram of an effect of the present invention.

【符号の説明】[Explanation of symbols]

1:鋳型、 2:溶鋼、 2’:溶鋼の注入流、 3:
凝固シェル、 4:浸漬ノズル、 5(5−1,5−
2):電磁誘導撹拌装置、 6:フラックス、7:不純
物、 8:不純物、 9:(9−1,9−2,9−
1’,9−2’,9−1”,9−2”,9−1"',9−
2"'):溶鋼の移動方向及び流れの強さ、10:溶鋼の
メニスカス、 11:凝固シェルと溶鋼の界面。
1: Mold, 2: Molten steel, 2 ': Injection flow of molten steel, 3:
Solidified shell, 4: immersion nozzle, 5 (5-1, 5-
2): electromagnetic induction stirrer, 6: flux, 7: impurity, 8: impurity, 9: (9-1, 9-2, 9-)
1 ', 9-2', 9-1 ", 9-2", 9-1 "', 9-
2 "'): Moving direction and flow strength of molten steel, 10: Meniscus of molten steel, 11: Interface between solidified shell and molten steel.

フロントページの続き (72)発明者 磯野 貴宏 兵庫県姫路市広畑区富士町1番地 新日本 製鐵株式会社広畑製鐵所内Continuation of the front page (72) Inventor Takahiro Isono 1 Fujimachi, Hirohata-ku, Himeji-shi, Hyogo Nippon Steel Corporation Hirohata Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】湾曲式連続鋳造機によるスラブ連続鋳造に
際し、溶鋼のメニスカスまでが下記(1)式のLとなる
高さに鋳片の長辺面を挟むように配された一対の電磁誘
導撹拌装置を用いて、凝固シェル内部の溶鋼に何れの長
辺側も同じ方向に流れる非旋回流を形成し、かつ該非旋
回流の強さを下記(2)式の周期fで強流と弱流に切り
替えることを特徴とする、連続鋳造における溶鋼流動の
制御方法。 L0+H/2<L<2m−H/2………(1) 但しL:溶鋼のメニスカスと電磁誘導撹拌装置の装置高
さの中心までの距離 L0:溶鋼のメニスカスからルーズサイドの凝固シェル
と溶鋼の界面が垂直になる位置までの距離 H:電磁誘導撹拌装置の装置高さ 1秒≦f≦(103・L/√F)秒…………(2) 但しf:強い非旋回流と弱い非旋回流の周期(秒) L:溶鋼のメニスカスと電磁誘導撹拌装置の高さの中心
までの距離 F:電磁誘導撹拌装置の推力(N/m2
In a slab continuous casting by a curved continuous casting machine, a pair of electromagnetic inductions arranged so as to sandwich a long side surface of a slab at a height up to a meniscus of molten steel as L in the following formula (1). Using a stirrer, a non-swirl flow is formed in the molten steel inside the solidified shell on both long sides in the same direction, and the strength of the non-swirl flow is determined by the following equation (2): A method for controlling molten steel flow in continuous casting, characterized by switching to flow. L 0 + H / 2 <L <2 m−H / 2 (1) where L: distance from the meniscus of the molten steel to the center of the height of the electromagnetic induction stirrer L 0 : solidification of the molten steel from the meniscus to the loose side Distance to the position where the interface between the shell and molten steel is vertical H: height of electromagnetic induction stirrer 1 second ≤ f ≤ (10 3 · L / √F) seconds ... (2) where f: strong non- Cycle of swirling flow and weak non-swirling flow (seconds) L: Distance between meniscus of molten steel and center of height of electromagnetic induction stirrer F: Thrust of electromagnetic induction stirrer (N / m 2 )
【請求項2】湾曲式連続鋳造機によるスラブ連続鋳造に
際し、溶鋼のメニスカスまでが下記(3)式のLとなる
高さに鋳片の長辺面を挟むように配された一対の電磁誘
導撹拌装置を用いて、凝固シェル内部の溶鋼に何れの長
辺側も同じ方向に流れる非旋回流を形成し、かつ該非旋
回流の向きを下記(4)式の周期fで1の短辺に向かう
向きと他の短辺に向かう向きとに切り替えることを特徴
とする、連続鋳造における溶鋼流動の制御方法。 L0+H/2<L<2m−H/2…………(3) 但しL:溶鋼のメニスカスと電磁誘導撹拌装置の装置高
さの中心までの距離 L0:溶鋼のメニスカスから凝固シェルと溶鋼の界面が
垂直になる位置までの距離 H:電磁誘導撹拌装置の装置高さ 1秒≦f≦(103・L/√F)秒…………(4) 但しf:1の短辺に向かう非旋回流と他の短辺に向かう
非旋回流の周期(秒) L:溶鋼のメニスカスと電磁誘導撹拌装置の高さの中心
までの距離 F:電磁誘導撹拌装置の推力(N/m2
2. A pair of electromagnetic inductions arranged so as to sandwich a long side of a slab at a height where the meniscus of molten steel reaches L in the following formula (3) in continuous slab casting by a curved continuous casting machine. Using a stirrer, a non-swirl flow is formed in the molten steel inside the solidified shell on both long sides in the same direction, and the direction of the non-swirl flow is set to a short side of 1 with a period f of the following formula (4). A method for controlling molten steel flow in continuous casting, characterized by switching between a heading direction and a direction toward another short side. L 0 + H / 2 <L <2 m−H / 2 (3) where L: distance between the meniscus of the molten steel and the center of the height of the electromagnetic induction stirrer L 0 : from the meniscus of the molten steel to the solidified shell Distance to the position where the molten steel interface becomes vertical H: Height of electromagnetic induction stirrer 1 second ≤ f ≤ (10 3 · L / √F) seconds ... (4) However, the short side of f: 1 Period (seconds) of the non-swirl flow toward the other and the non-swirl flow toward the other short side L: distance between the meniscus of molten steel and the center of the height of the electromagnetic induction stirrer F: thrust of the electromagnetic induction stirrer (N / m) 2 )
JP13808698A 1998-05-20 1998-05-20 Method for controlling fluid of molten steel in continuous casting Withdrawn JPH11320053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13808698A JPH11320053A (en) 1998-05-20 1998-05-20 Method for controlling fluid of molten steel in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13808698A JPH11320053A (en) 1998-05-20 1998-05-20 Method for controlling fluid of molten steel in continuous casting

