JPH11310890A - Microorganism corrosion preventing method - Google Patents

Microorganism corrosion preventing method

Info

Publication number
JPH11310890A
JPH11310890A JP10117988A JP11798898A JPH11310890A JP H11310890 A JPH11310890 A JP H11310890A JP 10117988 A JP10117988 A JP 10117988A JP 11798898 A JP11798898 A JP 11798898A JP H11310890 A JPH11310890 A JP H11310890A
Authority
JP
Japan
Prior art keywords
corrosion
metallic material
microorganisms
potential
pipe line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10117988A
Other languages
Japanese (ja)
Inventor
Yasuko Yao
泰子 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP10117988A priority Critical patent/JPH11310890A/en
Publication of JPH11310890A publication Critical patent/JPH11310890A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

PROBLEM TO BE SOLVED: To comprehensively and effectively prevent the corrosion of a metallic material under an underwater atmosphere, where microorganisms are present by impressing negative charge to the metallic material. SOLUTION: The corrosion of the metallic material is prevented preferably by impressing negative charge to the metallic material to inhibit the sticking of the microorganisms and to suppress the generation of a product by the action of the microorganisms. As the microorganisms capable of being suppressed in the action to prevent the corrosion of the metallic material, iron oxidizing bacteria, iron bacteria, sulfate reducing bacteria, sulfur oxidizing bacteria and the like are exemplified. Relating to the pipe line metallic material 1 handling cooling water, waste water, underground water, industrial water, seawater or the like, an electrode 3 made of high silicon iron, graphite, platinum or the like is disposed inside the pipe line metallic material 1 and is energized from a DC power source device 2 as an external power system to keep the potential of the pipe line metallic material negative. In a galvanic anode system, a galvanic anode 6 such as zinc, magnesium is disposed inside the pipe line metallic material 1 and is connected to the pipe line metallic material 1 and current is supplied through seawater 4 or the like by potential difference to keep the pipe line metallic material 1 negative.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、広く自然環境で、
あるいは冷却水,排水,工業用水,地下水,海水などを
取扱う装置,設備に使用する金属材料の腐食防止方法に
係り、さらに詳しくは海水や淡水等の微生物が存在する
水中や水分を含む土壌内等の水中環境下で使用される金
属材料の微生物による腐食を防止する微生物腐食防止方
法に関するものである。
TECHNICAL FIELD The present invention is widely used in natural environments,
Also, the present invention relates to a method for preventing corrosion of metallic materials used in equipment and facilities for handling cooling water, drainage, industrial water, groundwater, seawater, and the like. More specifically, in water containing microorganisms such as seawater and freshwater, and in soil containing moisture. The present invention relates to a method for preventing microbial corrosion of a metal material used in an underwater environment.

【0002】[0002]

【従来の技術】一般に、冷却水,排水,地下水,海水等
を取扱う配管や塔槽類等では、施工時に水張り試験が行
なわれる。水張り試験終了後に排水したところ、微生物
の影響が疑われる腐食が発生するという事例が報告され
ている。また、配管や塔槽類等を一旦使用した後、一時
操業を停止した際の滞留水においても、同じように微生
物の影響が疑われる腐食が発生している。
2. Description of the Related Art In general, a water filling test is performed at the time of construction of pipes, towers, and the like that handle cooling water, drainage, groundwater, seawater, and the like. It has been reported that when drainage is performed after completion of the water filling test, corrosion that may be affected by microorganisms occurs. In addition, even after temporarily using pipes, tower tanks, and the like, corrosion is likely to occur in the stagnant water when operation is temporarily stopped.

【0003】前記の配管や塔槽類に使用される金属材料
としては、例えばステンレス鋼があり、微生物の影響が
疑われる局部腐食として孔食やすき間腐食が問題点とな
っている。使用開始前若しくは停止時の滞留水における
ステンレス鋼の微生物腐食を防止する方法としては、完
全乾燥または完全満水の保持と殺菌剤の添加および電気
防食等が行われている。こうした腐食防止方法のうち殺
菌に関する腐食防止方法の発明が、例えば以下のような
各特許公報で開示されている。
[0003] As a metal material used for the pipes and towers, there is, for example, stainless steel, and pitting or crevice corrosion is a problem as a local corrosion suspected of being affected by microorganisms. As a method for preventing the microbial corrosion of stainless steel in the stagnant water before the start of use or at the time of stopping, completely dried or completely filled water, addition of a bactericide, and electrolytic protection are performed. Among such corrosion prevention methods, the invention of a corrosion prevention method relating to sterilization is disclosed in, for example, the following patent publications.

【0004】a.特開昭49−122834号公報で
は、鋼製容器製造時の水張り試験において鉄バクテリア
による孔食を防止するためカセイソーダおよび塩素を添
加する「鋼製容器製造時における孔食防止方法」を開示
している。 b.特開昭57−194260号公報と特開昭58−1
1788号公報および特開昭58−160697号公報
では、腐食防止剤として亜硝酸塩を添加した水系におい
て、ニトロバクテリアが硝酸に変換して腐食が進行する
ことを、高濃度亜硝酸塩の添加、または温度を40℃に
上昇、または増殖抑制剤によって腐食を防止する方法を
開示している。
A. Japanese Patent Application Laid-Open No. 49-122834 discloses a "method of preventing pitting corrosion in the production of steel containers" in which caustic soda and chlorine are added to prevent pitting corrosion by iron bacteria in a water filling test in the production of steel containers. I have. b. JP-A-57-194260 and JP-A-58-1
In 1788 and JP-A-58-160697, it has been reported that, in an aqueous system to which nitrite is added as a corrosion inhibitor, conversion of nitrobacterium to nitric acid and the progress of corrosion are promoted by the addition of high-concentration nitrite or by the temperature. To increase the temperature to 40 ° C. or to prevent corrosion by a growth inhibitor.

