JPH11314010A - Method and apparatus for liquid-liquid separation - Google Patents

Method and apparatus for liquid-liquid separation

Info

Publication number
JPH11314010A
JPH11314010A JP14048598A JP14048598A JPH11314010A JP H11314010 A JPH11314010 A JP H11314010A JP 14048598 A JP14048598 A JP 14048598A JP 14048598 A JP14048598 A JP 14048598A JP H11314010 A JPH11314010 A JP H11314010A
Authority
JP
Japan
Prior art keywords
liquid
container
liquids
separated
mass flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14048598A
Other languages
Japanese (ja)
Inventor
Masahiro Kawano
昌弘 川野
Tomohiko Bessho
智彦 別所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP14048598A priority Critical patent/JPH11314010A/en
Publication of JPH11314010A publication Critical patent/JPH11314010A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Accessories For Mixers (AREA)

Abstract

PROBLEM TO BE SOLVED: To automate separation of a mixed solution of various non-phase soluble liquids by a method wherein the mixed solution capable of being separated into at least two layers is separated by standing still, and a branch passage is changed by variation of a mass flow rate by making the solution flow out successively from a lower layer side solution. SOLUTION: In the case where, for example, two liquids are separated, a container 11 containing a mixed solution of two liquids as an object to be separated is allowed to stand still after stirring to be separated into two liquids, and a controller 4 keeps a specific pressure in the container 11 during separation treatment by a pressure regulator 3 to keep a primary side pressure of a mass flowmeter 12 also at the same pressure. The controller 4 opens automatic valves 15, 17 at a bottom of the container, closes an automatic valve 18, and allows a liquid on a lower layer side in the container 11 to flow to a storing container 13. When the lower layer side liquid in the container 11 is gone, the upper side liquid starts to flow out, the controller 4 judges passage through the flowmeter 12 on a liquid border between an lower layer side and an upper layer side by a variation of a signal based on the mass flow rate of the liquid of the mass flowmeter 12, closes the automatic valve 17, opens the automatic valve 18, and allows the upper layer side liquid to flow to the storing container 14. Thereby, even liquids having near densities can be automated to be separated from each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非相溶性の少なく
とも2種の液体を分離して別々に回収する液液分離方法
及び液液分離装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid-liquid separation method and a liquid-liquid separation apparatus for separating at least two incompatible liquids and separately recovering the separated liquids.

【0002】[0002]

【従来の技術】医薬原薬工場や化学工場の有機合成プラ
ントでは、有機化学反応で生じる副生成物を主生成物か
ら分離するために液液分離操作を実施している。この液
液分離操作では、まず容器中で互いに溶解しない溶媒を
攪伴して混合した後、それを静置して2層の液体に分離
する。このとき主生成物と副生成物とは、分離した液層
の互いに異なる層中に存在している。そして容器内から
下層側の液体、上層側の液体の順で流出させ、流路に設
けられたバルブの切り替えによって下層側の液体と上層
側の液体を別々の流路に流して分離している。その際、
従来は流路の途中に設けられた監視窓を作業者が覗き、
監視窓を通過する液体の色調などを目視で観察して上下
の液体の界面を判断し、手動式バルブの切り替えを行っ
ている。
2. Description of the Related Art In an organic synthesis plant of a drug substance factory or a chemical factory, a liquid-liquid separation operation is performed to separate a by-product generated by an organic chemical reaction from a main product. In this liquid-liquid separation operation, first, a solvent that does not dissolve in each other is stirred and mixed in a container, and then the mixture is allowed to stand to be separated into two layers of liquid. At this time, the main product and the by-product exist in different layers of the separated liquid layer. The liquid in the lower layer and the liquid in the upper layer are allowed to flow out of the container in this order, and the liquid in the lower layer and the liquid in the upper layer are flown into separate flow paths by switching a valve provided in the flow path to be separated. . that time,
Conventionally, an operator looks into a monitoring window provided in the middle of the flow path,
The color tone of the liquid passing through the monitoring window is visually observed to determine the interface between the upper and lower liquids, and the manual valve is switched.

【0003】しかし分離した液体の色調が明確に異なっ
ていないことが多く、各液体の色調が極めて僅かしか相
違していないため、界面を判断するには熟練が必要であ
り、また再現性よく確実に分液を行う即ちバルブの切り
替えを行うことは困難である。さらに液液分離の作業中
は、監視窓を監視してバルブの切り替えを行うためだけ
に長時間作業者を監視窓の近くに待機させなければなら
ず、人件費が嵩むという欠点もある。
However, the colors of the separated liquids are often not distinctly different, and the colors of the respective liquids are very slightly different. Therefore, skill is required to determine the interface, and the reproducibility is reliable. It is difficult to perform liquid separation, that is, switch valves. Furthermore, during the operation of liquid-liquid separation, the operator has to wait for a long time near the monitoring window only to monitor the monitoring window and switch the valve, resulting in an increase in labor costs.

【0004】そこで分離した液体の界面をセンサによっ
て自動的に検知し、流路を切り替えるためのバルブを自
動的に切り替えるように制御することによって、液液分
離操作が自動化され、バルブの切り替えミスを防ぎ、再
現性よく確実に分液を行うことができるとともに、省人
化によるコスト低減を図ることが可能となる。
[0004] Then, by automatically detecting the interface of the separated liquid by a sensor and controlling the valve for switching the flow path automatically, the liquid-liquid separation operation is automated, and the switching error of the valve is prevented. This makes it possible to reliably perform liquid separation with good reproducibility, and to reduce costs by reducing labor.

