JPH1131487A - Cylindrical sealed battery and its manufacture - Google Patents

Cylindrical sealed battery and its manufacture

Info

Publication number
JPH1131487A
JPH1131487A JP9183951A JP18395197A JPH1131487A JP H1131487 A JPH1131487 A JP H1131487A JP 9183951 A JP9183951 A JP 9183951A JP 18395197 A JP18395197 A JP 18395197A JP H1131487 A JPH1131487 A JP H1131487A
Authority
JP
Japan
Prior art keywords
plate
insulating
insulating ring
battery case
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9183951A
Other languages
Japanese (ja)
Inventor
Masaya Sugafuji
雅哉 菅藤
Katsuhisa Wadasaki
勝久 和田崎
Tameji Ishizaki
為次 石崎
Tomokichi Yonehara
倫吉 米原
Ichiro Matsuhisa
一朗 松久
Kunio Tsuruta
邦夫 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9183951A priority Critical patent/JPH1131487A/en
Publication of JPH1131487A publication Critical patent/JPH1131487A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a cylindrical sealed battery in an insulating ring structure for improving the permeability of an electrolyte and restraining malfunction due to stagnant liquid. SOLUTION: A cutout part is formed on the outer diameter side of an insulating ring 7 to isolate and insulate a pole plate group 3 stored in a battery case from a sealing plate 5 or a rising part is formed on a separation part to improve the permeating speed of an electrolyte into the pole plate group 3 and smoothly bleed air out of the battery case 2 for better electrolyte permeability, so that the possibility of stagnant liquid is eliminated and defective insulation of an insulating plate 6 due to a shift is avoided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池ケース内に挿
入される絶縁物の構造及び電池の製造手順を改良するこ
とにより電池性能を安定させ製造上の歩留りを向上させ
た円筒密閉型電池及びその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed cylindrical battery in which the structure of an insulator inserted into a battery case and the manufacturing procedure of the battery are improved to stabilize the battery performance and improve the production yield. The present invention relates to the manufacturing method.

【0002】[0002]

【従来の技術】リチウム電池等の円筒密閉型電池は、図
12に示すように、一方に開口部を設けた電池ケース3
1内に、正極板と負極板とをセパレータを介して巻回構
造に形成した極板群32を収納し、その上部に絶縁リン
グ33及び絶縁板34を配して、電池ケース31内に電
解液を注入して前記極板群32に電解液を浸透させた
後、前記開口部を封口板35により密閉封止することに
より完成される。これらの製造工程は自動組立装置によ
って実施される。
2. Description of the Related Art As shown in FIG. 12, a cylindrical sealed battery such as a lithium battery has a battery case 3 having an opening on one side.
1, an electrode plate group 32 formed by winding a positive electrode plate and a negative electrode plate with a separator interposed therebetween is housed, and an insulating ring 33 and an insulating plate 34 are disposed on the upper part thereof. After injecting a liquid to infiltrate the electrode group 32 with the electrolytic solution, the opening is hermetically sealed with a sealing plate 35 to complete the process. These manufacturing steps are performed by an automatic assembly device.

【0003】前記電解液は絶縁板34に設けられた注液
穴から注入され、減圧と大気開放とを繰り返すことによ
り所定量の電解液が極板群32に浸透される。また、前
記極板群32の一方の極板から引き出されたリード線3
6は前記封口板35に接続されるので、封口板35と電
池ケース31とを電池の正負両極とすることができる。
また、前記絶縁リング33は極板群32と封口板35と
の間を所定間隔に離隔させて絶縁し、前記絶縁板は前記
リード線36と極板群32とが接触しないように絶縁す
る。
[0003] The electrolyte is injected from a liquid injection hole provided in the insulating plate 34, and a predetermined amount of the electrolyte is permeated into the electrode plate group 32 by repeating pressure reduction and opening to the atmosphere. Also, the lead wire 3 drawn out from one of the electrode plates 32
6 is connected to the sealing plate 35, so that the sealing plate 35 and the battery case 31 can be both positive and negative electrodes of the battery.
Further, the insulating ring 33 insulates the electrode plate group 32 and the sealing plate 35 with a predetermined space therebetween, and insulates the insulating plate so that the lead wire 36 does not contact the electrode plate group 32.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来構成において電解液は絶縁板34に設けた注液穴から
注入されるので、絶縁板34の位置ずれにより電解液の
注入ノズルに対する注液穴の位置にずれが生じると電解
液が絶縁板34の注液穴のない部分に当たって飛び散る
ため、電解液の注入量が減少し、電池特性のばらつきの
原因となる問題点があった。
However, in the above-described conventional structure, the electrolyte is injected from the injection hole provided in the insulating plate 34. Therefore, the displacement of the injection hole with respect to the electrolyte injection nozzle due to the displacement of the insulating plate 34. If the position shifts, the electrolytic solution scatters on the insulating plate 34 where it does not have a liquid injection hole, so that the injection amount of the electrolytic solution is reduced and there is a problem that the battery characteristics are varied.

