JPH11309999A - Method for transferring curved surface and solid particle injecting apparatus - Google Patents

Method for transferring curved surface and solid particle injecting apparatus

Info

Publication number
JPH11309999A
JPH11309999A JP13428198A JP13428198A JPH11309999A JP H11309999 A JPH11309999 A JP H11309999A JP 13428198 A JP13428198 A JP 13428198A JP 13428198 A JP13428198 A JP 13428198A JP H11309999 A JPH11309999 A JP H11309999A
Authority
JP
Japan
Prior art keywords
transfer
solid particles
substrate
collision
transferred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13428198A
Other languages
Japanese (ja)
Inventor
Haruo Ono
晴男 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP13428198A priority Critical patent/JPH11309999A/en
Publication of JPH11309999A publication Critical patent/JPH11309999A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently transfer a transfer product such as a decorative material or the like having a three-dimensional protrusion and recess surface by giving a transfer pressure without transfer fault such as a deviation wrinkle or the like deviated at a transfer sheet locally in a lateral direction. SOLUTION: The method for transferring a curved surface comprises the steps of opposing a transfer layer side of a transfer sheet S having a support and the transfer layer to a protrusion and recess surface side of a base material B to be transferred, colliding solid particles P accelerated by a rotating impeller with the support side of the sheet S, bringing the sheet S into pressure contact with the material by its collision pressure, and then colliding only the particles P having a colliding angle α of 70 degrees or more of the articles to an envelope surface of the surface to be transferred of the material B to the sheet S in the case of releasing to remove the support. The solid particle injecting apparatuses 10a, 10b apply colliding angle setting members such as shielding plates 3a, 3b or the like for colliding only the particles P for satisfying the above- described angle to injectors 1a, 1b utilizing the impeller.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、住宅の外装及び内
装材、家具、家電製品等に用いる特に凹凸装飾面を有す
る化粧材等の転写製品を製造する為の曲面転写方法と、
それに用いる固体粒子噴出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a curved surface transfer method for producing a transfer product such as a decorative material having a concave-convex decorative surface used for exterior and interior materials of a house, furniture, home electric appliances and the like.
The present invention relates to a solid particle ejection device used for the device.

【0002】[0002]

【従来の技術】従来、化粧板の基材面に直刷り法、ラミ
ネート法、転写法等により絵柄等の装飾を施した化粧板
が種々の用途で使用されている。この場合、基材の表面
が平面ならば、絵柄装飾は容易にできるが、凹凸表面に
対しては格別の工夫により絵柄装飾を施している。例え
ば、表面凹凸がエンボス形状等の三次元的凹凸(すなわ
ち、半球面の様に2方向に曲率を有する形状)の場合に
適用できる曲面転写方法が、特開平5−139097号
公報に提案されている。すなわち、同号公報はローラ転
写法の一種であり、転写シートの支持体として熱可塑性
樹脂フィルムを用い、該支持体上に剥離層、絵柄層、及
び接着層を順次設けた構成の転写シートを、凹凸表面を
有する基材上に設置し、支持体の裏面からゴム硬度60
°以下のゴム製の熱ローラで押圧して、絵柄を転写して
化粧板とする。
2. Description of the Related Art Conventionally, decorative boards having decorations such as pictures on a substrate surface of the decorative board by a direct printing method, a laminating method, a transfer method or the like have been used for various purposes. In this case, if the surface of the base material is flat, the decoration of the picture can be easily made, but the decoration of the pattern is applied to the uneven surface by a special device. For example, Japanese Patent Application Laid-Open No. 5-139097 proposes a curved surface transfer method applicable to a case where the surface unevenness is a three-dimensional unevenness such as an embossed shape (ie, a shape having a curvature in two directions like a hemispherical surface). I have. That is, the publication is a type of roller transfer method, which uses a thermoplastic resin film as a support of a transfer sheet, and provides a transfer sheet having a structure in which a release layer, a pattern layer, and an adhesive layer are sequentially provided on the support. Is placed on a substrate having an uneven surface, and has a rubber hardness of 60 from the back surface of the support.
Press with a rubber heat roller of less than ° to transfer the picture and make it a decorative board.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
様なローラ転写法による従来方法では、基本的に回転す
る熱ローラのゴムによる弾性変形を利用して表面凹凸に
追従させる為に、浅いエンボス形状等は良いとしても、
大きな表面凹凸には適用できず、転写シートの凹凸追従
性が悪い。また、転写速度も上げられず生産性も悪い。
その上、被転写基材の凹凸の隅角部によって軟質のゴム
ローラが損耗し易い。また、全体として平板状の基材に
限定されるといった問題があった。
However, in the conventional method based on the roller transfer method as described above, since the surface irregularities are basically followed by utilizing the elastic deformation of the rotating heat roller by rubber, a shallow embossed shape is required. Etc. are good,
It cannot be applied to large surface irregularities, and the transfer sheet has poor followability of irregularities. Further, the transfer speed cannot be increased, and the productivity is poor.
In addition, the soft rubber roller is liable to be worn by the corners of the unevenness of the transfer-receiving substrate. In addition, there is a problem that the substrate is limited to a flat substrate as a whole.

【0004】そこで、本発明の課題は、大きな三次元的
凹凸表面にも転写できる上、生産性も高く、且つ転写圧
の押圧に特殊形状の治具を必要とせず、ゴムローラ等部
品の損耗による交換の必要の無い、曲面転写方法を提供
することである。
Accordingly, an object of the present invention is to transfer to a large three-dimensional uneven surface, achieve high productivity, do not require a specially shaped jig for pressing the transfer pressure, and wear the rubber roller and other parts. An object of the present invention is to provide a curved surface transfer method that does not require replacement.

【0005】[0005]

【課題を解決するための手段】そこで、上記課題を解決
すべく、本発明の曲面転写方法では、支持体と転写層と
からなる転写シートを被転写基材へ押圧して圧接する手
段として、転写シートの支持体側に、固体粒子を衝突さ
せ、その衝突圧を利用した。すなわち、凹凸表面を有す
る被転写基材の凹凸表面側に、支持体と転写層とからな
る転写シートの転写層側を対向させ、該転写シートの支
持体側に、回転する羽根車によって加速された固体粒子
を衝突させ、その衝突圧を利用して、被転写基材の凹凸
表面への転写シートの圧接を行い、転写層が被転写基材
に接着後、転写シートの支持体を剥離除去することで、
転写層を被転写基材に転写する様にした。しかも、転写
シートに衝突させる固体粒子は、被転写基材の被転写面
の包絡面に対する固体粒子の衝突角度が70度以上の固
体粒子のみの衝突圧を利用して行う様にした。その結
果、大きな三次元的凹凸表面にも十分転写シートを追従
成形させて転写できる様になった。しかも本発明では、
固体粒子の衝突角度を、被転写面の包絡面に対する垂直
衝突(衝突角度90度)から70度までの範囲のみとし
て、被転写面に斜めに衝突気味の固体粒子を無くすこと
で、衝突した固体粒子の運動エネルギーによって、転写
シートが被転写面上を横方向にズレて起きる「寄り皺」
の発生を抑えつつ、確実に固体粒子の運動エネルギーを
衝突圧として与えて転写シートの凹凸追従性を確保し
た。よって転写不良が防止され、優れた生産性も得られ
る。
In order to solve the above-mentioned problems, the curved surface transfer method according to the present invention employs, as a means for pressing a transfer sheet including a support and a transfer layer against a transfer-receiving substrate by pressing the transfer sheet. Solid particles collided with the support side of the transfer sheet, and the collision pressure was used. That is, the transfer layer side of the transfer sheet including the support and the transfer layer was opposed to the uneven surface side of the transfer-receiving substrate having the uneven surface, and accelerated by the rotating impeller on the support side of the transfer sheet. The transfer particles are pressed against the uneven surface of the substrate to be transferred by using the collision pressure by colliding the solid particles, and after the transfer layer is bonded to the substrate to be transferred, the support of the transfer sheet is peeled off. By that
The transfer layer was transferred to a substrate to be transferred. In addition, the solid particles that collide with the transfer sheet are formed by using the collision pressure of only solid particles having a collision angle of 70 degrees or more with the envelope surface of the transfer-receiving substrate. As a result, it has become possible to sufficiently transfer and transfer the transfer sheet to a large three-dimensional uneven surface. Moreover, in the present invention,
The collision angle of the solid particles is limited to a range from a vertical collision (collision angle of 90 degrees) to the envelope surface of the transfer surface to 70 degrees, and the solid particles that collide with the transfer surface obliquely are eliminated by obliquely colliding the transfer surface. "Wrinkling" that occurs when the transfer sheet shifts laterally on the transfer surface due to the kinetic energy of the particles
The kinetic energy of the solid particles was reliably given as the collision pressure while suppressing the occurrence of the transfer, thereby ensuring the conformability of the transfer sheet. Therefore, transfer failure is prevented, and excellent productivity can be obtained.

【0006】また、本発明の固体粒子噴出装置は、上記
曲面転写方法を行う為に使用し得る装置であり、羽根車
によって固体粒子を加速する粒子加速手段と、転写シー
トに衝突する固体粒子を、被転写基材の被転写面の包絡
面に対する固体粒子の衝突角度が70度以上の固体粒子
のみとする衝突角度設定手段とを、少なくとも備えた構
成の装置とした。
The solid particle ejecting apparatus of the present invention is an apparatus which can be used for performing the above-mentioned curved surface transfer method, and includes a particle acceleration means for accelerating the solid particles by an impeller, and a solid particle colliding with the transfer sheet. And a collision angle setting means for setting only the solid particles having a collision angle of 70 ° or more with the envelope surface of the transfer-receiving surface of the transfer-receiving substrate.

【0007】[0007]

【発明の実施の形態】以下、本発明の曲面転写方法及び
固体粒子噴出装置について、実施の形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of a curved surface transfer method and a solid particle ejection apparatus according to the present invention will be described.

【0008】〔固体粒子〕固体粒子としては、ガラスビ
ーズ、セラミックビーズ、炭酸カルシウムビーズ、アル
ミナビーズ、ジルコニアビーズ、アランダムビーズ、コ
ランダムビーズ等の無機粉体である非金属無機粒子、
鉄、又は炭素鋼、ステンレス鋼等の鉄合金、アルミニウ
ム、又はジュラルミン等のアルミニウム合金、チタン、
亜鉛等の金属ビーズ等の金属粒子、或いは、フッ素樹脂
ビーズ、ナイロンビーズ、シリコーン樹脂ビーズ、ウレ
タン樹脂ビーズ、尿素樹脂ビーズ、フェノール樹脂ビー
ズ、架橋ゴムビーズ等の樹脂ビーズ等の有機粒子等、或
いは金属等の無機粒子と樹脂とからなる無機物・樹脂複
合粒子等を使用することができる。形状は球形状が好ま
しいが、回転楕円体形状、多面体形状、鱗片状、無定
形、その他の形状のものでも用い得る。固体粒子の粒径
としては、通常10〜1000μm程度である。
[Solid Particles] Solid particles include non-metallic inorganic particles such as glass beads, ceramic beads, calcium carbonate beads, alumina beads, zirconia beads, alundum beads, corundum beads, etc.
Iron or carbon steel, iron alloys such as stainless steel, aluminum, or aluminum alloys such as duralumin, titanium,
Metal particles such as metal beads such as zinc, or organic particles such as resin beads such as fluororesin beads, nylon beads, silicone resin beads, urethane resin beads, urea resin beads, phenol resin beads, crosslinked rubber beads, or metals And inorganic / resin composite particles composed of an inorganic particle and a resin. The shape is preferably spherical, but spheroidal, polyhedral, scaly, amorphous, and other shapes can also be used. The particle size of the solid particles is usually about 10 to 1000 μm.

【0009】なお、固体粒子は加熱手段や冷却手段を兼
用することもできる。加熱された加熱固体粒子を用いれ
ば、接着剤の加熱活性化やその架橋硬化の促進、或いは
転写シートの加熱による延伸性の向上を、転写シートの
押圧と共に行うこともできる。この場合、衝突圧印加前
に他の加熱方法で、ある程度まで転写シート、被転写基
材を加熱しておいても良い。また、加熱固体粒子は既に
加熱された転写シート、被転写基材等の温度維持にも使
用できる。一方、固体粒子は、接着後の冷却促進目的
で、接着時の接着剤の温度よりも低温の固体粒子を、冷
却固体粒子として用いる事もできる。また、固体粒子は
その一部又は全部を加熱固体粒子、冷却固体粒子として
用いたり、加熱固体粒子を衝突させた後、冷却固体粒子
を衝突させる等と、併用しても良い。また、他の加熱方
法で転写シートや被転写基材、接着剤等の加熱を要する
ものを充分に加熱しておき、これに冷却固体粒子を用い
て、転写シートの成形と接着及び冷却を殆ど同時に行う
こともできる。固体粒子を加熱又は冷却するには、固体
粒子の貯蔵をホッパ等の形態のタンクに貯蔵する場合
は、タンク内やタンク外壁の設けた、電熱ヒータ、加熱
蒸気、冷媒等による加熱手段、冷却手段で行えば良い。
また、固体粒子輸送管の外壁にこれら手段を設けて、輸
送管にて加熱又は冷却しても良い。
The solid particles can also serve as a heating means and a cooling means. When heated solid particles are used, the activation of the adhesive by heating and the promotion of crosslinking and curing thereof, or the improvement of the stretchability by heating the transfer sheet can be performed together with the pressing of the transfer sheet. In this case, the transfer sheet and the substrate to be transferred may be heated to some extent by another heating method before the application of the collision pressure. The heated solid particles can also be used to maintain the temperature of the already heated transfer sheet, substrate to be transferred, and the like. On the other hand, solid particles having a temperature lower than the temperature of the adhesive at the time of bonding can be used as the cooling solid particles for the purpose of promoting cooling after bonding. The solid particles may be used in combination with a part or all of the solid particles as heated solid particles or cooled solid particles, or after the heated solid particles collide with the cooled solid particles. In addition, the transfer sheet, the base material to be transferred, the adhesive, etc., which need to be heated by another heating method, are sufficiently heated, and the cooling solid particles are used for the formation, adhesion and cooling of the transfer sheet. It can be done at the same time. In order to heat or cool the solid particles, when storing the solid particles in a tank in the form of a hopper or the like, heating means using an electric heater, heated steam, a refrigerant, etc., provided in the tank or on the outer wall of the tank, cooling means You can do it in
Further, these means may be provided on the outer wall of the solid particle transport pipe, and heating or cooling may be performed in the transport pipe.