【0005】このような目的を達成するため、例えば界
面を検知するセンサとして密度検出器を用いて液液分離
を行う提案がなされている(特公平7−14441
号)。この提案では、2層以上に分離した液体を密度検
出器に通し、そこを通過する際の液体の密度変化に基づ
いて演算機構により異なる液体同士の界面を認識して、
流路切り替え用のバルブを自動的に切り替えている。
[0005] In order to achieve such an object, it has been proposed to perform liquid-liquid separation using, for example, a density detector as a sensor for detecting an interface (Japanese Patent Publication No. Hei 7-14441).
issue). In this proposal, a liquid separated into two or more layers is passed through a density detector, and based on a change in the density of the liquid when passing through it, an interface between different liquids is recognized by an arithmetic mechanism,
The valve for switching the flow path is automatically switched.

【0006】また界面を検知するセンサとしてマイクロ
波を基本原理とした水分計を用いて液液分離を行う提案
や、超音波センサを用いて液液分離を行う提案もなされ
ている。
There have also been proposals for liquid-liquid separation using a moisture meter based on microwaves as a sensor for detecting an interface, and for liquid-liquid separation using an ultrasonic sensor.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、密度検
出器を用いた提案では、密度検出器を通過する際の液体
の密度差に基づいて種類の異なる液体同士の界面を認識
するので、有機液体同士のように密度の近い液体同士の
界面を認識するのは極めて困難であるという欠点があ
る。
However, in the proposal using a density detector, the interface between different types of liquids is recognized based on the density difference of the liquids passing through the density detector. However, it is very difficult to recognize the interface between liquids having similar densities.

【0008】またマイクロ波を基本原理とした水分計を
用いた提案では、液体中の水分に吸収されるマイクロ波
の吸収率の相違に基づいて種類の異なる液体同士の界面
を認識するので、有機液体同士のように水分を含まな
い、即ちマイクロ波を吸収しない液体同士の界面を認識
することはできない。従って水分を含まない液体同士を
分離することはできない。
In the proposal using a moisture meter based on microwaves, the interface between different types of liquids is recognized based on the difference in the absorptivity of microwaves absorbed by moisture in the liquid. It is not possible to recognize the interface between liquids that do not contain moisture, ie, do not absorb microwaves, like liquids. Therefore, liquids containing no water cannot be separated.

【0009】さらに超音波センサを用いた提案では、超
音波に対する特性の相違に基づいて種類の異なる液体同
士の界面を認識するので、超音波に対する特性が近い液
体同士の界面を認識することはできない。つまりそのよ
うな組合わせの液体同士を分離することはできない。
Further, in the proposal using an ultrasonic sensor, the interface between liquids of different types is recognized based on the difference in characteristics with respect to ultrasonic waves, and therefore the interface between liquids with similar characteristics to ultrasonic waves cannot be recognized. . That is, it is not possible to separate such combinations of liquids.

【0010】本発明はこのような事情の下になされたも
のであり、その目的は、種々の非相溶性の液体の混合液
の分離を再現性よく確実に自動化して行うことができる
液液分離方法及びそれを実施するための液液分離装置を
提供することにある。
The present invention has been made under such circumstances, and an object of the present invention is to provide a liquid / liquid mixture capable of reliably and automatically performing separation of a mixture of various incompatible liquids with good reproducibility. An object of the present invention is to provide a separation method and a liquid-liquid separation device for performing the method.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、少なくとも2種の液体を含み少なくとも
2層に分離し得る混合液を静置して分離する工程と、分
離された少なくとも2種の液体を順次下層側の液体から
流出させつつ、その質量流量を測定する工程と、測定さ
れた質量流量の変化に基づき液体の流路を少なくとも2
つに分岐された分岐路のうちの1つに切り替える工程
と、を含む液液分離方法を提供するものである。
In order to achieve the above object, the present invention comprises a step of allowing a mixed solution containing at least two kinds of liquids to be separated into at least two layers by allowing the mixture to stand, Measuring the mass flow rate of the two liquids while sequentially flowing them out of the lower liquid; and providing at least two flow paths for the liquids based on a change in the measured mass flow rates.
Switching to one of the two branched paths.

【0012】また上記方法を実施するため、本発明は、
少なくとも2種の液体を含み少なくとも2層に分離し得
る混合液を貯留し、その混合液を静置して分離する容器
と、該容器内で分離された少なくとも2種の液体を順次
下層側の液体から流出させる流路と、該流路の途中に設
けられ、流路を流れる液体の質量流量を測定する質量流
量計と、前記流路の途中に設けられ、流路の開度を調節
する調節手段と、該調節手段及び前記質量流量計よりも
下流側で少なくとも2つの流路に分岐された分岐路と、
液体の流路を前記分岐路のうちの一つに切り替える切り
替え手段と、を具備し、前記切り替え手段は、前記質量
流量計により測定された液体の質量流量の変化に基づい
て切り替え制御される液液分離装置を提供するものであ
る。
Further, in order to carry out the above method, the present invention provides:
A container that contains a liquid mixture containing at least two liquids and that can be separated into at least two layers, and a container that separates the liquid mixture by allowing the liquid mixture to stand still; A flow path for flowing out of the liquid, a mass flow meter provided in the middle of the flow path, for measuring a mass flow rate of the liquid flowing through the flow path, and a flow path provided in the middle of the flow path to adjust the opening degree of the flow path Adjusting means, a branch path branched into at least two flow paths downstream of the adjusting means and the mass flow meter,
Switching means for switching a liquid flow path to one of the branch paths, wherein the switching means is controlled to switch based on a change in the mass flow rate of the liquid measured by the mass flow meter. A liquid separation device is provided.