【0005】この問題点を解消させるべく、絶縁板34
の挿入を電解液の注入後に行うようにすると、電解液が
極板群32に浸透するまでの間の液溜まりによって挿入
した絶縁板34の所定位置からのずれが生じ、リード線
と極板群32との接触による内部ショートを引き起こす
ことがあり、いずれの製造手順によっても電池性能が安
定しなかったり製造の歩留りが低下する問題点があっ
た。
In order to solve this problem, an insulating plate 34
Is inserted after the electrolyte is injected, a displacement of the inserted insulating plate 34 from a predetermined position occurs due to pooling of the electrolyte until the electrolyte permeates the electrode group 32, and the lead wire and the electrode group In some cases, internal short-circuit may occur due to contact with the P.32, and the battery performance may not be stable or the production yield may be reduced by any of the manufacturing procedures.

【0006】本発明の目的とするところは、電解液の浸
透速度を高めて液溜まりの発生を抑える絶縁リング及び
絶縁板の構造及び製造手順を改良した円筒密閉型電池と
その製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a sealed cylindrical battery having improved structures and manufacturing procedures of an insulating ring and an insulating plate for increasing the permeation rate of an electrolytic solution to suppress generation of a liquid pool, and a method of manufacturing the same. It is in.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本願の第1発明は、一方側に開口部を有する円筒形の
電池ケース内に収容された正負両極の極板群と、この極
板群のいずれか一方の極板から引き出されたリード線に
接続して前記開口部を密閉封止する封口板と、この封口
板と極板群との間を離隔させて絶縁する絶縁リングと、
前記リード線と極板群との間を絶縁する絶縁板とを備
え、前記極板群に電解液を浸透させて形成される円筒密
閉型電池において、前記絶縁リングが、前記電池ケース
の内周面に接する外径に形成されたリング状の平面部
と、この平面部の内径側から前記開口部方向に立ち上が
る立ち上がり部とを備え、前記平面部の外径側に電池ケ
ースとの間に複数の間隙を形成する切り欠き部及び/ま
たは前記立ち上がり部にこれを複数に分割する分割部を
設けて形成されてなることを特徴とする。
According to a first aspect of the present invention, there is provided a positive and negative electrode plate group housed in a cylindrical battery case having an opening on one side. A sealing plate that is connected to a lead wire drawn from any one of the plate groups to hermetically seal the opening, and an insulating ring that separates and insulates the sealing plate and the electrode plate group; ,
An insulating plate that insulates between the lead wire and the electrode group; a cylindrical sealed battery formed by infiltrating an electrolyte solution into the electrode group; A ring-shaped flat portion formed at an outer diameter in contact with the surface, and a rising portion rising from the inner diameter side of the flat portion toward the opening; And / or a notch portion forming a gap and / or a dividing portion for dividing the rising portion into a plurality of portions.

【0008】上記構成によれば、絶縁リングの平面部の
外径側に切り欠き部または立ち上がり部に分割部、ある
いはそれらの両方を設けることにより、絶縁リング上か
ら極板群へ電解液が流れる流路が形成されると共に、電
池ケース内からのエアー抜けの流路が形成されるので、
電解液の極板群への浸透速度が高まり、液溜まりの発生
を抑制することができ、絶縁板の液溜まりによる所定位
置からの位置ずれを防止することができる。
[0010] According to the above configuration, the notch portion and / or the split portion at the rising portion are provided on the outer diameter side of the flat portion of the insulating ring, so that the electrolyte flows from the insulating ring to the electrode plate group. Since the flow path is formed and the flow path for air escape from the inside of the battery case is formed,
The permeation speed of the electrolyte into the electrode group is increased, the occurrence of liquid pool can be suppressed, and the displacement of the insulating plate from the predetermined position due to the liquid pool can be prevented.

【0009】上記構成における切り欠き部と分割部と
を、それぞれの位置が同一半径方向になるように形成す
ることにより、電解液の電池ケース内への流下が絶縁リ
ングの内径側、外径側の両方からなされるため、電解液
の浸透性が高まり、液溜まりはより少なくなる。
By forming the notch portion and the divided portion in the above configuration so that their positions are in the same radial direction, the flow of the electrolytic solution into the battery case is reduced on the inner diameter side and the outer diameter side of the insulating ring. Therefore, the permeability of the electrolytic solution is increased, and the liquid pool is reduced.

【0010】また、絶縁板は、絶縁リングの内径側から
極板群上に挿入できる寸法の円形板または多角形板で形
成することができ、更に、絶縁板を網目構造に形成する
ことができる。
[0010] The insulating plate may be formed of a circular plate or a polygonal plate having a size capable of being inserted into the electrode plate group from the inner diameter side of the insulating ring, and the insulating plate may be formed in a mesh structure. .

【0011】前記絶縁リング構造による電解液の浸透性
の向上により液溜まりがなく、注液後に絶縁板を挿入す
ることができるので、絶縁板は注液穴を設ける必要がな
く、円形または多角形の簡単な板構造に形成することが
できる。また、絶縁板を網目構造とすることにより、電
解液の注液前に挿入しても注液が可能であり、液溜まり
の影響を受けない。
Since the insulating ring structure improves the permeability of the electrolyte so that there is no liquid pool and the insulating plate can be inserted after the injection, the insulating plate does not need to be provided with a liquid injection hole, and is circular or polygonal. Can be formed into a simple plate structure. In addition, since the insulating plate has a mesh structure, even if it is inserted before the injection of the electrolytic solution, it is possible to inject the liquid and it is not affected by the liquid pool.

