JPH11319693A - Coating method for core material particle - Google Patents

Coating method for core material particle

Info

Publication number
JPH11319693A
JPH11319693A JP10140599A JP14059998A JPH11319693A JP H11319693 A JPH11319693 A JP H11319693A JP 10140599 A JP10140599 A JP 10140599A JP 14059998 A JP14059998 A JP 14059998A JP H11319693 A JPH11319693 A JP H11319693A
Authority
JP
Japan
Prior art keywords
coating
particles
fertilizer
resin
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10140599A
Other languages
Japanese (ja)
Inventor
Masazumi Uchino
正純 内野
Takehiko Takahashi
武彦 高橋
Shigeo Fujii
重雄 藤井
Tadao Sato
忠夫 佐藤
Susumu Tamura
進 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP10140599A priority Critical patent/JPH11319693A/en
Publication of JPH11319693A publication Critical patent/JPH11319693A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Glanulating (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Fertilizers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the coating/granulating method capable of uniformly coating a coating film on a surface of the particles and also capable of treating industrially on a large scale in a short time. SOLUTION: In the coating/granulating method in which the coating resin is applied on the surface of core material particles by supplying heating gas while spraying coating liq. in which the coating resin is dissolved in a solvent on the core material particles and drying the solvent of the coating liq., the temp. of the heating gas to be supplied is kept at the temp. 10-100 deg.C higher than a melting point of the coating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粒子を被覆し、若
しくは造粒する方法に関し、更に詳述すれば農薬や肥料
等を造粒、若しくは被覆する際に適用して好適な芯材粒
子の被覆方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for coating or granulating particles, and more particularly, to a method for forming core particles suitable for granulating or coating agricultural chemicals or fertilizers. It relates to a coating method.

【0002】[0002]

【従来の技術】従来、粒子を造粒し、若しくは芯材粒子
を被膜で被覆する装置として、ヘンシェルミキサーやナ
ウターミキサー等の撹拌翼を用いる混合撹拌装置、回転
ドラム式コータ、回転パン式コータ、回転落下式コータ
等の装置自身が回転することにより混合撹拌する装置、
振動を与えることにより混合撹拌する振動流動装置、粒
子を吹飛ばして混合撹拌するワースター式若しくは噴流
方式を用いる被覆装置、粒子を浮遊流動させる方式の流
動層型コータ等がある。これらの装置を目的に合わせて
適宜選択することにより、従来、造粒及び芯材粒子の被
覆を行っている。
2. Description of the Related Art Conventionally, as a device for granulating particles or coating core material particles with a coating film, a mixing and stirring device using a stirring blade such as a Henschel mixer or a Nauta mixer, a rotary drum type coater, a rotary pan type coater. , A device for mixing and stirring by rotating the device itself such as a rotary drop type coater,
There are a vibrating fluidizing device that mixes and agitates by applying vibration, a coating device using a Wurster type or a jet method that blows and mixes particles, and a fluidized bed type coater that floats and flows the particles. Conventionally, granulation and coating of core material particles have been performed by appropriately selecting these devices according to the purpose.

【0003】噴流方式を用いる粒子の被覆方法は、例え
ば特公昭38ー13896号に記載されているように、
円筒状の槽の下部を逆円錐形とし、その下端側を水平方
向に切断して気体噴流用の絞り部となし、該絞り部を通
して高速気体流を該槽内に垂直上方向に噴流せしめて槽
内の被覆すべき粒子を吹き上げ、同時に被覆液を吹き付
けて粒子に被膜を被覆する方法である。特公昭38ー2
294号は、粒子を噴流塔内の中央噴流部に設けた案内
管を通して粒子を吹き上げ、該管内に設けた噴霧ノズル
から被覆液を噴霧する方法を開示している。更に特公昭
50ー1355号には、噴流部に案内管を設け、その周
辺部にも気体を通すことにより、粒子を流動状態、或い
はそれに近い無重力の状態におき、粒子同士の付着等の
トラブルを回避している。
A method of coating particles using a jet method is described in, for example, Japanese Patent Publication No. 38-13896.
The lower part of the cylindrical tank is formed in an inverted conical shape, and the lower end is cut horizontally to form a throttle for gas jet, and a high-speed gas flow is jetted vertically upward into the tank through the throttle. In this method, particles to be coated in a tank are blown up, and simultaneously a coating liquid is sprayed to coat the particles with a coating. Japanese Patent Publication No. 38-2
No. 294 discloses a method in which particles are blown up through a guide tube provided in a central jet portion in a jet tower, and a coating liquid is sprayed from a spray nozzle provided in the tube. In Japanese Patent Publication No. 50-1355, a guide tube is provided in the jet part, and gas is also passed around the jet part to place the particles in a flowing state or in a weightless state close to it, causing troubles such as adhesion of particles. Have been around.

【0004】これらの噴流方式を用いる被覆方法は、何
れも医薬品を被覆対象にしたもので、小規模、且つ丁重
に被覆する場合には好ましい方法である。しかし、例え
ば肥料等を被覆対象とする場合のように、安価に、大量
に被覆する必要がある場合には、この方法は適切な方法
とは言い難い。大量の粒子を被覆する場合は、大きな径
の噴流塔を用いる必要があるが、噴流塔の径が大きくな
ると粒子全体が流動状態となり、噴流層が形成できない
問題がある。
[0004] All of these coating methods using the jet flow method are intended for coating pharmaceuticals, and are preferable methods for small-scale and gentle coating. However, when it is necessary to coat a large amount at low cost, for example, when a fertilizer or the like is to be coated, this method is not an appropriate method. In the case of coating a large amount of particles, it is necessary to use a jet tower having a large diameter. However, when the diameter of the jet tower is large, the whole particles are in a flowing state, and there is a problem that a spouted bed cannot be formed.

【0005】この問題点に対し、特公平2ー31939
号は、噴流槽が大型化しても噴流状態が得られる技術を
開示している。即ち、肥料の様に、大量に生産し、供給
するために、大きな径の噴流塔を用いた噴流装置内にガ
イド管をオリフィス上部に垂直に設けた被覆装置を用
い、オリフィスから装置内に不活性気体を導入する際
に、オリフィスにおける気体の流速を20m/sec〜
70m/secとし、ガイド管内の流速を20m/se
c以下に調節して被覆を行なうものである。
To solve this problem, Japanese Patent Publication No. 2-3939
Discloses a technique in which a jet state can be obtained even when a jet tank becomes large. In other words, in order to produce and supply a large amount like fertilizer, a coating device in which a guide tube is provided vertically above an orifice in a jet device using a large-diameter jet tower is used. When introducing the active gas, the flow velocity of the gas at the orifice is set to 20 m / sec or more.
70 m / sec, and the flow velocity in the guide tube is 20 m / sec.
The coating is performed by adjusting the value to c or less.

【0006】一方、近頃では特開平6ー9303号、特
開平6ー9304号、特開平6ー72805号、特開平
6ー80514号、特開平5ー29634号、特開平4
ー202078号、特開平4ー202079号、特開平
6ー87684号に開示されているような、施肥後一定
期間は活性成分が溶出されないか、若しくは溶出が極端
に抑制された期間(この期間を以後初期溶出期間と称
す)を有する、いわゆる時限溶出型のパターンを有する
被膜を肥料粒子の表面に被覆した被覆粒子肥料が開示さ
れている。
On the other hand, recently, JP-A-6-9303, JP-A-6-9304, JP-A-6-72805, JP-A-6-80514, JP-A-5-29634 and JP-A-5-29634 have recently been proposed.
As disclosed in JP-A-202078, JP-A-4-202079 and JP-A-6-87684, the active ingredient is not eluted for a certain period after fertilization or the period in which the elution is extremely suppressed (this period is referred to as There is disclosed a coated particle fertilizer in which a film having a so-called timed elution type pattern having an initial elution period) is coated on the surface of the fertilizer particles.

【0007】このような時限溶出型の溶出パターンを持
つ被膜を肥料粒子の表面に被覆した被覆粒子肥料を、前
記特公平2ー31939号に記載されている様に、噴流
塔を用いて安価、大量に製造する場合、粒子への被覆樹
脂溶液の付着のさせ方、及び付着した樹脂溶液からの溶
剤の飛散、乾燥の状態が、生産効率及び得られる被覆粒
子肥料の活性成分の溶出パターンに大きく影響を及ぼす
と考えられる。
[0007] The coated particle fertilizer in which the surface of the fertilizer particles is coated with a coating having such a time-eluting type elution pattern is inexpensively prepared by using a jet tower as described in JP-B-2-31939. In the case of mass production, the method of attaching the coating resin solution to the particles, and the scattering of the solvent from the attached resin solution, the state of drying greatly affect the production efficiency and the elution pattern of the active ingredient of the obtained coated particle fertilizer. It is thought to have an effect.

【0008】大型噴流塔を用いて被覆粒子肥料を大量に
製造する場合、経済的に生産効率を上げるためには、乾
燥時間を短縮することが重要と考えられる。乾燥時間を
短縮するために、樹脂溶液の供給量を高め、更に粒子表
面に付着した樹脂溶液に含まれる溶剤を大量かつ高温の
噴流ガスを用いて飛散、乾燥させることがしばしば試み
られている。
When a large amount of coated particle fertilizer is produced using a large spout tower, it is considered important to shorten the drying time in order to increase production efficiency economically. In order to shorten the drying time, it has been often attempted to increase the supply amount of the resin solution and to scatter and dry the solvent contained in the resin solution attached to the particle surface by using a large amount and high-temperature jet gas.

