JPH11310476A - Laminated type silicon nitride ceramic composite material - Google Patents

Laminated type silicon nitride ceramic composite material

Info

Publication number
JPH11310476A
JPH11310476A JP13270398A JP13270398A JPH11310476A JP H11310476 A JPH11310476 A JP H11310476A JP 13270398 A JP13270398 A JP 13270398A JP 13270398 A JP13270398 A JP 13270398A JP H11310476 A JPH11310476 A JP H11310476A
Authority
JP
Japan
Prior art keywords
silicon nitride
composite material
grain boundary
silicon
ceramic composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13270398A
Other languages
Japanese (ja)
Inventor
Kazuo Osumi
和生 大角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Ceramics Research Institute Co Ltd
Original Assignee
Isuzu Ceramics Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Ceramics Research Institute Co Ltd filed Critical Isuzu Ceramics Research Institute Co Ltd
Priority to JP13270398A priority Critical patent/JPH11310476A/en
Publication of JPH11310476A publication Critical patent/JPH11310476A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a laminated type silicon nitride ceramic composite material having enhanced strength of a material by reinforcing the structure of a surface layer and capable of being readily produced. SOLUTION: This silicon nitride ceramic composite material is obtained by laminating plural layers of silicon nitride ceramic comprising silicon nitride particles 2, 12 and oxynitride grain boundary phases 4, 14 containing silicon. The oxynitride grain phases 4, 14 are regulated so as to have different compositions, and the average particle size of the silicon nitride particles 2 at the surface layer 1 is regulated so as to be smaller than the average particle size of the silicon nitride particles 12 in the inner layer 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は窒化ケイ素セラミツ
クスの強度と靭性を組織的に高めた積層型窒化ケイ素セ
ラミツクス複合材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated silicon nitride ceramic composite material in which the strength and toughness of silicon nitride ceramics are systematically increased.

【0002】[0002]

【従来の技術】窒化ケイ素セラミツクスの強度と靭性を
高めるために、強化繊維として炭化ケイ素繊維または炭
素繊維を用いた繊維強化窒化ケイ素セラミツクス複合材
料は、焼結時に強化繊維が劣化し、また基材と強化繊維
との界面の制御が難しく緻密化が難しい。
2. Description of the Related Art In order to enhance the strength and toughness of silicon nitride ceramics, fiber-reinforced silicon nitride ceramics composite materials using silicon carbide fibers or carbon fibers as reinforcing fibers deteriorate reinforcing fibers at the time of sintering. It is difficult to control the interface between the fibers and the reinforcing fibers, and it is difficult to make them dense.

【0003】窒化ケイ素粒子を配向させた複数のシート
を重ね合せた積層型の窒化ケイ素セラミツクス複合材料
は、窒化ケイ素粒子を配向させるための種結晶が分散
し、積層体を焼結するのにホツトプレスなどで加圧する
必要があるなど製造方法が複雑である。
[0003] A laminated silicon nitride ceramic composite material in which a plurality of sheets in which silicon nitride particles are oriented is stacked, a seed crystal for orienting the silicon nitride particles is dispersed, and a hot press is used to sinter the laminate. The production method is complicated, for example, it is necessary to apply pressure.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は上述の
問題に鑑み、表面層の組織を強化することにより材料の
強度を高めた、製造が容易な積層型窒化ケイ素セラミツ
クス複合材料を提供することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, it is an object of the present invention to provide a laminated silicon nitride ceramic composite material which is easy to manufacture and which has an enhanced structure by strengthening the surface layer structure. It is in.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明の構成は窒化ケイ素粒子とケイ素を含む酸窒
化物粒界相とから構成される窒化ケイ素セラミツクスが
複数の層に積層された複合材料であつて、前記窒化ケイ
素粒子の平均粒子サイズが異なりかつ前記酸窒化物粒界
相の組成が異なる層を相隣接して形成し、表面層の窒化
ケイ素粒子の平均粒子サイズを、内部層の窒化ケイ素粒
子の平均粒子サイズよりも小さくしたことを特徴とす
る。
In order to solve the above-mentioned problems, the present invention has a structure in which a silicon nitride ceramic composed of silicon nitride particles and a silicon-containing oxynitride grain boundary phase is laminated in a plurality of layers. A composite material, wherein layers having different average particle sizes of the silicon nitride particles and different compositions of the oxynitride grain boundary phase are formed adjacent to each other, and the average particle size of the silicon nitride particles in the surface layer is It is characterized in that it is smaller than the average particle size of the silicon nitride particles in the inner layer.