【0005】c.特開平3−288585号公報では、
「高COD冷却水ではスライム発生による腐食をアルカ
リ剤による酸中和とリン酸イオンとZnイオンによる腐
食抑制効果と過酸化水素水添加によるスライム発生防止
によって防ぐ方法」を開示している。 d.特開平7−241556号公報では、冷却水系にお
ける微生物に起因する腐食を生菌数を紫外線照射処理や
静菌剤添加処理によって1×106 cells/ml 以下にす
ることによって防止する「冷却水系の腐食防止方法」を
開示している。 e.特開平9−228080号公報では、蓄熱水系や密
閉水系に過酸化水素を低濃度で添加し微生物汚れに起因
する銅の孔食を防止する「銅の孔食防止方法」が開示さ
れている。
C. In JP-A-3-288585,
It discloses a method of preventing corrosion due to slime generation in high COD cooling water by acid neutralization with an alkali agent, a corrosion suppression effect by phosphate ions and Zn ions, and prevention of slime generation by addition of hydrogen peroxide water. d. In Japanese Patent Application Laid-Open No. Hei 7-241556, corrosion caused by microorganisms in a cooling water system is prevented by reducing the number of viable bacteria to 1 × 10 6 cells / ml or less by ultraviolet irradiation treatment or bacteriostatic agent addition. Corrosion prevention method "is disclosed. e. Japanese Patent Application Laid-Open No. 9-228080 discloses a "copper pitting prevention method" in which hydrogen peroxide is added at a low concentration to a heat storage water system or a closed water system to prevent copper pitting caused by microbial contamination.

【0006】[0006]

【発明が解決しようとする課題】従来の微生物腐食防止
方法では、微生物の活動そのものを止めることを目的と
しており、微生物の活動を抑制するのにとどまってお
り、微生物の活動によって生じた環境の変化が局部腐食
の生起に重大な影響を及ぼしている面から対処がなされ
ていない。即ち、殺菌処理や静菌剤添加により微生物の
活動を抑制する従来の微生物腐食防止方法では、微生物
の種類によって手段や効果が様々であり、確実で汎用的
な微生物腐食防止方法とはいえない。また、塩素耐性が
微生物によって異なるため、殺菌処理を施しただけでは
微生物の活動を抑制することができない場合も起こり得
る。さらに、腐食防止剤を添加したことによって逆に微
生物に栄養源を与える結果となり、微生物腐食を防止す
るという目的が達成されなかったという事例も報告され
ている。
In the conventional method for preventing microbial corrosion, the purpose of the present invention is to stop the activity of the microorganism itself, and only to suppress the activity of the microorganism. Has been seriously affected by the occurrence of localized corrosion. That is, in the conventional method for preventing microbial corrosion which suppresses the activity of microorganisms by sterilization treatment or addition of a bacteriostatic agent, there are various means and effects depending on the type of microorganisms, and it cannot be said that this is a reliable and general-purpose method for preventing microbial corrosion. Further, since the chlorine resistance varies depending on the microorganism, there may be a case where the activity of the microorganism cannot be suppressed only by performing the sterilization treatment. In addition, there has been reported a case in which the addition of a corrosion inhibitor results in providing a nutrient source to microorganisms, thereby failing to achieve the purpose of preventing microbial corrosion.

【0007】上述のように、金属材料の微生物腐食を防
止するための各種の従来方法が提案されているが、いず
れも前記のような問題点があって微生物腐食を普遍的で
効果的に防止する方法は未だ得られていないのが現状で
ある。一方、微生物が存在する水中環境下のステンレス
の腐食については、次のような報告がなされている。即
ち、腐食電位が異常に高くなる“貴化”と呼ばれる現象
が生じ、この“貴化”現象によりステンレスの局部腐食
感受性が高まることがステンレスの微生物腐食の原因で
あるとされている。腐食電位の“貴化”の現象は微生物
の作用に起因すると報告されているが、そのメカニズム
には不明な点が多く未だ解明が為されていない。
As described above, various conventional methods for preventing microbial corrosion of metallic materials have been proposed. However, all of them have the above-mentioned problems, and thus universally and effectively prevent microbial corrosion. At present, there is no way to do this. On the other hand, the following report has been made on corrosion of stainless steel in an underwater environment where microorganisms are present. That is, a phenomenon called "nobleness" in which the corrosion potential becomes abnormally high occurs, and it is said that the increase in local corrosion susceptibility of stainless steel due to this "nobleness" phenomenon is the cause of the microbial corrosion of stainless steel. It has been reported that the phenomenon of "nobleness" of corrosion potential is caused by the action of microorganisms, but the mechanism has not been elucidated because there are many unknown points.