【0013】[0013]

【発明の実施の形態】図1は、本発明に係る液液分離方
法の実施に使用される液液分離装置の一例を示す概略構
成図である。なお特に限定されないが、本例では説明を
簡略化するため二種類の液体を分離する場合について説
明する。
FIG. 1 is a schematic diagram showing an example of a liquid-liquid separation device used for carrying out a liquid-liquid separation method according to the present invention. Although not particularly limited, in this example, a case where two types of liquids are separated will be described to simplify the description.

【0014】この分離装置は、容器11内で2層に分離
し容器11から順次流出した各液体を質量流量計12に
通し、そこを通過する際の液体の質量流量差に基づい
て、2種類の液体を下流側に設けられた2つの貯留容器
13,14へ別々に流すようになっている。つまり貯留
容器13及び14には異なる種類の液体が分液されて貯
留される。
This separation device separates the liquid into two layers in a container 11 and sequentially passes each liquid flowing out of the container 11 through a mass flow meter 12, based on a difference in the mass flow rate of the liquid when passing therethrough. Are separately flowed into two storage containers 13 and 14 provided on the downstream side. That is, different types of liquids are separated and stored in the storage containers 13 and 14.

【0015】容器11の下端には、容器11内の液体を
流出させるための流路21が連通接続されている。そし
てその流路21は自動弁15の一次側に連通接続されて
おり、自動弁15の二次側は流路22を介して質量流量
計12の入口側に連通接続されている。
The lower end of the container 11 is connected to a flow path 21 for allowing the liquid in the container 11 to flow out. The flow path 21 is connected to the primary side of the automatic valve 15, and the secondary side of the automatic valve 15 is connected to the inlet side of the mass flow meter 12 via the flow path 22.

【0016】質量流量計12の出口側は流路23を介し
て調節弁16の一次側に連通接続されている。調節弁1
6の二次側に連通接続された流路24は2つの分岐路2
5,26に分岐し、それぞれ自動弁17,18の一次側
に連通接続されている。それら自動弁17,18の二次
側はそれぞれ流路27,28を介して貯留容器13,1
4に連通接続されている。
The outlet side of the mass flow meter 12 is connected through a flow path 23 to the primary side of the control valve 16. Control valve 1
6 is connected to the two branches 2
5 and 26, and are connected to the primary sides of the automatic valves 17 and 18, respectively. The secondary sides of the automatic valves 17 and 18 are connected to the storage containers 13 and 1 via flow paths 27 and 28, respectively.
4 is connected.

【0017】容器11は、圧力調整器3により分離操作
中に容器内の圧力が一定となるように調整されている。
この圧力調整器3はコンピュータ等の制御装置4により
駆動制御されている。また容器11内には図示省略した
回転する攪拌翼からなる攪拌装置が設けられており、容
器11内の混合液を攪拌することができるようになって
いる。攪拌翼を停止したまま静置すると、容器11内の
液体が例えば2層に分離する。
The container 11 is adjusted by the pressure regulator 3 so that the pressure in the container becomes constant during the separating operation.
The pressure regulator 3 is driven and controlled by a control device 4 such as a computer. Further, a stirring device including a rotating stirring blade (not shown) is provided in the container 11 so that the mixed liquid in the container 11 can be stirred. When the stirring blade is left standing still, the liquid in the container 11 separates into, for example, two layers.

【0018】質量流量計12は、例えば2本のフローチ
ューブを備えており、それらフローチューブを振動させ
ると、フローチューブ内を液体が流れているときに2本
のフローチューブの入口と出口で反対のコリオリの力を
受けてフローチューブがわずかに歪みを伴って振動し、
入口と出口の2カ所で振動の位相差となって現れ、この
位相差が質量流量に比例したものになることを利用して
おり、その位相差を検出するように構成されたものであ
る。このような構成の質量流量計では、フローチューブ
内を液体が流れていないときにはフローチューブは対称
的な振動を繰り返すので入口及び出口の2カ所で振動の
位相差は現れない。なお質量流量計12は、このような
フローチューブの振動の位相差を検出するものに限ら
ず、通過する液体の質量流量を連続的かつ自動的に測定
することができれば、如何なる構成のものでもよい。
The mass flow meter 12 includes, for example, two flow tubes, and when these flow tubes are vibrated, when the liquid flows through the flow tubes, the two flow tubes have opposite inlets and outlets. The flow tube vibrates with slight distortion due to the Coriolis force of
A phase difference of vibration appears at two points, an inlet and an outlet, and the fact that this phase difference is proportional to the mass flow rate is used, and the phase difference is detected. In the mass flowmeter having such a configuration, when the liquid is not flowing in the flow tube, the flow tube repeats symmetrical vibration, and therefore, there is no phase difference of the vibration between the inlet and the outlet. The mass flow meter 12 is not limited to the one that detects the phase difference of the vibration of the flow tube, and may have any configuration as long as the mass flow rate of the passing liquid can be continuously and automatically measured. .

【0019】自動弁15は、制御装置4により開閉制御
されており、容器11からの液体の流出及び停止を行
う。
The automatic valve 15 is controlled to be opened and closed by the control device 4 and controls the outflow and the stop of the liquid from the container 11.

【0020】調節弁16は、制御装置4により所定の開
度となるように制御されており、流路21,22,23
を流れる液体の流量を調節する。従って調節弁16は調
節手段としての機能を有している。
The control valve 16 is controlled by the control device 4 to have a predetermined opening degree.
Adjust the flow rate of the liquid flowing through. Therefore, the control valve 16 has a function as a control means.