【0012】また、本願の第2発明は、一方側に開口部
を有する円筒形の電池ケース内に収容された正負両極の
極板群と、この極板群のいずれか一方の極板から引き出
されたリード線に接続して前記開口部を密閉封止する封
口板と、この封口板と極板群との間を離隔させて絶縁す
る絶縁リングと、前記リード線と極板群との間を絶縁す
る絶縁板とを備え、前記極板群に電解液を浸透させて形
成される円筒密閉型電池の製造方法において、製造工程
手順が、前記電池ケース内に極板群を挿入する工程、極
板群上に絶縁リングを挿入する工程、電池ケース内に電
解液を注入する工程、絶縁リングの内径側から絶縁板を
極板群上に挿入する工程、リード線と封口板とを接続し
て封口板により電池ケースの開口部を密閉封止する工程
の順に実施されることを特徴とする。
Further, the second invention of the present application is directed to a positive / negative electrode group housed in a cylindrical battery case having an opening on one side, and the electrode group pulled out from one of the electrode groups. A sealing plate that is connected to the lead wire and hermetically seals the opening, an insulating ring that separates and insulates the sealing plate and the electrode group, and a gap between the lead wire and the electrode group. An insulating plate that insulates the electrode group, and in a method of manufacturing a cylindrical sealed battery formed by infiltrating an electrolyte solution into the electrode group, a manufacturing process procedure includes a step of inserting the electrode group into the battery case, A step of inserting an insulating ring onto the electrode group, a step of injecting an electrolyte into the battery case, a step of inserting an insulating plate onto the electrode group from the inner diameter side of the insulating ring, and connecting a lead wire and a sealing plate. Is performed in the order of the steps of hermetically sealing the opening of the battery case with the sealing plate. And wherein the door.

【0013】上記製造方法によれば、電解液の注液後に
絶縁板を挿入するので、液溜まりによる絶縁板の位置ず
れは生じず、また、電解液の注入後に挿入されるので、
注液穴を設ける必要がなく簡易な構造に形成できると共
に、挿入時の位置決めがラフに設定できるので、自動組
立の位置決め機構の簡略化や組立速度の高速化を図るこ
とができ、電池製造の歩留りも向上させることができ
る。
According to the above manufacturing method, since the insulating plate is inserted after the electrolyte is injected, no displacement of the insulating plate occurs due to the accumulation of the liquid, and the insulating plate is inserted after the injection of the electrolyte.
Since it is not necessary to provide a liquid injection hole, it can be formed into a simple structure, and the positioning at the time of insertion can be set roughly, so that the positioning mechanism for automatic assembly can be simplified and the assembly speed can be increased. The yield can also be improved.

【0014】[0014]

【発明の実施の形態】以下、添付図面を参照して本発明
の一実施形態について説明し、本発明の理解に供する。
尚、以下に示す実施形態は本発明を具体化した一例であ
って、本発明の技術的範囲を限定するものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention.
The embodiment described below is an example embodying the present invention, and does not limit the technical scope of the present invention.

【0015】図1は、円筒密閉型電池の一例である円筒
型リチウムイオン二次電池に本発明を適用した実施形態
を示す断面図である。この円筒型リチウムイオン二次電
池は、正極活物質としてLiCoO2 、負極活物質とし
てカーボンを使用して形成されるものである。
FIG. 1 is a sectional view showing an embodiment in which the present invention is applied to a cylindrical lithium ion secondary battery which is an example of a sealed cylindrical battery. This cylindrical lithium ion secondary battery is formed using LiCoO 2 as a positive electrode active material and carbon as a negative electrode active material.

【0016】図1において、円筒密閉型電池1は、円筒
型の電池ケース2に、正極板と負極板とをセパレータを
介して巻回構造に形成した極板群3を収容して電解液を
含浸させ、正極板から引き出された正極リード4を封口
板5に接続し、この封口板5により電池ケース2の開口
部を封口することによって製造される。前記極板群3と
封口板5との間には絶縁板6及び絶縁リング7を配設し
て、極板群3と封口板5との間を離隔絶縁すると共に正
負極間の絶縁性を保っている。
In FIG. 1, a sealed cylindrical battery 1 contains an electrode group 3 in which a positive electrode plate and a negative electrode plate are wound in a cylindrical battery case 2 with a separator interposed therebetween, and an electrolytic solution is supplied. The positive electrode lead 4 which is impregnated and pulled out from the positive electrode plate is connected to a sealing plate 5, and the opening of the battery case 2 is sealed with the sealing plate 5. An insulating plate 6 and an insulating ring 7 are provided between the electrode plate group 3 and the sealing plate 5 to separate and insulate the electrode plate group 3 and the sealing plate 5 and to improve the insulation between the positive and negative electrodes. I keep it.

【0017】前記絶縁板6は、正極リード4が極板群3
の負極板に接触しないように絶縁性を確保するもので、
円形、多角形等の板または網目を形成した板が用いられ
る。
The insulating plate 6 includes a positive electrode lead 4 and an electrode plate group 3.
It ensures insulation so that it does not touch the negative electrode plate of
A circular or polygonal plate or a plate formed with a mesh is used.

【0018】また、絶縁リング7は、極板群3と封口板
5との間に適度な間隔を確保すると共に、極板群3への
電解液の注液時に液溜まりを生じさせないように形成さ
れている。この絶縁リング7の構成について、図2〜図
10を参照して説明する。
Further, the insulating ring 7 is formed so as to secure an appropriate interval between the electrode plate group 3 and the sealing plate 5 and to prevent the liquid pool from being generated when the electrolytic solution is injected into the electrode plate group 3. Have been. The configuration of the insulating ring 7 will be described with reference to FIGS.