【0008】本願発明者は、ステンレス鋼の微生物の影
響を受けたと見られる腐食部位から頻繁に検出される鉄
酸化細菌を用いてステレンス鋼の腐食挙動に与える影響
を実験・研究を重ねて鋭意検討した結果、次のような知
見を得た。即ち、腐食電位の“貴化”には微生物の活動
によって発生する環境の変化が影響しており、具体的に
は微生物の活動によって酸化剤として作用する生成物が
金属材料表面に発生し、これが金属材料の局部腐食生起
に影響を及ぼしていることを見出した。
The inventor of the present invention has conducted extensive experiments and studies on the effects on the corrosion behavior of stainless steel by using iron oxidizing bacteria frequently detected from corrosion sites which are considered to be affected by microorganisms of stainless steel. As a result, the following findings were obtained. In other words, the "nobleness" of the corrosion potential is affected by changes in the environment caused by the activity of microorganisms, and specifically, by the activity of microorganisms, a product that acts as an oxidant is generated on the surface of the metal material. It has been found that it affects the occurrence of local corrosion of metallic materials.

【0009】さらに、本願発明者は上述したような微生
物活動による生成物の発生を抑制するには、金属材料に
その電位が低くなるような電位を印加することが効果的
であることを見出した。本発明の微生物腐食防止方法は
上述したような知見に基づいてなされたものである。本
発明は上述のような従来の微生物腐食防止方法の問題点
を解消するためになされたもので、微生物が存在する環
境下における金属材料の腐食を総合的且つ効果的に防止
し得る方法を提供することを目的とするものである。
Furthermore, the inventor of the present application has found that it is effective to apply a potential to the metal material to lower the potential in order to suppress the generation of products due to the above-mentioned microbial activity. . The method for preventing microbial corrosion of the present invention has been made based on the above findings. SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the conventional methods for preventing microbial corrosion as described above, and provides a method capable of comprehensively and effectively preventing corrosion of metallic materials in an environment where microorganisms are present. It is intended to do so.

【0010】[0010]

【課題を解決するための手段】本発明は、微生物が存在
する水中環境下における金属材料の腐食を防止する微生
物腐食防止方法において、金属材料に負の電位を印加す
る微生物腐食防止方法を採用したものである。また、本
発明は、微生物が存在する水中環境下における金属材料
の腐食を防止する微生物腐食防止方法において、金属材
料に負の電位を印加して微生物の付着を阻害すると共
に、微生物の活動による生成物の発生を抑制して金属材
料の腐食を防止する微生物腐食防止方方法を採用したも
のである。
According to the present invention, there is provided a method for preventing corrosion of a metal material in an underwater environment where microorganisms are present, wherein the method is applied to apply a negative potential to the metal material. Things. The present invention also provides a method for preventing corrosion of a metal material in an underwater environment in which microorganisms are present. In the method for preventing corrosion of a metal material, a negative potential is applied to the metal material to inhibit the adhesion of the microorganism and to the formation by the activity of the microorganism. The method employs a method of preventing microbial corrosion in which the generation of substances is suppressed to prevent corrosion of metal materials.

【0011】本発明方法を用いてその活動を抑制し、こ
れに起因した金属材料の腐食を防止し得る微生物として
は、実環境中に存在するものであれば特に限定されない
が、例えば鉄酸化細菌、鉄細菌、硫酸塩還元細菌、およ
び硫黄酸化細菌等が挙げられる。鉄酸化細菌としては、
例えばThiobacillus ferrooxidans 等が挙げられ、鉄細
菌としては、例えばGallionella,Leptothrix,Sphaeroti
lus 等が挙げられ、硫酸塩還元細菌としては、例えばDe
sulfovibno spp.Desulfotomaculum spp.等が挙げられ、
硫黄酸化細菌としては、例えばThiobacillus thiooxida
ns等が挙げられる。こうした微生物は、単独または複数
種の組み合わせで環境中に存在していてもよい。
Microorganisms that can suppress the activity of the metal material using the method of the present invention and prevent corrosion of metallic materials due to the activity are not particularly limited as long as they exist in a real environment. , Iron bacteria, sulfate reducing bacteria, and sulfur oxidizing bacteria. As iron oxidizing bacteria,
For example, Thiobacillus ferrooxidans and the like, and as the iron bacteria, for example, Gallionella, Leptothrix, Sphaeroti
lus and the like, and sulfate-reducing bacteria include, for example, De.
sulfovibno spp.Desulfotomaculum spp. and the like,
As sulfur oxidizing bacteria, for example, Thiobacillus thiooxida
ns and the like. Such microorganisms may be present in the environment singly or in combination of two or more.

【0012】上述したような微生物が存在し得る条件で
あれば、本発明の微生物腐食防止方法において環境は特
に限定されないが、例えば、冷却水,排水,地下水,工
業用水,海水等を取扱う配管や塔槽類等の使用前の水張
りテストに使用される水中環境や停止時の滞留水中環境
とすることができる。こうした環境下における金属材料
の電位が低くなるように印加するには、一般に電気防食
に用いられる方法を用いることができる。即ち、外部電
源方式と呼ばれる方法であって直流電源装置から環境中
に設置された電極を通して、被防食体に強制的に電流を
通電し、被防食体の電位を設定した電位に保持する方法
を用いることができる。
The environment is not particularly limited in the method for preventing microbial corrosion of the present invention as long as microorganisms can exist as described above. For example, pipes for handling cooling water, drainage, groundwater, industrial water, seawater, etc. It can be an underwater environment used for a water filling test before use such as a tower tank or the like, or a stagnant underwater environment when stopped. In order to reduce the potential of the metal material in such an environment, a method generally used for cathodic protection can be used. In other words, there is a method called an external power supply method in which a current is forcibly supplied to a protected object through an electrode provided in the environment from a DC power supply device, and a potential of the protected object is maintained at a set potential. Can be used.