【0010】〔衝突角度規定下での固体粒子による衝突
圧印加〕固体粒子を転写シートに衝突させて衝突圧を印
加し、転写シートを被転写基材に押圧するには、固体粒
子を噴出する固体粒子噴出手段としての噴出器から、多
数の固体粒子を連続して転写シートに向かって噴出させ
て、転写シートに衝突圧を印加する。多数の固体粒子は
固体粒子群として転写シートに衝突する。この様に転写
圧印加に固体粒子衝突圧を用いた転写法は、既に本出願
人による特許が、特開平9−315095号公報、特開
平10−86600号公報、特開平10−95200号
公報等として開示された。なお、これらの公報で開示さ
れる発明では、いずれも、固体粒子噴出装置には吹出ノ
ズルを採用している。
[Application of Collision Pressure by Solid Particles under the Condition of Collision Angle] In order to cause the solid particles to collide with the transfer sheet to apply the collision pressure and press the transfer sheet against the substrate to be transferred, the solid particles are ejected. A large number of solid particles are continuously ejected toward a transfer sheet from an ejector as a solid particle ejection means, and an impact pressure is applied to the transfer sheet. A large number of solid particles collide with the transfer sheet as solid particles. As described above, the transfer method using the solid particle collision pressure to apply the transfer pressure has already been disclosed by the present applicant in JP-A-9-315095, JP-A-10-86600, JP-A-10-95200, and the like. It was disclosed as. Note that, in the inventions disclosed in these publications, a blowing nozzle is employed in the solid particle blowing device.

【0011】ところで、噴出器としては、ブラスト分野
で使用されている吹出ノズルも流用できるが、本発明に
於いてはサンドブラスト或いはショットブラスト、ショ
ットピーニング等とブラスト分野にて使用されている羽
根車を採用する。例えば遠心式ブラスト装置である。遠
心式ブラスト装置は羽根車の回転力で固体粒子を加速し
噴出する。羽根車による噴出器は、羽根車を固体粒子を
加速する粒子加速手段とするものであり、固体粒子の噴
出方向が原理的に羽根車回転軸方向にはあまり広がら
ず、該回転軸に直交方向に広がる傾向がある。従って、
転写シート及び被転写基材を搬送しながら衝突させる場
合、その幅の寸法次第では、一つの噴出器でも全幅等と
広い領域に衝突圧を与えられる利点がある。これに対し
て、同じブラスト分野にて加圧式や吸引式ブラスト装
置、ウェットブラスト装置として使用されている吹出ノ
ズルは、噴出する固体粒子の広がりは通常はどの方向に
も均一で等方的であるが、羽根車による噴出器の場合よ
りも広がりが少ない。従って、同じ面積の衝突圧印加領
域に対してより多くの噴出器を使用する必要がある。ま
た、吹出ノズルでは、固体粒子の加速を気体(或いは液
体)を固体粒子加速流体として使用するので、固体粒子
の周囲空間への漏出防止の為にチャンバ内で衝突させる
場合、チャンバ内に流体も流入する事になる。チャンバ
内は固体粒子漏出防止の為に負圧とするのが好ましい
が、固体粒子加速流体の使用はチャンバ内圧力バランス
に影響するで、例えば気体はその分排気する必要があ
る。また、吹出ノズルでは固体粒子加速流体(或いは固
体粒子との混合系として)を加圧しておく必要がある。
従って、転写装置的にも、吹出ノズルでは固体粒子加速
流体(或いは固体粒子との混合系として)の加圧設備
や、その流入量を考慮した排気設備必要となる等の特性
がある。
By the way, as the jetting device, a blowing nozzle used in the blasting field can be used, but in the present invention, an impeller used in the blasting field such as sand blasting, shot blasting, shot peening and the like is used. adopt. An example is a centrifugal blast device. The centrifugal blast device accelerates and ejects solid particles by the rotational force of the impeller. The impeller based on the impeller is a means for accelerating the solid particles using the impeller as a particle accelerating means. In principle, the ejection direction of the solid particles does not spread so much in the direction of the impeller rotation axis, and is orthogonal to the rotation axis. Tend to spread. Therefore,
When the transfer sheet and the base material to be transferred are made to collide while being conveyed, there is an advantage that a collision pressure can be applied to a wide area, such as the entire width, even with a single ejector, depending on the width. On the other hand, in the same blasting field, the blowing nozzle used as a pressure-type or suction-type blasting device, or a wet blasting device, has a generally uniform and isotropic spread of ejected solid particles in any direction. However, the spread is less than in the case of the impeller by the impeller. Therefore, it is necessary to use more ejectors for the collision pressure application area of the same area. Further, in the blowing nozzle, gas (or liquid) is used as a solid particle accelerating fluid for accelerating the solid particles. Therefore, when the solid particles collide in the chamber to prevent the solid particles from leaking into the surrounding space, the fluid is also contained in the chamber. Will flow in. It is preferable that the pressure in the chamber be a negative pressure in order to prevent leakage of the solid particles. However, the use of the solid particle accelerating fluid affects the pressure balance in the chamber. For example, the gas needs to be exhausted accordingly. Further, in the blowing nozzle, it is necessary to pressurize the solid particle accelerating fluid (or as a mixed system with the solid particles).
Accordingly, the transfer device also has characteristics such as the need for a pressurizing facility for the solid particle accelerating fluid (or as a mixed system with the solid particles) and an exhaust facility in consideration of the inflow amount in the blowing nozzle.

【0012】図1は、回転する羽根車で固体粒子を加速
するタイプの一台の噴出器1から噴出した固体粒子P
が、被転写基材B上の転写シートSに衝突する様子を示
す概念図である。同図では、紙面に対して垂直方向に噴
出器1と、被転写基材B及び転写シートSとが相対移動
する。従って、被転写基材Bの幅方向は図面で左右方向
である。なお、被転写基材Bと転写シートSとは一体と
なって移動する。そして、固体粒子Pは、噴出器1から
略鉛直方向下方に向かって広がり角をもって噴出され、
転写シートSに向けて噴出される(図面で破線は固体粒
子の飛跡を表し、破線つけた矢印は固体粒子の飛翔方向
を表すベトクルを表す)。しかし、該領域内部において
転写シートに衝突する固体粒子の方向は必ずしも完全同
一方向からとは限らず、該領域周辺部では斜めに衝突し
衝突圧は低下する。つまり、被転写基材の被転写面の包
絡面に対する衝突角度αが低下する。
FIG. 1 shows solid particles P ejected from a single ejector 1 of the type in which solid particles are accelerated by a rotating impeller.
FIG. 3 is a conceptual diagram showing a state in which the sheet collides with a transfer sheet S on a substrate B to be transferred. In FIG. 1, the ejector 1, the base material B to be transferred, and the transfer sheet S relatively move in a direction perpendicular to the paper surface. Therefore, the width direction of the transfer-receiving substrate B is the left-right direction in the drawing. The transfer base material B and the transfer sheet S move integrally. Then, the solid particles P are ejected from the ejector 1 with a divergence angle substantially downward in the vertical direction,
The solid particles are ejected toward the transfer sheet S (in the drawing, broken lines indicate tracks of solid particles, and arrows with broken lines indicate vectors indicating the flying directions of solid particles). However, the direction of the solid particles colliding with the transfer sheet inside the region is not always from the completely same direction, and colliding obliquely around the region, the collision pressure decreases. That is, the collision angle α of the transfer-receiving surface of the transfer-receiving substrate with respect to the envelope surface decreases.

【0013】衝突角度α(投射角度)とは、図1で例示
する如く、具体的には、被転写基材の被転写面の包絡面
の接平面(ここでは被転写面は平面の為、包絡面も平面
となるので接平面は包絡面と完全同一となる)から測っ
た、固体粒子の速度ベクトルの成す角度である。
The collision angle α (projection angle) is, as exemplified in FIG. 1, specifically, a tangent plane of the envelope surface of the transfer-receiving surface of the transfer-receiving substrate (here, since the transfer-receiving surface is a flat surface, The tangent plane is completely the same as the envelope surface because the envelope surface is also a plane), and is the angle formed by the velocity vector of the solid particles.

【0014】また、噴出器から噴出される固体粒子Pの
拡がり次第では、転写シートの一部分の領域に衝突し、
衝突速度も該領域内部で必ずしも同一とは限らない。従
って、一台の噴出器に於いて図1の様な衝突圧分布P
(x)が生じる(ここでxは被転写基材幅方向の座
標)。また、投射密度(被転写基材単位面積当たりに衝
突する固体粒子の総重量)も場所によって異なり該領域
周辺部では小さくなる投射密度分布をする。それは、上
記衝突圧分布P(x)の様な釣鐘型の分布になる(図1
参照)。投射密度が小さいと、一つ一つの固体粒子の衝
突による衝突圧は十分でも、それを持続的に加えられな
い為に、転写シートを凹凸表面に速やかに追従、成形で
きず、優れた生産性は得られず、凹凸追従性も低下す
る。そして、最低限必要な衝突圧である許容最小衝突圧
Pminは、転写シートの延伸性に基づく成形性、被転
写基材の凹凸の大きさ、固体粒子の密度及び噴出速度、
必要な衝突角度、投射密度等の転写条件によって異な
る。従って、有効な衝突圧が得られる有効加圧領域は、
実際に固体粒子が衝突する領域よりも内側で小さい。幅
方向で代表表示しある図1では、衝突圧分布P(x)≧
許容最小衝突圧Pminが成立する有効加圧領域の幅W
pは、転写すべき被転写基材の幅Wbよりも狭い。従っ
て、この様な場合、このままでは一つの噴出器では、幅
方向の一部で衝突圧不足による転写不良が発生する。
Further, depending on the spread of the solid particles P ejected from the ejector, the solid particles P collide with a partial area of the transfer sheet,
The collision speed is not always the same inside the area. Therefore, the collision pressure distribution P as shown in FIG.
(X) occurs (where x is the coordinate in the width direction of the substrate to be transferred). Further, the projection density (total weight of solid particles colliding per unit area of the base material to be transferred) also varies depending on the location, and the projection density distribution becomes smaller around the area. It becomes a bell-shaped distribution like the above-mentioned collision pressure distribution P (x) (FIG. 1).
reference). When the projection density is low, even if the collision pressure due to the collision of each solid particle is sufficient, it cannot be applied continuously, so the transfer sheet cannot quickly follow the uneven surface and cannot be molded, resulting in excellent productivity. Cannot be obtained, and the unevenness followability is also reduced. The allowable minimum collision pressure Pmin, which is the minimum necessary collision pressure, is the formability based on the stretchability of the transfer sheet, the size of the irregularities of the transfer-receiving substrate, the density and ejection speed of the solid particles,
It depends on the transfer conditions such as the required collision angle and projection density. Therefore, the effective pressurization area where an effective collision pressure is obtained is
It is actually smaller inside the area where the solid particles collide. In FIG. 1 representatively displayed in the width direction, the collision pressure distribution P (x) ≧
The width W of the effective pressurizing area where the allowable minimum collision pressure Pmin is satisfied
p is smaller than the width Wb of the substrate to be transferred. Therefore, in such a case, in this case, in one ejector, transfer failure occurs due to insufficient collision pressure in a part of the width direction.

【0015】なお、衝突圧は強すぎても不具合が発生す
る事がある。それは例えば転写シートの歪み、被転写基
材の変形、破損等である。この様な場合には、最大限許
容できる衝突圧である許容最大衝突圧Pmaxが存在す
る。従って、この様な場合には、図1の如く、衝突圧分
布P(x)は許容最大衝突圧Pmax以下で、且つ許容
最小衝突圧Pmin以上の範囲内に納まる様に、固体粒
子の密度及び噴出速度、噴出器から噴出される固体粒子
の方向及び広がり角度等を調整する。
[0015] Even if the collision pressure is too high, problems may occur. This is, for example, distortion of the transfer sheet, deformation or breakage of the substrate to be transferred. In such a case, there is an allowable maximum collision pressure Pmax which is the maximum allowable collision pressure. Therefore, in such a case, as shown in FIG. 1, the density and the density of the solid particles are such that the collision pressure distribution P (x) falls within the range of the maximum allowable collision pressure Pmax or lower and the minimum allowable collision pressure Pmin or higher. The ejection speed, the direction and the spread angle of the solid particles ejected from the ejector are adjusted.

【0016】そして、図2(A)の様に、被転写基材の
幅が有効加圧領域の幅よりも小さい場合は、問題なく転
写圧として衝突圧を与えられる。更に被転写基材幅が広
くなり、図2(B)の如く被転写基材幅が有効加圧領域
幅と略等しい場合では、被転写基材の端部付近では衝突
角度が小さくより斜めの衝突となり、且つ投射密度も小
さくなり、凹凸追従性が悪くなる。また、包絡面の接平
面に沿った方向(同図では水平方向)に転写シートに衝
突圧による力が加わり、転写シートが被転写面上で伸ば
されたりして、ずれてしまい寄り皺が発生し易い。そし
て更に被転写基材幅が広くなり、図2(C)の如く被転
写基材幅が有効加圧領域幅よりも広いと、図1の様な状
態となる訳で、有効加圧領域幅の両端部近傍では、寄り
皺が発生しやすい上に(図14の符号6a及び6b参
照)、それよりも両側ではもはや十分な圧力は得られ
ず、転写不可能となる。この場合、噴出器の出力を増大
させ、衝突圧分布P(x)を全体として上昇させれば、
両側部の衝突圧は許容最小衝突圧Pmin以上となる。
しかしながら、今度は中心部の衝突圧が許容最大衝突圧
Pmaxを超えてしまい前記の如く不都合を生じてしま
う。
When the width of the base material to be transferred is smaller than the width of the effective pressurized area as shown in FIG. 2A, the collision pressure can be applied as the transfer pressure without any problem. Further, when the width of the substrate to be transferred becomes wider and the width of the substrate to be transferred is substantially equal to the width of the effective pressing area as shown in FIG. Collision occurs, the projection density decreases, and the irregularity followability deteriorates. In addition, a force due to the collision pressure is applied to the transfer sheet in a direction along the tangent plane of the envelope surface (horizontal direction in the figure), and the transfer sheet is stretched on the surface to be transferred, and is displaced to cause wrinkles. Easy to do. Further, when the width of the transferred base material is further increased and the width of the transferred base material is wider than the effective pressing region width as shown in FIG. 2C, the state as shown in FIG. 1 is obtained. In the vicinity of both ends, wrinkles are likely to occur (see reference numerals 6a and 6b in FIG. 14), and sufficient pressure is no longer obtained on both sides to make transfer impossible. In this case, if the output of the ejector is increased and the collision pressure distribution P (x) is raised as a whole,
The collision pressure on both sides is equal to or higher than the allowable minimum collision pressure Pmin.
However, this time, the collision pressure at the center exceeds the maximum permissible collision pressure Pmax, causing the above-described inconvenience.