【0019】絶縁リング7は、図2に示すように、外径
側が電池ケース2の内周面に接するリング形の平面部1
1と、その内径側から立ち上がる立ち上がり部12とを
備え、図2(a)に示すように、平面部11の外径側に
複数の切り欠き部13を設けた形状の絶縁リング7a、
図2(b)に示すように、立ち上がり部12を複数の分
割部14で分割した形状の絶縁リング7b、図2(c)
に示すように、平面部11に設けた切り欠き部13と立
ち上がり部12に設けた分割部14との半径方向の位置
を一致させて形成した形状の絶縁リング7cとして構成
することができる。
As shown in FIG. 2, the insulating ring 7 has a ring-shaped flat portion 1 whose outer diameter is in contact with the inner peripheral surface of the battery case 2.
1 and a rising portion 12 rising from the inner diameter side, and as shown in FIG. 2A, an insulating ring 7 a having a shape in which a plurality of notches 13 are provided on the outer diameter side of the flat portion 11,
As shown in FIG. 2B, the insulating ring 7b has a shape in which the rising portion 12 is divided by a plurality of dividing portions 14, and FIG.
As shown in FIG. 7, the insulating ring 7c can be configured such that the notch portion 13 provided on the flat portion 11 and the dividing portion 14 provided on the rising portion 12 have the same radial position.

【0020】このように平面部11に切り欠き部13を
設けることによって、電解液の注液時に電解液の浸透に
応じた電池ケース2内の空気の抜け路が形成されると同
時に、切り欠き部13からも極板群3に流入するので電
解液の浸透が速くなり、また、絶縁リング7上に電解液
の液溜まりができないので、電解液の浸透性を向上させ
ることができる。また、立ち上がり部12に設けた分割
部14の場合も電解液が絶縁リング7の内径側から電池
ケース2内に流れる流路が形成されるので、電解液の液
溜まりを防止することができる。更に、切り欠き部13
と分割部14の両方を設け、その半径方向の位置を一致
させておくことによって、電解液は外径側にも内径側に
も流下するので、電解液の浸透性をより向上させること
ができる。
By providing the notch 13 in the flat portion 11 as described above, a passage for air in the battery case 2 according to the permeation of the electrolyte when the electrolyte is injected is formed, and at the same time, the notch 13 is formed. Since the electrolyte also flows into the electrode plate group 3 from the portion 13, the penetration of the electrolytic solution is accelerated. Further, since the electrolytic solution cannot accumulate on the insulating ring 7, the permeability of the electrolytic solution can be improved. Also, in the case of the divided portion 14 provided in the rising portion 12, a flow path in which the electrolytic solution flows from the inner diameter side of the insulating ring 7 into the battery case 2 is formed, so that accumulation of the electrolytic solution can be prevented. Further, the notch 13
By providing both the and the dividing portion 14 and keeping the positions in the radial direction coincident with each other, the electrolytic solution flows down to both the outer diameter side and the inner diameter side, so that the permeability of the electrolytic solution can be further improved. .

【0021】図2(a)に示した平面部11に切り欠き
部13を設けた絶縁リング7aは、図3〜図7に示す具
体例のように構成することができる。図示するように、
切り欠き部13の形状は、絶縁リング7aの外径側の複
数箇所で電池ケース2の内周面に接して配設位置が確保
できるようにすれば、任意形状に形成することができ
る。また、平面部11に切り欠き部13と立ち上がり部
12に分割部14とを設けた絶縁リング7cは、図8〜
図10に示す具体例のように構成することができ、同様
に切り欠き部13及び分割部14の形状は、任意形状に
形成することができる。
The insulating ring 7a in which the notch 13 is provided in the plane portion 11 shown in FIG. 2A can be configured as shown in the specific examples shown in FIGS. As shown
The shape of the cutout portion 13 can be formed in an arbitrary shape as long as the cutout portion 13 can be arranged at a plurality of locations on the outer diameter side of the insulating ring 7a so as to be in contact with the inner peripheral surface of the battery case 2. Further, the insulating ring 7c in which the notch 13 is provided in the flat portion 11 and the dividing portion 14 is provided in the rising portion 12 is shown in FIGS.
It can be configured as in the specific example shown in FIG. 10, and similarly, the shape of the cutout portion 13 and the division portion 14 can be formed in any shape.

【0022】前記切り欠き部13または分割部14ある
いはその両方を設けて構成した絶縁リング7a〜7c及
び絶縁板6の作用を含めて、この絶縁リング7を備えた
円筒密閉型電池1の製造方法について次に説明する。図
11は、円筒密閉型電池1の製造方法を各行程(a)〜
(f)の順に示しており、これらの各行程は自動製造行
程により実行される。以下に各図の順に行程手順を説明
する。
A method of manufacturing the cylindrical sealed battery 1 provided with the insulating ring 7 including the functions of the insulating rings 7a to 7c and the insulating plate 6 provided with the cutout portion 13 and / or the split portion 14 or both. Will be described below. FIG. 11 shows a method of manufacturing the sealed cylindrical battery 1 in steps (a) to (d).
These steps are shown in order of (f), and each of these steps is executed by an automatic manufacturing step. The procedure will be described below in the order of the drawings.