【0013】また、流電陽極方式とよばれる方法であっ
て、被防食体のおかれた環境中に設置したその腐食電位
が被防食体のそれより低い金属例えば亜鉛、マグネシウ
ム、アルミニウム等からなる犠牲陽極から被防食体に通
電し、被防食体の電位を設定した電位に保持する方法を
用いることもできる。また、本発明の方法により微生物
腐食を防止し得る金属材料としては、例えばSUS30
4等のステンレス鋼を挙げることができるが、これに限
定されるものではなく、炭素鋼や銅・銅合金といった任
意の金属材料の微生物腐食を本発明の方法を用いること
によって防止することができる。
Also, a method called a galvanic anode method, comprising a metal, for example, zinc, magnesium, aluminum or the like, which is installed in an environment in which the material to be protected is placed and whose corrosion potential is lower than that of the material to be protected. It is also possible to use a method in which the sacrificial anode is energized from the sacrificial anode to maintain the potential of the sacrificial body at a set potential. Examples of the metal material capable of preventing microbial corrosion by the method of the present invention include SUS30
And the like. However, the present invention is not limited to such stainless steels. Microbial corrosion of any metal material such as carbon steel and copper / copper alloy can be prevented by using the method of the present invention. .

【0014】本発明の微生物腐食防止方法では、被防食
体の金属材料の電位を例えば−400mV vs.S.
C.E.(飽和甘こう電極基準)以下である負の電位に
保持することにより、金属材料表面への微生物の付着を
抑制し、微生物の活動による生成物が金属材料表面に生
成されるのを防止し、金属材料の腐食電位の“貴化”を
抑制するので、微生物腐食を効果的に防止することがで
きる。
In the method for preventing microbial corrosion according to the present invention, the potential of the metal material of the anticorrosion target is set to, for example, -400 mV vs. potential. S.
C. E. FIG. By maintaining a negative potential that is equal to or less than (saturated luster electrode reference), the adhesion of microorganisms to the surface of the metal material is suppressed, and the product of the activity of microorganisms is prevented from being generated on the surface of the metal material. Since "nobleness" of the corrosion potential of the metal material is suppressed, microbial corrosion can be effectively prevented.

【0015】[0015]

【発明の実施の形態】以下、具体例を示して本発明をさ
らに詳細に説明する。本発明の実施例では、微生物が存
在する環境として水張りテストに使用する水または冷却
水に使用する水を想定して鉄酸化細菌によるステンレス
鋼(SUS304)の微生物腐食を防止する場合を例示
して説明する。先ず、鉄酸化細菌の培養に通常使用され
るSilverman 9K培地で、鉄酸化細菌としてのThiobaci
llus ferroxidansを3日間培養した。次いで、培養後の
鉄酸化細菌の10分の1量を鉄イオンを含まず、硫酸イ
オン濃度が低い実環境に近似した培地中に添加して、3
日間馴養した後、この培養液から遠心分離機で鉄酸化細
菌を回収した。ここで用いた各培地の組成を下記表1に
まとめる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to specific examples. The embodiment of the present invention exemplifies a case of preventing microbial corrosion of stainless steel (SUS304) by iron oxidizing bacteria by assuming water used for a water filling test or water used for cooling water as an environment where microorganisms are present. explain. First, in a Silverman 9K medium usually used for culturing iron oxidizing bacteria, Thiobacillus as iron oxidizing bacteria was used.
llus ferroxidans was cultured for 3 days. Next, one-tenth of the iron-oxidizing bacteria after culturing was added to a medium similar to a real environment that did not contain iron ions and had a low sulfate ion concentration, and 3
After acclimation for one day, iron oxidizing bacteria were collected from the culture using a centrifuge. The composition of each medium used here is summarized in Table 1 below.

【0016】[0016]

【表1】 [Table 1]

【0017】表1に示されるように、実環境近似培地は
鉄イオンを含有せず、硫酸イオン濃度が100ppmと
Silverman 9K培地の20000ppmより低いので、
実環境に近い組成であり、水張りテストに使用する水ま
たは冷却水に使用する水と同等と想定できる。さらに、
上述したような実環境近似培地を500ml収容したガ
ラスセルをさらに3つ用意し、第1のガラスセルには前
述の鉄酸化細菌を添加してサンプルS1とし、第2のガ
ラスセルには前述の鉄酸化細菌を添加して、さらに後述
する方法により浸漬する試験片の電位を負の電位に所定
時間保持することとして、サンプルS2とした。サンプ
ルS1およびS2の中には鉄酸化細菌が1ml当り1×
105 〜1×107 cells 程度含有されている。また、
第3のガラスセルには鉄酸化細菌を添加せずにサンプル
S3とした。こうして準備された各サンプルS1〜S3
に金属材料の試料としてSUS304ステンレス鋼を溶
接熱履歴によるCr欠乏域の生成(鋭敏化)を想定し
て、650℃で2時間熱処理した試験片を浸漬した。
As shown in Table 1, the medium similar to the real environment does not contain iron ions and has a sulfate ion concentration of 100 ppm.
Because it is lower than 20000 ppm of Silverman 9K medium,
The composition is close to the real environment, and can be assumed to be equivalent to the water used for the water filling test or the cooling water. further,
Three more glass cells containing 500 ml of the above-described real-environment approximate medium were prepared, and the above-mentioned iron-oxidizing bacteria were added to the first glass cell to obtain a sample S1, and the second glass cell was made to contain the above-described sample. A sample S2 was prepared by adding an iron-oxidizing bacterium and maintaining the potential of the test piece to be immersed by a method described later at a negative potential for a predetermined time. Samples S1 and S2 contained 1 × iron oxidizing bacteria per ml.
It contains about 10 5 to 1 × 10 7 cells. Also,
Sample S3 was prepared without adding iron-oxidizing bacteria to the third glass cell. Each sample S1 to S3 thus prepared
SUS304 stainless steel as a metal material sample was immersed in a test piece that was heat-treated at 650 ° C. for 2 hours, assuming that a Cr-deficient region was formed (sensitized) due to welding heat history.