【0009】しかし、噴流塔を用いて、例えば尿素粒子
の様な比較的低融点の粒子を被覆する場合は、噴流ガス
温度を尿素粒子の融点以下に保たなければならないと一
般的に考えられており、このため高温の噴流ガスを用い
て生産効率を高める試みは行われていなかった。即ち、
噴流ガスの温度を尿素粒子の融点以上にして被覆を行う
と、噴流塔内で不均一な溶剤の飛散や乾燥が起こり、こ
のためガイド管外側に存在する尿素粒子からなる環状の
尿素粒子堆積層(固定層)の一部が融解固結したり、ま
た塔下部の逆円錐型先端の気体噴流用絞りへの尿素粒子
の融解固結等が起こり、このため粒子の均一な循環が出
来なくなることがあり、実質的な操業が出来なくなると
考えられてきた。
However, when using a jet tower to coat particles having a relatively low melting point such as urea particles, it is generally considered that the temperature of the jet gas must be kept below the melting point of the urea particles. Therefore, no attempt has been made to increase production efficiency by using a hot jet gas. That is,
When coating is performed with the temperature of the jet gas equal to or higher than the melting point of the urea particles, nonuniform solvent scattering and drying occur in the jet tower, and therefore, an annular urea particle deposition layer composed of urea particles existing outside the guide tube. Part of the (fixed bed) is melted and condensed, and urea particles are melted and condensed to the gas jet throttle at the inverted conical tip at the bottom of the tower, which prevents uniform circulation of the particles. It has been thought that practical operations will not be possible.

【0010】また、噴流ガスの温度を尿素粒子の融点以
下に保って噴流ガスの量を高めた場合は、噴流塔下部よ
りガイド管に送られる粒子の量が変動し、いわゆる脈動
現象を起こすので運転が不安定となる。この場合は、尿
素粒子の被覆被膜の損傷を生じ易く、得られる被覆肥料
は初期溶出抑制期間内の活性成分の溶出量が大きなもの
になる。即ち、得られる被覆肥料は、施肥直後から急激
に活性成分が溶出し始めるものが多くなる。従って、従
来の噴流方式により所望の溶出機能を有する時限溶出型
被覆肥料を大量に、生産効率良く製造することは極めて
困難なものである。
When the temperature of the jet gas is kept below the melting point of the urea particles to increase the amount of the jet gas, the amount of particles sent from the lower part of the jet tower to the guide tube fluctuates, causing a so-called pulsation phenomenon. Operation becomes unstable. In this case, the coating film of the urea particles is easily damaged, and the obtained coated fertilizer has a large amount of the active ingredient eluted within the initial elution suppression period. That is, many of the obtained coated fertilizers rapidly elute the active ingredient immediately after fertilization. Therefore, it is extremely difficult to produce a large amount of time-dissolved coated fertilizer having a desired dissolution function by a conventional jet method with high production efficiency.

【0011】[0011]

【発明が解決しようとする課題】本発明者らは上記の従
来技術の問題に鑑み、その原因が何処にあるかを究明す
ることに努めた。その結果、噴流方式において、従来尿
素粒子や被覆樹脂が融着するために不可能と考えられて
いた尿素粒子の融点以上の高温の噴流ガスを用いて尿素
粒子の表面に被膜を被覆しても、溶剤の気化熱により尿
素粒子が融点以下に保たれ、このため高温の噴流ガスに
よる尿素粒子の融解、固結を生じることが無いことを発
見した。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, the present inventors have sought to find out where the cause is. As a result, in the jet method, even if the surface of the urea particles is coated with a coating gas using a high-temperature jet gas at or above the melting point of the urea particles, which was conventionally considered impossible due to fusion of the urea particles and the coating resin. It has been found that the urea particles are kept below the melting point due to the heat of vaporization of the solvent, and that the urea particles do not melt or solidify due to the high-temperature jet gas.

【0012】また、この発見は単に噴流方式に限られ
ず、従来の被覆装置、被覆方法、更には従来の造粒装
置、造粒方法にも拡大適用できることを知見し、本発明
を完成するに至ったものである。
[0012] Further, the present inventors have found that this discovery is not limited to the jet method, but can be applied to conventional coating apparatuses and coating methods, and further to conventional granulating apparatuses and granulating methods, and have completed the present invention. It is a thing.

【0013】従って、本発明の目的とするところは、均
一に粒子表面に被膜を被覆でき、粒子が互いに融着する
事を防止し、工業的に大量処理することのできる、粒子
の被覆方法を提供することにある。この被覆方法はその
まま造粒方法として用いることができるものであるの
で、本発明の被覆方法は造粒方法を包含するものであ
る。
Accordingly, an object of the present invention is to provide a particle coating method capable of uniformly coating a film on the particle surface, preventing the particles from fusing with each other, and industrially mass-treating the particles. To provide. Since this coating method can be used as it is as a granulation method, the coating method of the present invention includes a granulation method.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に本発明は、〔1〕 被覆樹脂を溶剤に溶解した被覆液
を芯材粒子に噴霧しながら加熱気体を供給して前記被覆
液の溶剤を乾燥させることにより芯材粒子の表面に被覆
樹脂を被覆する芯材粒子の被覆方法において、前記供給
する加熱気体の温度を被覆樹脂の融点よりも10〜10
0℃高い温度に保つことを特徴とする芯材粒子の被覆方
法を提案するもので、〔2〕 〔1〕において、被覆液
を芯材粒子に噴霧しながら加熱気体を供給している芯材
粒子の温度を前記被覆樹脂の融点よりも10〜50℃低
い温度に保つこと、〔3〕 〔1〕又は〔2〕におい
て、加熱気体を供給することにより芯材粒子を噴流状態
にすること、〔4〕 〔1〕〜〔3〕において、被覆樹
脂がポリオレフィン樹脂であること、〔5〕 〔1〕〜
〔4〕において、溶剤がパークロロエチレン、トリクロ
ロエチレン、オクタン、又はトルエンであること、
〔6〕 〔1〕〜〔5〕において、芯材粒子が肥料粒
子、又は農薬粒子であることを含む。
Means for Solving the Problems In order to achieve the above object, the present invention provides [1] supplying a heating gas while spraying a coating solution obtained by dissolving a coating resin in a solvent onto core material particles to form a coating solution of the coating solution. In the method of coating core particles, in which the surface of the core particles is coated with the coating resin by drying the solvent, the temperature of the supplied heated gas is set to be 10 to 10 lower than the melting point of the coating resin.
The present invention proposes a method of coating core material particles characterized by maintaining the temperature at 0 ° C. higher. [2] In [1], a core material which supplies a heating gas while spraying a coating liquid onto the core material particles. Keeping the temperature of the particles at a temperature lower by 10 to 50 ° C. than the melting point of the coating resin, [3] [1] or [2], in which the core material particles are jetted by supplying a heated gas, [4] In [1] to [3], the coating resin is a polyolefin resin, [5] [1] to
In (4), the solvent is perchlorethylene, trichloroethylene, octane, or toluene;
[6] In the items [1] to [5], the core material particles include fertilizer particles or pesticide particles.

【0015】また本発明は、〔7〕 〔6〕に記載の芯
材粒子の被覆方法により得られることを特徴とする時限
溶出型の溶出機能を有する被覆肥料又は被覆農薬であ
る。
The present invention also provides a coated fertilizer or a coated pesticide having a time-dissolving elution function, which is obtained by the method for coating core particles according to [7] or [6].

【0016】更に本発明は、〔8〕 〔7〕に記載の被
覆肥料又は被覆農薬を用いることを特徴とする作物の栽
培方法である。
Further, the present invention provides a method for cultivating a crop, comprising using the coated fertilizer or the coated pesticide according to [8] or [7].

【0017】以下、図面を参照しながら、本発明を詳細
に説明する。
Hereinafter, the present invention will be described in detail with reference to the drawings.

【0018】[0018]

【発明の実施の形態】本発明の芯材粒子の被覆方法にお
いて、被覆される芯材粒子は特に制限が無く、任意の芯
材粒子を被覆することができる。しかし、本発明方法に
よる被覆は、粒子に含まれる活性成分の溶出速度を調節
する必要性のある粒子の場合に、特に有用である。活性
成分はその使用目的、用途等により異なるが、尿素、硫
安、塩安、硝安、塩化加里、硫酸加里、硝酸加里、硝酸
ソーダ、燐酸アンモニア、燐酸加里、燐酸石灰、キレー
ト鉄、酸化鉄、塩化鉄、ホウ酸、ホウ砂、硫酸マンガ
ン、塩化マンガン、硫酸亜鉛、硫酸銅、モリブデン酸ナ
トリウム、モリブデン酸アンモニウム、OMUP(クロ
チリデンジウレア)、IBDU(イソブチリデンジウレ
ア)やオキザマイド等の肥料、殺虫剤、殺菌剤、除草剤
等の農薬等が例示できる。粒子は1種以上の活性成分の
粒状物であっても良く、更には活性成分の1種以上とベ
ントナイト、ゼオライト、タルク、クレー、ケイソウ土
等の不活性担体とからなる粒状物であっても良い。更に
は、前述の活性成分粒子を樹脂や無機物で被覆したもの
であってもよい。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for coating core particles of the present invention, the core particles to be coated are not particularly limited, and any core particles can be coated. However, the coating according to the method of the present invention is particularly useful for particles that need to control the rate of elution of the active ingredient contained in the particles. The active ingredient varies depending on the purpose of use, use, etc., but urea, ammonium sulfate, ammonium salt, ammonium nitrate, potassium chloride, sulfate potassium, nitrate potassium, sodium nitrate, ammonium phosphate, phosphate potassium, lime phosphate, chelate iron, iron oxide, chloride Fertilizers and insecticides such as iron, boric acid, borax, manganese sulfate, manganese chloride, zinc sulfate, copper sulfate, sodium molybdate, ammonium molybdate, OMUP (clotylidene diurea), IBDU (isobutylidene diurea) and oxamide. , Fungicides, pesticides such as herbicides, and the like. The particles may be granules of one or more active ingredients, or may be granules comprising one or more active ingredients and an inert carrier such as bentonite, zeolite, talc, clay, and diatomaceous earth. good. Further, the above-mentioned active ingredient particles may be coated with a resin or an inorganic substance.

【0019】これらの粒子の粒径は特に制限はないが、
0.1〜10mm、特に1〜5mmのものが好ましい。
The size of these particles is not particularly limited,
It is preferably from 0.1 to 10 mm, particularly preferably from 1 to 5 mm.