【0023】(a)電池ケース2内に極板群3を挿入す
る。
(A) Insert the electrode plate group 3 into the battery case 2.

【0024】(b)極板群3の上に絶縁リング7を挿入
する。
(B) Insert the insulating ring 7 on the electrode plate group 3.

【0025】(c)電池ケース2の胴部円周方向に一周
させて溝2aを形成する。
(C) A groove 2a is formed by making a full circumference in the body circumferential direction of the battery case 2.

【0026】(d)電解液の注液、減圧、大気開放を繰
り返して所定量の電解液を極板群3に浸透させる。具体
的には、内径17.4mm、溝2aから底部までの高さ
63.5mmの電池ケース2に、外径16.5mm、高
さ59.5mmの極板群を収容した場合、まず、約1.
3ccの電解液を注液後、450mmHgまで10秒間
の減圧を行い、その後に大気開放する。この注液、減
圧、大気開放の工程を4回繰り返し、4.6ccの電解
液を極板群3に含浸させる。
(D) A predetermined amount of the electrolyte is permeated into the electrode plate group 3 by repeatedly injecting the electrolyte, reducing the pressure, and opening to the atmosphere. Specifically, when a battery case 2 having an inner diameter of 17.4 mm and a height of 63.5 mm from the groove 2a to the bottom accommodates a group of electrode plates having an outer diameter of 16.5 mm and a height of 59.5 mm, firstly, 1.
After injecting 3 cc of the electrolytic solution, the pressure is reduced to 450 mmHg for 10 seconds, and then the atmosphere is released. The steps of pouring, depressurizing, and opening to the atmosphere are repeated four times, and the electrode group 3 is impregnated with 4.6 cc of the electrolytic solution.

【0027】この電解液の注液時に、従来構成のように
絶縁リング7に切り欠き部13または分割部14がない
場合、直ぐには浸透しない電解液が電池ケース2と外径
側で接している絶縁リング7上に液溜まりをつくってし
まうが、切り欠き部13のある絶縁リング7aあるいは
分割部14のある絶縁リング7bであるときには、電解
液は切り欠き部13または分割部14から電池ケース2
内に速やかに流下するので液溜まりは生じない。また、
切り欠き部13は電池ケース2との間に空気の流通部を
形成するので、電解液の流入に応じて電池ケース2内の
空気の抜け出しがスムーズになされ、電解液の浸透を早
めることができる。切り欠き部13と分割部14との両
方を形成した絶縁リング7cの場合には、電解液は絶縁
リング7cの内径側、外径側の両方に流下するので、液
溜まりはより少なくなり、同時に切り欠き部13から空
気抜けもなされるので、電解液の浸透性をより向上させ
ることができる。
If the insulating ring 7 does not have the cut-out portion 13 or the split portion 14 as in the conventional configuration when the electrolyte is injected, the electrolyte that does not immediately penetrate is in contact with the battery case 2 on the outer diameter side. Although a liquid pool is formed on the insulating ring 7, when the insulating ring 7 a has the notch 13 or the insulating ring 7 b has the dividing part 14, the electrolytic solution flows from the notching part 13 or the dividing part 14 into the battery case 2.
No liquid pool occurs because it flows down quickly into the inside. Also,
Since the notch 13 forms an air circulating portion between the notch 13 and the battery case 2, the air in the battery case 2 can be smoothly evacuated according to the inflow of the electrolyte, and the permeation of the electrolyte can be accelerated. . In the case of the insulating ring 7c in which both the cutout portion 13 and the divided portion 14 are formed, the electrolyte flows down to both the inner diameter side and the outer diameter side of the insulating ring 7c. Since air is also evacuated from the notch 13, the permeability of the electrolyte can be further improved.

【0028】(e)絶縁リング7の内径側の開口部から
絶縁板6を挿入する。この絶縁板6の挿入は電解液の注
液後に行うので、絶縁板6に注液口を設ける必要もなく
簡易な構造に形成でき、絶縁リング7が液溜まりを生じ
させない構造なので、液溜まりによる位置ずれも生じな
い。また、この絶縁板6を網目構造に形成しておくと電
解液の透過性が高まるため、電解液注液前に挿入しても
注液の妨げになったり、液溜まりによって所定位置から
移動したりすることはない。
(E) Insert the insulating plate 6 from the opening on the inner diameter side of the insulating ring 7. Since the insertion of the insulating plate 6 is performed after the injection of the electrolytic solution, the insulating plate 6 can be formed in a simple structure without the necessity of providing a liquid inlet, and the insulating ring 7 has a structure that does not cause liquid pool. No displacement occurs. Further, if the insulating plate 6 is formed in a mesh structure, the permeability of the electrolytic solution is increased. Therefore, even if the insulating plate 6 is inserted before the electrolytic solution is injected, the insulating plate 6 may hinder the injection or move from a predetermined position due to the liquid pool. No.

【0029】(f)極板群3から引き出されている正極
リード4を封口板5に接続し、封口板5と電池ケース2
との間に絶縁性、密封性を確保するゴム状部材を介在さ
せて封口板5を電池ケース2に固定する。この封口板5
の取付時に、正極リード4は折り畳まれた状態に屈曲す
るが、絶縁板6が配設されていることによって正極リー
ド4が負極板に接触して絶縁不良をきたすことはない。
(F) The positive electrode lead 4 pulled out from the electrode plate group 3 is connected to the sealing plate 5, and the sealing plate 5 and the battery case 2 are connected.
The sealing plate 5 is fixed to the battery case 2 with a rubber-like member for ensuring insulation and sealing properties interposed therebetween. This sealing plate 5
At the time of mounting, the positive electrode lead 4 bends in a folded state, but since the insulating plate 6 is provided, the positive electrode lead 4 does not come into contact with the negative electrode plate to cause insulation failure.