【0021】また調節弁16は、分液対象の二種類の液
体にあまり密度差がなくても粘度差がある場合にそれら
二液の界面を検知するのに役立っている。つまり液液分
離の場合では界面を乱さないように液体を流す必要があ
り、その流れは層流となる。層流域では、流れは配管壁
面と液体の相互作用に依存するため、液体の粘度によっ
て容量流量V(液体の流速)が大きく異なってくる。こ
の場合の容量流量Vと粘度μとの関係式は次の(1)式
で表される。
The control valve 16 is useful for detecting an interface between two liquids to be separated when there is a difference in viscosity between the two liquids even if there is not much difference in density between the two liquids. That is, in the case of liquid-liquid separation, it is necessary to flow the liquid so as not to disturb the interface, and the flow is laminar. In the laminar flow region, since the flow depends on the interaction between the pipe wall surface and the liquid, the volumetric flow rate V (the flow velocity of the liquid) greatly differs depending on the viscosity of the liquid. In this case, the relational expression between the volume flow rate V and the viscosity μ is expressed by the following equation (1).

【0022】 V=Ns(Fs Cv )3/2 (P2 −P1 )/μ ・・・・(1) ここでNs は式中の単位を補正する定数である。Fs は
層流の場合の流れ定数であり、調節弁16の型式に依存
する量で、1.0前後の値である(調節弁16が決まれ
ば一定となる量)。Cv は調節弁16の流れ係数であ
り、調節弁16の前後の圧力が決まれば一定となる量で
ある。P1 及びP2 はそれぞれ調節弁16の一次側及び
二次側の圧力である。(1)式から分かるように、容量
流量Vと粘度μとは反比例の関係にあり、粘度μが大き
ければ容量流量Vは小さくなり、粘度μが小さければ容
量流量Vは大きくなる。質量流量Mと容量流量Vとの関
係は(2)式で表されるので、二液(一方の密度及び容
量流量をρ1 及びV1 とし、他方をρ2 及びV2 とす
る)の質量流量差ΔMは(3)式で表され、従って密度
ρ1 、ρ2 にあまり差がなくても粘度μに差があれば容
量流量V1 ,V2 に差が生じ、(3)式より質量流量差
ΔMが生じることになる。
V = Ns (Fs Cv) 3/2 (P2−P1) / μ (1) where Ns is a constant for correcting the unit in the equation. Fs is a flow constant in the case of a laminar flow, and is an amount that depends on the type of the control valve 16 and is a value around 1.0 (an amount that becomes constant once the control valve 16 is determined). Cv is a flow coefficient of the control valve 16, and is an amount that becomes constant if the pressure before and after the control valve 16 is determined. P1 and P2 are the pressures on the primary and secondary sides of the control valve 16, respectively. As can be seen from the equation (1), the volume flow rate V and the viscosity μ are inversely proportional. The volume flow rate V decreases as the viscosity μ increases, and the volume flow rate V increases as the viscosity μ decreases. Since the relationship between the mass flow rate M and the volumetric flow rate V is expressed by equation (2), the mass flow rate difference ΔM between the two liquids (the density and volumetric flow rates of one liquid are ρ1 and V1 and the other is ρ2 and V2) is (3) Therefore, even if there is not much difference between the densities ρ1 and ρ2, if there is a difference in the viscosity μ, there is a difference in the volume flow rates V1 and V2, and from the equation (3) a mass flow rate difference ΔM is generated. Become.

【0023】 M=ρV ・・・・(2) ΔM=(ρ2 V2 −ρ1 V1 ) ・・・・(3) 自動弁17,18は、何れも制御装置4により開閉制御
されており、両方とも閉じるか、または排他的に開く。
一方の自動弁17が開いて他方の自動弁18が閉じると
容器11から流出した液体は流路21から分岐路25ま
での一連の流路を流れ、自動弁17を通過して一方の貯
留容器13内へ流れる。それに対して一方の自動弁17
が閉じて他方の自動弁18が開くと容器11から分岐路
26までの一連の流路を流れた液体は、自動弁18を通
過して他方の貯留容器14内へ流れる。従ってこれら自
動弁17,18は、液体の流路を切り替える切り替え手
段としての機能を有している。
M = ρV (2) ΔM = (ρ2V2−ρ1V1) (3) Both the automatic valves 17 and 18 are controlled to open and close by the control device 4, and both of them are controlled. Close or open exclusively.
When one automatic valve 17 is opened and the other automatic valve 18 is closed, the liquid flowing out of the container 11 flows through a series of flow passages from the flow passage 21 to the branch passage 25, passes through the automatic valve 17 and passes through one storage container. It flows into 13. On the other hand, one automatic valve 17
Is closed and the other automatic valve 18 is opened, the liquid flowing through a series of flow paths from the container 11 to the branch passage 26 flows through the automatic valve 18 into the other storage container 14. Therefore, these automatic valves 17 and 18 have a function as switching means for switching the liquid flow path.

【0024】制御装置4は自動弁15,17,18の開
閉及び調節弁16の開度の制御を行う。この制御装置4
には、質量流量計12からそこを通過する液体の質量流
量に基づく検出信号が入力される。制御装置4は、その
入力信号の変化状況を判断して貯留容器13,14の手
前の自動弁17,18の何れか一方のみが開くように弁
の開閉を切り替え制御するための制御信号を自動弁1
7,18に出力する。
The control device 4 controls the opening and closing of the automatic valves 15, 17, 18 and the opening of the control valve 16. This control device 4
, A detection signal based on the mass flow rate of the liquid passing therethrough is input from the mass flow meter 12. The control device 4 determines a change state of the input signal and automatically generates a control signal for switching the opening and closing of the valve so that only one of the automatic valves 17 and 18 in front of the storage containers 13 and 14 is opened. Valve 1
7 and 18.