【0020】本発明の被覆方法において、粒子の被覆に
用いる被覆樹脂は特に限定されるものではない。特に、
時限溶出型の被覆粒子を製造する場合は、粒子に含まれ
る活性成分の溶出を厳密に制御できる材料、組成のもの
を選択すればよい。このような被覆樹脂としては、アル
キッド樹脂、フェノール樹脂、エポキシ樹脂等の熱硬化
性樹脂、ポリエチレン、ポリプロピレン等のポリオレフ
ィンやポリ塩化ビニリデン等の熱可塑性樹脂が挙げられ
る。
In the coating method of the present invention, the coating resin used for coating the particles is not particularly limited. Especially,
In the case of producing the time-eluting type coated particles, a material and a composition which can strictly control the elution of the active ingredient contained in the particles may be selected. Examples of such a coating resin include a thermosetting resin such as an alkyd resin, a phenol resin, and an epoxy resin; a polyolefin such as polyethylene and polypropylene; and a thermoplastic resin such as polyvinylidene chloride.

【0021】これらのうち、肥料や農薬のように厳密、
且つ長期に亘る溶出制御が求められる活性成分を含む粒
子を被覆する場合は、被覆樹脂として熱硬化性樹脂や熱
可塑性樹脂を用いることが好ましく、より高度な溶出制
御が必要であれば、熱可塑性樹脂を用いることが、特に
好ましい。
Of these, strict like fertilizers and pesticides,
When coating particles containing an active ingredient that requires long-term elution control, it is preferable to use a thermosetting resin or a thermoplastic resin as the coating resin. It is particularly preferable to use a resin.

【0022】好ましい熱可塑性樹脂としては、ポリオレ
フィン及びその共重合体と、ポリ塩化ビニリデン及びそ
の共重合体とを挙げることができる。好ましいポリオレ
フィン及びその共重合体としてはポリエチレン、ポリプ
ロピレン、エチレン・プロピレン共重合体、エチレン・
酢酸ビニル共重合体、エチレン・一酸化炭素共重合体、
エチレン・酢酸ビニル・一酸化炭素共重合体、エチレン
・アクリレート共重合体、エチレン・メタクリル酸共重
合体、ゴム系樹脂、ポリスチレン、ポリメチルメタアク
リレート等を挙げることができ、好ましいポリ塩化ビニ
リデン及びその共重合体としては、ポリ塩化ビニリデ
ン、塩化ビニリデン・塩化ビニル共重合体等を挙げるこ
とができる。更に、ポリ−2−ハイドロキシ−2−アル
キル酢酸、ポリ−3−ハイドロキシ−3−アルキルプロ
ピオン酸等に代表される生分解性ポリエステルも挙げる
ことができる。
Preferred thermoplastic resins include polyolefins and copolymers thereof, and polyvinylidene chloride and copolymers thereof. Preferred polyolefins and copolymers thereof are polyethylene, polypropylene, ethylene / propylene copolymer, ethylene / propylene.
Vinyl acetate copolymer, ethylene / carbon monoxide copolymer,
Ethylene / vinyl acetate / carbon monoxide copolymer, ethylene / acrylate copolymer, ethylene / methacrylic acid copolymer, rubber resin, polystyrene, polymethyl methacrylate, etc. Examples of the copolymer include polyvinylidene chloride, vinylidene chloride / vinyl chloride copolymer, and the like. Further, biodegradable polyesters represented by poly-2-hydroxy-2-alkylacetic acid, poly-3-hydroxy-3-alkylpropionic acid and the like can also be mentioned.

【0023】これらの被覆樹脂を有機溶剤に溶解させて
被覆液を調製し、これを芯材粒子に噴霧して被覆を行う
ものである。有機溶媒としては、パークロロエチレン、
トリクロロエチレン等の含ハロゲン溶媒、ヘキサン、オ
クタン等のパラフィン系溶媒、トルエン等の芳香族系溶
剤を例示することができる。特に、パークロロエチレ
ン、トリクロロエチレン、ヘキサン、オクタン、トルエ
ンは、ポリオレフィン樹脂の溶解性が高いので被覆液濃
度を調整し易く、更にこれらの有機溶媒の沸点が被覆樹
脂の融点に近く、また気化熱も小さいため乾燥効率が高
くなる。このため、これらの有機溶媒は特に好ましいも
のである。
The coating resin is dissolved in an organic solvent to prepare a coating solution, and the coating solution is sprayed onto the core particles to perform coating. As organic solvents, perchlorethylene,
Examples thereof include halogen-containing solvents such as trichloroethylene, paraffin solvents such as hexane and octane, and aromatic solvents such as toluene. In particular, perchlorethylene, trichloroethylene, hexane, octane, and toluene are easy to adjust the coating solution concentration because of high solubility of the polyolefin resin, and the boiling points of these organic solvents are close to the melting point of the coating resin, and the heat of vaporization is also high. The drying efficiency is high due to the small size. For this reason, these organic solvents are particularly preferred.

【0024】本発明方法においては、上記被覆樹脂の貧
溶媒溶液を用い、これを粒子に噴霧すると共に瞬間乾燥
することによって被膜を形成する製膜法において特に有
効である。上記樹脂の貧溶剤を用いて瞬間乾燥する場合
には、樹脂と有機溶剤との組み合わせにおいて、熱時に
は高濃度で溶解し、冷時には樹脂が析出してゼリー状と
なる性質を有する組み合わせが好ましい。この組み合わ
せによる被膜は非常に緻密な被膜を形成するので、特に
時限溶出型の被膜形成に適している。
The method of the present invention is particularly effective in a film forming method in which a poor solvent solution of the above-mentioned coating resin is used, sprayed on the particles and flash dried to form a film. In the case of instantaneous drying using a poor solvent for the above resin, a combination of a resin and an organic solvent having a property of dissolving at a high concentration when heated, and precipitating and forming a jelly-like resin when cooled is preferable. Since the film formed by this combination forms a very dense film, it is particularly suitable for forming a time-eluting film.

【0025】被覆液中の被覆樹脂濃度は樹脂の種類や重
合度によっても異なるが、一般的に20重量%以下が好
ましく、特に0.1〜20重量%が好ましい。時限溶出
型被覆肥料を製造する場合も、被覆液中の被覆樹脂濃度
は20重量%以下であることが好ましいが、特に育苗箱
用の時限溶出型被覆肥料を製造する場合は被覆樹脂濃度
は1〜8重量%が好ましい。また、徐放型被覆肥料を製
造する場合は被覆樹脂濃度は0.1〜20重量%の範囲
で製造することができる。
The concentration of the coating resin in the coating solution varies depending on the type of the resin and the degree of polymerization, but is generally preferably 20% by weight or less, particularly preferably 0.1 to 20% by weight. In the case of producing a time-eluting coated fertilizer, the coating resin concentration in the coating solution is preferably 20% by weight or less. In particular, when producing a time-eluting coated fertilizer for a nursery box, the coating resin concentration is 1%. ~ 8% by weight is preferred. Moreover, when producing a sustained-release coated fertilizer, the coating resin concentration can be produced in the range of 0.1 to 20% by weight.

【0026】上記被覆樹脂には、タルクに代表される無
機フィラーや、界面活性剤等を併用することもできる。
これらは被覆樹脂と共に溶剤に溶解・分散、若しくは溶
融・分散して、噴霧用ノズルに送られ被覆に供される。
The above coating resin may be used in combination with an inorganic filler represented by talc, a surfactant and the like.
These are dissolved / dispersed or melted / dispersed in a solvent together with the coating resin, sent to a spray nozzle and provided for coating.

【0027】本発明の芯材粒子の被覆方法においては、
上記被覆液を芯材粒子に噴霧しながら、加熱気体を供給
し、これにより前記被覆液中の溶剤を気化させると共
に、芯材粒子の表面に被覆樹脂の被膜を形成するもので
ある。
In the method for coating core material particles of the present invention,
A heated gas is supplied while spraying the coating liquid onto the core particles, thereby evaporating the solvent in the coating liquid and forming a coating resin film on the surface of the core particles.

【0028】加熱気体は粒子及び溶剤に対して不活性の
ものであれば良く、特に限定されるものではない。具体
的には、空気、窒素ガス、ヘリウムガス等が例示でき、
特に噴流塔を使用する場合は噴流塔出口ガスから被覆液
中の有機溶剤を一部除去したリサイクルガス等が例示で
きる。
The heating gas is not particularly limited as long as it is inert to the particles and the solvent. Specifically, air, nitrogen gas, helium gas, etc. can be exemplified,
In particular, when a spout tower is used, a recycled gas or the like obtained by partially removing the organic solvent in the coating liquid from the spout tower outlet gas can be exemplified.

【0029】加熱気体の温度は、被覆樹脂の融点よりも
10〜100℃高い温度であることが好ましく、被覆樹
脂の融点よりも15〜80℃高い温度であることが特に
好ましい。加熱気体の温度が、被覆樹脂の融点よりも1
0℃高い温度に達していない場合は、被覆時間が長くな
り、本発明の目的を充分に達成し難くなる。また、加熱
気体の温度が、被覆樹脂の融点よりも100℃高い温度
を超える場合は、固定層との温度差が大きくなりすぎ、
このため噴流塔内で溶剤の結露を起しやすくなる。
The temperature of the heated gas is preferably 10 to 100 ° C. higher than the melting point of the coating resin, and particularly preferably 15 to 80 ° C. higher than the melting point of the coating resin. The temperature of the heated gas is 1 point lower than the melting point of the coating resin.
If the temperature has not reached 0 ° C. higher, the coating time will be longer, and it will be difficult to achieve the object of the present invention sufficiently. Further, when the temperature of the heating gas exceeds 100 ° C. higher than the melting point of the coating resin, the temperature difference from the fixed layer becomes too large,
For this reason, dew condensation of the solvent easily occurs in the jet tower.