【0017】そして、図1や図2(C)の様に、一台の
噴出器では被転写基材の被転写面の全幅方向をカバーで
きない時は、複数の噴出器で幅方向を分担して受持ち、
全幅に適切な衝突圧が与えられる様にすると良い。しか
し、なるべくならば噴出器の台数は増やさずに例えば一
台の噴出器でカバーする様にした方が楽である。例え
ば、噴出器の羽根車の大きさを大きくしたり、羽根車か
ら飛び出してくる固体粒子が出る開口部の拡大、或い
は、噴出器を転写シートから遠ざたりする方法〔図2
(D)参照〕である。ある程度ならば、この様な方法で
も可能である。但し、前記開口部の拡大、羽根車の大型
化も限度があり、噴出器を転写シートから遠ざける方法
は、該噴出器から噴出される固体粒子総量は基本的には
同じなので、衝突する面積が広くなれば投射密度が低下
する為、投射密度が影響して転写速度が低下し生産性を
落とす事がある。従って、この様な場合には、複数の噴
出器を使用することなる。
As shown in FIG. 1 and FIG. 2C, when one jetting device cannot cover the entire width direction of the transfer surface of the substrate to be transferred, a plurality of jetting devices share the width direction. Responsible for
It is preferable that an appropriate collision pressure be applied to the entire width. However, if possible, it is easier to cover the number of ejectors with, for example, one ejector without increasing the number of ejectors. For example, a method of enlarging the size of the impeller of the ejector, enlarging the opening through which solid particles coming out of the impeller emerge, or moving the ejector away from the transfer sheet [FIG.
(D). To some extent, such a method is also possible. However, there is a limit to the enlargement of the opening and the size of the impeller, and the method of moving the ejector away from the transfer sheet is basically the same as the total amount of solid particles ejected from the ejector. If the width is increased, the projection density is reduced, so that the projection density is affected and the transfer speed is reduced, which may lower the productivity. Therefore, in such a case, a plurality of ejectors will be used.

【0018】以上の様に、なるべく一台の噴出器からの
固体粒子は広い面積に衝突させるのが効率的ではある
が、その場合は衝突圧的には有効加圧領域内であっても
領域内周辺部では、固体粒子は斜め気味に衝突すること
になる。斜め衝突は後述する様に利点も有るが、欠点も
ある。その一つは、転写シートが横方向にずらされて、
「寄り皺」が発生し転写不良となる事がある(図14の
符号6a及び6b参照)。従って、固体粒子衝突圧によ
る転写は、有効加圧領域を考慮する事はもちろん必要だ
が、斜め衝突による欠点も考慮する必要がある。この
為、固体粒子の加速に特に羽根車を利用する場合は、噴
出される固体粒子に広がりが有るので、有効加圧領域を
考慮する事はもちろん必要だが、特に、衝突領域内で外
側部分では衝突角度が小さくなる為、斜め衝突による欠
点も考慮して、寄り皺の発生も防ぎつつ効率的に衝突圧
を与えることが必要となる。
As described above, it is efficient to make the solid particles from one ejector collide with a large area as much as possible. In the inner peripheral portion, the solid particles collide obliquely. Although oblique collision has advantages as described later, it also has disadvantages. One of them is that the transfer sheet is shifted laterally,
"Wrinkling" may occur and transfer failure may occur (see reference numerals 6a and 6b in FIG. 14). Therefore, in the transfer using the solid particle collision pressure, it is necessary to consider not only the effective pressurization area but also the defect due to the oblique collision. For this reason, when using an impeller to accelerate the solid particles, it is necessary to consider the effective pressurized area because the ejected solid particles have a spread, especially in the outer part in the collision area. Since the collision angle is reduced, it is necessary to efficiently apply the collision pressure while preventing the occurrence of wrinkles in consideration of the defect due to the oblique collision.

【0019】そこで、本発明の曲面転写方法では、図3
の概念図に示す如く、被転写基材Bの被転写面の包絡面
に対する衝突角度αが、70度以上となる固体粒子Pの
みを(転写すべき部分の)転写シートSに衝突させる様
にするのである。衝突角度αを70度以上とする事によ
って、寄り皺発生による転写不良を防ぎつつ、有効な衝
突圧を与えて効率的に転写できる様になる。被転写基材
(実際は転写シート)に衝突する固体粒子の投射密度分
布D(x)は、例えば図3の様に、衝突角度70度未満
の固体粒子を衝突させない為、釣鐘型分布の両袖が無い
分布になる。
Therefore, in the curved surface transfer method of the present invention, FIG.
As shown in the conceptual diagram, only the solid particles P whose collision angle α of the transfer-receiving surface of the transfer-receiving substrate B with respect to the envelope surface is 70 degrees or more collide with the transfer sheet S (of the portion to be transferred). You do it. By setting the collision angle α to 70 degrees or more, transfer can be efficiently performed by applying an effective collision pressure while preventing transfer failure due to wrinkling. The projection density distribution D (x) of the solid particles colliding with the substrate to be transferred (actually, the transfer sheet) has a bell-shaped distribution in order to prevent the solid particles having a collision angle of less than 70 degrees from colliding as shown in FIG. Has no distribution.

【0020】〔固体粒子噴出装置〕そして、本発明の固
体粒子噴出装置は、転写シートに衝突する固体粒子を、
被転写基材の被転写面の包絡面に対する固体粒子の衝突
角度が70度以上の固体粒子のみとする衝突角度設定手
段を、羽根車によって固体粒子を加速する粒子加速手段
と共に備えた装置とする。衝突角度設定手段は、該粒子
加速手段を有する噴出器自体に備えさせた手段でも良い
し、噴出器から出てきた後の固体粒子を規制して、衝突
する固体粒子の衝突角度αが70度以上となる様にする
手段でも良い。例えば、後者の場合、羽根車利用の噴出
器と、該噴出器から広がって噴出して衝突角度70度未
満となる固体粒子が、衝突しようとする転写シート上の
前記噴出器とは離れた空間に、衝突角度設定手段として
遮蔽板を設けて、衝突角度70未満の固体粒子を遮蔽
し、転写シートに衝突させい様にする。従って、固体粒
子噴出装置は、(衝突角度70未満となる固体粒子も噴
出する)噴出器と、衝突角度設定手段としての遮蔽板と
から、少なくとも構成される。
[Solid Particle Ejecting Apparatus] The solid particle ejecting apparatus of the present invention provides a solid particle
A device provided with a collision angle setting means for setting only the solid particles having a collision angle of 70 ° or more to the envelope surface of the transfer-receiving surface of the transfer-receiving substrate together with the particle acceleration means for accelerating the solid particles by an impeller. . The collision angle setting means may be means provided in the ejector itself having the particle accelerating means, or may regulate the solid particles coming out of the ejector so that the collision angle α of the colliding solid particles is 70 degrees. Means for achieving the above may be used. For example, in the case of the latter, an ejector using an impeller and solid particles spreading from the ejector and ejecting at a collision angle of less than 70 degrees are separated from the ejector on the transfer sheet to collide with the ejector. In addition, a shielding plate is provided as a collision angle setting means so as to shield solid particles having a collision angle of less than 70 so as not to collide with the transfer sheet. Therefore, the solid particle ejection device is constituted at least by an ejector (which also ejects solid particles having a collision angle of less than 70) and a shielding plate as collision angle setting means.

【0021】そこで、次に、噴出器と、衝突角度設定手
段として上記遮蔽板とを備えた、本発明の固体粒子噴出
装置を、複数台使用する場合で説明する。なお、特にこ
とわらない限り、ただ単に噴出器と記したときは、衝突
角度設定手段を備えていない物を指し、固体粒子噴出装
置と記したときは、衝突角度設定手段を備えた本発明の
装置を指す。
Therefore, a case where a plurality of solid particle jetting devices of the present invention, each including a jetting device and the above-mentioned shielding plate as collision angle setting means, will be described. Unless otherwise specified, when simply referred to as an ejector, it refers to an object that does not include a collision angle setting device, and when referred to as a solid particle ejection device, the present invention includes a collision angle setting device. Refers to the device.

【0022】図4は、複数の噴出器で幅方向を分担し
て、全幅に適切な衝突圧が与えられる様にする場合の概
念図である。同図では2台の噴出器1a及び1bで、被
転写基材Bの全幅を分担し受け持つ。各噴出器とも、内
側に衝突角度αが70度以上の適切な衝突角度となる領
域を有する。そして、その両外に、不適切な衝突角度
(70度未満)を与える固体粒子の投射部分を有し、そ
のうちの被転写基材側(図4では中央寄りの側)の方が
不良投射部分2a及び2bとなる。そこで、本発明の固
体粒子噴出装置の一形態では、図5(A)及び(B)の
概念図で示す如く、不良投射部分2a及び2b内に、そ
れぞれ遮蔽板3a及び3bを設ける。この遮蔽板が衝突
角度設定手段である。従って、噴出器1aと遮蔽板3a
とで1つの本発明の固体粒子噴出装置10aとなる。な
お、衝突角度70未満の固体粒子の投射部分は噴出器の
左右両側にも出来るが、遮蔽板で遮蔽するのは被転写基
材内側の方の不良となる投射部分のみで良い(外側部分
の固体粒子は転写に必要ない)。図面の如く、不良投射
部分に噴出器から噴出された固体粒子は、遮蔽板で遮ら
れて被転写基材には向かわない。この結果、転写シート
Sに衝突する固体粒子は、衝突角度αが70度以上の固
体粒子のみとなる。遮蔽板で遮蔽された固体粒子Pは、
同図の場合、遮蔽板は平板状で外側が低い傾斜面を成す
様にしてあるので、遮蔽板上を転がり落ち、その端から
落下する。従って、遮蔽板の端は、落下した固体粒子が
被転写基材上に落ちない様に、被転写基材の端の外側ま
で伸ばしてある。転写シートSが被転写基材よりも広幅
で、転写シート上に固体粒子を落とさない場合は、転写
シートの端よりも外側まで、遮蔽板の端を伸ばすと良
い。この図では、説明の都合上、全固体粒子Pのうち、
遮蔽板で遮蔽された以降のもののみ、拡大して図示し、
その他の固体粒子は図示を略してある。
FIG. 4 is a conceptual diagram in the case where a plurality of ejectors share the width direction so that an appropriate collision pressure is applied to the entire width. In the figure, two ejectors 1a and 1b share and take over the entire width of the substrate B to be transferred. Each ejector has a region on the inside where the collision angle α is an appropriate collision angle of 70 degrees or more. In addition, on both sides, there are projection portions of solid particles that give an inappropriate collision angle (less than 70 degrees), of which the side of the substrate to be transferred (the side closer to the center in FIG. 4) is the poorly projected portion. 2a and 2b. Therefore, in one embodiment of the solid particle ejection device of the present invention, as shown in the conceptual diagrams of FIGS. 5A and 5B, shielding plates 3a and 3b are provided in the defective projection portions 2a and 2b, respectively. This shielding plate is a collision angle setting means. Therefore, the ejector 1a and the shielding plate 3a
This constitutes one solid particle ejection device 10a of the present invention. In addition, the projection portion of the solid particles having a collision angle of less than 70 can be formed on both the left and right sides of the ejector, but only the defective projection portion on the inner side of the transfer substrate needs to be shielded by the shielding plate (the outer portion). Solid particles are not required for transfer). As shown in the drawing, the solid particles ejected from the ejector to the defective projection portion are blocked by the shielding plate and do not go to the substrate to be transferred. As a result, the solid particles that collide with the transfer sheet S are only solid particles having a collision angle α of 70 degrees or more. The solid particles P shielded by the shielding plate are:
In the case of the figure, the shielding plate is flat and has a low inclined surface on the outside, so that it falls down on the shielding plate and falls from the end. Therefore, the edge of the shielding plate extends to the outside of the edge of the transfer substrate so that the dropped solid particles do not fall on the transfer substrate. When the transfer sheet S is wider than the base material to be transferred and does not drop solid particles on the transfer sheet, the end of the shielding plate may be extended to the outside of the end of the transfer sheet. In this figure, for convenience of explanation, of all solid particles P,
Only those after being shielded by the shielding plate are shown enlarged.
Other solid particles are not shown.

【0023】なお、この場合の固体粒子噴出装置10a
及び10bは、図5(A)及び(B)の様な遮蔽板の配
置の場合、遮蔽板3a及び3bの各々の中央側の端が干
渉するので、各固体粒子噴出装置の噴出器1aと1bと
は、図5(C)の様に被転写基材Bの移送方向にずらし
て配置すると良い。なお、下記する噴出ガイドの場合
は、それが相互に干渉しなければ、この点では、固体粒
子噴出装置はずらす必要は無い。また、図5(C)にて
衝突領域5として描いた形状は、各噴出器1a及び1b
から噴出する固体粒子の拡がり具合を概念的に示す為の
ものであり、実際に衝突する領域を平面的に見た形状を
概念的に示すものでは無い(図14の符号5a及び5b
参照)。また、もちろんだが、これら固体粒子噴出装置
で、衝突角度αが70度以上となる有効加圧領域は、被
転写基材搬送方向で一部重複する様にする。
In this case, the solid particle ejection device 10a
And 10b, when the shielding plates are arranged as shown in FIGS. 5 (A) and 5 (B), the ends on the center side of the shielding plates 3a and 3b interfere with each other, so that the ejector 1a of each solid particle ejection device is 1b is preferably shifted from the transfer direction of the base material B as shown in FIG. In the case of the ejection guides described below, there is no need to remove the solid particle ejection device at this point as long as they do not interfere with each other. In addition, the shape drawn as the collision area 5 in FIG.
It is intended to conceptually show the degree of spread of the solid particles ejected from the surface, and does not conceptually show the shape of the area actually colliding in a plan view (reference numerals 5a and 5b in FIG. 14).
reference). Also, needless to say, in these solid particle ejecting apparatuses, the effective pressurized area where the collision angle α is 70 degrees or more is made to partially overlap in the transfer substrate transfer direction.