【0025】次に上述した液液分離装置を用いて例えば
二液を分液する手順について説明する。まず分液対象で
ある二液の混合液が入った容器11内を攪拌した後、静
置して二液に分離させる。そして制御装置4は圧力調整
器3に容器内圧力調整用の制御信号を出力する。それに
よって容器11内の圧力は所定圧力例えば150kPa
・Gに保たれるように制御される。なお容器内圧力は、
分液処理中は一定に制御される。つまり質量流量計12
の一次側の圧力は分液処理中、常に例えば150kPa
・Gに保たれる。
Next, a procedure for separating two liquids, for example, using the above-described liquid-liquid separation device will be described. First, after stirring the inside of the container 11 containing the mixed liquid of the two liquids to be separated, the liquid is allowed to stand and separated into two liquids. Then, the control device 4 outputs a control signal for adjusting the pressure in the container to the pressure regulator 3. Thereby, the pressure in the container 11 becomes a predetermined pressure, for example, 150 kPa.
-It is controlled to be kept at G. The pressure in the container is
It is controlled constant during the liquid separation process. That is, the mass flow meter 12
During the liquid separation process, the pressure on the primary side is always 150 kPa, for example.
・ It is kept at G.

【0026】また制御装置4は容器底の自動弁15、分
岐路25,26の自動弁17,18にそれぞれ開閉用の
制御信号を出力して自動弁15及び自動弁17を開くと
ともに、自動弁18を閉じる。これによって容器11の
底から液体が流出し始め、先に流れてくる容器11内の
下層側の液体は自動弁17側の貯留容器13へ流れ貯留
される。
The control device 4 outputs control signals for opening and closing to the automatic valve 15 at the bottom of the container and the automatic valves 17 and 18 of the branch passages 25 and 26 to open the automatic valves 15 and 17 respectively. Close 18. As a result, the liquid starts to flow out from the bottom of the container 11, and the lower liquid in the container 11 that flows first flows into the storage container 13 on the automatic valve 17 side and is stored.

【0027】また制御装置4はそれら自動弁15,1
7,18の開閉制御とともに、調節弁16に開度調整用
の制御信号を出力する。それによって調節弁16の開度
は分液処理中、常に一定になるように制御される。
The control device 4 also controls the automatic valves 15, 1
Along with controlling the opening and closing of the switches 7 and 18, a control signal for adjusting the opening is output to the control valve 16. Thereby, the opening degree of the control valve 16 is controlled so as to be always constant during the liquid separation process.

【0028】容器11内の下層側の液体が流出し、質量
流量計12を通過している間、質量流量計12は下層側
の液体の質量流量に基づく信号を制御装置4に連続的に
出力する。
While the lower liquid in the container 11 flows out and passes through the mass flow meter 12, the mass flow meter 12 continuously outputs a signal based on the mass flow rate of the lower liquid to the controller 4. I do.

【0029】容器11内の下層側の液体がなくなると、
上層側の液体が流出し始める。そして上層側の液体が質
量流量計12を通過し始めると、質量流量計12は上層
側の液体の質量流量に基づく信号を制御装置4に連続的
に出力する。
When the liquid on the lower layer side in the container 11 runs out,
The upper liquid starts to flow out. When the liquid on the upper layer side starts passing through the mass flow meter 12, the mass flow meter 12 continuously outputs a signal based on the mass flow rate of the liquid on the upper layer side to the control device 4.

【0030】制御装置4は質量流量計12から送られて
くる信号の変化を検知して下層側の液体と上層側の液体
との界面が質量流量計12を通過したと判断する。そし
て分岐路25,26の自動弁17,18にそれぞれ開閉
用の制御信号を出力して自動弁17を閉じるとともに、
自動弁18を開く。これによって上層側の液体は自動弁
18側の貯留容器14へ流れ貯留される。
The controller 4 detects a change in the signal sent from the mass flow meter 12 and determines that the interface between the lower liquid and the upper liquid has passed through the mass flow meter 12. Then, control signals for opening and closing are output to the automatic valves 17 and 18 of the branch passages 25 and 26, respectively, to close the automatic valve 17, and
The automatic valve 18 is opened. Thereby, the liquid on the upper layer side flows into the storage container 14 on the automatic valve 18 side and is stored.

【0031】また質量流量計12を通過する液体が下層
側の液体から上層側の液体に変わった時の質量流量の変
化が小さくて、制御装置4が界面の通過を検出すること
ができない場合には、上層側の液体が調節弁16に達し
た時に上述したように下層側の液体と上層側の液体の粘
度差に起因する質量流量の変化が生じる。制御装置4は
この変化に基づく信号の変化によって自動弁17,18
の開閉の切り替えを行い、上層側の液体を貯留容器14
へ流す。
In the case where the change in the mass flow rate when the liquid passing through the mass flow meter 12 changes from the lower layer liquid to the upper layer liquid is small and the control device 4 cannot detect the passage through the interface. As described above, when the liquid on the upper layer reaches the control valve 16, a change in the mass flow rate occurs due to the difference in viscosity between the liquid on the lower layer and the liquid on the upper layer. The control device 4 changes the signal based on this change to the automatic valves 17 and 18.
Is opened and closed, and the upper liquid is stored in the storage container 14.
Flow to

