JPH11311466A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH11311466A
JPH11311466A JP8642099A JP8642099A JPH11311466A JP H11311466 A JPH11311466 A JP H11311466A JP 8642099 A JP8642099 A JP 8642099A JP 8642099 A JP8642099 A JP 8642099A JP H11311466 A JPH11311466 A JP H11311466A
Authority
JP
Japan
Prior art keywords
temperature
compressor
blower
refrigerator
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8642099A
Other languages
Japanese (ja)
Inventor
Toshimichi Hirata
俊通 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8642099A priority Critical patent/JPH11311466A/en
Publication of JPH11311466A publication Critical patent/JPH11311466A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/14Sensors measuring the temperature outside the refrigerator or freezer

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator for suppressing the temperature increase of a compressor by suppressing a load being applied to the compressor on pull-down operation. SOLUTION: A control device 30 for controlling the energization of a blower that circulates cold air being cooled by a cooler based on a temperature that is set by a temperature-setting means for setting the temperature of a freezing room and the temperature of the freezing room being detected by a freezing room temperature sensor 32 for detecting the temperature of the freezing room is provided with a control means 39 for reducing the conduction rate to a blower motor 40 when a temperature that is detected by a compressor temperature sensor 34 for detecting the temperature of the compressor is equal to or more than a set temperature T, a temperature that is detected by the freezing room temperature sensor 32 is equal to or more than a specific temperature Tf, and a temperature that is detected by a fresh air temperature sensor 33 is equal to or more than a specific temperature Ta.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷凍室の温度に基づい
て動作制御される送風機の通電率を制御することにより
プルダウン運転時における圧縮機の温度上昇を抑制した
冷蔵庫に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator in which the temperature rise of a compressor during a pull-down operation is suppressed by controlling the duty ratio of a blower whose operation is controlled based on the temperature of a freezing compartment.

【0002】[0002]

【従来の技術】本発明に先行する特開平4−14817
8号公報には、圧縮機、凝縮器及び凝縮器用送風機等を
備えた機械室を冷蔵庫の上部に配置した冷蔵庫が開示さ
れている。冷蔵庫内には蒸発器及び蒸発器用送風機が配
置され、冷凍室と冷蔵室の双方に冷気を供給して冷凍室
内の温度及び冷蔵室の温度をそれぞれの設定温度になる
ように圧縮機及び蒸発器用送風機を制御している。
2. Description of the Related Art Japanese Patent Laid-Open Publication No.
No. 8 discloses a refrigerator in which a machine room equipped with a compressor, a condenser, a blower for the condenser, and the like is arranged above the refrigerator. An evaporator and a blower for the evaporator are arranged in the refrigerator, and cool air is supplied to both the freezing room and the refrigerating room so that the temperature in the freezing room and the temperature in the refrigerating room become the respective set temperatures. Controlling the blower.

【0003】ここで、冷蔵庫の冷却能力は圧縮機及び送
風機の能力に大きく左右されるが、特に圧縮機は、圧縮
機にとってもっとも大きい負荷のかかるプルダウン運転
時に過電流防止リレー(OLR)が作動しないですむ大
きな能力をもったものが一般的に好適とされている。た
だしあまり大きな冷却能力を持った圧縮機を選定すると
高価になるばかりかそれほど能力を必要としないプルダ
ウン運転後の冷却運転時において能力が余ってしまう。
即ちプルダウン運転時は良くても冷却運転時に冷却効率
が低下し、能力の大きい圧縮機は所要電力が大きいだけ
にかえって不経済になる。尚前述のプルダウン運転時と
は、例えば冷蔵庫の設置後の電源投入時やしばらく使用
していなかった冷蔵庫を使用する場合等貯蔵室内がほと
んど冷却されていない状態から貯蔵室内を冷却する時の
ことである。
[0003] Here, the cooling capacity of a refrigerator largely depends on the capacity of a compressor and a blower. In particular, in a compressor, an overcurrent prevention relay (OLR) does not operate at the time of a pull-down operation with the largest load on the compressor. Those with great capabilities are generally preferred. However, if a compressor having a very large cooling capacity is selected, not only the cost becomes high but also the capacity becomes excessive during the cooling operation after the pull-down operation which does not require much capacity.
That is, even if the pull-down operation is good, the cooling efficiency is reduced during the cooling operation, and a compressor having a large capacity becomes uneconomical because only the required power is large. The above-mentioned pull-down operation refers to a time when the storage room is cooled from a state where the storage room is hardly cooled, for example, when turning on the power after installing the refrigerator or when using a refrigerator that has not been used for a while. is there.