【0024】なお、図示はしないが、衝突角度設定手段
とては、固体粒子が飛び出す開口部を開口し且つその他
の部分で羽根車周囲を覆うカバーを設け、該カバーの開
口部から外に向かって噴出ガイドをホーン状に設置し、
衝突角度70未満となる固体粒子を、衝突角度70以上
となる方向に、壁面で反射させる等して規制しても良
い。噴出カイドによって、噴出器から噴出する固体粒子
の噴出方向が絞られて、噴出ガイド通過後の固体粒子
は、衝突角度70以上の固体粒子のみとする事ができ
る。
Although not shown, the collision angle setting means is provided with a cover that opens an opening through which the solid particles fly out and covers the periphery of the impeller at other portions, and faces outward from the opening of the cover. And set the spout guide in a horn shape,
The solid particles having a collision angle of less than 70 may be regulated by, for example, being reflected on a wall surface in a direction having a collision angle of 70 or more. By the ejection guide, the ejection direction of the solid particles ejected from the ejector is narrowed, and the solid particles after passing through the ejection guide can be only the solid particles having a collision angle of 70 or more.

【0025】以下、さらに本発明を詳述する。Hereinafter, the present invention will be described in more detail.

【0026】〔噴出器:羽根車〕ここで説明する噴出器
は、本発明の固体粒子噴出装置において、衝突角度設定
手段と組み合わせて使用し、且つ固体粒子を加速する粒
子加速手段として羽根車を用いるものであり、固体粒子
噴出装置の中核を成す手段である。
[Ejector: Impeller] The ejector described here is used in combination with the collision angle setting means in the solid particle ejection apparatus of the present invention, and uses an impeller as particle acceleration means for accelerating the solid particles. This is a means that forms the core of the solid particle ejection device.

【0027】図6〜図8に、噴出器において固体粒子の
粒子加速手段として用い得る羽根車の一例の概念図を示
す。これらは、ブラスト分野にて使用されている遠心式
ブラスト装置に該当する。図面では、羽根車812は、
複数の羽根813がその両側を2枚の側面板814で固
定され、且つ回転中心部は羽根813が無い中空部81
5となっている。更に、この中空部815内に方向制御
器816を内在する。方向制御器816は、外周の一部
が円周方向に開口した開口部817を有し中空筒状で羽
根車812の回転軸芯と同一回転軸芯で、羽根車とは独
立して回動自在となっている。羽根車使用時は、方向制
御器の開口部を適宜の方向に向くように固定して、固体
粒子の噴出方向を調整する。更に、この方向制御器の内
部に、内部中空で羽根車812の回転軸芯と同一回転軸
芯のもう一つの羽根車が散布器818として内在する
(図8参照)。散布器818は外側の羽根車812と共
に回転する。そして、前記側面板814の回転中心には
回転軸819が固定され、回転軸819は、軸受820
で回転自在に軸支され電動機等の回転動力源(図示略)
によって駆動回転され、羽根車812が回転する。また
回転軸819は、羽根813を間に有する2枚の側面板
814間には貫通しておらず、軸無しの空間を形成して
いる。そして、散布器818の内部に固体粒子Pがホッ
パ等から輸送管を通って供給される。通常、固体粒子
は、羽根車の上方(直上又は斜上方)から供給する。散
布器内に供給された固体粒子は散布器の羽根車で外側に
飛び散る。飛び散った固体粒子は、方向制御器816の
開口部817によって許された方向にのみ放出され、外
側の羽根車812の羽根813と羽根813との間に供
給される。そして、羽根813に衝突し、羽根車812
の回転力で加速され、羽根車から噴出する。
FIGS. 6 to 8 show conceptual diagrams of an example of an impeller which can be used as a means for accelerating solid particles in an ejector. These correspond to centrifugal blasting devices used in the blasting field. In the drawing, the impeller 812 is
A plurality of blades 813 are fixed on both sides by two side plates 814, and the center of rotation is a hollow portion 81 having no blades 813.
It is 5. Further, a direction controller 816 is provided inside the hollow portion 815. The direction controller 816 has an opening 817 that is partially open in the circumferential direction, has a hollow cylindrical shape, and has the same rotation axis as the rotation axis of the impeller 812, and rotates independently of the impeller. It is free. When using the impeller, the opening of the direction controller is fixed so as to face an appropriate direction, and the ejection direction of the solid particles is adjusted. Further, inside the directional controller, another impeller having a hollow inside and the same rotation axis as the rotation axis of the impeller 812 is provided as a sprayer 818 (see FIG. 8). The spreader 818 rotates with the outer impeller 812. A rotation shaft 819 is fixed to the center of rotation of the side plate 814, and the rotation shaft 819 has a bearing 820.
A rotary power source such as an electric motor that is rotatably supported by a motor (not shown)
, And the impeller 812 rotates. The rotating shaft 819 does not penetrate between the two side plates 814 having the blades 813 therebetween, and forms a space without a shaft. Then, the solid particles P are supplied into the sprayer 818 from a hopper or the like through a transport pipe. Usually, the solid particles are supplied from above (directly above or obliquely above) the impeller. The solid particles supplied into the sprayer are scattered outward by the impeller of the sprayer. The scattered solid particles are emitted only in the direction allowed by the opening 817 of the direction controller 816 and supplied between the blades 813 of the outer impeller 812. Then, it collides with the blade 813 and the impeller 812
It is accelerated by the rotational force of the gas and squirts from the impeller.

【0028】なお、固体粒子の噴出方向は、図6〜図7
では略鉛直下方であるが、図10(B)の様に水平方
向、或いは斜下方(図示略)等としても良い。図9
(A)及び図9(B)に方向制御器816の開口部81
7の向きの設定より固体粒子の噴出方向を調整する噴出
方向制御の概念図を示す(図9(A)、(B)では方向
制御器はそれぞれ図示の位置で固定されている)。な
お、方向制御器816は、その開口部の円周方向、幅方
向の大きさを調整することで、固体粒子の噴出量を調整
することもできる。なお、図7に於いては、回転軸81
9は側面板814の外側のみで中空部815にまで貫通
していない構成となっているが、この他、中空部の直径
より細い回転軸を該中空部にまで貫通させたり、外周に
固体粒子通り抜け用の開口部を設けた中空筒状の回転軸
の内部自身を中空部とする構成などでも良い(図示
略)。羽根813の形は、図6〜図9の様な長方形の平
板(直方体)が代表的であるが、この他、湾曲曲面板、
スクリュープロペラ等のプロペラ形等を用いる事も可能
であり、用途、目的に応じて選択する。又、羽根の数は
複数枚、通常最大10枚程度までの範囲から選択する。
羽根車の形状、枚数、回転速度、及び固体粒子の質量や
供給速度と供給方向、方向制御器の開口部サイズ及び向
きの組み合わせにより、加速された固体粒子の噴出(吹
出)方向、噴出速度、投射密度、噴出拡散角等を調整す
る。
The ejection direction of the solid particles is shown in FIGS.
In FIG. 10 (B), it may be in a horizontal direction or a diagonally downward direction (not shown). FIG.
(A) and FIG. 9 (B) show the opening 81 of the direction controller 816.
FIGS. 9A and 9B are conceptual diagrams of ejection direction control for adjusting the ejection direction of solid particles from the setting of the direction 7 (the direction controllers are fixed at the illustrated positions in FIGS. 9A and 9B). Note that the direction controller 816 can also adjust the ejection amount of the solid particles by adjusting the size of the opening in the circumferential direction and the width direction. Note that, in FIG.
Reference numeral 9 denotes a configuration that is only outside the side plate 814 and does not penetrate to the hollow portion 815. In addition, a rotating shaft smaller than the diameter of the hollow portion may penetrate into the hollow portion, or solid particles may be formed on the outer periphery. A configuration may be adopted in which the inside of a hollow cylindrical rotary shaft provided with a through-hole is formed as a hollow portion (not shown). The shape of the blade 813 is typically a rectangular flat plate (a rectangular parallelepiped) as shown in FIGS.
It is also possible to use a propeller type such as a screw propeller, etc., which is selected according to the application and purpose. The number of blades is selected from a plurality of blades, usually up to a maximum of about ten blades.
By the combination of the shape, number, rotation speed, and the mass and supply speed and supply direction of the solid particles, the opening size and direction of the direction controller, the ejection direction of the accelerated solid particles, the ejection speed, Adjust the projection density, ejection angle, etc.

【0029】また、図10は、羽根車の別の一例を示す
概念図である。同図の羽根車812aは、複数の平板状
の羽根813aがその両側を2枚の側面板814aで固
定された構造である。通常、固体粒子Pは、羽根車の上
方(直上又は斜上方)から供給する。また、側面板81
4aは回転軸819aに対して幅方向の噴出方向の規制
もする。羽根車の形状、枚数、回転速度、及び固体粒子
の質量や供給速度と供給方向の組み合わせにより、加速
された固体粒子の噴出(吹出)方向、噴出速度、投射密
度、噴出拡散角等を調整する。固体粒子の噴出方向は鉛
直下方(図示略)、水平方向(図10)、或いは斜下方
(図示略)等が可能である。
FIG. 10 is a conceptual diagram showing another example of the impeller. The impeller 812a shown in the drawing has a structure in which a plurality of flat blades 813a are fixed on both sides by two side plates 814a. Usually, the solid particles P are supplied from above (directly above or obliquely above) the impeller. Also, the side plate 81
4a also regulates the ejection direction in the width direction with respect to the rotating shaft 819a. By adjusting the shape, the number, the rotation speed, the mass of the solid particles, the supply speed and the supply direction of the impellers, the direction of the ejection (spout) of the accelerated solid particles, the ejection speed, the projection density, the ejection diffusion angle, etc. are adjusted. . The ejection direction of the solid particles can be vertically downward (not shown), horizontal (FIG. 10), obliquely downward (not shown), or the like.

【0030】また、上記した羽根車812、812a等
の羽根車には、更に必要に応じ、固体粒子の噴出取出部
分のみ開口させ、それ以外の羽根車周囲を被覆する噴出
ガイド(不図示)を備える事で、固体粒子の噴出方向を
揃えたりする固体粒子噴出方向制御を行うこともでき
る。噴出ガイドの開口部の形状は、例えば、中空の円柱
状、多角柱状、円錐状、多角錐状、魚尾状等である。噴
出ガイドは、単一開口部を有するものでも良い。上記噴
出カイドは、本発明に於ける衝突角度設定手段の1例で
ある。本発明の固体粒子噴出装置では、噴出ガイド無し
でも、例えば上記した遮蔽板を衝突角度設定手段として
用いて構成する事ができる。
Further, the impellers such as the above-mentioned impellers 812, 812a are further provided with an ejection guide (not shown) for opening only a portion for ejecting and ejecting solid particles and covering the periphery of the other impellers, if necessary. Provision of the solid particle ejecting direction makes it possible to control the ejecting direction of the solid particles such as aligning the ejecting direction of the solid particles. The shape of the opening of the ejection guide is, for example, a hollow cylindrical shape, a polygonal column shape, a conical shape, a polygonal pyramid shape, a fish tail shape, or the like. The ejection guide may have a single opening. The jetting guide is an example of the collision angle setting means in the present invention. The solid particle ejection device of the present invention can be configured without the ejection guide, for example, by using the above-mentioned shielding plate as the collision angle setting means.

【0031】羽根車812、812a等の羽根車の寸法
は、通常直径5〜60cm程度、羽根の幅は5〜20c
m程度、羽根の長さは、ほぼ羽根車の直径程度、羽根車
の回転数は500〜5000〔rpm〕程度である。固
体粒子の噴出速度は10〜50〔m/s〕程度、投射密
度(基材単位面積当たりに衝突させる固体粒子の総重
量)は10〜150〔kg/m2 〕程度である。
The dimensions of the impellers such as the impellers 812 and 812a are usually about 5 to 60 cm in diameter, and the width of the impeller is 5 to 20 c.
m, the length of the impeller is about the diameter of the impeller, and the rotation speed of the impeller is about 500-5000 [rpm]. The ejection speed of the solid particles is about 10 to 50 [m / s], and the projection density (total weight of the solid particles to be collided per unit area of the base material) is about 10 to 150 [kg / m 2 ].

【0032】また、羽根車の羽根の材質は、セラミッ
ク、或いはスチール、高クロム鋳鋼、チタン、チタン合
金等の金属等から適宜選択すれば良い。固体粒子は羽根
に接触して加速されるので、羽根には、耐摩耗性のよい
高クロム鋳鋼、セラミックを用いると良い。
The material of the impeller blades may be appropriately selected from ceramics, metals such as steel, high chromium cast steel, titanium, and titanium alloy. Since the solid particles are accelerated upon contact with the blade, it is preferable to use a high chromium cast steel or ceramic having good wear resistance for the blade.

【0033】〔衝突圧印加形態〕また、そもそも衝突圧
は、必ずしも衝突領域内で全て均一にする必要はない。
例えば、転写シートの搬送方向に直交する幅方向の中央
部が最大の衝突圧で、幅方向両端部に行くに従って衝突
圧が低下する山型圧力分布に設定する(図1参照)。中
央部から両側部に向かって順次段階的に圧接を進行さ
せ、内部に空気を抱き込むのを防ぐ。もちろん、衝突圧
は転写が完全に行える圧以上で、且つ転写シートの歪
み、被転写基材の変形、破損等の生じない圧以下の適正
圧力範囲内とする。衝突圧の調整は、固体粒子の速度、
単位面積及び単位時間当たりに衝突する固体粒子数、1
粒子の質量、投射密度を制御することで調整する。これ
らのうち、固体粒子の速度を調整するには、羽根車を用
いる噴出器では、羽根車の回転数、羽根車の直径等で調
整する。
[Collision Pressure Application Mode] In addition, it is not always necessary to make the collision pressure uniform in the collision area.
For example, the peak pressure distribution is set such that the central portion in the width direction perpendicular to the transfer direction of the transfer sheet has the maximum collision pressure, and the collision pressure decreases toward both ends in the width direction (see FIG. 1). The pressure contact is made to proceed in a stepwise manner from the center toward both sides to prevent air from being trapped inside. It is needless to say that the collision pressure is within a proper pressure range that is equal to or higher than the pressure at which the transfer can be completely performed and is equal to or lower than the pressure at which the transfer sheet is not deformed, the base material to be transferred is not deformed or damaged. Adjusting the collision pressure depends on the speed of the solid particles,
Number of solid particles colliding per unit area and time, 1
It is adjusted by controlling the mass and projection density of the particles. Among these, in the case of an ejector using an impeller, the speed of the solid particles is adjusted by adjusting the rotation speed of the impeller, the diameter of the impeller, and the like.