【0030】被覆液を噴霧中の芯材粒子にこの温度範囲
の加熱気体を供給することにより、噴霧している被覆液
中の溶剤を効率よく気化させることができると共に、芯
材粒子は前記溶剤の気化熱により冷却され、芯材粒子が
溶融すること無く効率良く被覆できるものである。この
場合の芯材粒子の温度は被覆樹脂の融点よりも10〜5
0℃低い温度になるように制御することが好ましく、特
に10〜40℃低い温度になるように制御することが好
ましい。当然のことであるが、該温度は芯材粒子の融点
よりも低い温度を選択するべきである。
By supplying a heated gas in this temperature range to the core particles during spraying of the coating liquid, the solvent in the coating liquid being sprayed can be efficiently vaporized, and the core particles are mixed with the solvent. The core material particles can be efficiently coated without being melted by the heat of vaporization. In this case, the temperature of the core particles is 10 to 5 times lower than the melting point of the coating resin.
It is preferable to control the temperature to be lower by 0 ° C., and it is particularly preferable to control the temperature to be lower by 10 to 40 ° C. As a matter of course, the temperature should be selected to be lower than the melting point of the core particles.

【0031】芯材粒子の温度が被覆樹脂の融点よりも1
0℃低い温度を超える場合は、芯材粒子又は被覆樹脂が
部分的に溶融したり、製造時間が長くなる傾向にある。
また、芯材粒子の温度が被覆樹脂の融点よりも50℃低
い温度未満の場合は、被覆樹脂の固化が早くなり、均質
な被膜ができにくい。
When the temperature of the core material particles is lower than the melting point of the coating resin by 1
When the temperature exceeds 0 ° C. lower, the core material particles or the coating resin tend to partially melt or the production time tends to be longer.
If the temperature of the core material particles is lower than a temperature lower by 50 ° C. than the melting point of the coating resin, the coating resin solidifies quickly, and it is difficult to form a uniform coating.

【0032】なお、被覆樹脂として融点の異なる複数の
樹脂を混合して用いる場合は、前記被覆樹脂の融点は含
有量の最も大きい樹脂の融点を基準とする。また、同じ
含有量の樹脂が複数ある場合は、最も融点の高い樹脂の
融点を基準とする。
When a plurality of resins having different melting points are mixed and used as the coating resin, the melting point of the coating resin is based on the melting point of the resin having the largest content. When there are a plurality of resins having the same content, the melting point of the resin having the highest melting point is used as a reference.

【0033】芯材粒子に尿素を用いて、これにポリエチ
レンを被覆する場合を例として本発明を更に説明する。
この場合は、加熱気体の温度は70〜250℃を採用す
ることができるが、加熱気体温度を130℃以上にする
と被覆時間を大幅に短縮できるので、特に好ましいもの
である。被覆液を芯材粒子に噴霧しながら加熱気体を供
給して芯材粒子を被覆している際の芯材粒子の温度は、
通常は被覆液中の被覆樹脂の溶液ゲル化温度以上で、且
つ被覆樹脂及び芯材粒子の融点以下であることが好まし
い。被覆樹脂としてポリエチレンを用いる場合は、60
〜90℃が好ましいものである。被覆液供給速度、及び
加熱気体の供給速度を調節することにより、上記芯材粒
子温度を上記温度範囲に制御できる。
The present invention will be further described by taking as an example a case where urea is used for the core material particles and the core material particles are coated with polyethylene.
In this case, the temperature of the heating gas can be 70 to 250 ° C., but it is particularly preferable to set the heating gas temperature to 130 ° C. or higher because the coating time can be greatly reduced. The temperature of the core particles when supplying the heating gas while coating the core particles by spraying the coating liquid onto the core particles,
It is usually preferable that the temperature be equal to or higher than the solution gelation temperature of the coating resin in the coating liquid and equal to or lower than the melting points of the coating resin and the core material particles. If polyethylene is used as the coating resin, 60
~ 90 ° C is preferred. By adjusting the coating liquid supply rate and the supply rate of the heated gas, the core material particle temperature can be controlled within the above temperature range.

【0034】本発明の芯材粒子の被覆方法を実施する際
に用いる装置としては、公知の造粒装置、被覆装置等が
適宜利用できる。これらの装置としては、具体的には、
ヘンシェルミキサーやナウターミキサー等の撹拌翼を用
いる混合撹拌装置、回転ドラム式コータ、回転パン式コ
ータ、回転落下式コータ等の装置自身が回転することに
より混合撹拌する装置、振動を与えることにより混合撹
拌する振動流動装置、粒子を吹飛ばして混合撹拌するワ
ースター式若しくは噴流方式の被覆装置、粒子を浮遊流
動させる方式の流動層型コータ等を例示することができ
る。
As a device used for carrying out the method for coating core material particles of the present invention, a known granulating device, coating device and the like can be appropriately used. As these devices, specifically,
A mixing and stirring device using a stirring blade such as a Henschel mixer or a Nauta mixer, a device such as a rotary drum type coater, a rotary pan type coater, a rotary drop type coater, etc., a device for mixing and stirring by rotating itself, mixing by applying vibration Examples include a vibrating fluidizing device for stirring, a Wurster-type or jet-type coating device for blowing and mixing and stirring particles, and a fluidized bed type coater for floating and flowing particles.

【0035】これらの内でも、噴流塔を用いる噴流方式
の被覆装置は、得られる被膜の均一性、大量処理に適し
ている点等で、本発明を実施する際に用いて好適な装置
である。
Of these, the jet-type coating apparatus using a jet tower is a suitable apparatus to be used in practicing the present invention because of the uniformity of the obtained film and the suitability for mass processing. .

【0036】以下、噴流塔を用いる噴流方式の被覆装置
を用いて本発明方法を、更に説明する。
The method of the present invention will be further described below using a jet type coating apparatus using a jet tower.

【0037】図1は、本発明の被覆方法において用いる
ことのできる、芯材粒子の被覆装置の構成の一例を示す
もので、図1中、2は垂直に設けた噴流塔である。前記
噴流塔2は、主要部を円筒状の槽主体4で構成してい
る。
FIG. 1 shows an example of the configuration of a core particle coating apparatus which can be used in the coating method of the present invention. In FIG. 1, reference numeral 2 denotes a vertically installed jet tower. The main part of the jet tower 2 is constituted by a cylindrical tank main body 4.

【0038】前記槽主体4の形状には、特に制限が無
く、水平方向断面の形状が円形であっても、多角形のも
のであってもよい。しかし、粒子の槽主体4内における
循環の均一性の面から云えば、前記槽主体4の断面の形
状は円形であることが望ましい。
The shape of the tank main body 4 is not particularly limited, and the shape of the horizontal section may be circular or polygonal. However, from the viewpoint of uniformity of circulation of the particles in the tank main body 4, it is preferable that the cross section of the tank main body 4 has a circular shape.

【0039】前記槽主体4の内部には、円筒状のガイド
管6を不図示の固定手段で取り付けてある。
A cylindrical guide tube 6 is attached to the inside of the tank main body 4 by fixing means (not shown).

【0040】前記ガイド管6の形状としては、円筒状の
他、パイプに穿孔したもの、或いは金網を筒状にしたも
の等が挙げられる。ガイド管6の形状や材質は特に限定
するものではないが、被覆時の被膜の損傷を最小限に抑
えたい場合には、孔や突起物の無い平滑なパイプ、或い
はパイプの内面にフッ素樹脂をライニングしたものを用
いることが好ましい。ガイド管6は前記絞り部10の上
方であって槽主体4内に、ガイド管6の軸方向を垂直に
して固定若しくは懸垂する。
The shape of the guide tube 6 is not limited to a cylindrical shape, but may be a hole formed in a pipe or a wire mesh formed in a cylindrical shape. The shape and material of the guide tube 6 are not particularly limited. However, if it is desired to minimize damage to the coating at the time of coating, a smooth pipe without holes or protrusions, or a fluororesin is applied to the inner surface of the pipe. It is preferable to use a lining. The guide tube 6 is fixed or suspended in the tank main body 4 above the throttle unit 10 with the axial direction of the guide tube 6 being vertical.

【0041】槽主体4の下部側は下方に向かうに従って
徐々に内径を小さく形成した逆錘状の底部8を有すると
共に、底部8の下端側を貫通して槽主体4よりも小径の
絞り部10を形成してある。絞り部10には別途種々の
オリフィス板やベンチュリを挿入できるように構成して
もよい。
The lower part of the tank main body 4 has an inverted conical bottom part 8 whose inner diameter is formed gradually smaller toward the bottom, and penetrates the lower end side of the bottom part 8 and has a narrower part 10 having a smaller diameter than the tank main body 4. Is formed. The orifice section 10 may be configured so that various orifice plates or venturis can be inserted separately.

【0042】前記絞り部10には、抜き出し管12の一
端が連結してあり、またその他端側は開閉弁14を介し
て被覆粒子抜き出し口16になっている。前記抜き出し
管12には気体供給管18の一端が連結してあり、この
気体供給管18はその中間に気体加熱器20を介して他
端をブロアー22に連結している。これにより、ブロア
ー22から供給される気体は気体加熱器20で加熱され
た後、絞り部10を通って槽主体4内に噴出される。こ
の場合、槽主体4内に噴出される気体の温度は被覆樹脂
の融点よりも10〜100℃高い温度に設定するもので
ある。なお、24は気体供給管に介装した流量計であ
る。
One end of an extraction pipe 12 is connected to the restricting portion 10, and the other end side is a coating particle extraction port 16 through an on-off valve 14. One end of a gas supply pipe 18 is connected to the extraction pipe 12, and the other end of the gas supply pipe 18 is connected to a blower 22 via a gas heater 20 in the middle. As a result, the gas supplied from the blower 22 is heated by the gas heater 20 and then jetted into the tank main body 4 through the throttle unit 10. In this case, the temperature of the gas ejected into the tank main body 4 is set to a temperature higher by 10 to 100 ° C. than the melting point of the coating resin. Reference numeral 24 denotes a flow meter interposed in the gas supply pipe.