【0004】一般に圧縮機で圧縮された高温高圧のガス
冷媒が冷却器(蒸発器)に至るまでの経路で液化され、
この液化された冷媒が蒸発器を通過する間に貯蔵室内を
循環する空気と熱交換することで再びガス化して圧縮機
に帰還するものであるが、貯蔵室内が冷却されていない
状態では、循環する空気温度が高いので液化された冷媒
は蒸発器でガス化されやすく、そのため多量の液冷媒が
ガス化されて圧縮機に帰還するガスの圧力は高くなる。
このため圧力の高いガス冷媒を所定の比率で圧縮しなけ
ればならない圧縮機にとって必要な運動エネルギー(一
般的にはトルクで表現され、この所要トルクの大きさが
圧縮機にかかる負荷とよばれるものである)は大きなも
のとなる。圧縮機にかかる負荷が大きければ圧縮機を動
作させるに要する電力量(電圧が一定であれば電流)が
大きくなり、この電流が所定値を越えると過電流防止リ
レーが作動して、圧縮機が停止する。一方、プルダウン
運転後はプルダウン時の熱交換により貯蔵室内を循環す
る空気がある程度冷却されているため、蒸発器を通過す
る液冷媒はガス化しにくくプルダウン運転時に比べて少
量の液冷媒がガス化するだけであり、圧縮機に帰還する
ガス冷媒の圧力がプルダウン運転時に比べて下がる。こ
のため圧縮機にかかる負荷が小さなものとなり、通常の
冷却運転時にはそれほど能力を要しないことになる。
Generally, a high-temperature and high-pressure gas refrigerant compressed by a compressor is liquefied in a path leading to a cooler (evaporator),
While the liquefied refrigerant exchanges heat with air circulating in the storage chamber while passing through the evaporator, it is gasified again and returned to the compressor, but in a state where the storage chamber is not cooled, the circulation The liquefied refrigerant is likely to be gasified by the evaporator due to the high temperature of the generated air, so that a large amount of liquid refrigerant is gasified and the pressure of the gas returned to the compressor increases.
For this reason, the kinetic energy required for a compressor that must compress a high-pressure gas refrigerant at a predetermined ratio (generally expressed as torque, and the magnitude of the required torque is called a load applied to the compressor) Is bigger. If the load on the compressor is large, the amount of electric power required to operate the compressor (current if the voltage is constant) increases, and if this current exceeds a predetermined value, the overcurrent prevention relay is activated and the compressor is activated. Stop. On the other hand, after the pull-down operation, since the air circulating in the storage chamber is cooled to some extent due to heat exchange at the time of the pull-down operation, the liquid refrigerant passing through the evaporator is hardly gasified, and a smaller amount of the liquid refrigerant is gasified as compared with the pull-down operation. Therefore, the pressure of the gas refrigerant returning to the compressor is reduced as compared with the pressure in the pull-down operation. For this reason, the load applied to the compressor becomes small, so that a large capacity is not required during a normal cooling operation.

【0005】[0005]

【発明が解決しようとする課題】他方、圧縮機の運転に
同期して運転制御される送風機を前述のプルダウン運転
時に一定の回転数で運転する制御が一般的であり、上記
公報にあっても同様である。このため蒸発器と熱交換す
る空気量は冷却運転時、プルダウン運転時を問わず一定
であり、蒸発器で熱交換されてガス化する冷媒量を抑制
することができないためプルダウン運転時の圧縮機の負
荷を低減することはできない。従って、プルダウン運転
を乗り切るためには圧縮機の能力を大きくしなければな
らず、圧縮機が高価になる分冷蔵庫の価格抑制に支障を
きたしていた。また、近ごろではオゾン層保護の観点か
ら従来使用していた規制冷媒(例えばR−12)から規
制外冷媒(例えばR−22)に変更するようになってき
たため、圧縮機に対する負荷は従来よりも大きくなって
いる。
On the other hand, a blower whose operation is controlled in synchronization with the operation of the compressor is generally controlled to operate at a constant rotational speed during the above-described pull-down operation. The same is true. For this reason, the amount of air that exchanges heat with the evaporator is constant regardless of the cooling operation or the pull-down operation, and it is not possible to suppress the amount of refrigerant gasified by heat exchange in the evaporator. Cannot reduce the load. Therefore, in order to survive the pull-down operation, the capacity of the compressor must be increased, and the price of the compressor becomes high, which hinders the price control of the refrigerator. In recent years, from the viewpoint of protection of the ozone layer, a regulated refrigerant (for example, R-12) which has been conventionally used has been changed to a non-regulated refrigerant (for example, R-22). It is getting bigger.

【0006】そこで本発明では、プルダウン運転時の圧
縮機にかかる負荷を抑制して能力の小さい圧縮機を使用
できるようにした冷蔵庫を提供することを目的とする。
Accordingly, an object of the present invention is to provide a refrigerator capable of using a compressor having a small capacity by suppressing the load on the compressor during the pull-down operation.

【0007】[0007]

【課題を解決するための手段】本発明は、冷蔵庫の周囲
温度を検出する外気温度センサと、冷却器で冷却された
冷気を冷凍室に循環させる送風機と、冷凍室の温度を設
定する温度設定手段と、冷凍室の温度を検出する冷凍室
温度センサと、この冷凍室温度センサで検出した冷凍室
温度及び設定温度に基づき送風機の通電を制御する制御
装置とを備えた冷蔵庫において、前記制御装置は、圧縮
機の温度を検出する圧縮機温度センサと、この圧縮機温
度センサで検出された温度に応じて前記送風機への通電
率を変化させる制御手段とを備えた冷蔵庫を提供するも
のである。
SUMMARY OF THE INVENTION The present invention provides an outside air temperature sensor for detecting the ambient temperature of a refrigerator, a blower for circulating cool air cooled by a cooler to a freezer compartment, and a temperature setting for setting the temperature of the freezer compartment. Means, a freezer compartment temperature sensor for detecting the temperature of the freezer compartment, and a control device for controlling energization of the blower based on the freezer compartment temperature and the set temperature detected by the freezer compartment temperature sensor, the control device comprising: The present invention provides a refrigerator comprising: a compressor temperature sensor for detecting a temperature of a compressor; and control means for changing a duty ratio to the blower in accordance with the temperature detected by the compressor temperature sensor. .