【0006】[0006]

【発明の実施の形態】本発明の積層型窒化ケイ素セラミ
ツクス複合材料は、焼結助剤の成分が異なる窒化ケイ素
のシート状の成形体を多数積層したうえ焼結したもので
あり、得られる窒化ケイ素セラミツクス複合材料は各層
ごとに窒化ケイ素粒子の粒子サイズと粒界相の成分と粒
界相の融点とが異なる。特に、表面層の窒化ケイ素粒子
の平均粒子サイズを小さくすることにより、組織を緻密
なものにし強度を高める。また、内部層の窒化ケイ素粒
子の平均粒子サイズを大きくすることにより材料の靭性
を高める。
BEST MODE FOR CARRYING OUT THE INVENTION The laminated silicon nitride ceramic composite material of the present invention is obtained by laminating and sintering a large number of silicon nitride sheet-like compacts having different components of sintering aids. In the silicon ceramic composite material, the particle size of the silicon nitride particles, the component of the grain boundary phase, and the melting point of the grain boundary phase are different for each layer. In particular, by reducing the average particle size of the silicon nitride particles in the surface layer, the structure is made dense and the strength is increased. Further, the toughness of the material is increased by increasing the average particle size of the silicon nitride particles in the inner layer.

【0007】[0007]

【実施例】図1に示すように、本発明による積層型窒化
ケイ素セラミツクス複合材料は、窒化ケイ素粒子2,1
2と、ケイ素を含む酸窒化物粒界相4,14とから構成
され、窒化ケイ素粒子2,12の平均粒子サイズと酸窒
化物粒界相4,14の組成とが異なる層を積層したもの
であり、特に表面層1の窒化ケイ素粒子2の平均粒子サ
イズを、内部層11の窒化ケイ素粒子12の平均粒子サ
イズよりも小さくしたものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, a laminated silicon nitride ceramic composite material according to the present invention comprises silicon nitride particles 2,1.
And silicon oxynitride grain boundary phases 4 and 14, wherein layers having different average particle sizes of silicon nitride particles 2 and 12 and compositions of oxynitride grain boundary phases 4 and 14 are laminated. In particular, the average particle size of the silicon nitride particles 2 of the surface layer 1 is smaller than the average particle size of the silicon nitride particles 12 of the inner layer 11.

【0008】本発明による積層型窒化ケイ素セラミツク
ス複合材料を得るには、窒化ケイ素粒子の平均粒子サイ
ズと酸窒化物粒界相の組成とが異なるシート状の成形体
A,Bを予め作成し、多数のシート状の成形体A,B
を、図2に示すように重ね合せたうえ、軸プレスにより
圧搾してブロツク状の成形体にする。得られたブロツク
状の成形体を脱脂した後、温度1700℃の窒素雰囲気
で焼成する。
In order to obtain a laminated silicon nitride ceramics composite material according to the present invention, sheet-like molded articles A and B having different average particle sizes of silicon nitride particles and compositions of oxynitride grain boundary phases are prepared in advance. A large number of sheet-like molded articles A and B
Are superimposed as shown in FIG. 2 and pressed by an axial press to form a block-shaped molded product. After the obtained block-shaped molded body is degreased, it is fired in a nitrogen atmosphere at a temperature of 1700 ° C.

【0009】図3に示すように、表面層1は窒化ケイ素
粒子(結晶相)2と、アルミニウム,イツトリウム,
鉄,周期律表(長周期型)の5族元素の内の少くとも1
つ特にタンタルとケイ素からなる酸窒化物粒界相4と、
窒化ケイ素粒子2の一部または全部に分散する5族元素
を含む化合物5aと、酸窒化物粒界相4に分散する鉄と
ケイ素を含む化合物6と、酸窒化物粒界相4に分散する
5族元素とケイ素を含む化合物5とから構成される。
As shown in FIG. 3, a surface layer 1 comprises silicon nitride particles (crystal phase) 2 and aluminum, yttrium,
Iron, at least one of group 5 elements of the periodic table (long period type)
In particular, an oxynitride grain boundary phase 4 composed of tantalum and silicon,
Compound 5a containing Group 5 element dispersed in part or all of silicon nitride particles 2, Compound 6 containing iron and silicon dispersed in oxynitride grain boundary phase 4, and dispersed in oxynitride grain boundary phase 4 It is composed of a Group 5 element and a compound 5 containing silicon.