【0043】前記絞り部10の中心近傍には、噴霧ノズ
ル26が配設してある。噴霧ノズル26は前記絞り部1
0の中心軸方向に沿って絞り部10の近傍にあれば良
く、前記絞り部10よりも高い位置であっても、低い位
置であっても良い。噴霧ノズル10の位置、形状は噴霧
液体の性状、運転条件等によって適宜決定する。
A spray nozzle 26 is provided near the center of the throttle unit 10. The spray nozzle 26 is connected to the throttle unit 1.
It suffices if it is in the vicinity of the throttle unit 10 along the central axis direction of 0, and may be a position higher or lower than the throttle unit 10. The position and shape of the spray nozzle 10 are appropriately determined depending on the properties of the spray liquid, operating conditions, and the like.

【0044】前記噴霧ノズル26には、被覆液供給ポン
プ28を介装した被覆液供給管30の一端が連結してあ
ると共に、被覆液供給管30の他端は被覆液調製槽32
に連結してある。被覆液調製槽32で調製された被覆液
は、被覆液供給ポンプ28によって、被覆液供給管30
を通って噴霧ノズル26に送られ、その後槽主体4内に
噴霧される。なお、34は蒸気加熱用ジャケットであ
る。
One end of a coating liquid supply pipe 30 provided with a coating liquid supply pump 28 is connected to the spray nozzle 26, and the other end of the coating liquid supply pipe 30 is connected to a coating liquid preparation tank 32.
Connected to. The coating liquid prepared in the coating liquid preparation tank 32 is supplied to the coating liquid supply pipe 30 by the coating liquid supply pump 28.
Through the spray nozzle 26 and then sprayed into the tank body 4. Reference numeral 34 denotes a steam heating jacket.

【0045】36は前記槽主体4に形成した粒子投入口
で、この投入口を通して粒子が槽主体4内に供給され、
噴流層37を形成し、粒子表面に被膜が被覆される。こ
の場合、粒子は被覆液中の溶剤の気化熱により冷却さ
れ、粒子温度は粒子の融点よりも10〜50℃低い温度
になるように制御する。制御方法としては、気体温度、
気体流量、粒子投入量等の被覆装置の運転条件を制御す
ることにより行うものである。なお、38は粒子投入口
バルブ、39は粒子である。
Numeral 36 denotes a particle input port formed in the tank main body 4 through which particles are supplied into the tank main body 4.
The spouted layer 37 is formed, and the particle surface is coated with a coating. In this case, the particles are cooled by the heat of vaporization of the solvent in the coating liquid, and the particle temperature is controlled to be lower by 10 to 50 ° C. than the melting point of the particles. Control methods include gas temperature,
This is performed by controlling the operating conditions of the coating apparatus such as the gas flow rate and the particle input amount. 38 is a particle inlet valve, and 39 is particles.

【0046】また、40は槽主体4の上部壁42に取り
付けた排出管で、これを通して槽主体4内の気体が外部
に放出される。なお、44は噴流部周縁部46を落下し
た粒子が堆積して形成した粒子堆積層である。
Reference numeral 40 denotes a discharge pipe attached to the upper wall 42 of the tank body 4, through which gas in the tank body 4 is discharged to the outside. Reference numeral 44 denotes a particle accumulation layer formed by accumulating particles that have dropped on the peripheral edge portion 46 of the jet part.

【0047】絞り部10における気体流速は、噴出気体
量と絞り口径とによって決まる。また、ガイド管6内の
気体流速も同じ手法で計算することが出来る。ガイド管
6と絞り部10との間隔は粒子の循環を妨げない範囲で
選定することが好ましい。ガイド管6の口径は絞り部の
主孔の口径の1.2から4.0倍が好ましく、1.5か
ら3.0倍がより好ましい。本発明においては絞り部1
0における気体の流速、及びガイド管内における気体の
流速は特に限定するものではないが、品質の安定のため
には絞り部10から装置内に不活性気体を送入する際
の、絞り部10における気体の流速を20〜から70m
/secとし、ガイド管6内の気体の流速を循環粒子の
終端速度の0.5〜3倍に調節して被覆を行う方法が推
奨される。
The gas flow velocity in the throttle unit 10 is determined by the amount of gas ejected and the throttle diameter. Further, the gas flow velocity in the guide tube 6 can be calculated by the same method. It is preferable that the distance between the guide tube 6 and the throttle unit 10 be selected in a range that does not hinder the circulation of the particles. The diameter of the guide tube 6 is preferably 1.2 to 4.0 times, more preferably 1.5 to 3.0 times the diameter of the main hole of the narrowed portion. In the present invention, the throttle unit 1
The flow rate of the gas at 0 and the flow rate of the gas in the guide tube are not particularly limited, but in order to stabilize the quality, when the inert gas is sent from the throttle unit 10 into the apparatus, Gas flow rate from 20 to 70m
/ Sec, and a method of adjusting the flow velocity of the gas in the guide tube 6 to 0.5 to 3 times the terminal velocity of the circulating particles to perform coating is recommended.

【0048】なお、上記説明においては、槽主体4内に
ガイド管6を設けた噴流塔を有する粒子の被覆装置につ
いて説明したが、これに限られない。本発明は、ガイド
管を有していない噴流塔を有する粒子の被覆装置を含む
ものである。この場合も、上記説明は同様に適用され
る。
In the above description, the particle coating apparatus having the jet tower provided with the guide tube 6 in the tank main body 4 has been described, but the present invention is not limited to this. The present invention includes a particle coating apparatus having a spout tower without a guide tube. In this case, the above description is similarly applied.

【0049】更に、本発明芯材粒子の被覆方法は、これ
をそのまま造粒方法として用いることもできるもので、
本発明の被覆方法には造粒方法を含むものである。
Further, in the method of coating the core material particles of the present invention, this can be used as it is as a granulation method.
The coating method of the present invention includes a granulation method.

【0050】[0050]

【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。なお、以下の実施例において、特に断り
のない限り%は重量基準である。
The present invention will be specifically described below with reference to examples and comparative examples. In the following examples,% is by weight unless otherwise specified.

【0051】実施例1〜13、比較例1〜4 (時限溶出型被覆肥料の製造)時限溶出型被覆肥料の製
造例を図1のフローシートを用いて説明する。塔径60
0mm、高さ5000mm、空気噴出口径154mm、
円錘角50度の形状を有する噴流塔2内へ、加熱気体
(空気)を下部から上部に向けて供給した。ブロアー2
2を用いて空気を送風し、オリフィス流量計24を通過
させた後、加熱器20によって高温に加熱して加熱気体
とし、これを前述の様に噴流塔2に供給した。加熱気体
は噴流塔2内を通過させた後、噴流塔2の上部に設置さ
れている排ガス用排出管40から排出させた。この加熱
気体が循環している噴流塔2の内部に、平均円形度係数
が0.7以上の芯材粒子を、噴流塔2の側面に設置され
ている芯材粒子投入口36から140kg投入し、図1
に示されるように芯材粒子39を流動させた。
Examples 1 to 13 and Comparative Examples 1 to 4 (Production of Time-Eluted Coated Fertilizer) An example of the production of time-eluted coated fertilizer will be described with reference to the flow sheet of FIG. Tower diameter 60
0 mm, height 5000 mm, air outlet diameter 154 mm,
The heated gas (air) was supplied from the lower part to the upper part into the jet tower 2 having a cone angle of 50 degrees. Blower 2
After the air was blown using 2 and passed through the orifice flow meter 24, it was heated to a high temperature by the heater 20 to obtain a heated gas, which was supplied to the jet tower 2 as described above. After passing through the jet tower 2, the heated gas was discharged from an exhaust gas discharge pipe 40 provided at the upper part of the jet tower 2. 140 kg of core material particles having an average circularity coefficient of 0.7 or more are injected into the inside of the jet tower 2 in which the heated gas is circulated from the core material inlet 36 provided on the side surface of the jet tower 2. , FIG.
The core material particles 39 were caused to flow as shown in FIG.

【0052】被覆操作の際、加熱気体流量および加熱気
体温度は、各サンプル毎に適宜調節する必要がある。加
熱気体流量はオリフィス流量計24で測定しながら調節
した。加熱気体温度は、温度計T1で気体温度、温度計
T2で粒子温度、温度計T3で排気温度を測定しながら
調節した。本実施例、及び比較例においては、流量(オ
リフィス流量計24)600〜1400m3/hr、気
体温度(温度計T1)100〜180℃で実施した。
During the coating operation, the flow rate of the heated gas and the temperature of the heated gas need to be appropriately adjusted for each sample. The heating gas flow rate was adjusted while measuring with the orifice flow meter 24. The heated gas temperature was adjusted while measuring the gas temperature with the thermometer T1, the particle temperature with the thermometer T2, and the exhaust gas temperature with the thermometer T3. In the present example and the comparative example, the test was performed at a flow rate (orifice flow meter 24) of 600 to 1400 m 3 / hr and a gas temperature (thermometer T1) of 100 to 180 ° C.

【0053】表1に製造する時限溶出型被覆肥料の構成
を示す。
Table 1 shows the composition of the timed elution type coated fertilizer produced.

【0054】被覆液調製槽32に、表1に示される被膜
材料組成の各成分と、溶媒としてトルエンを投入し、混
合攪拌することによって、表1に示される被膜材料を混
合溶解させた被覆液33を得た。ポンプ28を用いて、
噴流塔2の下部に設置されている開口2mmフルコン型
一流体ノズルであるスプレーノズル26に該被覆液33
を600〜1100kg/hの流速で輸送し、流動中の
芯材粒子39に噴霧し、吹き付けた。この時、該被覆液
33の温度が80℃以下にならないように、調製槽32
と、調製槽32からスプレーノズル26に至るまでの配
管とを二重構造にしておき、二重構造内部に蒸気を通し
て、被覆液を加温しながら輸送した。なお、用いたPE
の融点は107℃、EVAの融点は77℃であった。
Each component of the coating material composition shown in Table 1 and toluene as a solvent are charged into the coating solution preparation tank 32, and mixed and stirred to form a coating solution in which the coating materials shown in Table 1 are mixed and dissolved. 33 was obtained. Using the pump 28,
The coating liquid 33 is applied to the spray nozzle 26 which is a 2 mm full-fluid type one-fluid nozzle installed at the lower part of the jet tower 2.
Was transported at a flow rate of 600 to 1100 kg / h, and sprayed and sprayed on the flowing core material particles 39. At this time, the preparation tank 32 is controlled so that the temperature of the coating liquid 33 does not become 80 ° C. or lower.
And the piping from the preparation tank 32 to the spray nozzle 26 was made into a double structure, and steam was passed through the inside of the double structure to transport the coating liquid while heating it. The PE used
Was 107 ° C., and the melting point of EVA was 77 ° C.