【0008】尚、前記制御手段は、圧縮機温度センサで
検出された温度が設定温度Tc以上でかつ冷凍室温度セン
サで検出された温度が冷凍室の設定温度より高い所定の
温度Tf以上の時に送風機への通電率を低下させるように
するとよい。
[0008] The control means is provided when the temperature detected by the compressor temperature sensor is equal to or higher than the set temperature Tc and the temperature detected by the freezer compartment temperature sensor is equal to or higher than a predetermined temperature Tf higher than the set temperature of the freezer compartment. It is preferable to reduce the duty ratio to the blower.

【0009】また、前記制御手段は、圧縮機温度センサ
で検出された温度が設定温度Tc以上でかつ外気温度セン
サで検出された温度が所定の温度Ta以上の時に送風機へ
の通電率を低下させるようにするとよい。
The control means reduces the energization rate to the blower when the temperature detected by the compressor temperature sensor is equal to or higher than the set temperature Tc and the temperature detected by the outside air temperature sensor is equal to or higher than the predetermined temperature Ta. It is good to do so.

【0010】[0010]

【作用】請求項1によれば、制御手段によって圧縮機温
度センサで検出された温度に応じて冷凍室への冷気循環
用の送風機への通電率を変化させるので、送風機の回転
数が圧縮機の温度に応じて変化する。このため、圧縮機
の温度が上昇するにつれて回転数を低下させるようにす
れば、圧縮機の負荷が大きく圧縮機の温度が上昇しやす
い電源投入時のプルダウン運転時において、冷却器(即
ち蒸発器)と熱交換する空気の循環量を小さくするよう
に調節でき、結果的にプルダウン運転時の圧縮機への負
荷が抑制され、圧縮機の温度上昇を抑制できる。
According to the first aspect, the control unit changes the duty ratio of the blower for circulating cool air to the freezer compartment in accordance with the temperature detected by the compressor temperature sensor, so that the rotation speed of the blower is reduced. It changes according to the temperature of. For this reason, if the number of revolutions is reduced as the temperature of the compressor rises, the cooler (that is, the evaporator) during the pull-down operation at the time of turning on the power, where the load on the compressor is large and the temperature of the compressor tends to rise, ) Can be adjusted so as to reduce the circulation amount of the air that exchanges heat, and as a result, the load on the compressor during the pull-down operation is suppressed, and the rise in the temperature of the compressor can be suppressed.

【0011】請求項2によれば、圧縮機の温度が設定温
度以上でかつ冷凍室の温度が所定の温度以上の時に送風
機への通電率を低下させるため、冷凍室の温度下降速度
を多少犠牲にしても圧縮機の負荷抑制を優先的に制御で
き、冷凍室の温度が所定の温度より低い温度では冷凍室
の温度に基づいて送風機のオンオフ制御(例えば冷凍室
の設定温度未満では停止)が行われる。このため、冷凍
室が冷えている状態で停電になり停電が解除され再び圧
縮機が運転された時(停電復帰後の運転時)等圧縮機の
運転開始以前の状態を冷凍室の温度に基づいて確認する
ことができ、送風機の通電率ひいては回転数が低下する
のを電源投入時のプルダウン運転時だけに特定しやすく
なり、プルダウン運転時以外の冷凍室の温度上昇を抑制
できる。
According to the second aspect, when the temperature of the compressor is equal to or higher than the set temperature and the temperature of the freezing room is equal to or higher than the predetermined temperature, the duty ratio to the blower is reduced. Even so, load suppression of the compressor can be preferentially controlled, and when the temperature of the freezing room is lower than a predetermined temperature, the on / off control of the blower (for example, stop when the temperature is lower than the set temperature of the freezing room) is performed based on the temperature of the freezing room. Done. For this reason, the state before the start of operation of the compressor, such as when the power failure occurs in a state where the freezer compartment is cold and the power failure is released and the compressor is operated again (during operation after restoration from the power failure), based on the temperature of the freezer compartment. It is easy to identify the decrease in the duty ratio of the blower and, consequently, the rotation speed only during the pull-down operation when the power is turned on, and it is possible to suppress the rise in the temperature of the freezer other than during the pull-down operation.

【0012】請求項3によれば、圧縮機の温度が設定温
度以上でかつ外気の温度が所定の温度以上の時に送風機
への通電率を低下させるため、圧縮機に対する冷却能力
が不足しがちな外気温度が高い場合だけに冷却能力不足
を緩和すべく送風機の通電率制御が行われ、圧縮機だけ
でなく庫内に対する冷却負荷が小さくなる低外気温時に
は送風機の通電率制御は行わないので、冷凍室の温度降
下速度が遅くなるのを抑制し、結果的に圧縮機の負荷を
軽くし圧縮機本体の温度上昇及び吸入口の圧力上昇を抑
制できる。
According to the third aspect, when the temperature of the compressor is equal to or higher than the set temperature and the temperature of the outside air is equal to or higher than the predetermined temperature, the duty ratio to the blower is reduced, so that the cooling capacity for the compressor tends to be insufficient. Only when the outside air temperature is high, the duty ratio control of the blower is performed to alleviate the insufficient cooling capacity, and not at the low outside temperature where the cooling load not only for the compressor but also for the inside of the refrigerator is low, the duty ratio control of the blower is not performed, so It is possible to suppress the temperature drop speed of the freezer from becoming slow, and consequently to reduce the load on the compressor, thereby suppressing a rise in the temperature of the compressor body and a rise in the pressure of the suction port.