【0030】上記絶縁リング7の構成及びこれを用いた
製造方法により製作した円筒密閉型電池1の電解液の浸
透性及び電池性能について、従来構成と比較検証した結
果を次に示す。電解液の浸透性については、所定量の電
解液を極板群3に浸透させるための注液、減圧、大気開
放を繰り返し、5分間の放置の後、極板群3上の電解液
の残存量、極板群3への浸透度を判定した。また、電池
性能については、注液完了直後に封口し、内部抵抗を測
定すると共に、0.9A、4.2Vの定電圧定電流の充
電を2時間30分行い、1300mAの定電流で3.0
V迄電圧低下するまでの放電を行って電池容量を測定し
た。この結果は、表1に示す通りである。実施例1は、
図8に示した絶縁リング7cを用いた場合、実施例2
は、図3に示した絶縁リング7aを用いた場合、従来例
は図12に示した構成によるものである。
The results of comparative verification of the structure of the insulating ring 7 and the electrolyte permeability and battery performance of the sealed cylindrical battery 1 manufactured by the manufacturing method using the same are shown below. Regarding the permeability of the electrolyte, the injection of a predetermined amount of the electrolyte into the electrode group 3, the pressure reduction, and the opening to the atmosphere are repeated, and after leaving for 5 minutes, the electrolyte remaining on the electrode group 3 is left. The amount and the degree of penetration into the electrode plate group 3 were determined. Regarding the battery performance, the battery was sealed immediately after the completion of the injection, the internal resistance was measured, and charging at a constant voltage and constant current of 0.9 A and 4.2 V was performed for 2 hours and 30 minutes. 0
The battery was discharged until the voltage dropped to V, and the battery capacity was measured. The results are as shown in Table 1. Example 1
When the insulating ring 7c shown in FIG.
When the insulating ring 7a shown in FIG. 3 is used, the conventional example is based on the configuration shown in FIG.

【0031】[0031]

【表1】 [Table 1]

【0032】この検証結果からも明らかなように、絶縁
リング7cを用いた場合に電解液の浸透性が最も高く、
従来例では電解液の残存があった。この電解液の浸透性
に対応するように、電池性能においても実施例と従来例
とでは大きな差があり、製造上の歩留りだけでなく、電
池性能にも有効であることが判明した。
As is clear from the verification results, when the insulating ring 7c is used, the electrolyte has the highest permeability,
In the conventional example, there was residual electrolyte. There is a great difference in the battery performance between the embodiment and the conventional example in correspondence with the permeability of the electrolytic solution, and it has been found that the battery performance is effective not only in the production yield but also in the battery performance.

【0033】[0033]

【発明の効果】以上の説明の通り本願の第1発明によれ
ば、絶縁リングに形成した切り欠き部または分割部によ
り、絶縁リング上から極板群へ電解液が流れる流路が形
成されると共に、電池ケース内からのエアー抜けの流路
が形成されるので、電解液の極板群への浸透性が高ま
り、液溜まりによる絶縁板の位置ずれを防止することが
でき、不良発生を抑制して製造の歩留りを向上させるこ
とができる。
As described above, according to the first aspect of the present invention, a flow path through which the electrolyte flows from above the insulating ring to the electrode plate group is formed by the notch or the division formed in the insulating ring. At the same time, a flow path for air escape from the inside of the battery case is formed, so that the permeability of the electrolyte to the electrode plate group is increased, and the displacement of the insulating plate due to the liquid pool can be prevented, and the occurrence of defects is suppressed. As a result, the production yield can be improved.

【0034】また、本願の第2発明によれば、絶縁リン
グに形成された切り欠き部、分割部により電解液の液溜
まりがなくなるので、液溜まりによる絶縁板の位置ずれ
は生じず、また、電解液の注入後に挿入されるので、注
液穴を設ける必要がなく簡易な構造に形成できると共
に、挿入時の位置決めがラフに設定できるので、自動組
立の位置決め機構の簡略化や組立速度の高速化を図るこ
とができ、電池製造の歩留りも向上させることができ
る。
According to the second aspect of the present invention, since the liquid pool of the electrolytic solution is eliminated by the cut-out portion and the divided portion formed in the insulating ring, the displacement of the insulating plate due to the liquid pool does not occur. Since it is inserted after the injection of the electrolyte, it can be formed in a simple structure without the need to provide a liquid injection hole, and the positioning at the time of insertion can be set roughly, so that the positioning mechanism for automatic assembly is simplified and the assembly speed is high. And the yield of battery manufacturing can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る円筒密閉型電池の構成
を示す断面図。
FIG. 1 is a cross-sectional view showing a configuration of a sealed cylindrical battery according to an embodiment of the present invention.

【図2】実施形態に係る絶縁リングの構成を(a)
(b)(c)の各基本形態で示す斜視図。
FIG. 2A illustrates a configuration of an insulating ring according to an embodiment.
(B) The perspective view shown in each basic form of (c).