【0032】上述実施の形態によれば、質量流量計12
によりそこを通過する液体の質量流量を連続的に測定
し、質量流量の変化に基づいて制御装置4により貯留容
器13,14の流路を自動的に切り替えるため、容器1
1内で分離した上層側の液体と下層側の液体とを再現性
よく確実に自動的に分液することができる。従って上層
側の液体と下層側の液体との界面を目視で確認して手動
でバルブ等の切り替えを行うための作業者が不要とな
り、省人化を図り人権費によるコストを低減することが
できるとともに、人為的な液液分離ミスを防ぐことがで
きる。
According to the above embodiment, the mass flow meter 12
To continuously measure the mass flow rate of the liquid passing therethrough, and automatically switch the flow paths of the storage containers 13 and 14 by the control device 4 based on the change in the mass flow rate.
The liquid on the upper layer side and the liquid on the lower layer side separated in 1 can be automatically and reliably reproducibly separated. Therefore, an operator for visually checking the interface between the liquid on the upper layer side and the liquid on the lower layer side and manually switching valves and the like is not required, thereby saving labor and reducing costs due to human rights costs. At the same time, it is possible to prevent artificial liquid-liquid separation errors.

【0033】また上述実施の形態によれば、質量流量の
変化に基づいて上層側の液体と下層側の液体とを分液す
るので、密度の近い液体同士や有機液体同士や超音波に
対する特性が近い液体同士であっても、その分離を再現
性よく確実に自動化して行うことができる。
Further, according to the above-described embodiment, the liquid in the upper layer and the liquid in the lower layer are separated based on the change in the mass flow rate. Even close liquids can be reliably and automatically separated with good reproducibility.

【0034】以上において本発明は、二液の分液に限ら
ず、三種類以上の液体を分液してもよい。その場合には
調節弁16の下流の流路24を分液対象の液体の種類に
対応する数の流路に分岐させ、その各分岐路にそれぞれ
制御装置4により開閉制御されてなる切り替え手段とな
る自動弁を介して貯留容器を連通接続すればよい。
In the above, the present invention is not limited to the separation of two liquids, and may separate three or more liquids. In this case, a switching means is provided which branches the flow path 24 downstream of the control valve 16 into a number of flow paths corresponding to the type of liquid to be separated, and each branch path is opened and closed by the control device 4. What is necessary is just to connect and connect a storage container via an automatic valve.

【0035】[0035]

【実施例】以下に具体例を示し、本発明の特徴をより明
確にする。
EXAMPLES Specific examples are shown below to further clarify the features of the present invention.

【0036】(実施例1)図1に示す液液分離装置を用
い、水(密度:1000kg/m3 、粘度:1.0×1
0-3Pa・s)とN−ヘプタン(密度:680kg/m
3 、粘度:0.41×10-3Pa・s)の2つの液体の
混合液からそれら2つの液体の分液を行った。まず水及
びN−ヘプタンの混合液を容器11に入れ、攪拌後静置
した。容器11内の液体は2層に分離した。水とN−ヘ
プタンとの密度の変化率は32.0%であった。
Example 1 Using the liquid-liquid separator shown in FIG. 1, water (density: 1000 kg / m 3, viscosity: 1.0 × 1)
0-3 Pa · s) and N-heptane (density: 680 kg / m)
3. Separation of the two liquids from a mixture of the two liquids having a viscosity of 0.41 × 10 −3 Pa · s). First, a mixed solution of water and N-heptane was put in the container 11, and left standing after stirring. The liquid in the container 11 was separated into two layers. The rate of change of the density between water and N-heptane was 32.0%.

【0037】しかる後容器11内の圧力を圧力調整器3
により150kPa・Gとし、分液処理中この容器内圧
力を保持した。貯留容器13,14側の圧力は常圧とし
た。自動弁15,17を開くとともに、自動弁18を閉
じ、かつ調節弁16をその開度が一定となるように調節
した。下層側の液体(水)は層流となって自動弁15、
質量流量計12、調節弁16及び自動弁17を通って貯
留容器13へ流れた。その際の質量流量は8.25×1
0-2kg/sであった。
Thereafter, the pressure in the container 11 is adjusted by the pressure regulator 3
To 150 kPa · G, and the pressure in the container was maintained during the liquid separation treatment. The pressure on the storage containers 13 and 14 side was normal pressure. The automatic valves 15 and 17 were opened, the automatic valve 18 was closed, and the control valve 16 was adjusted so that the opening was constant. The liquid (water) on the lower layer side becomes laminar flow and the automatic valve 15,
It flowed to the storage container 13 through the mass flow meter 12, the control valve 16 and the automatic valve 17. The mass flow rate at that time is 8.25 × 1
It was 0-2 kg / s.

【0038】容器11内に水がなくなり、N−ヘプタン
が流出し始め、その界面が質量流量計12を通過する
と、質量流量は5.61×10-2kg/sに変化し、そ
の変化率は32.0%であった(図2参照)。制御装置
4はこの変化を検知して自動弁17を閉じるのと同時に
自動弁18を開き、それによってN−ヘプタンは貯留容
器14へ流れ、水と分液することができた。なお水及び
N−ヘプタンのレイノルズ数はそれぞれ2100及び3
490であった。
When the water in the container 11 disappears, N-heptane starts flowing out, and when the interface passes through the mass flow meter 12, the mass flow rate changes to 5.61 × 10−2 kg / s, and the rate of change is changed. 32.0% (see FIG. 2). The controller 4 detected this change and opened the automatic valve 18 at the same time as closing the automatic valve 17, whereby the N-heptane could flow to the storage container 14 and be separated from the water. The Reynolds numbers of water and N-heptane were 2100 and 3 respectively.
490.