【0013】[0013]

【実施例】図1は本発明の冷蔵庫の縦断側面図、図2は
本発明の制御装置の概略ブロック回路図、図3は制御装
置の動作の流れを説明するフローチャートである。以下
図面に基づいて本発明の実施例を説明する。
FIG. 1 is a longitudinal sectional side view of a refrigerator of the present invention, FIG. 2 is a schematic block circuit diagram of a control device of the present invention, and FIG. 3 is a flowchart for explaining the operation flow of the control device. Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0014】図1において1は家庭用冷蔵庫であり、こ
の冷蔵庫1はその本体を構成する前面開口の断熱箱5
と、この開口を閉塞する扉6,8,10,11とで構成
されている。断熱箱5は金属製の外箱2とABS等合成
樹脂製の内箱3と内外両箱間に充填される発泡性断熱材
4からなる。14は断熱箱5の内部を上下に仕切る横仕
切壁であり、本実施例ではこの横仕切壁14の上方を凍
結温度に冷却される冷凍室12、下方を食品が凍結しな
い温度に冷却される貯蔵室13とするものである。尚、
貯蔵室13は2つの横仕切壁17,18により更に上中
下に3段に仕切られ、横仕切壁17の上方を3℃程度の
温度に冷却される冷蔵室13B、横仕切壁17の下方で
横仕切壁18の上方を冷蔵室の温度よりも低く食品が凍
結する直前の−1℃程度の温度に冷却される氷温室1
5、横仕切壁18の下方を7℃程度の野菜の保存に適し
た温度に冷却される野菜室16としている。
In FIG. 1, reference numeral 1 denotes a household refrigerator, and the refrigerator 1 has a heat-insulating box 5 having a front opening and constituting a main body thereof.
And doors 6, 8, 10, and 11 for closing the opening. The heat insulating box 5 is composed of a metal outer box 2, an inner box 3 made of a synthetic resin such as ABS, and a foam insulating material 4 filled between the inner and outer boxes. Numeral 14 denotes a horizontal partition wall for partitioning the inside of the heat insulating box 5 up and down. In this embodiment, a freezing compartment 12 is cooled above the horizontal partition wall 14 to a freezing temperature, and a lower portion is cooled to a temperature at which food does not freeze. It is a storage room 13. still,
The storage room 13 is further divided into three stages in the upper, middle, and lower portions by two horizontal partition walls 17 and 18, and a refrigerator compartment 13 B in which the upper part of the horizontal partition wall 17 is cooled to a temperature of about 3 ° C. and the lower part of the horizontal partition wall 17. The ice greenhouse 1 is cooled above the horizontal partition wall 18 to a temperature of about -1 ° C. immediately before the food is frozen below the temperature of the refrigerator compartment.
5. The lower part of the horizontal partition wall 18 is a vegetable compartment 16 cooled to a temperature suitable for storing vegetables of about 7 ° C.

【0015】扉6は、冷凍室12に対応する回動式の扉
であり、扉8は冷蔵室13Bに対応する回動式の扉であ
る。扉10及び11は、それぞれ氷温室15及び野菜室
16に対応する引出式の扉であり、両扉にはそれぞれ主
として魚肉及び野菜を収納するための上面開口の容器1
9及び20が着脱自在に設けてある。21及び22は投
機19及び20を支持するアームである。
The door 6 is a revolving door corresponding to the freezing room 12, and the door 8 is a revolving door corresponding to the refrigerating room 13B. The doors 10 and 11 are drawer-type doors corresponding to the ice greenhouse 15 and the vegetable chamber 16, respectively. Both doors have a top opening container 1 mainly for storing fish meat and vegetables.
9 and 20 are provided detachably. 21 and 22 are arms for supporting the speculations 19 and 20.

【0016】冷凍室12の背部には冷却器カバーと断熱
箱5(詳しくは内箱3)とで形成される冷却器室があ
り、この冷却器室には冷却器としてのプレートフィン型
蒸発器24及びシロッコファン等の庫内循環用の送風機
25が配置されている。尚、冷却器室は、カバーに形成
した吹出口にて冷凍室12と連通する一方、ダクト(図
示せず)により横仕切壁14の後部で冷蔵室13Bと連
通している。また冷蔵室13Bへの冷気供給は、ダクト
の途中に設けた図示しない冷蔵用ダンパーにより制御さ
れるものである。
At the back of the freezer compartment 12, there is a cooler compartment formed by a cooler cover and a heat insulating box 5 (more specifically, the inner casing 3). This cooler compartment has a plate-fin evaporator as a cooler. 24 and a blower 25 for circulating in the refrigerator such as a sirocco fan. The cooler room communicates with the freezing room 12 at an outlet formed in the cover, and communicates with the refrigerator room 13B at the rear of the horizontal partition wall 14 by a duct (not shown). The supply of cold air to the refrigerator compartment 13B is controlled by a refrigerator damper (not shown) provided in the middle of the duct.