【0010】図4に示すように、内部層11は窒化ケイ
素粒子12と、アルミニウム,イツトリウム,鉄,マグ
ネシウムの内の少くとも1つとケイ素と酸化マンガンか
らなる酸窒化物粒界相14と、酸窒化物粒界相14に分
散する鉄とケイ素を含む化合物16とから構成される。
As shown in FIG. 4, the inner layer 11 includes silicon nitride particles 12, an oxynitride grain boundary phase 14 comprising at least one of aluminum, yttrium, iron and magnesium, silicon and manganese oxide, and an acid layer. It is composed of a compound 16 containing iron and silicon dispersed in the nitride grain boundary phase 14.

【0011】[具体的実施例]本発明による積層型窒化
ケイ素セラミツクス複合材料の製造方法を説明する。粒
子サイズと粒界相の成分が異なる窒化ケイ素粉末と焼結
助剤粉末とを混合した原料を、それぞれトルエンとエタ
ノールとPVBとフタル酸n−ブチルとを混合した溶媒
に分散させてスラリーを作り、該スラリーからドクター
ブレード装置により厚さ200μmの複数種類のシート
状の成形体を作製した。
[Specific Example] A method for producing a laminated silicon nitride ceramic composite material according to the present invention will be described. A slurry is prepared by dispersing a raw material obtained by mixing a silicon nitride powder having a different particle size and a component of a grain boundary phase with a sintering aid powder in a solvent obtained by mixing toluene, ethanol, PVB and n-butyl phthalate. A plurality of types of sheet-like molded articles having a thickness of 200 μm were prepared from the slurry by a doctor blade device.

【0012】詳しくは、窒化ケイ素粉末と、焼結助剤と
しての酸化アルミニウムと酸化イツトリウムと酸化タン
タルとの各粉末とを混合した原料からシート状の成形体
Aを作成し、窒化ケイ素粉末と、焼結助剤としての酸化
アルミニウムと酸化イツトリウムと酸化マンガンとの各
粉末とを混合した原料からシート状の成形体Bを作成
し、窒化ケイ素粉末と、焼結助剤としての酸化アルミニ
ウムと酸化マンガンと酸化ケイ素との各粉末とを混合し
た原料からシート状の成形体Cを作成した。これらのシ
ート状の成形体Aと、シート状の成形体BまたはCとを
多数枚積層し、軸プレスで厚さ4mmに成形した。得ら
れた成形体を脱脂した後、温度1700℃の窒素雰囲気
で焼成して、窒化ケイ素セラミツクス複合材料を得た。
More specifically, a sheet-shaped compact A is prepared from a raw material obtained by mixing silicon nitride powder and powders of aluminum oxide, yttrium oxide, and tantalum oxide as sintering aids. A sheet-like molded body B is prepared from a raw material obtained by mixing powders of aluminum oxide, yttrium oxide and manganese oxide as sintering aids, and silicon nitride powder, aluminum oxide and manganese oxide as sintering aids are prepared. A sheet-shaped molded body C was prepared from a raw material obtained by mixing each of the powders of silicon and silicon oxide. A large number of these sheet-shaped compacts A and sheet-shaped compacts B or C were laminated and formed into a thickness of 4 mm by an axial press. After the obtained molded body was degreased, it was fired in a nitrogen atmosphere at a temperature of 1700 ° C. to obtain a silicon nitride ceramic composite material.

【0013】図1に示すように、得られた窒化ケイ素セ
ラミツクス複合材料(本発明品)はシート状の成形体A
が焼結されて表面層1を形成し、シート状の成形体Bま
たはCが焼結されて内部層11を形成する。窒化ケイ素
粒子の粒子サイズは表面層1から内部層11へ順に大き
くなつていた。表面層1の粒界相4の形成温度は、内部
層11の粒界相14の形成温度よりも高くなる。これは
表面層1と内部層11について、焼結助剤の組成を異に
して粒界相4,14の軟化点と粘度を調整し、窒化ケイ
素の溶込み、相変態、再析出、粒成長の温度、粒成長の
速度を制御した結果である。
As shown in FIG. 1, the obtained silicon nitride ceramics composite material (product of the present invention) is a sheet-like molded product A
Are sintered to form the surface layer 1, and the sheet-like molded body B or C is sintered to form the inner layer 11. The particle size of the silicon nitride particles increased in order from the surface layer 1 to the inner layer 11. The formation temperature of the grain boundary phase 4 of the surface layer 1 is higher than the formation temperature of the grain boundary phase 14 of the inner layer 11. This is because, for the surface layer 1 and the inner layer 11, the softening point and viscosity of the grain boundary phases 4 and 14 are adjusted by changing the composition of the sintering aid, and the penetration of silicon nitride, phase transformation, reprecipitation, and grain growth are performed. This is the result of controlling the temperature and the speed of grain growth.