【0018】実施例1 図3に実施例の試験装置の構成を示す。図3において、
Dは試験装置である。G1,G2,G3は試験装置D内
に設けられたガラスセル、CaとKcはガラスセルG1
の中の照合電極として使用した飽和甘こう電極とKCL
溶液、Agは寒天、Baは寒天橋、Bsは液橋である。
寒天橋Baと液橋Bsは、それぞれガラスセルG1,G
2とG2,G3の間を連通する。Tは試験片、Lはルギ
ン管、Eoは対極で、これらはガラスセルG3内に溜め
られた実環境近似培地内に浸漬されている。Mは印加電
位を計測する電位差計、Eは定電圧直流電源装置であ
る。そして、試験装置Dが3セット準備され、ガラスセ
ルG3内の溶液が上記の3つのサンプルS1〜S3に対
応するようになっている。
Embodiment 1 FIG. 3 shows the configuration of a test apparatus according to an embodiment. In FIG.
D is a test device. G1, G2, and G3 are glass cells provided in the test apparatus D, and Ca and Kc are glass cells G1.
Glucose electrode and KCL used as reference electrodes
The solution, Ag is agar, Ba is agar bridge, and Bs is liquid bridge.
The agar bridge Ba and the liquid bridge Bs are glass cells G1, G, respectively.
2 and G2, G3. T is a test piece, L is a Luggin tube, and Eo is a counter electrode. These are immersed in a medium close to the real environment stored in the glass cell G3. M is a potentiometer for measuring an applied potential, and E is a constant voltage DC power supply. Then, three sets of the test apparatus D are prepared, and the solution in the glass cell G3 corresponds to the above three samples S1 to S3.

【0019】図3に示す試験装置Dにおいて、前記のサ
ンプル2に浸漬した試験片Tに定電圧直流電源装置Eを
結線して、電位を−400mV vs.S.C.E.
(飽和甘こう電極基準)とするように調整して2時間保
持した後に開路した。その後、各サンプルS1〜S3に
浸漬した試験片Tの腐食電位の経時変化を、図に示す飽
和甘こう電極を照合電極Esとして電位差計Mを用いて
測定した。図4のグラフには、各サンプルS1〜S3中
に浸漬したSUS304試験片Tの腐食電位の経時変化
を示す。
In the test apparatus D shown in FIG. 3, a constant voltage DC power supply E is connected to the test piece T immersed in the sample 2, and the electric potential is -400 mV vs. 400 V. S. C. E. FIG.
(Saturated luster electrode standard) and the circuit was opened after holding for 2 hours. Thereafter, the change with time of the corrosion potential of the test piece T immersed in each of the samples S1 to S3 was measured using a potentiometer M with the saturated gallbladder electrode shown in the figure as a reference electrode Es. The graph of FIG. 4 shows the change over time of the corrosion potential of the SUS304 test piece T immersed in each of the samples S1 to S3.

【0020】図4のグラフに示すように、鉄酸化細菌を
添加しない場合(サンプルS3)では、SUS304の
腐食電位は約−100mV vs.S.C.E.(飽和
甘こう電極基準)に安定している。これに対して、鉄酸
化細菌を添加して負の電位を印加しない場合(サンプル
S1)では、SUS304の試験片Tの腐食電位は25
0mV vs.S.C.E.まで上昇している。この腐
食電位の上昇から、添加した鉄酸化細菌により微生物腐
食が発生し易い環境になっていることが確認される。
As shown in the graph of FIG. 4, when the iron-oxidizing bacteria were not added (sample S3), the corrosion potential of SUS304 was about -100 mV vs. SUS304. S. C. E. FIG. (Saturated luster electrode standard). On the other hand, when the iron-oxidizing bacteria were added and no negative potential was applied (sample S1), the corrosion potential of the test piece T of SUS304 was 25%.
0 mV vs. 0 mV. S. C. E. FIG. It is rising. From the increase in the corrosion potential, it is confirmed that the environment is such that microbial corrosion easily occurs due to the added iron-oxidizing bacteria.

【0021】一方、鉄酸化細菌を添加して電位を−40
0mV vs.S.C.E.に2時間保持した場合(サ
ンプルS2)では、SUS304の試験片Tの腐食電位
の上昇が遅れ、到達腐食電位はほぼ160mV vs.
S.C.E.である。したがって、負の電位を印加しな
い場合(サンプル1)の到達腐食電位の250mVvs
S.C.E.に比較して、ほぼ100mV vs.
S.C.E.低くなっている。このことから試験片Tの
負電位の印加により、微生物による電位の“貴化”が抑
制されたことが明らかにされた。このように、金属材料
に負の電位を印加することにより、金属材料の微生物腐
食を効果的に抑制できる。
On the other hand, by adding iron-oxidizing bacteria, the potential was lowered to -40.
0 mV vs. 0 mV. S. C. E. FIG. (Sample S2), the rise of the corrosion potential of the test piece T of SUS304 is delayed, and the reached corrosion potential is approximately 160 mV vs. 200 mV.
S. C. E. FIG. It is. Therefore, when the negative potential is not applied (Sample 1), the ultimate corrosion potential is 250 mV vs.
S. C. E. FIG. Compared to approximately 100 mV vs.
S. C. E. FIG. It is lower. This revealed that the application of the negative potential to the test piece T suppressed the "nobleness" of the potential by the microorganism. In this manner, by applying a negative potential to the metal material, microbial corrosion of the metal material can be effectively suppressed.