【0034】〔被転写基材の形状に応じた固体粒子の衝
突方向〕衝突角度は90度の垂直衝突とするのが基本で
ある。しかし、わざと衝突角度を90度からずらして、
衝突角度70度以上の範囲内で斜め衝突させても良い。
或いは、垂直衝突と斜め衝突とを併用しても良い。ま
た、斜め衝突は異なる方向からの複数の斜め衝突を組み
合わせても良い。斜め衝突は、被転写面の凸部から凹部
に至る斜面(特に垂直衝突では衝突圧を与えにくい垂直
面)に対しても、固体粒子の運動エネルギーの衝突圧へ
の利用効率を向上させる為である。包絡面に水平な面
(接平面)に対する衝突圧の利用効率は多少犠牲なる
が、凹凸の被転写面全体でみれば、衝突圧が過少となる
部分を解消して、平均的に十分な衝突圧を加える事が可
能となる。この様な斜め衝突は、被転写面に於ける垂直
面の有無等の凹凸形状次第で採用する。また、例えば、
被転写基材を搬送しながら衝突圧を与える場合で、被転
写基材の被転写面の包絡面(の搬送方向に直角の断面形
状)が円型になる円筒状の凸曲面の場合であれば、複数
の固体粒子噴出装置のうち各固体粒子噴出装置が主とし
て受け持つ個別の衝突面(凸曲面の接平面)に対して、
略垂直に固体粒子が衝突する様に、固体粒子噴出装置の
向きを近接する被転写基材面の包絡面法線方向にして配
置すると良い。ただ、固体粒子噴出装置の向きは、転写
シート支持体側面に対して必ずしも垂直にする必要はな
い。また、固体粒子噴出装置は多めに設けておき、製造
する被転写基材によっては、一部の固体粒子噴出装置は
停止させても良い。
[Collision Direction of Solid Particles According to Shape of Substrate to be Transferred] The collision angle is basically a vertical collision of 90 degrees. However, deliberately shifting the collision angle from 90 degrees,
The oblique collision may be performed within the range of the collision angle of 70 degrees or more.
Alternatively, the vertical collision and the oblique collision may be used together. The oblique collision may be a combination of a plurality of oblique collisions from different directions. The oblique collision is for improving the utilization efficiency of the kinetic energy of the solid particles to the collision pressure even on a slope from the convex portion to the concave portion of the surface to be transferred (particularly a vertical surface which is hard to apply a collision pressure in a vertical collision). is there. Although the efficiency of using the collision pressure on the surface (tangent plane) horizontal to the envelope surface is somewhat sacrificed, the part where the collision pressure is too small is eliminated on the whole of the uneven transfer surface, and an average sufficient collision is achieved. It is possible to apply pressure. Such an oblique collision is employed depending on the uneven shape such as the presence or absence of a vertical surface on the transfer surface. Also, for example,
When the collision pressure is applied while the transfer substrate is being conveyed, and the envelope surface of the transfer surface of the transfer substrate (the cross-sectional shape perpendicular to the conveyance direction) is a circular cylindrical convex curved surface. For example, among a plurality of solid particle ejecting devices, each solid particle ejecting device mainly deals with an individual collision surface (tangent plane of a convex curved surface),
It is preferable to arrange the solid particle ejection device so that the solid particles collide substantially perpendicularly, with the direction of the envelope normal to the adjacent surface of the substrate to be transferred. However, the direction of the solid particle ejection device does not necessarily need to be perpendicular to the side surface of the transfer sheet support. Further, a large number of solid particle ejection devices may be provided, and some of the solid particle ejection devices may be stopped depending on the substrate to be transferred.

【0035】〔固体粒子衝突圧の実際的な利用法〕ま
た、実際に固体粒子を用いて転写する際は、固体粒子は
周囲の雰囲気中に飛散させずに且つ循環再利用するのが
好ましい。つまり、この為には、固体粒子衝突圧による
転写圧を押圧する衝突空間を周囲空間と隔離するチャン
バ(隔離室)内で、固体粒子を転写シートに衝突させて
転写圧を加える等すると良い。支持体の剥離は、チャン
バ外でも良い。また、噴出させた固体粒子は回収し再利
用する。
[Practical Use of Solid Particle Impact Pressure] When transferring using solid particles, it is preferable that the solid particles be recycled without being scattered in the surrounding atmosphere. That is, for this purpose, the transfer pressure is preferably applied by causing the solid particles to collide with the transfer sheet in a chamber (isolation chamber) that separates the collision space for pressing the transfer pressure due to the solid particle collision pressure from the surrounding space. The support may be peeled off the chamber. The ejected solid particles are collected and reused.

【0036】〔被転写基材〕本発明における被転写基材
としては、被転写面が平坦な平面でももちろん適用でき
るが、本発明が真価を発揮するのは被転写面が凹凸表面
であり、特にその凹凸が三次元的である被転写基材であ
る。本発明では、流体的に振る舞うことができる固体粒
子群の衝突圧を利用するため、送り方向のみ又は幅方向
のみ等と一方向にのみ凹凸がある二次元的凹凸、送り方
向及び幅方向の両方等と2方向に凹凸がある三次元的凹
凸にも適用できる。例えば図11の斜視図に示す様な凹
凸表面である。同図の表面凹凸は例えば石目の凹凸であ
る。凹凸形状は段差が1〜10mm、凹部の幅が1〜1
0mm、凸部の幅が5mm以上のもの等である。また、
同図の様な凹凸を大柄な凹凸として、該大柄な凹凸に重
畳して微細な凹凸を有する凹凸表面でも良い。また、凹
凸表面の凹部底部や凹部内側面に転写すべき面を有する
被転写基材も可能である。また、被転写基材は全体とし
て(包絡面形状が)平板状の板材だけでなく、断面が円
弧状に凸又は凹に送り方向又は幅方向に湾曲した二次元
的凹凸を有する基材でも良く、またその湾曲面にさらに
細かい三次元的な表面凹凸があってもよい。なお、本発
明では、被転写基材の円弧状等の二次元的な凹凸に対し
て、それを例えば幅方向として、或いは送り方向として
転写するかは作業性等を考慮して任意にできる。
[Substrate to be Transferred] The substrate to be transferred in the present invention can of course be applied even if the surface to be transferred is flat, but the present invention exhibits its true value when the surface to be transferred is an uneven surface. In particular, it is a transferred substrate whose irregularities are three-dimensional. In the present invention, in order to utilize the collision pressure of a group of solid particles that can behave fluidly, two-dimensional irregularities having irregularities in only one direction such as only in the feed direction or only in the width direction, both in the feed direction and in the width direction The present invention can be applied to three-dimensional unevenness having unevenness in two directions. For example, an uneven surface as shown in the perspective view of FIG. The surface irregularities in the drawing are, for example, stone-like irregularities. The uneven shape has a step of 1 to 10 mm and a width of the concave of 1 to 1
0 mm, and the width of the convex portion is 5 mm or more. Also,
The unevenness as shown in the figure may be a large-sized unevenness, and an uneven surface having fine unevenness superimposed on the large-sized unevenness may be used. Further, a substrate to be transferred having a surface to be transferred to the bottom of the concave portion or the inner side surface of the concave portion on the uneven surface is also possible. In addition, the substrate to be transferred may be not only a plate material (envelope surface shape) as a whole but also a substrate having a two-dimensional unevenness whose cross section is convex or concave in an arc shape and curved in the feeding direction or width direction. The curved surface may have finer three-dimensional surface irregularities. In the present invention, it is possible to arbitrarily determine whether to transfer the two-dimensional irregularities such as the arc shape of the base material to be transferred, for example, in the width direction or in the feed direction, in consideration of workability and the like.

【0037】また、大柄な凹凸に重畳して微細な凹凸を
有する凹凸表面の被転写基材、或いは凹凸表面の凹部底
部や凹部内側面に転写すべき面を有する被転写基材も可
能である。大柄な凹凸と微細な凹凸との組み合わせの凹
凸から成り、且つ三次元的な表面凹凸を持つ化粧材の凹
凸模様の具体例としては、例えば、大柄な凹凸として目
地、溝等を有するタイル、煉瓦、石等の二次元配列模様
を有し、その上に微細な凹凸としてスタッコ調、リシン
調等の吹き付け塗装面の凹凸模様、花崗岩の劈開面やト
ラバーチン大理石板等の石材表面の凹凸等を有する石目
調凹凸模様、或いは大柄な凹凸模様として目地、溝、
簓、サネ(実)等を有する羽目板模様、浮造木目板模様
を有し、その上に微細凹凸として導管溝、浮出した年
輪、ヘアライン等を有する木目調の凹凸模様が挙げられ
る。なお、凹凸面を構成する各面は、平面のみから、曲
面のみらか、或いは平面と曲面の組み合わせと任意であ
る。従って、本発明の被転写基材上の曲面とは、断面が
下駄の歯形の様に複数の平面のみから構成される曲面を
持たない凹凸面も意味する。また、本発明でいう曲率と
は、立方体の辺或いは頂点の周辺の様に角張っている曲
率無限大(曲率半径=0)の場合も包含する。なお、被
転写基材表面を所望の凹凸とするには、プレス加工、エ
ンボス加工、押し出し加工、切削加工、成形加工等によ
れば良い。
It is also possible to use a substrate to be transferred having an irregular surface having fine irregularities superimposed on large irregularities, or a substrate having a surface to be transferred to the bottom of the concave portion or the inner surface of the concave portion of the irregular surface. . Specific examples of the uneven pattern of the decorative material having a combination of large and small irregularities and fine irregularities and having three-dimensional surface irregularities include, for example, tiles and bricks having joints and grooves as large irregularities. , Stones and other two-dimensional array patterns, on which there are fine irregularities such as stucco-like, lysine-like, etc. spray-painted surfaces, granite cleavage surfaces and stone surface irregularities such as travertine marble plates Joints, grooves, as stone-like uneven patterns or large uneven patterns
A woodgrain-like uneven pattern having a siding pattern, a floating woodgrain pattern having sashimi, sane (real), and the like, and a fine groove thereon having a conduit groove, a raised annual ring, a hairline, and the like. In addition, each surface which forms the uneven surface is not limited to a flat surface, may be a curved surface alone, or may be a combination of a flat surface and a curved surface. Therefore, the curved surface on the substrate to be transferred according to the present invention also means a concavo-convex surface having no curved surface composed of only a plurality of flat surfaces, such as a tooth profile of a clog. Further, the curvature in the present invention includes a case where the curvature is infinite (the radius of curvature = 0) which is angular like the periphery of a side or a vertex of a cube. In order to make the surface of the substrate to be transferred into a desired unevenness, a pressing process, an embossing process, an extrusion process, a cutting process, a forming process, or the like may be used.

【0038】被転写基材の材質は任意であり、例えば、
板材であれば、ケイ酸カルシウム板、押し出しセメント
板、スラグセメント板、ALC(軽量気泡コンクリー
ト)板、GRC(硝子繊維強化コンクリート)板、パル
プセメント板等の非陶磁器窯業系板、木材単板や木材合
板、パーティクルボード、集成材、木質中密度繊維板
(MDF)等の木質板、また、鉄、アルミニウム、銅等
の金属板、陶磁器やガラス等のセラミックス、ポリプロ
ピレン、ABS樹脂、フェノール樹脂等の樹脂成形品等
でも良い。また、これらの被転写基材表面には、予め、
接着剤との接着を補助する為の易接着プライマー、或い
は表面の微凹凸や多孔質を目止めし封じるシーラー剤を
塗工しておいても良い。易接着プライマー、或いはシー
ラー剤としては、イソシアネート、2液硬化ウレタン樹
脂、エポキシ樹脂、アクリル樹脂、酢酸ビニル樹脂等の
樹脂を塗工し形成する。
The material of the substrate to be transferred is arbitrary.
Non-porcelain ceramic plates such as calcium silicate plate, extruded cement plate, slag cement plate, ALC (lightweight cellular concrete) plate, GRC (glass fiber reinforced concrete) plate, pulp cement plate, wood veneer, etc. Wood plywood, particle board, glued laminated wood, wood board such as wood medium density fiber board (MDF), metal board such as iron, aluminum, copper, ceramics such as ceramics and glass, polypropylene, ABS resin, phenol resin, etc. A resin molded product may be used. In addition, these transfer substrate surfaces, in advance,
An easy-adhesion primer for assisting the adhesion with the adhesive or a sealer for sealing and sealing fine irregularities and porosity on the surface may be applied. A resin such as an isocyanate, a two-part curable urethane resin, an epoxy resin, an acrylic resin, or a vinyl acetate resin is applied as an easy-adhesion primer or a sealer.

【0039】〔転写シート〕転写シートは支持体と転写
移行する転写層とからなる。転写層は少なくとも装飾層
からなる。また、接着剤を、転写層の一部となる接着剤
層として、転写シートに形成しておいても良い。なお、
被転写基材表面と転写シートとの間に抱き込まれて残留
する空気を抜き易くする為に、必要に応じて転写シート
全面に転写シート全層を貫通する小孔を多数穿設しても
良い。
[Transfer Sheet] The transfer sheet is composed of a support and a transfer layer which transfers and transfers. The transfer layer comprises at least a decorative layer. Further, the adhesive may be formed on the transfer sheet as an adhesive layer that becomes a part of the transfer layer. In addition,
Even if a large number of small holes are formed in the entire surface of the transfer sheet, if necessary, the entire surface of the transfer sheet may be perforated to make it easier to remove the residual air trapped between the surface of the substrate to be transferred and the transfer sheet. good.