【0017】次に本発明の制御装置30を図2のブロッ
ク回路図に基づき説明する。制御装置30は、冷凍室の
温度を設定する温度設定手段(図示せず)と、冷凍室の
温度を検出する冷凍室温度センサ(冷凍室センサとい
う)32と、冷蔵庫の周囲雰囲気(即ち外気)の温度を
検出する外気温度センサ33と、デスーパーヒータ等圧
縮機の温度を検出する位置に配置された圧縮機温度セン
サ34と、これら設定手段及び3つの温度センサ32〜
34で検出した検出温度に基づく演算信号を出力する温
度検出手段35、この温度検出手段35からの演算信号
に基づき各種演算を行い計時手段としてのタイマー計測
手段37及び出力手段38に信号を出力する演算部36
とからなり、出力手段38からは圧縮機27の運転を制
御する運転停止信号及び循環用送風機25の運転停止並
びに通電率を制御する制御信号が出力される。尚、温度
検出手段35、演算部36、タイマー計測手段37及び
出力手段38により制御手段39が構成され、制御手段
39はマイクロコンピュータからなる。ここでいう制御
信号とは、送風機のモーター(即ちファンモーター)4
0を運転させるための運転信号(通常ON信号)と、フ
ァンモーター40を停止させるための停止信号(通常O
FF信号)との両者を総称したものである。
Next, the control device 30 of the present invention will be described with reference to the block circuit diagram of FIG. The control device 30 includes a temperature setting means (not shown) for setting the temperature of the freezer compartment, a freezer compartment temperature sensor (referred to as a freezer compartment sensor) 32 for detecting the temperature of the freezer compartment, and an atmosphere around the refrigerator (ie, outside air). An outside air temperature sensor 33 for detecting the temperature of the compressor, a compressor temperature sensor 34 disposed at a position for detecting the temperature of the compressor such as a desuperheater, and setting means and three temperature sensors 32 to
Temperature detecting means 35 for outputting a calculation signal based on the detected temperature detected at 34, various calculations are performed based on the calculation signal from the temperature detecting means 35, and signals are output to a timer measuring means 37 and an output means 38 as time measuring means. Arithmetic unit 36
The output means 38 outputs an operation stop signal for controlling the operation of the compressor 27 and a control signal for stopping the operation of the circulation blower 25 and controlling the duty ratio. The control means 39 is constituted by the temperature detecting means 35, the calculating section 36, the timer measuring means 37 and the output means 38, and the control means 39 is constituted by a microcomputer. The control signal referred to here is the motor (ie, fan motor) of the blower 4
0 and a stop signal for stopping the fan motor 40 (normal O signal).
FF signal).

【0018】演算部36は冷凍室センサ32で検出され
た冷凍室の温度Fが予め定めた所定の温度Tf(冷凍室の
設定温度よりは高い温度、例えば−5℃)より高いと
き、外気温度センサ33で検出された温度(外気温度)
が予め設定された所定の温度Ta以上のとき並びに圧縮機
温度センサ34で検出した圧縮機の温度が予め設定した
所定の温度Tc以上のときにタイマー計測手段37及び出
力手段38にそれぞれ信号を出力する。また、タイマー
計測手段37は後述の説明の都合上、タイマー1及びタ
イマー2の2つのタイマーから成るものとする。
When the temperature F of the freezer compartment detected by the freezer compartment sensor 32 is higher than a predetermined temperature Tf (a temperature higher than the set temperature of the freezer compartment, for example, -5.degree. C.), the calculating section 36 sets the outside air temperature. Temperature detected by sensor 33 (outside air temperature)
Is output to the timer measuring means 37 and the output means 38 when the temperature of the compressor is equal to or higher than the predetermined temperature Ta and when the temperature of the compressor detected by the compressor temperature sensor 34 is equal to or higher than the predetermined temperature Tc. I do. The timer measuring means 37 is assumed to be composed of two timers, a timer 1 and a timer 2, for the sake of the following description.

【0019】以上の構成に基づき図3のフローチャート
を参照しながら制御装置30の動作の流れを説明する。
まず電源が投入されると、ステップS1で圧縮機の駆動
信号を出力し、次のステップS2で送風機ファンモータ
ー40の運転信号(ON信号)を出力し、ステップS3で
プルダウン運転時の回転数制御が設定されたことを示す
プルダウンフラグ(PDFL)をセットする。
The operation flow of the control device 30 based on the above configuration will be described with reference to the flowchart of FIG.
First, when the power is turned on, a drive signal of the compressor is output in step S1, an operation signal (ON signal) of the blower fan motor 40 is output in next step S2, and a rotation speed control during pull-down operation is performed in step S3. Is set, a pull-down flag (PDFL) indicating that is set.