【0022】実施例2 引き続いて、実施例2を説明する。前述の実施例1と同
様にして5セットの試験装置Dを用意して、調整した実
環近似培地を500ml収容したガラスセルG3のそれ
ぞれに、前述と同様に培養した鉄酸化細菌を1ml当り
1×105 〜1×107 cel/s 程度含有するように添加
する。各サンプルS1〜S5に試験材としてSUS30
4鋼を溶接熱履歴によるCr欠乏域の生成(鋭敏化)を
想定して、650℃で2時間熱処理した試験片Tを浸漬
する。前述の実施例1と同様にして、各試験片Tに定電
圧直流電源装置Eを結線し電位差計Mを読みながら電位
を0,−200,−400,−600,−800mV
vs.S.C.E.となるように、5つのサンプルS1
〜S5を5段階に調整して2時間保持した後に開路し
た。
Second Embodiment Next, a second embodiment will be described. Five sets of test devices D were prepared in the same manner as in Example 1 described above, and iron-oxidizing bacteria cultured in the same manner as described above were added to each of the glass cells G3 containing 500 ml of the adjusted real ring approximate medium at a rate of 1 ml / ml. It is added so as to contain about × 10 5 to 1 × 10 7 cel / s. SUS30 was used as a test material for each sample S1 to S5.
Specimen T heat-treated at 650 ° C. for 2 hours is immersed in 4 steel, assuming that a Cr-deficient region is formed (sensitized) due to welding heat history. In the same manner as in Example 1 described above, a constant voltage DC power supply E is connected to each test piece T, and the potential is set to 0, -200, -400, -600, -800 mV while reading the potentiometer M.
vs. S. C. E. FIG. So that five samples S1
The circuit was opened after adjusting S5 to 5 steps and holding for 2 hours.

【0023】その後、各サンプルS1〜S5に浸漬した
試験片Tの腐食電位の経時変化を、飽和甘こう電極を照
合電極Caとして電位差計Mを用いて測定した。図5の
グラフに、このときの各サンプルS1〜S5中に浸漬し
たSUS304試験片Tの腐食電位の経時変化を示す。
図5に示すように試験片Tの電位を−400mV v
s.S.C.E.以下に保持した場合は、腐食電位の上
昇が遅れている。また、到達腐食電位は200mV v
s.S.C.E.以下であり、負の電位を印加しない場
合の到達腐食電位の250mV vs.S.C.E.に
比べて低くなっている。このことから微生物による電位
の“貴化”が抑制されたことがわかる。このように、金
属材料に−400mV vs.S.C.E.以下の負の
電位を印加することにより、金属材料の微生物腐食を効
果的に抑制できる。
Thereafter, the change over time of the corrosion potential of the test piece T immersed in each of the samples S1 to S5 was measured using a potentiometer M with the saturated gallbladder electrode as a reference electrode Ca. The graph of FIG. 5 shows the change with time of the corrosion potential of the SUS304 test piece T immersed in each of the samples S1 to S5 at this time.
As shown in FIG. 5, the potential of the test piece T was set to -400 mV v
s. S. C. E. FIG. When the temperature is kept below, the rise of the corrosion potential is delayed. The ultimate corrosion potential is 200 mV v
s. S. C. E. FIG. Or less, and 250 mV vs. ultimate corrosion potential when no negative potential is applied. S. C. E. FIG. It is lower than. This indicates that the "nobleness" of the potential by the microorganism was suppressed. In this way, the metal material has a resistance of -400 mV vs. 400 mV. S. C. E. FIG. By applying the following negative potential, microbial corrosion of the metal material can be effectively suppressed.

【0024】実施形態1,2 以上のような実験・研究を伴う実施例1,2の結果に基
づいて、具体的な技術に発展させた本発明の実施形態
1,2を、次に説明する。図1は本発明の実施形態1の
構成を示す説明図、図2は本発明の実施形態2の構成を
示す説明図である。図1は前述した電気防食に用いられ
る外部電源方式、図2は流電陽極方式である。
Embodiments 1 and 2 Embodiments 1 and 2 of the present invention which have been developed into specific technologies based on the results of Examples 1 and 2 involving the above experiments and studies will be described below. . FIG. 1 is an explanatory diagram showing the configuration of Embodiment 1 of the present invention, and FIG. 2 is an explanatory diagram showing the configuration of Embodiment 2 of the present invention. FIG. 1 shows an external power supply system used for the above-described cathodic protection, and FIG. 2 shows a galvanic anode system.