【0040】(支持体)上記支持体には、被転写基材が
二次元的凹凸表面であれば、延伸性が無い紙等も可能だ
が、本発明が真価を発揮する三次元的凹凸表面に適用す
る為には、少なくとも転写時には延伸性の有る支持体を
用いる。従って、支持体には、従来公知の熱可塑性樹脂
フィルムの他に、常温でも延伸するゴム膜も使用でき
る。熱可塑性樹脂フィルムの場合、装飾層等の転写層形
成時には延伸性が殆どなく、転写時には、加熱により充
分な延伸性を発現し、且つ冷却後は変形した形状を保持
し続け、弾性による形状の復元を生じない転写シートと
して、従来公知の通常の転写シート同様に容易に、本発
明で用い得る転写シートは用意出来る。支持体の具体例
としては、延伸性の点で、従来多用されている2軸延伸
ポリエチレンテレフタレートフィルムでも、表面凹凸形
状次第で、加熱条件、衝突圧条件等の設定によって、必
要充分な延伸性を発現させることができるので曲面転写
は可能である。ただ、より低温・低圧で延伸性が発現し
易い好ましい支持体としては、例えば、エチレン・テレ
フタレート・イソフタレート共重合体ポリエステル、ポ
リブチレンテレフタレート等の熱可塑性ポリエステル樹
脂、ポリプロピレン、ポリエチレン、ポリメチルペンテ
ン、エチレン−プロピレン−ブテン3元共重合体、オレ
フィン系熱可塑性エラストマー等のポリオレフィン樹
脂、塩化ビニル樹脂、エチレン−酢酸ビニル共重合体、
エチレン−ビニルアルコール共重合体、アクリル樹脂、
ポリアミド樹脂、或いは天然ゴム、合成ゴム、ウレタン
系熱可塑性エラストマー等を単体又は混合物で、単層又
は異種の複層とした樹脂フィルム(シート)を用いるこ
とができる。これら樹脂フィルムは低延伸又は無延伸の
物が好ましい。例えば、具体的にはポリプロピレン系熱
可塑性エラストマーフィルムは、延伸特性に優れ且つ廃
棄燃焼時に塩酸ガスを発生せず環境対策的にも好ましい
支持体の一つである。支持体の厚さは、通常20〜20
0μmである。
(Support) If the substrate to be transferred has a two-dimensional uneven surface, a paper or the like having no stretchability can be used as the support, but the three-dimensional uneven surface where the present invention shows its true value can be used. For application, a stretchable support is used at least at the time of transfer. Therefore, in addition to a conventionally known thermoplastic resin film, a rubber film that can be stretched even at normal temperature can be used as the support. In the case of a thermoplastic resin film, when forming a transfer layer such as a decorative layer, there is almost no stretchability, and during transfer, a sufficient stretchability is exhibited by heating, and after cooling, the deformed shape is maintained, and the shape due to elasticity is maintained. As a transfer sheet that does not cause restoration, a transfer sheet that can be used in the present invention can be prepared as easily as a conventionally known ordinary transfer sheet. As a specific example of the support, in terms of stretchability, even a biaxially stretched polyethylene terephthalate film, which has been widely used in the past, can provide necessary and sufficient stretchability by setting heating conditions, collision pressure conditions, and the like, depending on the surface unevenness. Since it can be expressed, curved surface transfer is possible. However, preferred supports that easily exhibit stretchability at lower temperature and pressure are, for example, ethylene terephthalate / isophthalate copolymer polyester, thermoplastic polyester resin such as polybutylene terephthalate, polypropylene, polyethylene, polymethylpentene, Ethylene-propylene-butene terpolymer, polyolefin resin such as olefin-based thermoplastic elastomer, vinyl chloride resin, ethylene-vinyl acetate copolymer,
Ethylene-vinyl alcohol copolymer, acrylic resin,
A resin film (sheet) made of a single layer or different layers of a polyamide resin, a natural rubber, a synthetic rubber, a urethane-based thermoplastic elastomer, or the like, alone or as a mixture can be used. These resin films are preferably low stretched or unstretched. For example, specifically, a polypropylene-based thermoplastic elastomer film is one of the supports that are excellent in stretching properties, do not generate hydrochloric acid gas during waste combustion, and are environmentally friendly. The thickness of the support is usually 20 to 20.
0 μm.

【0041】なお、支持体には必要に応じ、転写層側に
転写層との剥離性を向上させる為、支持体の構成要素と
して離型層を設けても良い。この離型層は支持体を剥離
時に、支持体の一部として転写層から剥離除去される。
離型層としては、例えば、シリコーン樹脂、メラミン樹
脂、ポリアミド樹脂、ウレタン樹脂、ポリオレフィン樹
脂、ワックス等の単体又はこれらを含む混合物が用いら
れる。また、剥離性の調整の為に、支持体の転写層側の
面にコロナ処理、オゾン処理等を行っても良い。
The support may be provided with a release layer as a component of the support, if necessary, on the transfer layer side to improve the releasability from the transfer layer. When the support is peeled off, the release layer is peeled off from the transfer layer as a part of the support.
As the release layer, for example, a simple substance such as a silicone resin, a melamine resin, a polyamide resin, a urethane resin, a polyolefin resin, a wax, or a mixture containing these is used. Further, in order to adjust the releasability, the surface of the support on the transfer layer side may be subjected to corona treatment, ozone treatment, or the like.

【0042】また、支持体には、転写層側の面に凹凸模
様を設ければ、転写後の転写層表面に砂目、梨地、木目
等の凹凸模様を賦形できる。凹凸模様は、被転写基材の
表面凹凸よりも小さい凹凸模様として設ける。凹凸模様
は、エンボス加工、サンドブラスト加工、賦形層(離型
層)による盛り上げ印刷加工等の公知の方法で形成す
る。
If the support is provided with an uneven pattern on the surface on the transfer layer side, an uneven pattern such as grain, satin, wood grain, etc. can be formed on the surface of the transfer layer after transfer. The concavo-convex pattern is provided as a concavo-convex pattern smaller than the surface concavo-convex of the substrate to be transferred. The concavo-convex pattern is formed by a known method such as embossing, sandblasting, and embossing printing using a shaping layer (release layer).

【0043】(転写層)転写層は少なくとも装飾層から
構成し、更に適宜、剥離層、接着剤層等も転写層の構成
要素とすることもある。接着剤層を有する構成では、転
写の際に転写シート又は被転写基材の片方又は両方に接
着剤を施すことを省略できる。装飾層はグラビア印刷、
シルクスクリーン印刷、オフセット印刷等の従来公知の
方法、材料で絵柄等を印刷した絵柄層、アルミニウム、
クロム、金、銀等の金属を公知の蒸着法等を用いて部分
的或いは全面に形成した金属薄膜層等であり、用途に合
わせたものを用いる。絵柄としては、被転写基材の表面
凹凸に合わせて、木目模様、石目模様、布目模様、タイ
ル調模様、煉瓦調模様、皮絞模様、文字、幾何学模様、
全面ベタ等を用いる。なお、絵柄層用インキは、バイン
ダー等からなるビヒクル、顔料や染料等の着色剤、これ
に適宜加える各種添加剤からなる。バインダーには、ア
クリル樹脂、塩化ビニル−酢酸ビニル共重合体、ポリエ
ステル樹脂、セルロース系樹脂、ポリウレタン樹脂、フ
ッ素樹脂等の単体又はこれらを含む混合物を用いる。着
色剤の顔料としては、チタン白、カーボンブラック、弁
柄、黄鉛、群青等の無機顔料、アニリンブラック、キナ
クリドン、イソインドリノン、フタロシアニンブルー等
の有機顔料を用いる。
(Transfer Layer) The transfer layer is composed of at least a decorative layer, and a release layer, an adhesive layer and the like may be a component of the transfer layer as appropriate. In the configuration having the adhesive layer, it is possible to omit applying the adhesive to one or both of the transfer sheet and the substrate to be transferred at the time of transfer. The decoration layer is gravure printing,
Conventionally known methods such as silk screen printing and offset printing, a pattern layer printed with a pattern or the like with a material, aluminum,
A metal thin film layer or the like in which a metal such as chromium, gold, silver or the like is partially or entirely formed by using a known vapor deposition method or the like. As the pattern, in accordance with the surface irregularities of the transferred substrate, wood pattern, stone pattern, cloth pattern, tile pattern, brick pattern, leather pattern, letters, geometric pattern,
Use solid on the whole surface. The picture layer ink is composed of a vehicle such as a binder, a coloring agent such as a pigment or a dye, and various additives appropriately added thereto. As the binder, an acrylic resin, a vinyl chloride-vinyl acetate copolymer, a polyester resin, a cellulosic resin, a polyurethane resin, a fluororesin, or the like, or a mixture containing them is used. As the pigment of the colorant, inorganic pigments such as titanium white, carbon black, red iron oxide, graphite, and ultramarine blue, and organic pigments such as aniline black, quinacridone, isoindolinone, and phthalocyanine blue are used.

【0044】また、剥離層を、支持体乃至は離型層と装
飾層との間の剥離性を調整する為、また、転写後の装飾
層の表面保護の為等に、これら層間に設けるのは、従来
公知の転写シートと同様である。剥離層には、例えば、
上記絵柄層用インキのバインダーに用いる樹脂等が用い
られる。なお、この剥離層は転写時に装飾層と共に被転
写基材側に転写され、装飾層の表面を被覆する。
A release layer may be provided between the support or release layer and the decorative layer to adjust the releasability between the decorative layer and to protect the surface of the decorative layer after transfer. Is the same as a conventionally known transfer sheet. For the release layer, for example,
A resin or the like used as a binder for the ink for a picture layer is used. The release layer is transferred to the transfer-receiving substrate together with the decorative layer during transfer, and covers the surface of the decorative layer.

【0045】〔接着剤〕接着剤は、転写シートの転写層
を構成する接着剤層としてや、被転写基材上の接着剤層
として、事前又は転写の直前に、オンライン塗工やオフ
ライン塗工で施す。被転写基材に施す場合には、転写シ
ート転写層の接着剤層を省略できる。用いる接着剤とし
ては、例えば、感熱型接着剤、湿気硬化型感熱溶融型接
着剤、ホットメルト接着剤、湿気硬化型ホットメルト接
着剤、2液硬化型接着剤、電離放射線硬化型接着剤、水
性接着剤、或いは粘着剤による感圧型接着剤等が挙げら
れる。感熱型接着剤としては、熱可塑性樹脂を用いた熱
融着型と、熱硬化性樹脂を用いた熱硬化型とがある。ま
た、接着剤は溶剤希釈又は無溶剤、或いは常温で液体又
は固体のいずれでも良く、適宜使い分ける。また、粘着
性を呈する感圧型の粘着剤以外の接着剤では、接着剤層
の単層のみで転写層とすることができる。接着剤層中に
顔料等の着色剤を添加すれば、全面ベタのインク層から
なる装飾層ともいえる。例えば感熱溶融型接着剤には、
ポリ酢酸ビニル樹脂、塩化ビニル−酢酸ビニル共重合
体、アクリル樹脂、熱可塑性ポリエステル樹脂、熱可塑
性ウレタン樹脂、ダイマー酸とエチレンジアミンとの縮
重合により得られるポリアミド樹脂等が用いられる。ま
た、熱硬化型接着剤には、フェノール樹脂、尿素樹脂、
ジアリルフタレート樹脂、熱硬化型ウレタン樹脂、エポ
キシ樹脂等が用いられる。
[Adhesive] The adhesive may be applied as an adhesive layer constituting a transfer layer of a transfer sheet or as an adhesive layer on a substrate to be transferred, either before or immediately before transfer, by online coating or offline coating. Apply in. When applied to a substrate to be transferred, the adhesive layer of the transfer sheet transfer layer can be omitted. Examples of the adhesive to be used include a heat-sensitive adhesive, a moisture-curable heat-sensitive adhesive, a hot-melt adhesive, a moisture-curable hot-melt adhesive, a two-component curable adhesive, an ionizing radiation-curable adhesive, and an aqueous adhesive. An adhesive or a pressure-sensitive adhesive using a pressure-sensitive adhesive is used. As the heat-sensitive adhesive, there are a heat-sealing type using a thermoplastic resin and a thermosetting type using a thermosetting resin. The adhesive may be diluted with a solvent or without a solvent, or may be a liquid or a solid at room temperature. In the case of an adhesive other than a pressure-sensitive adhesive exhibiting tackiness, a transfer layer can be formed with only a single adhesive layer. If a coloring agent such as a pigment is added to the adhesive layer, it can be said that the entire layer is a decorative layer composed of a solid ink layer. For example, for heat-sensitive adhesives,
Polyvinyl acetate resin, vinyl chloride-vinyl acetate copolymer, acrylic resin, thermoplastic polyester resin, thermoplastic urethane resin, polyamide resin obtained by polycondensation of dimer acid and ethylenediamine, and the like are used. In addition, phenolic resin, urea resin,
A diallyl phthalate resin, a thermosetting urethane resin, an epoxy resin, or the like is used.

【0046】接着剤は、グラビアロールコート、スプレ
ーコート、フローコート等の従来公知の溶液塗工手段に
より転写シートとなるシートや被転写基材に施す。被転
写基材にはホットメルト接着剤をアプリケータ等による
熔融塗工(溶融塗工)手段も適用できる。接着剤の塗布
量は、接着剤の組成、被転写基材の種類及び表面状態で
異なるが、通常10〜200g/m2 (固形分)程度で
ある。
The adhesive is applied to a sheet serving as a transfer sheet or a substrate to be transferred by a conventionally known solution coating means such as a gravure roll coat, a spray coat, and a flow coat. Melt coating (melt coating) means using a hot melt adhesive with an applicator or the like can also be applied to the substrate to be transferred. The application amount of the adhesive varies depending on the composition of the adhesive, the type of the substrate to be transferred, and the surface state, but is usually about 10 to 200 g / m 2 (solid content).

【0047】〔転写シート、被転写基材、接着剤等の加
熱〕転写圧に固体粒子衝突圧を用いる場合でも、転写ロ
ーラに弾性体ローラを用いる従来公知の転写方法と同様
に、接着剤活性化、或いは転写シート延伸性向上等に、
転写圧押圧中やその前に、転写シート、被転写基材等を
適宜加熱することができる。
[Heating of Transfer Sheet, Substrate to be Transferred, Adhesive, etc.] Even when a solid particle collision pressure is used as the transfer pressure, the adhesive activity is measured in the same manner as in a conventionally known transfer method using an elastic roller as a transfer roller. Or to improve transfer sheet stretchability, etc.
During or before the pressing of the transfer pressure, the transfer sheet, the substrate to be transferred, and the like can be appropriately heated.