【0020】次にステップS4でプルダウンフラグがセ
ットされているか否かを判断し、セットされていなけれ
ばステップS12へ移行し、セットされていればステッ
プS5で圧縮機温度センサ34で検出された温度が設定
温度Tcより大きいか否かを判断し、圧縮機温度が設定温
度Tcより大きければステップS6へ移行し、圧縮機温度
が設定温度Tcより大きくなければステップS12へ移行
する。ステップS6では、冷凍室センサ32で検出され
た温度が冷凍室の設定温度よりも高い予め定めた所定の
温度Tf(本実施例では−5℃)より低いか否かが判断さ
れ、冷凍室温度Fが所定温度Tfより低ければステップS
11でプルダウンフラグ(PDFL)をリセットしてス
テップS12へ移行し、冷凍室温度Fが所定温度Tf以上
であればステップS7で外気温度センサ33で検出され
た温度が所定の温度Ta(例えば30℃)より高いか否か
が判断される。ステップS7で外気温度が所定の温度Ta
以下であればステップS11へ移行し、外気温度が所定
の温度Taより高ければステップS8でファンモータ40
の通電率を下げる第1制御モード(詳しくは回転数を最
低に下げるモード)であることを示すフラグ(制御1F
L)をセットし、ステップS9及びS10でタイマー1
及びタイマー2の時間をそれぞれセットステップS11
へ移行する。尚、圧縮機温度が設定温度Tcより高くて冷
凍室温度が所定の温度Tfより低い場合としては冷凍室が
設定温度以下になったときに停電になり直後に停電復帰
して圧縮機が運転された場合や除霜運転後に圧縮機の運
転が再開された場合等が考えられ、圧縮機温度が設定温
度Tcより高くて冷凍室温度が所定の温度Tf以上でかつ外
気温度が所定の温度Taより低い場合としては冷凍室に負
荷の大きな食品を投入したり冷凍室の扉が開けたままに
なっていた場合等が考えられるため、これらの原因での
圧縮機の温度上昇をプルダウン運転時の温度上昇と分け
てとらえるために、上記ステップS5〜S7を設けた。
これにより制御フラグがセットされるのをプルダウン運
転時に特定しやすくしている。
Next, in step S4, it is determined whether or not the pull-down flag has been set. If not, the process proceeds to step S12. If it has been set, the temperature detected by the compressor temperature sensor 34 in step S5. Is determined to be higher than the set temperature Tc. If the compressor temperature is higher than the set temperature Tc, the process proceeds to step S6. If the compressor temperature is not higher than the set temperature Tc, the process proceeds to step S12. In step S6, it is determined whether or not the temperature detected by the freezing room sensor 32 is lower than a predetermined temperature Tf (−5 ° C. in the present embodiment) that is higher than the set temperature of the freezing room. If F is lower than the predetermined temperature Tf, step S
In step S11, the pull-down flag (PDFL) is reset, and the process proceeds to step S12. If the freezing room temperature F is equal to or higher than the predetermined temperature Tf, the temperature detected by the outside air temperature sensor 33 in step S7 is equal to a predetermined temperature Ta (for example, 30 ° C.). ) Is determined. In step S7, the outside air temperature is set to a predetermined temperature Ta.
If the temperature is lower than the predetermined temperature Ta, the process proceeds to step S11.
Flag (control 1F) indicating that this is the first control mode for lowering the duty ratio of the motor 1 (specifically, the mode for lowering the rotation speed to the minimum).
L) is set, and the timer 1 is set in steps S9 and S10.
And the time of the timer 2 are respectively set in step S11.
Move to. In the case where the compressor temperature is higher than the set temperature Tc and the freezer compartment temperature is lower than the predetermined temperature Tf, when the freezer compartment becomes lower than the set temperature, a power failure occurs, and immediately after the power failure recovers, the compressor is operated. It is considered that the operation of the compressor is restarted after the defrosting operation, the compressor temperature is higher than the set temperature Tc, the freezing room temperature is higher than the predetermined temperature Tf, and the outside air temperature is higher than the predetermined temperature Ta. The low temperature may be due to the loading of food with a large load into the freezer or the door of the freezer being left open, etc. The above steps S5 to S7 are provided in order to catch the rise separately.
This makes it easier to specify that the control flag is set during the pull-down operation.

【0021】ステップS12では制御1FLがセットさ
れているか否かを判断し、制御1FLがセットされてな
ければステップS18へ移行し、制御1FLがセットさ
れていればステップS13でファンモータ40の通電率
を最低の通電率(例えば80msON,80msOFFの5
0%の通電率)とし、ステップS14でタイマー1を減
算し、ステップS15でタイマー1の時間が経過したか
否かが判断され、タイマー1がタイムアップするまでフ
ァンモータをこの通電率で運転させ(即ちステップS4
へ復帰し)、タイマー1がタイムアップすればステップ
S16で制御1FLをリセットし、ステップS17でフ
ァンモータ40の通電率を少し上げる第2制御モード
(詳しくは回転数を最低値より少し上げるモード)に移
行したことを示すフラグ(制御2FL)をセットしてス
テップS4へ復帰する。
In step S12, it is determined whether or not the control 1FL has been set. If the control 1FL has not been set, the process proceeds to step S18. If the control 1FL has been set, in step S13 the duty ratio of the fan motor 40 has been set. Is set to the lowest duty ratio (for example, 5 times of 80 ms ON and 80 ms OFF).
0% duty ratio), the timer 1 is decremented in step S14, it is determined in step S15 whether the time of timer 1 has elapsed, and the fan motor is operated at this duty ratio until the timer 1 times out. (That is, step S4
If the timer 1 times out, the control 1FL is reset in step S16, and the second control mode in which the duty ratio of the fan motor 40 is slightly increased in step S17 (specifically, the mode in which the rotation speed is slightly increased from the minimum value). The flag (control 2FL) indicating that the process has shifted to is set, and the process returns to step S4.

【0022】一方、ステップS18では制御2FLがセ
ットされているか否かを判断し、制御2FLがセットさ
れてなければステップS4へ復帰し、制御2FLがセッ
トされていればステップS19でファンモータ40の通
電率を最低の通電率より少し大きい通電率(例えば12
0msON,80msOFFの60%の通電率)とし、ステ
ップS20でタイマー2を減算し、ステップS21でタ
イマー2の時間が経過したか否かが判断され、タイマー
2がタイムアップするまでファンモータをこの通電率で
運転させ(即ちステップS4へ復帰し)、タイマー2が
タイムアップすればステップS22で制御2FLをリセ
ットしてステップS4へ復帰する。
On the other hand, in step S18, it is determined whether or not the control 2FL is set. If the control 2FL is not set, the process returns to step S4. If the control 2FL is set, the control of the fan motor 40 is performed in step S19. The duty ratio is set slightly higher than the lowest duty ratio (for example, 12
60 ms of 0 ms ON and 80 ms OFF), the timer 2 is decremented in step S20, and it is determined whether or not the time of timer 2 has elapsed in step S21. The fan motor is energized until the timer 2 times out. The operation is performed at a rate (that is, the process returns to step S4). If the timer 2 times out, the control 2FL is reset in step S22 and the process returns to step S4.