【0014】本発明による窒化ケイ素セラミツクス複合
材料(本発明品)と従来の窒化ケイ素セラミツクス複合
材料(従来品)からそれぞれ3×4×40mmの試験片
を作成し、該試験片について4点曲げ強度試験(JIS R1
601 )と靭性破壊試験(ASTME399 )を行つた結果、図
5,6に示すように、本発明による窒化ケイ素セラミツ
クス複合材料は、従来の窒化ケイ素セラミツクス複合材
料よりも、強度と靭性の点で優れていることが分つた。
From the silicon nitride ceramics composite material according to the present invention (product of the present invention) and the conventional silicon nitride ceramics composite material (conventional product), test pieces of 3 × 4 × 40 mm were prepared, and the four-point bending strength of the test pieces was obtained. Test (JIS R1
601) and a toughness fracture test (ASTME399), as shown in FIGS. 5 and 6, the silicon nitride ceramic composite according to the present invention is superior in strength and toughness to the conventional silicon nitride ceramic composite. I found out.

【0015】また、上述の各試験片に予め種々の大きさ
の傷(破壊源)を付けたものを用いて4点曲げ強度試験
を行つた結果、図7に示すように、本発明による窒化ケ
イ素セラミツクス複合材料は、従来の窒化ケイ素セラミ
ツクス複合材料よりも、破壊強度の点で優れていること
が分つた。
Further, as a result of performing a four-point bending strength test using each of the above-mentioned test pieces having scratches (failure sources) of various sizes beforehand, as shown in FIG. The silicon ceramics composite material was found to be superior in breaking strength to the conventional silicon nitride ceramics composite material.

【0016】さらに、本発明に係る窒化ケイ素セラミツ
クス複合材料の表面層1と内部層11に相当する試験片
を作成し、各試験片に予め種々の大きさの傷(破壊源)
を付けたものを用いて4点曲げ強度試験を行つた結果、
図8に示すように、表面層1は小さな破壊源に対して大
きな破壊強度を有し、内部層11は大きな破壊源に対し
ても比較的大きな破壊強度を有することが分った。
Further, test pieces corresponding to the surface layer 1 and the inner layer 11 of the silicon nitride ceramics composite material according to the present invention are prepared, and various sizes of flaws (sources of fracture) are previously formed on each test piece.
As a result of conducting a four-point bending strength test using
As shown in FIG. 8, it was found that the surface layer 1 has a large breaking strength against a small breaking source, and the inner layer 11 has a relatively large breaking strength against a large breaking source.

【0017】[0017]

【発明の効果】本発明は上述のように、窒化ケイ素粒子
とケイ素を含む酸窒化物粒界相とから構成される窒化ケ
イ素セラミツクスが複数の層に積層された複合材料であ
つて、前記窒化ケイ素粒子の平均粒子サイズが異なりか
つ前記酸窒化物粒界相の組成が異なる層を相隣接して形
成し、表面層の窒化ケイ素粒子の平均粒子サイズを、内
部層の窒化ケイ素粒子の平均粒子サイズよりも小さくし
たことにより、高強度と高靭性の複合材料が得られる。
As described above, the present invention relates to a composite material in which silicon nitride ceramics composed of silicon nitride particles and an oxynitride grain boundary phase containing silicon are laminated in a plurality of layers. Layers having different average particle sizes of silicon particles and different compositions of the oxynitride grain boundary phase are formed adjacent to each other, and the average particle size of the silicon nitride particles in the surface layer is set to the average particle size of the silicon nitride particles in the inner layer. By making it smaller than the size, a composite material having high strength and high toughness can be obtained.

【0018】成形体の各層の粒界相の形成温度が異なる
ので層間の接合を容易にできる。
Since the formation temperature of the grain boundary phase of each layer of the molded article is different, bonding between the layers can be facilitated.