【0048】例えば、衝突圧印加前では、転写シート
は、ヒータ加熱、誘電加熱、熱風加熱、ローラ加熱(連
続帯状の場合)、赤外線輻射加熱等の任意の従来公知の
加熱手段で加熱すれば良く、被転写基材(及びその上の
接着剤層)も転写シート同様に従来公知の任意の加熱手
段で加熱すれば良い。例えば誘導加熱や誘電加熱は基材
内部から加熱できるが、一方、ヒータ加熱、赤外線加
熱、熱風加熱は、凹凸表面側からの加熱が効率的であ
る。また、被転写基材は裏面側からも加熱してもよい。
裏面側からの加熱は、熱容量の大きい基材を速やかに加
熱したり、或いは、衝突圧印加中の加熱として、転写シ
ートや接着剤が衝突圧の印加完了まで冷えることを防止
して所定の温度に保つ場合に有効である。裏面側からの
加熱方法は、基材搬送装置に加熱手段を持たせたり、或
いは被転写基材を基材置き台に載置して搬送する場合
は、その基材置き台の加熱による。基材搬送装置の加熱
手段としては、基材搬送に駆動回転ローラ列を用いる場
合は加熱ローラやローラ間にヒータ等の熱源を配置す
る。加熱ローラは、例えばローラ内を中空にして熱水等
の加熱媒体を流通させたり、誘導加熱を利用する。ま
た、被転写基材をゴムベルトに載置して搬送する場合
は、ゴムとしてシリコーンゴム等の耐熱性ゴムを用い、
これを、誘電加熱、赤外線加熱する等の方法が有る。ま
た、基材置き台の加熱は、それを搬送する基材搬送装置
によって加熱したり、基材置き台を載置する台(搬送せ
ず静置で衝突圧印加する)を加熱台として加熱したり、
基材置き台に電熱ヒータ等の加熱手段を設けても良い。
For example, before the impact pressure is applied, the transfer sheet may be heated by any conventionally known heating means such as heater heating, dielectric heating, hot air heating, roller heating (in the case of a continuous belt), and infrared radiation heating. The substrate to be transferred (and the adhesive layer thereon) may be heated by any conventionally known heating means, similarly to the transfer sheet. For example, induction heating and dielectric heating can be performed from the inside of the substrate, while heater heating, infrared heating, and hot-air heating are more efficient from the uneven surface side. The substrate to be transferred may also be heated from the back side.
Heating from the back side quickly heats the base material having a large heat capacity, or as a heating during the application of the collision pressure, prevents the transfer sheet or the adhesive from cooling down to the completion of the application of the collision pressure to a predetermined temperature. It is effective when keeping it. The method of heating from the back side is based on heating the substrate carrier when the substrate carrier is provided with a heating means, or when the substrate to be transferred is carried on a substrate carrier. As a heating means of the substrate transport device, when a driving rotary roller row is used for transporting the substrate, a heat source such as a heater is disposed between the heating rollers and the rollers. The heating roller makes the inside of the roller hollow, allows a heating medium such as hot water to flow, or uses induction heating. When the transfer substrate is placed on a rubber belt and transported, heat-resistant rubber such as silicone rubber is used as the rubber.
There are methods such as dielectric heating and infrared heating. In addition, the substrate holder is heated by a substrate transport device that transports the substrate, or the substrate on which the substrate holder is mounted (impact pressure is applied in a stationary state without being transported) is used as a heating table. Or
A heating means such as an electric heater may be provided on the substrate holder.

【0049】また、衝突圧印加中の加熱は、固体粒子に
加熱固体粒子を用いたり、複数の固体粒子噴出装置の間
隙に分散してヒータ等の熱源を設けることができる。も
ちろん、衝突圧の押圧前及び押圧中の加熱、或いは押圧
中のみの加熱でも良く適宜使い分ける。但し、衝突空間
となるチャンバ内での熱風加熱は、内部に気体を流入し
チャンバ内圧力バランスに影響するので、該チャンバ外
で行う方が好ましい。それは、空気を該チャンバ内に入
れることになり、固体粒子漏出防止の為のチャンバ内の
負圧の維持を邪魔し、また、固体粒子の流れを攪乱した
り、チャンバから噴出器を通過してホッパに気体を逆流
させたり、固体粒子を気体と共に真空ポンプで吸引して
回収する場合はその負荷増にもなるからである。
For the heating during the application of the collision pressure, heated solid particles can be used as the solid particles, or a heat source such as a heater can be provided by dispersing the solid particles in gaps between a plurality of solid particle ejection devices. Of course, heating before and during the pressing of the collision pressure, or heating only during the pressing, may be used as appropriate. However, the hot air heating in the chamber serving as the collision space is preferably performed outside the chamber because gas flows into the chamber and affects the pressure balance in the chamber. It will allow air to enter the chamber, hinder the maintenance of negative pressure in the chamber to prevent solid particles from leaking, disrupt the flow of solid particles, or pass through the ejector from the chamber. This is because when the gas is made to flow back into the hopper or when the solid particles are collected and sucked together with the gas by a vacuum pump, the load increases.

【0050】チャンバ使用時の転写シートや被転写基材
の加熱は、チャンバの外部又は内部、或いは外部及び内
部で行えば良い。外部及び内部の加熱では、充分な予熱
が必要な場合でも、チャンバ内搬送路長は短くして(つ
まりチャンバ内容積は小さくして)必要な加熱をするこ
とができる。チャンバの内容積を小さくした方が、固体
粒子の飛散、回収等を考慮した取扱上は有利だからであ
る。チャンバの内部で加熱する利点は、衝突圧印加の直
前まで、或いは衝突圧印加中までも、加熱できることで
あり、特に熱容量が大きい被転写基材をその被転写面近
傍のみ効果的に予熱しようとする場合等である。
The heating of the transfer sheet and the substrate to be transferred when the chamber is used may be performed outside or inside the chamber, or outside and inside the chamber. In the case of external and internal heating, even if sufficient preheating is required, the necessary heating can be performed by shortening the length of the transfer path in the chamber (that is, by reducing the volume in the chamber). This is because reducing the internal volume of the chamber is advantageous in terms of handling in consideration of scattering and recovery of solid particles. The advantage of heating inside the chamber is that it can be heated just before the collision pressure is applied, or even during the application of the collision pressure. Particularly, it is intended to effectively preheat the transfer substrate having a large heat capacity only in the vicinity of the transfer surface. And so on.

【0051】〔接着剤の強制冷却〕また、接着剤が熱融
着型の場合は、転写シートが被転写基材に密着後に接着
剤を強制冷却すれば、凹部内部にまで追従、成形された
転写シートの固着化を促進して、転写シートに復元力が
ある場合に圧解放後、転写シートが元の形状に戻ること
を防止し、転写シート(の支持体)の剥離除去をより早
くできるので、転写抜け防止や生産速度向上が図れる。
この為には、衝突圧印加中に、衝突圧を開放しないまま
冷却固体粒子を用いたり、或いは衝突圧印加後に、風冷
等の他の冷却手段を用いて接着剤層を冷却すると良い。
被転写基材の熱容量が大の場合は、冷却固体粒子、低温
流体の吹き付け、基材搬送用のローラやベルトコンベア
或いは基材置き台等の冷却により、被転写基材を裏面か
ら冷却できる。或いは、チャンバ内でこれら冷却の後に
チャンバ外で、或いはチャンバ内では冷却せずにチャン
バ外のみで、表や裏からの冷風吹き付け等で冷却しても
良い。なお、これは転写シートの冷却にも言える。
[Forced Cooling of Adhesive] In the case where the adhesive is of the heat-sealing type, if the adhesive is forcibly cooled after the transfer sheet is in close contact with the base material to be transferred, the adhesive will follow the inside of the recess and be formed. Promotes the fixation of the transfer sheet, prevents the transfer sheet from returning to its original shape after the pressure is released when the transfer sheet has a restoring force, and allows the transfer sheet (support) to be separated and removed more quickly. Therefore, transfer omission can be prevented and production speed can be improved.
For this purpose, it is preferable to use the cooled solid particles without releasing the collision pressure during the application of the collision pressure, or to cool the adhesive layer using other cooling means such as air cooling after the application of the collision pressure.
When the heat capacity of the substrate to be transferred is large, the substrate to be transferred can be cooled from the back surface by spraying cooled solid particles, a low-temperature fluid, or cooling a roller for transporting the substrate, a belt conveyor, or a substrate holder. Alternatively, cooling may be performed outside the chamber after the above cooling in the chamber, or only outside the chamber without cooling in the chamber, by blowing cold air from the front or back. This also applies to the cooling of the transfer sheet.

【0052】〔支持体の剥離〕なお、支持体を剥離する
タイミングは、衝突圧の解除以降、支持体が剥離時応力
で切断や塑性変形をし無い程度に冷却し、接着剤層が冷
却や硬化反応で固化し転写シートが被転写基材に固着し
た時点以降に行えば良い。
[Peel-off of the support] The timing for peeling off the support is such that the support is cooled to such a degree that the support is not cut or plastically deformed by the stress at the time of release after the collision pressure is released. It may be performed after the transfer sheet is solidified by the curing reaction and fixed to the transfer substrate.

【0053】〔その他〕以上、本発明の曲面転写方法を
説明して来たが、固体粒子を衝突させる時の、被転写基
材の被転写面の包絡面は水平面として、上方から固体粒
子を衝突させる以外に、該包絡面は斜面、鉛直面(図1
0(B))等でも良い。また転写シートが水平面内で
も、支持体側が下側、すなわち、下側から上に固体粒子
を噴出させ衝突させても良い。
[Others] The curved surface transfer method of the present invention has been described above. When the solid particles collide with each other, the envelope surface of the transfer surface of the substrate to be transferred is a horizontal plane, and the solid particles are transferred from above. In addition to the collision, the envelope surface is a slope, a vertical surface (Fig. 1).
0 (B)). Further, even when the transfer sheet is in a horizontal plane, solid particles may be ejected from the lower side of the support, that is, from the lower side to make them collide.

【0054】〔転写製品の用途〕本発明で得られる化粧
材等の転写製品の用途は、転写された装飾面が凹凸面、
特に三次元形状等の凹凸表面の物品であるような各種用
途に用いられ得る。例えば、化粧材として、サイディン
グ等の外壁、塀、屋根、門扉、破風板等の外装、壁面、
天井、床等の建築物の内装、窓枠、扉、手摺、敷居、鴨
居等の建具類の表面化粧、箪笥等の家具やテレビ受像機
等の弱電・OA機器のキャビネットの表面化粧、自動
車、電車等の車両内装材、航空機や船舶等の内装材等の
各種分野で用いられ得る。化粧材は化粧板等として利用
される。なお、化粧材も含めて転写製品の形状は、平
板、曲面板、棒状体、立体物等と任意である。
[Use of Transfer Product] The use of a transfer product such as a cosmetic material obtained by the present invention is performed by using a transferred decorative surface having an uneven surface,
In particular, it can be used for various applications such as an article having an uneven surface such as a three-dimensional shape. For example, as a cosmetic material, exterior walls such as siding, fences, roofs, gates, exteriors such as gable boards, wall surfaces,
Interior decoration of buildings such as ceilings and floors, window frames, doors, handrails, sills, surface decorations of fittings such as sills, furniture such as wardrobes, surface decorations of cabinets for light electric / OA equipment such as television receivers, automobiles, It can be used in various fields such as vehicle interior materials such as trains and interior materials such as aircraft and ships. The decorative material is used as a decorative board or the like. In addition, the shape of the transfer product including the cosmetic material is arbitrary such as a flat plate, a curved plate, a rod-shaped body, and a three-dimensional object.

【0055】〔後加工〕なお、転写後の化粧材等の転写
製品の表面に、耐久性、意匠感等を付与する為に、更に
透明保護層を塗装する等しても良い。この様な透明保護
層としては、ポリ4フッ化エチレン、ポリフッ化ビニリ
デン等のフッ素樹脂、ポリメタクリル酸メチル等のアク
リル樹脂、シリコーン樹脂、ウレタン樹脂の1種又は2
種以上等をバインダーとし、これに必要に応じて、ベン
ゾトリアゾール、超微粒子酸化セリウム等の紫外線吸収
剤、ヒンダードアミン系ラジカル捕捉剤等の光安定剤、
着色顔料、体質顔料、滑剤等を添加した塗料を用いる。
また、外装用途では、無機系塗料を用いることもでき
る。塗工はスプレー塗装、フローコート、軟質ゴムロー
ルやスポンジロールを使用したロールコート等で行う。
透明保護層の膜厚は1〜100μm程度である。
[Post-processing] In addition, a transparent protective layer may be further applied to the surface of a transferred product such as a cosmetic material after the transfer in order to impart durability, a sense of design, and the like. As such a transparent protective layer, one or two kinds of fluororesins such as polytetrafluoroethylene and polyvinylidene fluoride, acrylic resins such as polymethyl methacrylate, silicone resins and urethane resins are used.
Seed or the like as a binder, if necessary, a benzotriazole, an ultraviolet absorber such as ultrafine cerium oxide, a light stabilizer such as a hindered amine radical scavenger,
A paint to which a coloring pigment, an extender pigment, a lubricant, and the like are added is used.
For exterior use, an inorganic paint can also be used. Coating is performed by spray coating, flow coating, roll coating using a soft rubber roll or sponge roll, or the like.
The thickness of the transparent protective layer is about 1 to 100 μm.

【0056】[0056]

【実施例】次に実施例により本発明を更に説明する。The present invention will be further described with reference to the following examples.

【0057】〔試験群1〕試験群1では、衝突角度αを
60〜90度に振って、転写シートの凹凸追従性と、寄
り皺等の転写不良発生の有無から、最適な衝突角度αの
範囲を求めた。試験した衝突角度αは、図12の説明図
及び表1で示す如く、a点(α=90°)〜e点(α=
60°)の5種類である。試験は、図13で概念的に示
す斜視図の様にして、(衝突角度70度未満となる固体
粒子も噴出する)回転羽根車による噴出器1から固体粒
子Pを噴出し、前記a点〜e点の各点毎に評価できる様
な大きさにした被転写基材を用いて行った。被転写基材
は、図11、図12の如く包絡面が平面となる形状の物
を用いた。被転写面に転写シートを乗せた被転写基材B
を、コンベア4に載置して搬送し、噴出器1の下を通し
て衝突圧を与えた。被転写基材Bを載置するコンベア4
の幅方向位置を変える事で、衝突角度αを変えた。転写
条件は、固体粒子Pには直径0.4mmの亜鉛球体を用
い、噴出速度40m/s、投射量(単位時間当たりに噴
出器から噴出される固体粒子の総重量)100kg/
分、コンベア速度4m/分とした。
[Test Group 1] In Test Group 1, the collision angle α was varied from 60 to 90 degrees to determine the optimal collision angle α from the followability of the transfer sheet and the occurrence of transfer defects such as wrinkles. The range was determined. As shown in the explanatory diagram of FIG. 12 and Table 1, the collision angle α tested is from point a (α = 90 °) to point e (α = 90 °).
60 °). In the test, as shown in the perspective view conceptually shown in FIG. 13, solid particles P are ejected from the ejector 1 by the rotary impeller (which also ejects solid particles having a collision angle of less than 70 degrees), and the points a to The transfer was performed using a substrate to be transferred having a size that could be evaluated for each point e. As the substrate to be transferred, an object having a flat envelope surface as shown in FIGS. 11 and 12 was used. Transfer base material B with transfer sheet on transfer surface
Was placed on a conveyor 4 and conveyed, and a collision pressure was applied below the ejector 1. Conveyor 4 on which substrate B to be transferred is placed
The collision angle α was changed by changing the position in the width direction. The transfer conditions were as follows. A zinc sphere having a diameter of 0.4 mm was used for the solid particles P, the ejection speed was 40 m / s, and the amount of projection (total weight of the solid particles ejected from the ejector per unit time) was 100 kg /.
And the conveyor speed was 4 m / min.