【0023】[0023]

【発明の効果】以上のように本発明の請求項1によれ
ば、制御手段によって圧縮機温度センサで検出された温
度に応じて冷凍室への冷気循環用の送風機への通電率を
変化させて送風機の回転数を変化させる。このため、圧
縮機の温度が上昇するにつれて回転数を低下させるよう
にすれば、圧縮機の負荷が大きく圧縮機の温度が上昇し
やすい電源投入時のプルダウン運転時において、冷却器
(即ち蒸発器)と熱交換する空気の循環量を小さくする
ように調節でき、結果的にプルダウン運転時の圧縮機へ
の負荷が抑制され、圧縮機の温度上昇を抑制できる。
As described above, according to the first aspect of the present invention, the energization rate to the blower for circulating cool air to the freezer compartment is changed by the control means in accordance with the temperature detected by the compressor temperature sensor. To change the rotation speed of the blower. For this reason, if the number of revolutions is reduced as the temperature of the compressor rises, the cooler (that is, the evaporator) during the pull-down operation at the time of turning on the power, where the load on the compressor is large and the temperature of the compressor tends to rise, ) Can be adjusted so as to reduce the circulation amount of the air that exchanges heat, and as a result, the load on the compressor during the pull-down operation is suppressed, and the rise in the temperature of the compressor can be suppressed.

【0024】請求項2によれば、圧縮機の温度が設定温
度以上でかつ冷凍室の温度が所定の温度以上の時に送風
機への通電率を低下させるため、冷凍室の温度下降速度
を多少犠牲にしても圧縮機の負荷抑制を優先的に制御で
き、冷凍室の温度が所定の温度より低い温度では冷凍室
の温度に基づいて送風機のオンオフ制御が行われる。こ
のため、冷凍室が冷えている状態で停電になり停電が解
除され再び圧縮機が運転された時(停電復帰後の運転
時)等圧縮機の運転開始以前の状態を冷凍室の温度に基
づいて確認することができ、送風機の通電率ひいては回
転数が低下するのを電源投入時のプルダウン運転時だけ
に特定しやすくなり、プルダウン運転時以外での冷凍室
の温度下降速度の低下を抑制できる。
According to the second aspect, when the temperature of the compressor is equal to or higher than the set temperature and the temperature of the freezer compartment is equal to or higher than the predetermined temperature, the power supply rate to the blower is reduced. Even so, load suppression of the compressor can be preferentially controlled, and when the temperature of the freezing room is lower than a predetermined temperature, on / off control of the blower is performed based on the temperature of the freezing room. For this reason, the state before the start of operation of the compressor, such as when the power failure occurs in a state where the freezer compartment is cold and the power failure is released and the compressor is operated again (during operation after restoration from the power failure), based on the temperature of the freezer compartment. It is easy to identify the decrease in the duty ratio of the blower and, consequently, the rotation speed only during the pull-down operation when the power is turned on, and it is possible to suppress a decrease in the rate of decrease in the temperature of the freezing compartment other than during the pull-down operation. .

【0025】請求項3によれば、圧縮機の温度が設定温
度以上でかつ外気の温度が所定の温度以上の時に送風機
への通電率を低下させるため、圧縮機に対する冷却能力
が不足しがちな外気温度が高い場合だけに冷却能力不足
を緩和すべく送風機の通電率制御が行われ、圧縮機だけ
でなく庫内に対する冷却負荷が小さくなる低外気温時に
は送風機の通電率制御は行わないので、冷凍室の温度降
下速度が遅くなるのを抑制し、結果的に圧縮機の負荷を
軽くし圧縮機本体の温度上昇及び吸入口の圧力上昇を抑
制できる。
According to the third aspect, when the temperature of the compressor is equal to or higher than the set temperature and the temperature of the outside air is equal to or higher than the predetermined temperature, the duty ratio to the blower is reduced, so that the cooling capacity for the compressor tends to be insufficient. Only when the outside air temperature is high, the duty ratio control of the blower is performed to alleviate the insufficient cooling capacity, and not at the low outside temperature where the cooling load not only for the compressor but also for the inside of the refrigerator is low, the duty ratio control of the blower is not performed, so It is possible to suppress the temperature drop speed of the freezer from becoming slow, and consequently to reduce the load on the compressor, thereby suppressing a rise in the temperature of the compressor body and a rise in the pressure of the suction port.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の冷蔵庫の縦断側面図である。FIG. 1 is a longitudinal sectional side view of a refrigerator of the present invention.

【図2】本発明の制御装置の概略ブロック回路図であ
る。
FIG. 2 is a schematic block circuit diagram of a control device of the present invention.

【図3】制御装置の動作の流れを説明するフローチャー
トである。
FIG. 3 is a flowchart illustrating a flow of an operation of the control device.