【0055】[0055]

【表1】 被覆液の噴霧は、流動中の芯材粒子39の温度(T2)
が所定の温度に達した時点から開始し、所定時間噴霧し
た後、乾燥を実施し、乾燥が終了した時点でブロアー2
2を止め、被覆された芯材粒子39を噴流塔2の最下部
にある抜き出し口16より排出し、表2の実施例1〜1
3、比較例1〜4で示される粒状の時限溶出型被覆肥料
の実施品1〜13、比較品1〜4を得た。 (溶出試験)時限溶出型被覆肥料の製造で得られた時限
溶出型被覆肥料(実施品1〜13、比較品1〜4)をそ
れぞれ10gづつ200mlの水中に浸漬し、25℃で
静置した。所定期間経過後、該肥料を水から抜き取り、
水中に溶出した肥料成分量を定量分析した。測定後、該
肥料を新水200mlに入れ、25℃で静置した。所定
期間経過後、同様にして肥料成分の定量分析を行なっ
た。この操作を繰り返し、水中に溶出した肥料成分の溶
出累計と日数の関係をグラフ化して溶出速度曲線を作成
した。その結果を図2に示す。
[Table 1] The spraying of the coating liquid is carried out at the temperature (T2) of the flowing core material particles 39.
Is started at the time when the temperature reaches a predetermined temperature, spraying is performed for a predetermined time, and then drying is performed.
2 was stopped, and the coated core material particles 39 were discharged from the extraction port 16 at the lowermost part of the spout tower 2.
3. Examples 1 to 13 and comparative products 1 to 4 of granular time-eluting type coated fertilizers shown in Comparative Examples 1 to 4 were obtained. (Dissolution test) Each 10 g of the time-dissolved coated fertilizer (Examples 1 to 13 and Comparative products 1 to 4) obtained in the production of the time-dissolved coated fertilizer was immersed in 200 ml of water and allowed to stand at 25 ° C. . After a predetermined period, remove the fertilizer from the water,
The amount of fertilizer components eluted in water was quantitatively analyzed. After the measurement, the fertilizer was placed in 200 ml of fresh water and allowed to stand at 25 ° C. After a lapse of a predetermined period, a quantitative analysis of fertilizer components was performed in the same manner. This operation was repeated, and the relationship between the total dissolution of the fertilizer components eluted in water and the number of days was graphed to prepare a dissolution rate curve. The result is shown in FIG.

【0056】また、浸漬開始から10wt%溶出に至る
までの日数(初期溶出抑制期間)を「D1」とし、それ
以降80wt%溶出に至るまでの日数(溶出期間)を
「D2」とした。更に、浸漬開始から80wt%溶出に
至るまでの日数(溶出期間)を「DT」とした。これら
の結果を表2に示す。実施例においては、加熱気体温度
を比較例よりも高くしたので、比較例に比べ製造時間が
短くなった。更に、実施品及び比較品の「(D1−5)
日目の溶出率」の結果から明らかなように、「実施品の
D1−5日目の溶出率」は比較品の「実施品のD1−5
日目の溶出率」よりも低くなり、初期溶出が抑制され
た。
The number of days from the start of the immersion to the elution of 10 wt% (initial elution suppression period) was defined as “D1”, and the number of days from the start of immersion to the 80 wt% elution (elution period) was defined as “D2”. Furthermore, the number of days (elution period) from the start of immersion to the 80 wt% elution was defined as “DT”. Table 2 shows the results. In the example, since the heating gas temperature was higher than that of the comparative example, the manufacturing time was shorter than that of the comparative example. In addition, “(D1-5)
As is evident from the results of the “elution rate on the day”, the “elution rate on the D1-5 day of the working product” is “D1-5 of the working product” of the comparative product
Day elution rate ”, and the initial elution was suppressed.

【0057】[0057]

【表2】 (キュウリ栽培用配合肥料の調整)熊本県水俣市袋(地
名)でのキュウリ(品種:あそみどり)の露地栽培にお
ける播種から収穫までの期間の該キュウリの養分要求曲
線(前記養分吸収パターン)を、同地において前年度測
定した栽培期間中の土壌養分供給曲線(前記時期別土壌
養分供給量)と該キュウリの養分吸収曲線(前記時期別
養分吸収量)とから割り出した。これらの曲線を得るた
めに使用した基本データは、前年度同地で実施した同作
物の試作データである。この様にして得られた前年度の
該キュウリの養分要求曲線を図3に示す。
[Table 2] (Adjustment of compound fertilizer for cucumber cultivation) Nutrient demand curve of the cucumber (variety: Aso midori) in the open-field cultivation of cucumber (variety: Aso midori) in Minamata-shi, Kumamoto from the sowing to the harvest (the nutrient absorption pattern) Was determined from the soil nutrient supply curve during the cultivation period (the above-mentioned soil nutrient supply at each time period) and the nutrient absorption curve of the cucumber (the above-mentioned seasonal nutrient absorption amount) during the cultivation period measured in the previous year. The basic data used to obtain these curves is the prototype data of the same crop conducted in the same area last year. The nutrient demand curve of the cucumber obtained in the previous year thus obtained is shown in FIG.

【0058】次に、時限溶出型被覆肥料実施品2および
実施品10を組み合わせて、該養分要求曲線に近似する
溶出曲線を有する配合肥料A得た。配合肥料Aは、図2
記載の実施品2と実施品10との溶出曲線を基準とし、
95:5、90:10・・・5:95と5単位毎に組成
比を代え、それぞれの組成比から得られる仮想溶出曲線
を描き、この中から該養分要求曲線に最も近似する溶出
曲線を有する組成比を選んだ。その結果、配合肥料A
は、時限溶出型被覆肥料実施品2と10を45対55の
比率で組み合わせたものが最も適当であることが分かっ
た。この組合わせの配合肥料Aの溶出曲線を実施例配合
肥料溶出曲線とし、これを図3に示した。該養分吸収曲
線は、栽培期間中の気温変化(18℃〜32℃程度の範
囲)を取り入れた曲線であるが、栽培期間中の平均気温
がほぼ25℃なので、25℃の溶出曲線が記載されてい
る図2を組成比特定の基準とした。また、同様に、時限
溶出型被覆肥料実施品2および比較品2を組み合わせ
て、該養分要求曲線に近似する溶出曲線を有する配合肥
料Bを得た。配合肥料Bは、時限溶出型被覆肥料実施品
2と比較品2を50対50の比率で組み合わせたものが
最も適当であることが分かった。配合肥料Bの溶出曲線
を比較例配合肥料溶出曲線とし、これを図3に示した。
Next, the time-dissolved coated fertilizer-executable product 2 and the product 10 were combined to obtain a compound fertilizer A having an elution curve close to the nutrient requirement curve. Fig. 2
Based on the elution curve of the described working product 2 and working product 10,
95: 5, 90:10... 5:95 The composition ratio is changed every 5 units, and virtual elution curves obtained from the respective composition ratios are drawn. From these, the elution curve most similar to the nutrient requirement curve is determined. The composition ratio to have was chosen. As a result, compound fertilizer A
It was found that the combination of time-eluting coated fertilizers 2 and 10 in a ratio of 45 to 55 was most suitable. The dissolution curve of the compounded fertilizer A of this combination was taken as the dissolution curve of the compounded fertilizer of Example, which is shown in FIG. The nutrient absorption curve is a curve incorporating a temperature change during the cultivation period (range of about 18 ° C. to 32 ° C.). Since the average temperature during the cultivation period is approximately 25 ° C., a dissolution curve at 25 ° C. is described. FIG. 2 is used as a reference for specifying the composition ratio. Similarly, the time-dissolved coated fertilizer-executed product 2 and the comparative product 2 were combined to obtain a compound fertilizer B having an elution curve close to the nutrient requirement curve. As for the compound fertilizer B, it was found that a combination of the time-eluting type coated fertilizer-executable product 2 and the comparative product 2 in a ratio of 50 to 50 was most appropriate. The dissolution curve of the compound fertilizer B was taken as a comparative compound compound fertilizer elution curve, and is shown in FIG.