【0019】成形体の主成分は同じ窒化ケイ素であるの
で、層間の熱膨張に差がなく、熱応力による層間剥離が
生じない。
Since the main component of the molded article is the same silicon nitride, there is no difference in thermal expansion between the layers, and no delamination due to thermal stress occurs.

【0020】シート状の成形体を積層して成形するだけ
で複合層を容易に形成できる。
A composite layer can be easily formed only by laminating and molding sheet-like molded bodies.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る積層型窒化ケイ素セラミツクス複
合材料の組織を模式的に示す側面断面図である。
FIG. 1 is a side sectional view schematically showing a structure of a laminated silicon nitride ceramic composite material according to the present invention.

【図2】同窒化ケイ素セラミツクス複合材料を得るため
の積層工程を模式的に示す側面図である。
FIG. 2 is a side view schematically showing a laminating step for obtaining the silicon nitride ceramic composite material.

【図3】同窒化ケイ素セラミツクス複合材料の表面層の
組織を模式的に示す平面断面図である。
FIG. 3 is a plan sectional view schematically showing a structure of a surface layer of the silicon nitride ceramic composite material.

【図4】同窒化ケイ素セラミツクス複合材料の内部層の
組織を模式的に示す平面断面図である。
FIG. 4 is a plan sectional view schematically showing a structure of an inner layer of the silicon nitride ceramics composite material.

【図5】本発明に係る窒化ケイ素セラミツクス複合材料
と従来の窒化ケイ素セラミツクス複合材料の4点曲げ強
度を表す線図である。
FIG. 5 is a diagram showing four-point bending strengths of the silicon nitride ceramics composite material according to the present invention and a conventional silicon nitride ceramics composite material.

【図6】本発明に係る窒化ケイ素セラミツクス複合材料
と従来の窒化ケイ素セラミツクス複合材料の破壊靭性を
表す線図である。
FIG. 6 is a diagram showing the fracture toughness of a silicon nitride ceramics composite material according to the present invention and a conventional silicon nitride ceramics composite material.

【図7】本発明に係る窒化ケイ素セラミツクス複合材料
と従来の窒化ケイ素セラミツクス複合材料についての破
壊源の大きさと破壊応力の関係を表す線図である。
FIG. 7 is a diagram showing the relationship between the magnitude of the fracture source and the fracture stress for the silicon nitride ceramic composite material according to the present invention and the conventional silicon nitride ceramic composite material.

【図8】本発明に係る窒化ケイ素セラミツクス複合材料
の表面層と内部層についての、破壊源の大きさと破壊応
力の関係を表す線図である。
FIG. 8 is a diagram showing the relationship between the size of the fracture source and the fracture stress for the surface layer and the inner layer of the silicon nitride ceramics composite material according to the present invention.

【符号の説明】[Explanation of symbols]

1:表面層 2:窒化ケイ素粒子 3:窒化ケイ素結晶
相 4:粒界相 5,5a:タンタルケイ化物 6:鉄
ケイ化物 11:内部層 12:窒化ケイ素粒子14:
粒界相 16:鉄ケイ化物
1: Surface layer 2: Silicon nitride particles 3: Silicon nitride crystal phase 4: Grain boundary phase 5, 5a: Tantalum silicide 6: Iron silicide 11: Inner layer 12: Silicon nitride particles 14:
Grain boundary phase 16: iron silicide