【0039】(実施例2)図1に示す液液分離装置を用
い、ジクロロエタン(密度:1280kg/m3、粘
度:0.5cP)とグリセリン(密度:1260kg/
m3 、粘度:約300cP)の2つの液体の混合液から
それら2つの液体の分液を行った。まずジクロロエタン
及びグリセリンの混合液を容器11に入れ、攪拌後静置
した。容器11内の液体は2層に分離した。ジクロロエ
タンとグリセリンとの密度の変化率は1.56%であっ
た。
Example 2 Dichloroethane (density: 1280 kg / m 3, viscosity: 0.5 cP) and glycerin (density: 1260 kg /
Separation of the two liquids was performed from a mixture of the two liquids (m3, viscosity: about 300 cP). First, a mixed solution of dichloroethane and glycerin was put into the container 11, and the mixture was stirred and allowed to stand. The liquid in the container 11 was separated into two layers. The rate of change of the density between dichloroethane and glycerin was 1.56%.

【0040】しかる後容器11内の圧力を圧力調整器3
により150kPa・Gとし、分液処理中この容器内圧
力を保持した。貯留容器13,14側の圧力は常圧とし
た。自動弁15,17を開くとともに、自動弁18を閉
じ、かつ調節弁16をその開度が一定となるように調節
した。下層側の液体(ジクロロエタン)は乱流となって
自動弁15、質量流量計12、調節弁16及び自動弁1
7を通って貯留容器13へ流れた。その際の質量流量は
4.17×10-3kg/sであった。
Thereafter, the pressure in the container 11 is adjusted by the pressure regulator 3
To 150 kPa · G, and the pressure in the container was maintained during the liquid separation treatment. The pressure on the storage containers 13 and 14 side was normal pressure. The automatic valves 15 and 17 were opened, the automatic valve 18 was closed, and the control valve 16 was adjusted so that the opening was constant. The liquid (dichloroethane) on the lower layer side becomes turbulent and becomes an automatic valve 15, a mass flow meter 12, a control valve 16, and an automatic valve 1.
7 and flowed to the storage container 13. The mass flow rate at that time was 4.17 × 10 −3 kg / s.

【0041】容器11内にジクロロエタンがなくなり、
グリセリンが流出し始め、その界面が質量流量計12を
通過する時は、制御装置4は質量流量の変化を検知する
ことができなかった。そしてグリセリンが調節弁16を
通過する際に質量流量は1.67×10-3kg/sとな
り、60%の質量流量の変化が生じた(図2参照)。制
御装置4はこの変化を検知して自動弁17を閉じるのと
同時に自動弁18を開き、それによってグリセリンは貯
留容器14へ流れ、ジクロロエタンと分液することがで
きた。
Dichloroethane disappears in the container 11,
When glycerin began to flow out and its interface passed the mass flow meter 12, the controller 4 could not detect a change in mass flow. Then, when glycerin passed through the control valve 16, the mass flow rate was 1.67 × 10 −3 kg / s, and a change in the mass flow rate of 60% occurred (see FIG. 2). The controller 4 detected this change and opened the automatic valve 18 at the same time as closing the automatic valve 17, whereby the glycerin flowed to the storage container 14 and could be separated from dichloroethane.

【0042】ジクロロエタンのレイノルズ数は5000
をはるかに越える値となり、乱流域となる。このため粘
度の変化は流速に影響を与えない。しかしグリセリンの
レイノルズ数は約60であり、層流域での流れとなる。
したがってその流速には粘度依存性が生じ、流速が大き
く低下する。
The Reynolds number of dichloroethane is 5000
, Which is a value far exceeding the turbulence region. Thus, a change in viscosity does not affect the flow rate. However, the Reynolds number of glycerin is about 60, and the flow is laminar.
Therefore, the flow velocity has viscosity dependency, and the flow velocity is greatly reduced.

【0043】上述実施例から分かるように、本発明によ
れば密度差が殆どなくても二液を分離することができ、
密度検出器を用いるよりも有効であることが分かる。
As can be seen from the above examples, according to the present invention, two liquids can be separated even if there is almost no difference in density.
It turns out that it is more effective than using a density detector.

【0044】[0044]

【発明の効果】以上のように本発明によれば、種々の非
相溶性の液体の混合液、特に密度の近い液体同士や有機
液体同士や超音波に対する特性が近い液体同士であって
も、その分離を再現性よく確実に自動化して行うことが
できる。
As described above, according to the present invention, even if a mixture of various incompatible liquids, particularly liquids having close densities, organic liquids, or liquids having similar characteristics to ultrasonic waves, The separation can be reliably automated with good reproducibility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る液液分離装置の一例を示す概略構
成図である。
FIG. 1 is a schematic configuration diagram showing an example of a liquid-liquid separation device according to the present invention.

【図2】実施例の結果を示す図表である。FIG. 2 is a table showing the results of Examples.