【符号の説明】[Explanation of symbols]

1 冷蔵庫 12 冷凍室 30 制御装置 32 冷凍室センサ(冷凍室温度センサ) 33 外気温センサ(外気温度センサ) 34 圧縮機温度センサ 36 演算部 39 制御手段 40 ファンモータ(送風機) DESCRIPTION OF SYMBOLS 1 Refrigerator 12 Freezer compartment 30 Control device 32 Freezer compartment sensor (freezer compartment temperature sensor) 33 Outside air temperature sensor (outside air temperature sensor) 34 Compressor temperature sensor 36 Operation part 39 Control means 40 Fan motor (blower)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷蔵庫の周囲温度を検出する外気温度セ
ンサと、冷却器で冷却された冷気を冷凍室に循環させる
送風機と、冷凍室の温度を設定する温度設定手段と、冷
凍室の温度を検出する冷凍室温度センサと、この冷凍室
温度センサで検出した冷凍室温度及び設定温度に基づき
送風機の通電を制御する制御装置とを備えた冷蔵庫にお
いて、前記制御装置は、圧縮機の温度を検出する圧縮機
温度センサと、この圧縮機温度センサで検出された温度
に応じて前記送風機への通電率を変化させる制御手段と
を備えたことを特徴とする冷蔵庫。
1. An outside air temperature sensor for detecting an ambient temperature of a refrigerator, a blower for circulating cool air cooled by a cooler to a freezing room, a temperature setting means for setting a temperature of the freezing room, and a temperature of the freezing room. In a refrigerator comprising: a freezer compartment temperature sensor for detecting, and a control device for controlling energization of the blower based on the freezer compartment temperature and the set temperature detected by the freezer compartment temperature sensor, the control device detects the temperature of the compressor. A refrigerator comprising: a compressor temperature sensor configured to perform an operation; and a control unit configured to change a duty ratio of the blower in accordance with a temperature detected by the compressor temperature sensor.
【請求項2】 前記制御手段は、前記圧縮機温度センサ
で検出された温度が設定温度以上でかつ冷凍室温度セン
サで検出された温度が前記設定温度より高い所定の温度
以上の時に送風機への通電率を低下させることを特徴と
する請求項1記載の冷蔵庫。
2. The control device according to claim 1, wherein the temperature of the compressor temperature sensor is equal to or higher than a set temperature and the temperature detected by the freezer compartment temperature sensor is equal to or higher than a predetermined temperature higher than the set temperature. 2. The refrigerator according to claim 1, wherein the duty ratio is reduced.
【請求項3】 前記制御手段は、前記圧縮機温度センサ
で検出された温度が設定温度以上でかつ外気温度センサ
で検出された温度が所定の温度以上の時に送風機への通
電率を低下させることを特徴とする請求項1又は請求項
2記載の冷蔵庫。
3. The control device according to claim 1, wherein the control unit reduces the duty ratio of the blower when the temperature detected by the compressor temperature sensor is equal to or higher than a set temperature and the temperature detected by the outside air temperature sensor is equal to or higher than a predetermined temperature. The refrigerator according to claim 1 or 2, wherein:
JP8642099A 1999-03-29 1999-03-29 Refrigerator Pending JPH11311466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8642099A JPH11311466A (en) 1999-03-29 1999-03-29 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8642099A JPH11311466A (en) 1999-03-29 1999-03-29 Refrigerator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP29669893A Division JP3519763B2 (en) 1993-11-26 1993-11-26 refrigerator

Publications (1)

Publication Number Publication Date
JPH11311466A true JPH11311466A (en) 1999-11-09

Family

ID=13886406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8642099A Pending JPH11311466A (en) 1999-03-29 1999-03-29 Refrigerator

Country Status (1)

Country Link
JP (1) JPH11311466A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120036874A1 (en) * 2010-08-12 2012-02-16 Jianwu Li Active cooling of a compressor in an appliance
CN111707039A (en) * 2020-06-27 2020-09-25 广东奥马冰箱有限公司 Simple computer temperature control refrigerator and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120036874A1 (en) * 2010-08-12 2012-02-16 Jianwu Li Active cooling of a compressor in an appliance
CN111707039A (en) * 2020-06-27 2020-09-25 广东奥马冰箱有限公司 Simple computer temperature control refrigerator and control method thereof

Similar Documents

Publication Publication Date Title
US7942014B2 (en) Reduced energy refrigerator defrost method and apparatus
US6631620B2 (en) Adaptive refrigerator defrost method and apparatus
JPH11304329A (en) Cooling operation controller of refrigerator
WO2005038365A1 (en) Cooling storage
JP3455058B2 (en) refrigerator
JP2001082850A (en) Refrigerator
CN114576903A (en) Method for controlling refrigerator
JP2002022336A (en) Refrigerator
JP2005214544A (en) Freezer/refrigerator
JP2009085502A (en) Refrigerator
JP3519763B2 (en) refrigerator
JPH11311466A (en) Refrigerator
JPH04302976A (en) Control method of electric refrigerator
JPH11101548A (en) Refrigerator
JP3048497B2 (en) refrigerator
JPH05240547A (en) Device for controlling temperature in cold-storage chamber in refrigerator
JPH0827131B2 (en) Freezer refrigerator
KR101290363B1 (en) A refrigerator
KR101290496B1 (en) A refrigerator
JP2005003262A (en) Refrigerator
JP2004093130A (en) Refrigerator
JP2003287331A (en) Refrigerator
JPH10332242A (en) Refrigerator
JP2004069198A (en) Refrigerant leak detecting method for refrigerator
JP3192729B2 (en) refrigerator