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】窒化ケイ素粒子とケイ素を含む酸窒化物粒
界相とから構成される窒化ケイ素セラミツクスが複数の
層に積層された複合材料であつて、前記窒化ケイ素粒子
の平均粒子サイズが異なりかつ前記酸窒化物粒界相の組
成が異なる層を相隣接して形成し、表面層の窒化ケイ素
粒子の平均粒子サイズを、内部層の窒化ケイ素粒子の平
均粒子サイズよりも小さくしたことを特徴とする、積層
型窒化ケイ素セラミツクス複合材料。
1. A composite material comprising silicon nitride ceramics composed of silicon nitride particles and an oxynitride grain boundary phase containing silicon laminated in a plurality of layers, wherein the silicon nitride particles have different average particle sizes. Further, layers having different compositions of the oxynitride grain boundary phase are formed adjacent to each other, and the average particle size of the silicon nitride particles in the surface layer is smaller than the average particle size of the silicon nitride particles in the inner layer. A laminated silicon nitride ceramic composite material.
【請求項2】前記表面層は窒化ケイ素粒子と、アルミニ
ウム,イツトリウム,鉄,周期律表(長周期型)の5族
元素の内の少くとも1つとケイ素の酸窒化物粒界相と、
前記窒化ケイ素粒子の一部または全部に分散する5族元
素を含む化合物と、前記酸窒化物粒界相に分散する鉄と
ケイ素を含む化合物と、前記酸窒化物粒界相に分散する
5族元素とケイ素を含む化合物とから構成され、前記内
部層は窒化ケイ素粒子と、アルミニウム,イツトリウ
ム,鉄,マグネシウムの内の少くとも1つとケイ素と酸
化マンガンを含む酸窒化物粒界相と、該酸窒化物粒界相
に分散する鉄とケイ素を含む化合物とから構成されてい
る、請求項1に記載の積層型窒化ケイ素セラミツクス複
合材料。
2. The method according to claim 1, wherein the surface layer comprises silicon nitride particles, at least one of aluminum, yttrium, iron, and group 5 elements of the periodic table (long-period type) and a silicon oxynitride grain boundary phase.
A compound containing a group V element dispersed in part or all of the silicon nitride particles, a compound containing iron and silicon dispersed in the oxynitride grain boundary phase, and a group V dispersed in the oxynitride grain boundary phase The inner layer is composed of silicon nitride particles, an oxynitride grain boundary phase containing at least one of aluminum, yttrium, iron and magnesium, silicon and manganese oxide; The laminated silicon nitride ceramic composite material according to claim 1, wherein the laminated silicon nitride ceramic composite material is composed of iron and a compound containing silicon dispersed in a nitride grain boundary phase.
【請求項3】前記5族の元素はタンタルである、請求項
2に記載の積層型窒化ケイ素セラミツクス複合材料。
3. The laminated silicon nitride ceramic composite material according to claim 2, wherein said Group 5 element is tantalum.
JP13270398A 1998-04-27 1998-04-27 Laminated type silicon nitride ceramic composite material Pending JPH11310476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13270398A JPH11310476A (en) 1998-04-27 1998-04-27 Laminated type silicon nitride ceramic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13270398A JPH11310476A (en) 1998-04-27 1998-04-27 Laminated type silicon nitride ceramic composite material

Publications (1)

Publication Number Publication Date
JPH11310476A true JPH11310476A (en) 1999-11-09

Family

ID=15087593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13270398A Pending JPH11310476A (en) 1998-04-27 1998-04-27 Laminated type silicon nitride ceramic composite material

Country Status (1)

Country Link
JP (1) JPH11310476A (en)

Similar Documents

Publication Publication Date Title
JP5322382B2 (en) Ceramic composite member and manufacturing method thereof
JPH05506422A (en) Reaction-sintered mullite-containing ceramic molded body, method for producing the molded body, and method for using the molded body
CN1408678A (en) Ceramic cushion board and its producing method
JP2694242B2 (en) Highly reliable silicon nitride ceramics and manufacturing method thereof
JP2005203734A (en) Ceramic article with embedded metal member and method of manufacturing the same
JPWO2013008697A1 (en) AlN substrate and manufacturing method thereof
JPH1112050A (en) Laminated ceramic and its production
TWI356665B (en)
JPH03112871A (en) Silicon carbide zygote and its junction
JPH11310476A (en) Laminated type silicon nitride ceramic composite material
JPH06298574A (en) Joined ceramic article and joining method
JP3035230B2 (en) Manufacturing method of multilayer ceramics
JPH09295871A (en) Silicon nitride porous material comprising oriented columnar particle and its production
JP5067751B2 (en) Ceramic joined body and manufacturing method thereof
JPH059393B2 (en)
KR970069947A (en) Sintering method of ceramics by multilayer stack hot pressing method
JP2004083366A (en) Aluminum nitride ceramic bonded product and its forming process
JPH11139883A (en) Production of laminated ceramic
JP3941455B2 (en) Bonding method for high heat resistant inorganic fiber bonded ceramics
JPH046163A (en) Production of carrier consisting of aluminium nitride
JPH046166A (en) Produciton of high-toughness ceramics
JP2997645B2 (en) Manufacturing method of ceramic laminate
JPH10116677A (en) Manufacture of ceramic
JPH06293015A (en) Multilayer sintered structure using powder of ceramic or metal and manufacture thereof
JP2000007472A (en) Production of ceramic laminated body having thermally sprayed ceramic layer