【0059】図3より、本発明に係る配合肥料である配
合肥料Aにおいては、初期溶出が極めて低く抑えられて
おり、その溶出曲線はキュウリの養分要求曲線に非常に
近似していることが分る。一方、配合肥料Bにおいて
は、初期溶出の抑制は不十分であり、その溶出曲線はキ
ュウリの養分要求曲線とほぼ近似しているものの、初期
段階の溶出曲線は明らかに異なっていることが分かる。 (配合肥料を用いたキュウリ栽培試験)熊本県水俣市袋
(地名)にある圃場において、配合肥料Aと配合肥料B
を用いたキュウリの栽培試験を行った。栽培試験は、通
常の農作業形式に準拠した慣行区試験、配合肥料Aを用
いた実施例区試験、配合肥料Bを用いた比較例区試験の
3種類の栽培形式で行った。各試験の詳細を以下に示
す。 慣行区試験 予め調整しておいた、肥料が全く含有されていない育苗
培土100mlに対し、育苗用肥料として窒素成分(N
成分、以下Nと略す。)10mg、リン(P25成分、
以下Pと略す。)10mg、カリ成分(K2O成分、以
下Kと略す。)10mgを混合した育苗培土資材400
mlを直径10cmタイプのビニールポットに充填した
後、キュウリ種子(品種:あそみどり)1粒を播種し、
更にその上に該育苗培土を覆土して、4月20日より5
月10日までビニールポット内で苗を育てた。ビニール
ポットでの育苗が終了した後、該苗を圃場に1800本
/10aの密度で移植し、圃場での栽培を開始した。そ
の後、7月5日から主茎の収穫を開始し、7月26日か
ら側枝の収穫を開始し、9月19日に収穫して、栽培を
終了した。
FIG. 3 shows that in the compound fertilizer A, which is the compound fertilizer according to the present invention, the initial elution is extremely low, and the elution curve is very similar to the nutrient requirement curve of cucumber. You. On the other hand, in the compound fertilizer B, the suppression of the initial elution is insufficient, and the elution curve thereof is almost similar to the cucumber nutrient requirement curve, but the elution curve in the initial stage is clearly different. (Cucumber cultivation test using compound fertilizer) Compound fertilizer A and compound fertilizer B in a field in Fukuro (place name), Minamata City, Kumamoto Prefecture
A cucumber cultivation test was carried out using cucumber. The cultivation test was performed in three types of cultivation formats: a conventional plot test based on a normal agricultural work format, an experimental plot test using the compound fertilizer A, and a comparative plot test using the compound fertilizer B. Details of each test are shown below. Conventional plot test With respect to 100 ml of seedling cultivation soil containing no fertilizer prepared in advance, nitrogen component (N
Component, hereinafter abbreviated as N. ) 10 mg, phosphorus (P 2 O 5 component,
Hereinafter, it is abbreviated as P. ) 10 mg and 10 mg of a potash component (K 2 O component, hereinafter abbreviated as K) mixed with a seedling culture material 400
ml into a 10 cm diameter plastic pot, and then seeded with one cucumber seed (variety: Aso midori)
Furthermore, cover the seedling cultivation soil on top of it, and
Seedlings were raised in plastic pots until October 10. After the seedling raising in the plastic pot was completed, the seedlings were transplanted to the field at a density of 1800 trees / 10a, and cultivation in the field was started. After that, harvesting of the main stem was started on July 5, harvesting of side branches was started on July 26, and harvesting was completed on September 19, and the cultivation was completed.

【0060】苗を圃場に移植し、苗が圃場に定植してか
ら収穫までの間に、肥料成分としてNを14%、Pを1
4%、Kを14%含有する高度化成肥料を4回に分けて
施肥した。施肥量は、4回の施肥でNーPーKが圃場1
0アール当たり、15Kgー15Kgー15Kgとなる
様に調整した。 実施例区試験 予め調整しておいた、肥料が全く含有されていない育苗
培土100mlに対し、育苗用肥料としてPを10m
g、Kを10mg混合した育苗培土資材400mlと、
配合肥料A中に存在するNが8.33g(圃場10アー
ル当たりのNが15Kgに相当)となる量の配合肥料A
とをよくかき混ぜて、直径10cmタイプのビニールポ
ットに充填した。これに、キュウリ種子(品種:あそみ
どり)1粒を播種し、更にその上に該育苗培土を覆土し
て、4月20日より5月10日までビニールポット内で
苗を育てた。ビニールポットでの育苗が終了した後、該
苗を圃場に1800本/10aの密度で移植し、圃場に
おける栽培を開始した。その後、7月5日から主茎の収
穫を開始し、7月25日から側枝の収穫を開始し、9月
19日に収穫して、栽培を終了した。
The seedlings are transplanted to a field, and 14% of N and 1% of P are used as fertilizer components between the time when the seedlings are planted in the field and before the harvest.
The advanced chemical fertilizer containing 4% and 14% K was fertilized in four times. The amount of fertilizer applied was N-P-K in the field 1 after four fertilizations.
It adjusted so that it might become 15Kg-15Kg-15Kg per 0 ares. Example section test For 100 ml of seedling cultivation soil containing no fertilizer prepared in advance, 10 m of P was used as a fertilizer for raising seedlings.
g, K 10mg mixed with 400ml of seedling cultivation soil material,
An amount of the compound fertilizer A in which the amount of N present in the compound fertilizer A is 8.33 g (corresponding to 15 kg of N per 10 ares in a field).
And stirred well and filled into a 10 cm diameter vinyl pot. One cucumber seed (variety: Aso midori) was sown thereon, and the seedling cultivation soil was covered thereon, and seedlings were raised in a plastic pot from April 20 to May 10. After the seedling raising in the vinyl pot was completed, the seedlings were transplanted to the field at a density of 1800 trees / 10a, and cultivation in the field was started. Thereafter, harvesting of the main stem was started on July 5, harvesting of side branches was started on July 25, and harvesting was completed on September 19, and the cultivation was completed.

【0061】苗を圃場に移植し、苗が圃場に定植してか
ら収穫までの間に、肥料成分としてPを14%、Kを1
4%含有する高度化成肥料を4回に分けて施肥した。施
肥量は、4回の施肥でPーKが圃場10アール当たり、
15Kgー15Kgとなる様に調整した。 比較例区試験 予め調整しておいた肥料が全く含有されていない育苗培
土100mlに対し、育苗用肥料として、Pを10m
g、Kを10mg混合した育苗培土資材400mlと配
合肥料B中に存在するNが8.33g(圃場10アール
当たりのNが15Kgに相当)となる量の配合肥料Bと
をよくかき混ぜ、直径10cmタイプのビニールポット
に充填した。その後、キュウリ種子(品種:あそみど
り)1粒を播種し、更にその上に該育苗培土を覆土し
て、4月26日より5月6日までビニールポット内で苗
を育てた。ビニールポットでの育苗が終了した後、該苗
を圃場に1800本/10aの密度で移植し、圃場での
栽培を開始した。その後、7月6日から主茎の収穫を開
始し、7月25日から側枝の収穫を開始し、9月19日
に収穫して、栽培を終了した。
The seedlings are transplanted to a field, and 14% of P and 1% of K are used as fertilizer components between the time when the seedlings are planted in the field and before the harvest.
The advanced chemical fertilizer containing 4% was fertilized in four times. Fertilization amount is 4 times fertilizer PK per 10 ares field,
It was adjusted to be 15 kg-15 kg. Comparative example plot test For 100 ml of seedling cultivation soil containing no fertilizer prepared in advance, 10 m of P was used as a fertilizer for raising seedlings.
g and K were mixed with 400 ml of the seedling culture material mixed with 10 mg of the fertilizer B, and the fertilizer B was thoroughly mixed with an amount of the fertilizer B of 8.33 g (N per 15 areal fields corresponding to 15 kg), and the diameter was 10 cm. Filled in a plastic pot of the type. Thereafter, one cucumber seed (variety: Aso midori) was sown, and the seedling cultivation soil was covered thereon, and seedlings were raised in a plastic pot from April 26 to May 6. After the seedling raising in the plastic pot was completed, the seedlings were transplanted to the field at a density of 1800 trees / 10a, and cultivation in the field was started. After that, harvesting of the main stem was started on July 6, harvesting of side branches was started on July 25, and harvesting on September 19 was completed.

【0062】苗を圃場に移植し、苗が圃場に定植してか
ら収穫までの間に、肥料成分としてPを14%、Kを1
4%含有する高度化成肥料を4回に分けて施肥した。施
肥量は、4回の施肥でPーKが圃場10アール当たり、
15Kgー15Kgとなる様に調整した。
The seedlings are transplanted to the field, and 14% of P and 1% of K are used as fertilizer components between the time when the seedlings are planted in the field and before the harvest.
The advanced chemical fertilizer containing 4% was fertilized in four times. Fertilization amount is 4 times fertilizer PK per 10 ares field,
It was adjusted to be 15 kg-15 kg.

【0063】以上の様に、慣行区試験ではNの追肥を行
い、比較例区試験および実施例区試験では、Nの追肥を
行わずにキュウリの栽培を行った。
As described above, N was fertilized in the conventional plot, and cucumber was cultivated without N in the comparative plot and the experimental plot.

【0064】その結果、比較例区試験において、発芽が
全く起こらなかった(発芽率0%)。これは、明らかに
生育初期における肥料成分の過剰溶出が原因である。図
3の比較例配合肥料溶出曲線からも明らかなように、配
合肥料Bは、初期溶出が充分に抑えられておらず、この
過剰溶出がキュウリの種子に対して濃度障害を起こし
た。
As a result, no germination occurred in the comparative example test (germination rate: 0%). This is apparently due to excessive elution of the fertilizer components at the early growth stage. As is clear from the elution curve of the mixed fertilizer of the comparative example in FIG. 3, the initial elution of the mixed fertilizer B was not sufficiently suppressed, and the excessive elution caused a concentration hindrance to cucumber seeds.

【0065】一方、実施例区試験においては、発芽率が
96%であり、慣行区試験の発芽率97%と、ほぼ同等
の良好な生育状態であった。
On the other hand, the germination rate was 96% in the test in the example group, and the germination rate was 97% in the conventional test, indicating that the germination rate was almost as good.

【0066】また、実施例区試験における収穫指数も、
慣行区の収穫量を100とするのに対し103であり、
Nの追肥を行った慣行区試験と全く遜色のない収穫量で
あった。この様に実施例区試験においては、慣行区試験
(従来の農作業)の半分程度の減肥を行っても、同等以
上の収量が得られることが分かった。本発明の配合肥料
を播種と同時に施肥する栽培方法を用いれば、作業の省
力化と肥料の利用効率とを大幅に向上させる得る。
In addition, the harvest index in the experimental test was also
It is 103 for the yield of the customary zone, which is 100,
The yield was comparable to the conventional test in which N topdressing was performed. As described above, it was found that even in the test in the example plot, even if the fertilization was reduced by about half of that in the conventional plot test (conventional agricultural work), an equivalent or higher yield could be obtained. By using the cultivation method of applying the compound fertilizer of the present invention at the same time as sowing, labor saving of the work and the use efficiency of the fertilizer can be greatly improved.