【0025】図1と2において、1は配管金属材料、2
は直流電源装置、3は電極、4は配管1内に溜められた
冷却水や海水等、5は電流の流れを示している。また、
図2の6は流電陽極である。冷却水,排水,地下水,海
水,工業用水等4を取扱う配管構造において、直流電源
装置2により配管金属材料1を負の電位に印加する実施
形態1の構成が図1に示されている。図1の外部電源方
式に示すように、例えば海水等4を取扱う配管1におい
て高ケイ素鉄、黒鉛、白金等の不溶性電極3を配管1の
内部に設け直流電源装置2から通電し、配管金属材料1
の電位を負の電位に保つようになっている。
1 and 2, reference numeral 1 denotes a pipe metal material;
Represents a DC power supply device, 3 represents an electrode, 4 represents cooling water or seawater stored in the pipe 1, and 5 represents the flow of current. Also,
Reference numeral 6 in FIG. 2 denotes a current carrying anode. FIG. 1 shows a configuration of a first embodiment in which a piping metal material 1 is applied to a negative potential by a DC power supply device 2 in a piping structure that handles cooling water, drainage, groundwater, seawater, industrial water, and the like 4. As shown in the external power supply system of FIG. 1, an insoluble electrode 3 made of high silicon iron, graphite, platinum or the like is provided in a pipe 1 for handling seawater 4 or the like, and electricity is supplied from a DC power supply 2 to the pipe metal material. 1
Is maintained at a negative potential.

【0026】また、実施形態2の流電陽極方式は図2に
示すように、例えば海水4を取扱う配管金属材料1の内
部に亜鉛,マグネシウム,アルミニウム等の流電陽極6
を設け、配管金属材料1と結線して流電陽極6と配管金
属材料1の電位差により海水等4を経て配管金属材料1
に通電させて配管金属材料1を負の電位に保つようにな
っている。なお、海水等4の水中環境を挙げて本発明の
方法を説明したが、水中環境に限定されるものではな
く、例えば、湿り気を帯びた土壌等の微生物が存在する
ような全ての環境下においても、本発明の方法を用いる
ことにより金属材料の微生物腐食を効果的に防止するこ
とができる。
As shown in FIG. 2, the galvanic anode system according to the second embodiment includes a galvanic anode 6 made of zinc, magnesium, aluminum or the like inside a pipe metal material 1 for handling seawater 4, for example.
Is connected to the pipe metal material 1, and the potential difference between the galvanic anode 6 and the pipe metal material 1 passes through the seawater 4 or the like, thereby forming the pipe metal material 1.
To maintain the pipe metal material 1 at a negative potential. The method of the present invention has been described with reference to an underwater environment such as seawater 4. However, the present invention is not limited to the underwater environment. For example, in all environments where microorganisms such as moist soil are present. Also, the use of the method of the present invention can effectively prevent microbial corrosion of metal materials.

【0027】[0027]

【発明の効果】本発明は、微生物が存在する水中環境下
における金属材料の腐食を防止する微生物腐食防止方法
において、金属材料に負の電位を印加する微生物腐食防
止方法を採用した。また、本発明は、微生物が存在する
水中環境下における金属材料の腐食を防止する微生物腐
食防止方法において、金属材料に負の電位を印加して微
生物の付着を阻害すると共に、微生物の活動による生成
物の発生を抑制して金属材料の腐食を防止する微生物腐
食防止方方法を採用した。
According to the present invention, a method for preventing corrosion of a metal material in an underwater environment where microorganisms are present, which employs a method for preventing corrosion of a metal material by applying a negative potential to the metal material. The present invention also provides a method for preventing corrosion of a metal material in an underwater environment in which microorganisms are present. In the method for preventing corrosion of a metal material, a negative potential is applied to the metal material to inhibit the adhesion of the microorganism and to the formation by the activity of the microorganism. A method of preventing microbial corrosion, which suppresses the generation of substances to prevent corrosion of metal materials, was adopted.

【0028】以上詳述したように、本発明によれば、微
生物が存在する環境下における金属材料の腐食を防止し
得る方法が提供される。この結果、微生物の活動のみな
らず、微生物の金属材料表面への付着を抑制し、微生物
の活動による生成物の発生を押さえて、金属材料の腐食
電位を上昇させる因子を除去するものであるため、金属
材料の微生物による腐食を極めて効果的に抑えることが
でき、その工業的価値は極めて大である。
As described in detail above, according to the present invention, there is provided a method capable of preventing corrosion of a metallic material in an environment where microorganisms are present. As a result, not only the activity of microorganisms, but also the attachment of microorganisms to the surface of metal materials is suppressed, the generation of products due to the activity of microorganisms is suppressed, and factors that increase the corrosion potential of metal materials are removed. In addition, the corrosion of metal materials by microorganisms can be suppressed very effectively, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態1の構成を示す説明図であ
る。
FIG. 1 is an explanatory diagram illustrating a configuration of a first embodiment of the present invention.

【図2】本発明の実施形態2の構成を示す説明図であ
る。
FIG. 2 is an explanatory diagram illustrating a configuration of a second embodiment of the present invention.

【図3】本発明の試験装置の実験例の構成を示す説明図
である。
FIG. 3 is an explanatory diagram showing a configuration of an experimental example of the test apparatus of the present invention.

【図4】電位印加による腐食電位の経時変化を示すグラ
フである。
FIG. 4 is a graph showing a change over time of a corrosion potential due to application of a potential.

【図5】別の実施例による腐食電位の経時変化を示すグ
ラフである。
FIG. 5 is a graph showing a change in corrosion potential with time according to another example.