【図3】絶縁リング7aの具体例を示す(a)は平面図
と(b)は断面図。
3A is a plan view and FIG. 3B is a cross-sectional view showing a specific example of the insulating ring 7a.

【図4】絶縁リング7aの具体例を示す(a)は平面図
と(b)は断面図。
4A is a plan view and FIG. 4B is a sectional view showing a specific example of the insulating ring 7a.

【図5】絶縁リング7aの具体例を示す(a)は平面図
と(b)は断面図。
5A is a plan view and FIG. 5B is a sectional view showing a specific example of the insulating ring 7a.

【図6】絶縁リング7aの具体例を示す(a)は平面図
と(b)は断面図。
6A is a plan view and FIG. 6B is a cross-sectional view showing a specific example of the insulating ring 7a.

【図7】絶縁リング7aの具体例を示す(a)は平面図
と(b)は断面図。
7A is a plan view and FIG. 7B is a cross-sectional view showing a specific example of the insulating ring 7a.

【図8】絶縁リング7cの具体例を示す(a)は平面図
と(b)は断面図。
8A is a plan view and FIG. 8B is a cross-sectional view showing a specific example of the insulating ring 7c.

【図9】絶縁リング7cの具体例を示す(a)は平面図
と(b)は断面図。
9A is a plan view and FIG. 9B is a cross-sectional view showing a specific example of the insulating ring 7c.

【図10】絶縁リング7cの具体例を示す(a)は平面
図と(b)は断面図。
10A is a plan view and FIG. 10B is a cross-sectional view showing a specific example of the insulating ring 7c.

【図11】実施形態に係る円筒密閉型電池の製造工程を
(a)〜(f)の順に示す工程別加工図。
FIGS. 11A to 11F are process drawings showing the manufacturing process of the cylindrical sealed battery according to the embodiment in the order of (a) to (f).

【図12】従来例に係る円筒密閉型電池の構成を示す断
面図。
FIG. 12 is a cross-sectional view illustrating a configuration of a cylindrical sealed battery according to a conventional example.

【符号の説明】[Explanation of symbols]

1 円筒密閉型電池 2 電池ケース 3 極板群 4 正極リード 5 封口板 6 絶縁板 7、7a、7b、7c 絶縁リング 11 平面部 12 立ち上がり部 13 切り欠き部 14 分割部 DESCRIPTION OF SYMBOLS 1 Cylindrical sealed type battery 2 Battery case 3 Electrode group 4 Positive electrode lead 5 Sealing plate 6 Insulating plate 7, 7a, 7b, 7c Insulating ring 11 Flat part 12 Rise part 13 Notch part 14 Division part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 米原 倫吉 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 松久 一朗 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 鶴田 邦夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Rinkichi Yonehara 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Kunio Tsuruta 1006 Kadoma, Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一方側に開口部を有する円筒形の電池ケ
ース内に収容された正負両極の極板群と、この極板群の
いずれか一方の極板から引き出されたリード線に接続し
て前記開口部を密閉封止する封口板と、この封口板と極
板群との間を離隔させて絶縁する絶縁リングと、前記リ
ード線と極板群との間を絶縁する絶縁板とを備え、前記
極板群に電解液を浸透させて形成される円筒密閉型電池
において、 前記絶縁リングが、前記電池ケースの内周面に接する外
径に形成されたリング状の平面部と、この平面部の内径
側から前記開口部方向に立ち上がる立ち上がり部とを備
え、前記平面部の外径側に電池ケースとの間に複数の間
隙を形成する切り欠き部及び/または前記立ち上がり部
にこれを複数に分割する分割部を設けて形成されてなる
ことを特徴とする円筒密閉型電池。
A positive electrode and a negative electrode group housed in a cylindrical battery case having an opening on one side, and a lead wire drawn out of one of the electrode groups. A sealing plate that hermetically seals the opening, an insulating ring that separates and insulates the sealing plate and the electrode group, and an insulating plate that insulates between the lead wire and the electrode group. A cylindrical sealed battery formed by impregnating an electrolyte solution into the electrode plate group, wherein the insulating ring has a ring-shaped flat portion formed at an outer diameter in contact with an inner peripheral surface of the battery case; A rising portion that rises in the opening direction from the inner diameter side of the flat portion, and a cutout portion and / or the rising portion that form a plurality of gaps between the flat portion and the battery case on the outer diameter side of the flat portion. That it is formed by providing a dividing part Cylindrical sealed battery according to symptoms.
【請求項2】 切り欠き部と分割部とを、それぞれの位
置が同一半径方向になるように形成した請求項1記載の
円筒密閉型電池。
2. The sealed cylindrical battery according to claim 1, wherein the notch portion and the division portion are formed so that their positions are in the same radial direction.
【請求項3】 絶縁板を、絶縁リングの内径側から極板
群上に挿入できる寸法の円形板または多角形板で形成し
た請求項1記載の円筒密閉型電池。
3. The sealed cylindrical battery according to claim 1, wherein the insulating plate is formed of a circular plate or a polygonal plate having a size that can be inserted into the electrode group from the inner diameter side of the insulating ring.
【請求項4】 絶縁板を網目構造に形成した請求項1ま
たは3記載の円筒密閉型電池。
4. The sealed cylindrical battery according to claim 1, wherein the insulating plate has a mesh structure.
【請求項5】 一方側に開口部を有する円筒形の電池ケ
ース内に収容された正負両極の極板群と、この極板群の
いずれか一方の極板から引き出されたリード線に接続し
て前記開口部を密閉封止する封口板と、この封口板と極
板群との間を離隔させて絶縁する絶縁リングと、前記リ
ード線と極板群との間を絶縁する絶縁板とを備え、前記
極板群に電解液を浸透させて形成される円筒密閉型電池
の製造方法において、 製造工程手順が、前記電池ケース内に極板群を挿入する
工程、極板群上に絶縁リングを挿入する工程、電池ケー
ス内に電解液を注入する工程、絶縁リングの内径側から
絶縁板を極板群上に挿入する工程、リード線と封口板と
を接続して封口板により電池ケースの開口部を密閉封止
する工程の順に実施されることを特徴とする円筒密閉型
電池の製造方法。
5. A positive electrode and a negative electrode group housed in a cylindrical battery case having an opening on one side, and a lead wire drawn out of one of the electrode groups. A sealing plate that hermetically seals the opening, an insulating ring that separates and insulates the sealing plate and the electrode group, and an insulating plate that insulates between the lead wire and the electrode group. A method for manufacturing a sealed cylindrical battery formed by infiltrating an electrolyte into the electrode group, comprising: a step of inserting the electrode group into the battery case; and an insulating ring on the electrode group. Inserting the electrolyte into the battery case, inserting the insulating plate from the inner side of the insulating ring onto the electrode plate group, connecting the lead wire and the sealing plate to the battery case with the sealing plate. The step of sealing and sealing the opening is carried out in the order of Method of manufacturing a type battery.
JP9183951A 1997-07-09 1997-07-09 Cylindrical sealed battery and its manufacture Pending JPH1131487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9183951A JPH1131487A (en) 1997-07-09 1997-07-09 Cylindrical sealed battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9183951A JPH1131487A (en) 1997-07-09 1997-07-09 Cylindrical sealed battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH1131487A true JPH1131487A (en) 1999-02-02