Publications (1)

Publication Number Publication Date
JPH11320053A true JPH11320053A (en) 1999-11-24

Family

ID=15213637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13808698A Withdrawn JPH11320053A (en) 1998-05-20 1998-05-20 Method for controlling fluid of molten steel in continuous casting

Country Status (1)

Country Link
JP (1) JPH11320053A (en)

Similar Documents

Publication Publication Date Title
US6557623B2 (en) Production method for continuous casting cast billet
JP3593328B2 (en) Method for controlling flow of molten steel in mold and apparatus for forming electromagnetic field therefor
JP2005211936A (en) Method for continuously casting steel slab
JPH11320053A (en) Method for controlling fluid of molten steel in continuous casting
JPH11320052A (en) Method for controlling fluid of molten steel in continuous casting
JP2610741B2 (en) Continuous casting method and apparatus
JP3573096B2 (en) Manufacturing method of continuous cast slab
JP4910357B2 (en) Steel continuous casting method
JP3257546B2 (en) Steel continuous casting method
JPS6272458A (en) Electromagnetic stirring method
JPH11320054A (en) Continuous caster and continuous casting method
JP3186649B2 (en) Continuous casting method of molten metal
JP2004098082A (en) Method for casting molten stainless steel performing electromagnetic stirring
RU2419508C2 (en) Mixer
JP3491099B2 (en) Continuous casting method of steel using static magnetic field
JPH05237621A (en) Continuous casting method
JPH0275455A (en) Continuous casting method
JP4830240B2 (en) Method and apparatus for continuous casting of steel
JPH105945A (en) Method for controlling molten steel flow in continuous casting mold
JP3538967B2 (en) Continuous casting method
JP2856959B2 (en) Continuous casting method of steel slab using traveling magnetic field and static magnetic field
JP2750320B2 (en) Continuous casting method using static magnetic field
RU2464123C1 (en) Method of adjusting conditions of electromagnetic mixing of ingot liquid phase in slab continuous casting machine and device to this end
JP3147824B2 (en) Continuous casting method
JP2003080350A (en) Method for continuously casting high cleanliness steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802