【符号の説明】[Explanation of symbols]

11 容器 12 質量流量計 13,14 貯留容器 15 自動弁 16 調節弁(調節手段) 17,18 自動弁(切り替え手段) 21,22,23,24,27,28 流路 25,26 分岐路 3 圧力調整器 4 制御装置 DESCRIPTION OF SYMBOLS 11 Container 12 Mass flow meter 13,14 Storage container 15 Automatic valve 16 Control valve (adjustment means) 17,18 Automatic valve (switching means) 21,22,23,24,27,28 Channel 25,26 Branch path 3 Pressure Regulator 4 Controller

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも2種の液体を含み少なくとも
2層に分離し得る混合液を静置して分離する工程と、 分離された少なくとも2種の液体を順次下層側の液体か
ら流出させつつ、その質量流量を測定する工程と、 測定された質量流量の変化に基づき液体の流路を少なく
とも2つに分岐された分岐路のうちの1つに切り替える
工程と、 を含むことを特徴とする液液分離方法。
1. A step of allowing a mixture containing at least two kinds of liquids and being separable into at least two layers to stand still, and separating the at least two kinds of liquids sequentially from the lower liquid, Measuring the mass flow rate, and switching the liquid flow path to one of at least two branch paths based on a change in the measured mass flow rate. Liquid separation method.
【請求項2】 少なくとも2種の液体を含み少なくとも
2層に分離し得る混合液を貯留し、その混合液を静置し
て分離する容器と、 該容器内で分離された少なくとも2種の液体を順次下層
側の液体から流出させる流路と、 該流路の途中に設けられ、流路を流れる液体の質量流量
を測定する質量流量計と、 前記流路の途中に設けられ、流路の開度を調節する調節
手段と、 該調節手段及び前記質量流量計よりも下流側で少なくと
も2つの流路に分岐された分岐路と、 液体の流路を前記分岐路のうちの一つに切り替える切り
替え手段と、 を具備し、 前記切り替え手段は、前記質量流量計により測定された
液体の質量流量の変化に基づいて切り替え制御されるこ
とを特徴とする液液分離装置。
2. A container for storing a liquid mixture containing at least two liquids and capable of being separated into at least two layers, and allowing the liquid mixture to stand and separate, and at least two liquids separated in the container. And a mass flow meter that is provided in the middle of the flow path and measures the mass flow rate of the liquid flowing through the flow path, and is provided in the middle of the flow path, Adjusting means for adjusting the opening degree; a branch path branched into at least two flow paths downstream of the adjusting means and the mass flow meter; and a liquid flow path is switched to one of the branch paths. A liquid-liquid separation device, comprising: switching means, wherein the switching means is controlled to be switched based on a change in the mass flow rate of the liquid measured by the mass flow meter.
JP14048598A 1998-05-06 1998-05-06 Method and apparatus for liquid-liquid separation Withdrawn JPH11314010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14048598A JPH11314010A (en) 1998-05-06 1998-05-06 Method and apparatus for liquid-liquid separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14048598A JPH11314010A (en) 1998-05-06 1998-05-06 Method and apparatus for liquid-liquid separation

Publications (1)

Publication Number Publication Date
JPH11314010A true JPH11314010A (en) 1999-11-16

Family

ID=15269712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14048598A Withdrawn JPH11314010A (en) 1998-05-06 1998-05-06 Method and apparatus for liquid-liquid separation

Country Status (1)

Country Link
JP (1) JPH11314010A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160097210A (en) * 2013-11-27 2016-08-17 다우 글로벌 테크놀로지스 엘엘씨 Process and apparatus to determine the degree of separation of two solution streams
CN110280399A (en) * 2019-07-24 2019-09-27 江苏赛德力制药机械制造有限公司 A kind of centrifuge that can control charging and control disengaging time
WO2022118695A1 (en) * 2020-12-03 2022-06-09 Eneos株式会社 Organic hydride production apparatus, water removal device, and water removal method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160097210A (en) * 2013-11-27 2016-08-17 다우 글로벌 테크놀로지스 엘엘씨 Process and apparatus to determine the degree of separation of two solution streams
CN110280399A (en) * 2019-07-24 2019-09-27 江苏赛德力制药机械制造有限公司 A kind of centrifuge that can control charging and control disengaging time
WO2022118695A1 (en) * 2020-12-03 2022-06-09 Eneos株式会社 Organic hydride production apparatus, water removal device, and water removal method

Similar Documents

Publication Publication Date Title
NO172611B (en) DEVICE FOR MONITORING A PETROLEUM FLOW
US9468868B2 (en) Water removing device for extremely high water content three-phase flow, and measurement device and method for extremely high water content three-phase flow
AU735969B2 (en) Proportioning valve and control means therefor
JP2000515240A (en) Automatic well testing system and method of operating the same
EP3218688B1 (en) A method and apparatus for the isokinetic sampling of a multiphase stream
JPH0882606A (en) Microwave concentration sensor
JPH11314010A (en) Method and apparatus for liquid-liquid separation
KR20110114560A (en) Solvent feed systems for chromatography systems and methods of making and using the same
AU2019323687B2 (en) Device for producing foamed construction materials
EP1163495B1 (en) Method for measuring the flow rates of the single phases in a multiphase fluid stream and relevant apparatus
CN111624144B (en) Calibrating device and method for particulate matter monitor
AU775025B2 (en) Arrangement for improved water-oil ratio measurements
JP2884909B2 (en) Chemical supply device
CN113075341B (en) Method and device for continuous liquid supply of liquid chromatograph
US6406821B1 (en) Method for preparing silver halide emulsions and apparatus for implementing the method
JP3031834B2 (en) Liquid bubble removal device
US6640996B2 (en) Method and apparatus for online switching between supply vessels
JPH0714441B2 (en) Separation method and apparatus for mixed liquid of incompatible solution
JPS5987008A (en) Liquid separation apparatus
JP2009131811A (en) Filtration method and filtration apparatus
JP2000124186A (en) Liquid feeding device
JPS6219971Y2 (en)
KR950704046A (en) Constant underflow control for nozzle centrifuges
JP2001009257A (en) Mixing device
RU2223474C1 (en) Device for extraction of liquid dose

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802