Family

ID=16144680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9183951A Pending JPH1131487A (en) 1997-07-09 1997-07-09 Cylindrical sealed battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH1131487A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196292A (en) * 2005-01-13 2006-07-27 Sanyo Electric Co Ltd Nonaqueous electrolytic solution secondary battery and its manufacturing method
JP5379866B2 (en) * 2009-12-04 2013-12-25 パナソニック株式会社 Sealed secondary battery
US9023500B2 (en) 2009-11-20 2015-05-05 Samsung Sdi Co., Ltd. Cylindrical secondary battery
US10749149B2 (en) 2017-03-10 2020-08-18 Evolution Engineering Inc. Battery coil engaging members for downhole tools
WO2021230014A1 (en) * 2020-05-15 2021-11-18 パナソニックIpマネジメント株式会社 Hermetically sealed battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196292A (en) * 2005-01-13 2006-07-27 Sanyo Electric Co Ltd Nonaqueous electrolytic solution secondary battery and its manufacturing method
US9023500B2 (en) 2009-11-20 2015-05-05 Samsung Sdi Co., Ltd. Cylindrical secondary battery
JP5379866B2 (en) * 2009-12-04 2013-12-25 パナソニック株式会社 Sealed secondary battery
US10749149B2 (en) 2017-03-10 2020-08-18 Evolution Engineering Inc. Battery coil engaging members for downhole tools
US10840482B2 (en) 2017-03-10 2020-11-17 Evolution Engineering Inc. Battery coil engaging members for downhole tools
WO2021230014A1 (en) * 2020-05-15 2021-11-18 パナソニックIpマネジメント株式会社 Hermetically sealed battery

Similar Documents

Publication Publication Date Title
US6858342B2 (en) Electrolyte solution filling method and battery structure of lithium secondary battery
JP4464483B2 (en) Secondary battery cap assembly and secondary battery current interrupter
KR101156235B1 (en) Secondary battery and method of making the secondary battery
KR101917496B1 (en) Electrochemical device and method of manufacturing electrochemical device
US3960599A (en) Button type cell and battery
KR102012911B1 (en) Energy storage assembly comprising an electrically insulating elastic ring
JPH1131487A (en) Cylindrical sealed battery and its manufacture
JPH10275751A (en) Electric double layer capacitor and its manufacture
JP2015162471A (en) aluminum electrolytic capacitor
WO2001020705A1 (en) Sealed cylindrical nickel-hydrogen storage battery
JP2748539B2 (en) Battery safety device
KR100322100B1 (en) Sealed battery
JPH09283111A (en) Battery
JP3820876B2 (en) Cylindrical secondary battery manufacturing method
KR100537607B1 (en) Folding type electrode assembly and secondary battery with the same
JP7223729B2 (en) SECONDARY BATTERY AND METHOD FOR MANUFACTURING SECONDARY BATTERY
KR20230068676A (en) Manufacturing method of electrode assembly, electrode assembly and rechargeable battery comprising the same
JPH07220716A (en) Cylindrical battery and its manufacture
KR100286939B1 (en) Jelly roll of cylindrical secondary battery
JPH08153511A (en) Cylindrical battery and its manufacture
KR101028366B1 (en) Quasi-bipolar electrochemical cell
JP2000235848A (en) Sealed battery
JP2023120535A (en) Cylindrical alkali storage battery
JP2573703Y2 (en) Cylindrical lithium battery
JPH10199502A (en) Separator and battery using the same