【符号の説明】[Explanation of symbols]

1 配管金属材料 2 直流電源装置 3 電極 4 海水等 5 電流 6 流電陽極 Ag 寒天 Ba 寒天橋 Bs 液橋 Ca 照合電極 D 試験装置 E 定電圧直流電源 Eo 対極 G1,G2,G3 ガラスセル Kc KCL溶液 L ルギン管 M 電位差計 S1〜S3 サンプル S1〜S5 サンプル T 試験片(被防食体) DESCRIPTION OF SYMBOLS 1 Piping metal material 2 DC power supply 3 Electrode 4 Seawater etc. 5 Current 6 Galvanic anode Ag agar Ba Agar bridge Bs Liquid bridge Ca Reference electrode D Test equipment E Constant voltage DC power supply Eo Counter electrode G1, G2, G3 Glass cell Kc KCL solution L Luggin tube M Potentiometer S1 to S3 Sample S1 to S5 Sample T Specimen (protected body)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 微生物が存在する水中環境下における金
属材料の腐食を防止する微生物腐食防止方法において、 前記金属材料に負の電位を印加することを特徴とする微
生物腐食防止方法。
1. A method for preventing corrosion of a metal material in an underwater environment in which microorganisms are present, wherein a negative potential is applied to the metal material.
【請求項2】 微生物が存在する水中環境下における金
属材料の腐食を防止する微生物腐食防止方法において、 前記金属材料に負の電位を印加して前記微生物の付着を
阻害すると共に、該微生物の活動による生成物の発生を
抑制して前記金属材料の腐食を防止することを特徴とす
る微生物腐食防止方方法。
2. A method for preventing corrosion of a metal material in an underwater environment where microorganisms are present, the method comprising the steps of: applying a negative potential to the metal material to inhibit adhesion of the microorganisms; A method for preventing microbial corrosion, characterized in that the generation of products by the above is suppressed to prevent corrosion of the metal material.
JP10117988A 1998-04-28 1998-04-28 Microorganism corrosion preventing method Pending JPH11310890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10117988A JPH11310890A (en) 1998-04-28 1998-04-28 Microorganism corrosion preventing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10117988A JPH11310890A (en) 1998-04-28 1998-04-28 Microorganism corrosion preventing method

Publications (1)

Publication Number Publication Date
JPH11310890A true JPH11310890A (en) 1999-11-09

Family

ID=14725253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10117988A Pending JPH11310890A (en) 1998-04-28 1998-04-28 Microorganism corrosion preventing method

Country Status (1)

Country Link
JP (1) JPH11310890A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142176A1 (en) * 2013-03-15 2014-09-18 Jx日鉱日石エネルギー株式会社 Microorganism corrosion prevention method and cathodic corrosion protection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142176A1 (en) * 2013-03-15 2014-09-18 Jx日鉱日石エネルギー株式会社 Microorganism corrosion prevention method and cathodic corrosion protection method
JP2014177676A (en) * 2013-03-15 2014-09-25 Jx Nippon Oil & Energy Corp Method of preventing bacterial corrosion and cathode corrosion protection method

Similar Documents

Publication Publication Date Title
Guan et al. Influence of sulfate-reducing bacteria on the corrosion behavior of 5052 aluminum alloy
Cetin et al. Corrosion behavior of low-alloy steel in the presence of Desulfotomaculum sp.
Chen et al. Corrosion behavior of copper under biofilm of sulfate-reducing bacteria
Moradi et al. De-alloying of 316 stainless steel in the presence of a mixture of metal-oxidizing bacteria
El-Shamy et al. Microbial corrosion inhibition of mild steel in salty water environment
Li et al. Corrosion behavior of X65 steel in seawater containing sulfate reducing bacteria under aerobic conditions
Xie et al. Stress corrosion cracking behavior induced by Sulfate-reducing bacteria and cathodic protection on X80 pipeline steel
Gaylarde et al. Localised corrosion induced by a marine vibrio
Li et al. Corrosion behavior of X80 pipeline steel in the presence of Brevibacterium halotolerans in Beijing soil
Hamilton Sulphate-reducing bacteria and the offshore oil industry
Chen et al. Characterizing pitting corrosion caused by a long-term starving sulfate-reducing bacterium surviving on carbon steel and effects of surface roughness
Little et al. Microbiologically induced increase in corrosion current density of stainless steel under cathodic protection
Wang et al. The effect of sulfate-reducing bacteria on hydrogen permeation of X80 steel under cathodic protection potential
Permeh et al. Surface conditions for microcosm development and proliferation of SRB on steel with cathodic corrosion protection
Zhang et al. Crevice corrosion of X80 carbon steel induced by sulfate reducing bacteria in simulated seawater
CN112680733A (en) Steel corrosion prevention method based on microbial technology
Sarioǧlu et al. Corrosion of a drilling pipe steel in an environment containing sulphate-reducing bacteria
Al-Sultani et al. Characterization of microbiological influence corrosion for API 5L X46 pipeline by sulphate-reducing bacteria (SRB)
Szatmari et al. Studies on biocorrosion of stainless steel and copper in Czapek Dox medium with Aspergillus niger filamentous fungus
Xie et al. Synergistic effect between chloride and sulfate reducing bacteria in corrosion inhibition of X100 pipeline steel in marine environment
Neville et al. Corrosion of stainless steels in marine conditions containing sulphate reducing bacteria
JPH11310890A (en) Microorganism corrosion preventing method
Widyanto et al. Biocorrosion behavior of AISI 1006 carbon steel protected by biofilm of Bacillus subtilis by an iron-oxidizing bacterium and a sulfate-reducing bacterium
Yu et al. The microbiologically influenced corrosion of L245NS carbon steel by sulfate-reducing bacteria in H2S solutions
JPH11299497A (en) Evaluation of resistance to biological corrosion