【0067】[0067]

【発明の効果】本発明の芯材粒子の被覆方法は、加熱気
体の温度を被覆樹脂の融点よりも10〜100℃高い温
度にしているので、被覆液中の溶剤を効率よく気化させ
ることができ、このため被覆処理量が大きい。また、気
化熱により芯材粒子は冷却されるので、芯材粒子は溶融
することが無く、このため確実に樹脂被膜を被覆でき、
更に被覆装置内において粒子が堆積して融解固結する事
を防止する。このため、装置の運転が安定し、被覆粒子
を大量かつ安定に製造することができる。従って、本被
覆方法を用いて時限溶出型の被覆肥料を製造する場合
は、得られる被覆肥料は溶出が安定しており、特に被膜
組成によって決定される初期溶出抑制期間が安定した被
覆肥料を一度に、大量に製造できる。この被覆肥料を用
いて作物の栽培を行う場合、特に育苗開始時若しくは本
圃への播種、移植時に、栽培期間中に散布、施用する農
薬成分の全量、若しくはその内の大部分を一度に施用す
る栽培方法に用いる場合、肥料による濃度障害を起すこ
となく栽培を行うことができる。更に、この方法を応用
することで、育苗施肥用以外の肥料の生産効率も改善で
きる。
According to the method of coating core particles of the present invention, the temperature of the heated gas is set to a temperature higher by 10 to 100 ° C. than the melting point of the coating resin, so that the solvent in the coating liquid can be vaporized efficiently. The coating amount is large. In addition, since the core material particles are cooled by the heat of vaporization, the core material particles do not melt, so that the resin coating can be reliably coated,
Further, it is possible to prevent the particles from accumulating and melting and solidifying in the coating apparatus. For this reason, the operation of the apparatus is stable, and a large amount of coated particles can be stably manufactured. Therefore, in the case of producing a time-eluting type coated fertilizer using the present coating method, the obtained coated fertilizer has a stable elution, and in particular, once the coated fertilizer has a stable initial elution suppression period determined by the coating composition. In addition, it can be manufactured in large quantities. When cultivating a crop using this coated fertilizer, especially at the start of seedling raising or at the time of sowing or transplanting to the field, the whole amount of the pesticide components to be applied and applied during the cultivation period, or most of them are applied at once. When used in a cultivation method, cultivation can be performed without causing concentration disturbance due to fertilizer. Furthermore, by applying this method, the production efficiency of fertilizers other than those for raising seedlings can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施に用いる芯材粒子の被覆装置の構
成の一例を示す概略説明図である。
FIG. 1 is a schematic explanatory view showing an example of the configuration of a core particle coating apparatus used for carrying out the present invention.

【図2】時限溶出型被覆肥料の溶出速度曲線を示すグラ
フである。
FIG. 2 is a graph showing a dissolution rate curve of a time-dissolved coated fertilizer.

【図3】キュウリの養分要求曲線と、配合肥料の溶出曲
線とを示すグラフである。
FIG. 3 is a graph showing a nutrient demand curve of cucumber and an elution curve of a compound fertilizer.

【符号の説明】[Explanation of symbols]

2 噴流塔 4 槽主体 6 ガイド管 8 底部 10 絞り部 20 気体加熱器 22 ブロアー 26 噴霧ノズル 32 被覆液調製槽 2 Jet Tower 4 Tank Main Body 6 Guide Tube 8 Bottom 10 Restrictor 20 Gas Heater 22 Blower 26 Spray Nozzle 32 Coating Liquid Preparation Tank

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C05G 3/00 103 C05G 3/00 103 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C05G 3/00 103 C05G 3/00 103

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 被覆樹脂を溶剤に溶解した被覆液を芯材
粒子に噴霧しながら加熱気体を供給して前記被覆液の溶
剤を乾燥させることにより芯材粒子の表面に被覆樹脂を
被覆する芯材粒子の被覆方法において、前記供給する加
熱気体の温度を被覆樹脂の融点よりも10〜100℃高
い温度に保つことを特徴とする芯材粒子の被覆方法。
A core for coating the surface of a core particle with a coating resin by supplying a heating gas while spraying a coating solution obtained by dissolving a coating resin in a solvent onto the core particle and drying the solvent of the coating solution. A method of coating core particles, wherein the temperature of the supplied heated gas is maintained at a temperature higher by 10 to 100C than the melting point of the coating resin.
【請求項2】 被覆液を芯材粒子に噴霧しながら加熱気
体を供給している芯材粒子の温度を前記被覆樹脂の融点
よりも10〜50℃低い温度に保つ請求項1に記載の芯
材粒子の被覆方法。
2. The core according to claim 1, wherein the temperature of the core particles supplying the heating gas while spraying the coating liquid onto the core particles is maintained at a temperature lower by 10 to 50 ° C. than the melting point of the coating resin. Method of coating material particles.
【請求項3】 加熱気体を供給することにより芯材粒子
を噴流状態にする請求項1又は2に記載の芯材粒子の被
覆方法。
3. The method for coating core particles according to claim 1, wherein the core particles are jetted by supplying a heated gas.
【請求項4】 被覆樹脂がポリオレフィン樹脂である請
求項1乃至3のいずれかに記載の芯材粒子の被覆方法。
4. The method for coating core particles according to claim 1, wherein the coating resin is a polyolefin resin.
【請求項5】 溶剤がパークロロエチレン、トリクロロ
エチレン、オクタン、又はトルエンである請求項1乃至
4のいずれかに記載の芯材粒子の被覆方法。
5. The method for coating core particles according to claim 1, wherein the solvent is perchlorethylene, trichlorethylene, octane, or toluene.
【請求項6】 芯材粒子が肥料粒子、又は農薬粒子であ
る請求項1乃至5のいずれかに記載の芯材粒子の被覆方
法。
6. The method for coating core particles according to claim 1, wherein the core particles are fertilizer particles or pesticide particles.
【請求項7】 請求項6に記載の芯材粒子の被覆方法に
より得られることを特徴とする時限溶出型の溶出機能を
有する被覆肥料又は被覆農薬。
7. A coated fertilizer or a coated pesticide having a timed elution type elution function, which is obtained by the method for coating core material particles according to claim 6.
【請求項8】 請求項7に記載の被覆肥料又は被覆農薬
を用いることを特徴とする作物の栽培方法。
8. A method for cultivating a crop, comprising using the coated fertilizer or the coated pesticide according to claim 7.
JP10140599A 1998-05-07 1998-05-07 Coating method for core material particle Pending JPH11319693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10140599A JPH11319693A (en) 1998-05-07 1998-05-07 Coating method for core material particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10140599A JPH11319693A (en) 1998-05-07 1998-05-07 Coating method for core material particle

Publications (1)

Publication Number Publication Date
JPH11319693A true JPH11319693A (en) 1999-11-24

Family

ID=15272459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10140599A Pending JPH11319693A (en) 1998-05-07 1998-05-07 Coating method for core material particle

Country Status (1)

Country Link
JP (1) JPH11319693A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038261A1 (en) * 1998-05-29 2001-05-31 Chisso Corporation Coated granular fertilizers of time-programmed elution type, process for producing the same, method for controlling the elution-control time thereof and cultivation method with the use of the fertilizers
JP2009000101A (en) * 2007-05-22 2009-01-08 Sumitomo Chemical Co Ltd Application method of granulated fertilizer in nursery box for paddy rice seedling
JP2012139154A (en) * 2010-12-28 2012-07-26 National Agriculture & Food Research Organization Method for promoting floral bud differentiation of strawberry

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038261A1 (en) * 1998-05-29 2001-05-31 Chisso Corporation Coated granular fertilizers of time-programmed elution type, process for producing the same, method for controlling the elution-control time thereof and cultivation method with the use of the fertilizers
JP2009000101A (en) * 2007-05-22 2009-01-08 Sumitomo Chemical Co Ltd Application method of granulated fertilizer in nursery box for paddy rice seedling
JP2012139154A (en) * 2010-12-28 2012-07-26 National Agriculture & Food Research Organization Method for promoting floral bud differentiation of strawberry

Similar Documents

Publication Publication Date Title
US6287359B1 (en) Granule mixtures composed of coated and non-coated fertilizer granules
US9307692B2 (en) Microcapsules adapted to rupture in a magnetic field
JP3158174B2 (en) Sulfur-coated fertilizer and method for producing the same
US8904704B1 (en) Seeding treatments
RU2482675C2 (en) Methods of obtaining granular products for weed control, having optimised distribution of agriculturally active substances in their coating
KR100362798B1 (en) Coating pesticide granules, preparation method thereof and uses thereof
JP2012522722A (en) Leaching controlled, naturally degradable coated fertilizer
JP3609222B2 (en) Time-eluting coated granular fertilizer, blended fertilizer containing this as an active ingredient, and cultivation method using the blended fertilizer
JPH11319693A (en) Coating method for core material particle
JP3633148B2 (en) Granule coating method
JPH07206564A (en) Agrochemical-coated granular fertilizer and its production
JPH07222531A (en) Method for growing seedling of paddy rice
JP2003192483A (en) Method of manufacturing coated biologically active granular material
JP2004345872A (en) Coated granular fertilizer containing nitrification retarder and its production method
JPH11343190A (en) Elution time adjusting type coated granular fertilizer, its production, control of eluting suppressing period and cultivation using the fertilizer
JP2004292319A (en) Coated granular material
JPH10276570A (en) Method for preparing cold-district type mixed lawn
JP3921813B2 (en) Squeezing disk for granule coating apparatus, granule coating apparatus having the disc, and granule coating method
JPH104783A (en) Horticultural culture soil for raising seedling and raising seedling using the same
JP2000109388A (en) Coated granular product, agricultural product, cultivating method and soil
JPS6323159B2 (en)
JPH09233952A (en) Seedling raising molding for paddy rice
JP3653988B2 (en) Squeezing disk for granule coating apparatus, granule coating apparatus equipped with the disc, and granule coating method
JP2002226287A (en) Highly hydrophilic resin coated bioactive granular substance and method for manufacturing the same
JPH0230690A (en) Coated granular fertilizer and production thereof