【0058】ここに、図12に於いて、a点からe点ま
での各点での、予想される衝突圧及び横方向の剪断力な
どを下記表1で示す。同図に於いて、固体粒子Pがその
速度のベトクルVとして衝突角度αで被転写基材Bに衝
突する時、該ベクトルVの垂直成分(衝突角度α=90
°に該当)はベクトルV1 となり、水平成分(衝突角度
α=0°に該当)はベクトルV2 となる。ベクトルV1
の成分が、転写シートを被転写基材の凹凸表面の凹部内
に垂直方向から押し込む衝突圧、つまり転写圧となる。
しかし、ベクトルV2 の成分は、転写シートを被転写面
上で横方向にずらす剪断力となり、これが寄り皺の原因
となる力である。そこで、衝突角度αが90°のa点を
基準に、衝突角度αの値とベクトルV1及びベクトルV
2 の運動エルネギーを論理的に算出し、比較した相対値
を表1に示す。なお、厳密には速度ベクトルの垂直成分
1 、及び水平成分V2 に対応する運動エネルギーは、
固体粒子の質量をmとして、(mV1 2)/2、及び(m
2 2)/2であるが、mは共通である為、V1 2、V2 2
みで比較評価してある。また、実際に圧力測定シート
(富士写真フィルム株式会社製、商品名「プレスケー
ル」)を被転写基材上に乗せて測った圧力値も、a点を
基準にした相対値で示した。剪断力と対応する運動エネ
ルギーV2 2は、衝突角度が70°を下回る当たりから急
に大きくなる事、及び衝突圧に対応する運動エネルギー
1 2は、衝突角度が70°を下回る当たりから急に小さ
くなる事が論理的にも分かる。また、実測圧でも衝突角
度が60°になると、かなり低下することが分かる。
Here, in FIG. 12, the expected collision pressure and the transverse shear force at each point from point a to point e are shown in Table 1 below. In the figure, when a solid particle P collides with a transfer substrate B at a collision angle α as a vector V of the velocity, a vertical component of the vector V (collision angle α = 90)
(Corresponding to °) becomes a vector V 1 , and the horizontal component (corresponding to collision angle α = 0 °) becomes a vector V 2 . Vector V 1
Is a collision pressure for pushing the transfer sheet into the concave portion of the uneven surface of the transfer-receiving substrate from a vertical direction, that is, a transfer pressure.
However, the components of the vector V 2, will shear to shift the transfer sheet in the transverse direction on the transfer surface, which is the force that causes deviation wrinkles. Therefore, based on the point a at which the collision angle α is 90 °, the value of the collision angle α and the vectors V 1 and V
Table 1 shows the relative values obtained by logically calculating the motor energy of No. 2 and comparing them. Strictly speaking, the kinetic energy corresponding to the vertical component V 1 and the horizontal component V 2 of the velocity vector is:
Assuming that the mass of the solid particles is m, (mV 1 2 ) / 2 and (m
A V 2 2) / 2 but, because m is common, are compared and evaluated only in V 1 2, V 2 2. The pressure value actually measured by placing a pressure measurement sheet (trade name “Prescale” manufactured by Fuji Photo Film Co., Ltd.) on the substrate to be transferred was also shown as a relative value based on the point a. Kinetic energy V 2 2 corresponding to shearing forces, impact angle be abruptly becomes steeper from per below 70 °, and the kinetic energy V 1 2 corresponding to the impact pressure is suddenly from per impact angle is below 70 ° It can be understood logically that it becomes smaller. Also, it can be seen that when the collision angle becomes 60 ° even with the actual measured pressure, the pressure drops considerably.

【0059】[0059]

【表1】 [Table 1]

【0060】次に、転写シートの凹凸追従性と寄り皺発
生状況の結果を説明する。
Next, the results of the unevenness followability of the transfer sheet and the occurrence of wrinkles will be described.

【0061】転写シートには、支持体シートに未延伸ポ
リプロピレンシート(厚み50μm、コロナ処理無し)
を使用し、その片面に、熱可塑性ウレタン樹脂をバイン
ダー樹脂とする着色インキで、石目柄の装飾層を転写層
としてグラビア印刷したものを用意した。被転写基材に
は、図11の如き凹部と凸部の段差が平均3mmの石目
の三次元的凹凸が施されたパルプセメトン板を用意し
た。この板の被転写面にウレタン系樹脂のベースコート
を施して目止めした後、ポリアミド樹脂系の接着剤をス
プレーコート後、加熱乾燥して10g/m2 (固形分基
準)の接着剤層を設けておいた。転写は、被転写基材を
予め90℃に加熱後、転写シートを被転写基材上に乗
せ、転写シートの上から熱風を吹付けて、転写シートの
予熱、接着剤の活性化、被転写基材の加熱を行い、支持
体の表面温度が100℃の状態で衝突圧を印加した。そ
して、転写シートが衝突圧によって、凹部内にまで延ば
されて熱融着し、冷却固化後、転写シートの支持体を剥
がし取り、転写物を得た。結果を表2示す。
As the transfer sheet, an unstretched polypropylene sheet (thickness: 50 μm, no corona treatment) is used as a support sheet.
And on one side thereof, gravure-printed with a colored ink using a thermoplastic urethane resin as a binder resin and a stone-pattern decorative layer as a transfer layer was prepared. A pulp semeton plate provided with three-dimensional irregularities of a grain having an average height of 3 mm as shown in FIG. 11 was prepared as the substrate to be transferred. A base coat of a urethane-based resin is applied to the transfer surface of the plate and sealed, then a polyamide resin-based adhesive is spray-coated, and then heated and dried to form an adhesive layer of 10 g / m 2 (solid content basis). I left it. In the transfer, the transfer substrate is heated to 90 ° C. in advance, the transfer sheet is placed on the transfer substrate, and hot air is blown from above the transfer sheet to preheat the transfer sheet, activate the adhesive, and transfer the transfer sheet. The substrate was heated, and a collision pressure was applied while the surface temperature of the support was 100 ° C. Then, the transfer sheet was extended to the inside of the concave portion by the collision pressure, and was thermally fused. After cooling and solidifying, the support of the transfer sheet was peeled off to obtain a transferred product. Table 2 shows the results.

【0062】[0062]

【表2】 ※1:全ての凹部内に転写層が接着。 ※2:一番深い凹部で転写層と被転写基材との間に空隙発生。 ※3:凹部での転写層と被転写基材との間の空隙が更に増大。[Table 2] * 1: Transfer layer adheres in all recesses. * 2: A void is generated between the transfer layer and the substrate to be transferred at the deepest recess. * 3: The gap between the transfer layer and the substrate to be transferred in the recess is further increased.

【0063】以上の結果から、固体粒子の衝突圧を利用
した転写では、衝突角度αは70°以上が必要である事
が分かる。すなわち、衝突角度αが65°や60°の試
験番号A4(d点)及びA5(e点)では、寄り皺等の
外観不良が発生した。また、完全に転写シートが表面凹
凸の凹部内部にまで追従できず浮きが発生し、凹凸追従
性も不良となった。しかし、衝突角度αが70°以上の
試験番号A1〜A3では、寄り皺や絵柄歪みも発生せず
外観は良好で、凹凸追従性も良好で、転写良好となっ
た。
From the above results, it can be seen that in the transfer using the collision pressure of the solid particles, the collision angle α needs to be 70 ° or more. That is, in the test numbers A4 (point d) and A5 (point e) where the collision angle α was 65 ° or 60 °, appearance defects such as wrinkles occurred. In addition, the transfer sheet could not completely follow the inside of the concave portion of the surface irregularities, causing lifting, and the irregularity followability was poor. However, in the test numbers A1 to A3 in which the collision angle α was 70 ° or more, wrinkles and pattern distortion did not occur, the appearance was good, the unevenness followability was good, and the transfer was good.

【0064】〔試験群B〕試験群Bにおいては、被転写
基材が広幅で、2台の噴出器でその幅方向を分担して受
け持って、衝突圧を与えて転写した。噴出器の配置は、
図4及び図5(C)の様に、被転写基材の搬送方向に位
置をずらして、被転写基材内側に向かう固体粒子が干渉
しないに様にしつつ、被転写基材の全幅に衝突圧が印加
される様にした。転写シートは試験群Aと同一の物を使
用し、被転写基材は幅が500mmとなった以外は表面
凹凸等その他は同一の物を使用した。また、被転写基材
へのベースコート及び接着剤塗工も同様にした。
[Test Group B] In the test group B, the base material to be transferred was wide and two jetting devices shared the width direction of the base material, and transferred by applying an impact pressure. The arrangement of the ejector
As shown in FIG. 4 and FIG. 5 (C), the position is shifted in the transport direction of the transfer-receiving substrate so that the solid particles traveling toward the inside of the transfer-receiving substrate do not interfere with each other and collide with the entire width of the transfer-receiving substrate. Pressure was applied. The transfer sheet used was the same as that used in the test group A, and the transfer-receiving substrate used was the same as that used in the test group A except that the width of the transfer substrate was 500 mm. The base coat and the adhesive were also applied to the substrate to be transferred.

【0065】そして、試験群Aと同様にして転写した。
先ず、噴出器は通常のまま(つまり、衝突角度70度未
満の固体粒子も含む)として、衝突圧を与えて転写し
た。この為、衝突角度70度未満の固体粒子が、被転写
基材の幅方向の両端外側及び中央部に向かい、該中央部
では転写シートに衝突した。その結果、図14の転写状
況を説明する平面図で示す如く、噴出器1aから噴出し
た固体粒子の衝突領域5aのうち、被転写基材幅方向の
中央部側に該当する部分で、被転写基材の搬送方向(図
面矢印方向)下流側の転写シート部分に寄り皺6aが発
生した。同様に、他方の噴出器1bについても、寄り皺
6bが発生した。
Then, transfer was performed in the same manner as in Test Group A.
First, the jetting device was kept normal (that is, including the solid particles having a collision angle of less than 70 degrees), and the transfer was performed by applying a collision pressure. For this reason, the solid particles having a collision angle of less than 70 degrees were directed to the outside of both ends in the width direction of the base material to be transferred and to the central portion, and collided with the transfer sheet at the central portion. As a result, as shown in the plan view of FIG. 14 illustrating the transfer situation, the portion of the collision region 5a of the solid particles ejected from the ejector 1a corresponding to the central portion in the width direction of the substrate to be transferred receives A wrinkle 6a was generated in the transfer sheet portion on the downstream side in the transport direction of the substrate (the direction of the arrow in the drawing). Similarly, wrinkles 6b also occurred in the other ejector 1b.

【0066】次に、図5で示した様に、本発明の固体粒
子噴出装置として、この噴出器1a及び1bに対して、
それぞれ遮蔽板3a及び3bを付与した構成の装置とし
て、上記同様にして転写した。遮蔽板3a(及び3b)
は、同図の如く、噴出器1a(及び1b)に対して、被
転写基材幅方向で内側部分(中央寄り部分)となる空間
部分に、衝突角度が70度未満となる固体粒子は取り除
き衝突しない様な位置に設置した。その結果、上記で問
題となっていた寄り皺が解消した。また、凹凸追従性も
良好であった。そして、転写製品として化粧板を得た。
更に、この化粧板の転写層の表面に、0.5重量%のベ
ンゾトリアゾール系紫外線吸収剤を含むポリフッ化ビニ
リデンのエマルション塗料を乾燥時厚さ10μmに塗布
して、透明保護層を形成して、透明保護層付きの化粧板
を得た。
Next, as shown in FIG. 5, as the solid particle ejection device of the present invention, the ejection devices 1a and 1b
Transfer was performed in the same manner as described above, using devices having a configuration provided with shielding plates 3a and 3b, respectively. Shield plate 3a (and 3b)
Removes solid particles having a collision angle of less than 70 degrees with respect to the ejector 1a (and 1b) in a space portion which is an inner portion (a portion closer to the center) in the width direction of the base material to be transferred with respect to the ejector 1a (and 1b). It was installed in a position where it did not collide. As a result, the wrinkles which were a problem in the above were eliminated. In addition, the irregularity followability was also good. Then, a decorative plate was obtained as a transfer product.
Further, an emulsion paint of polyvinylidene fluoride containing 0.5% by weight of a benzotriazole-based ultraviolet absorber is applied to a dry thickness of 10 μm on the surface of the transfer layer of the decorative plate to form a transparent protective layer. Thus, a decorative plate with a transparent protective layer was obtained.

【0067】[0067]

【発明の効果】本発明の曲面転写方法によれば、大き
な三次元的凹凸表面が装飾された化粧材等の転写製品が
容易に得られる。転写製品の全体の(包絡面)形状は、
もちろん、窓枠、サッシ等の二次元的凹凸も可能であ
り、平板状の板材以外にも、瓦の様に全体として(包絡
面形状が)波うち形状のもの、或いは凸又は凹に湾曲し
た形状のものでも容易に得られる。 しかも、大柄な凹凸表面の凸部上、凹部内(底部や凸
部と底部の連結部分である側面)も転写できる。また、
大柄な凹凸の凸部上に、更に微細な凹凸模様(例えば、
ヘアライン、梨地等)が有る場合でも、その微細凹凸の
凹部内にまで、転写にて装飾できる。 その上、被転写基材に対する衝突角度を70度以上と
し、それが70度未満の固体粒子は転写シートに衝突さ
せないので、転写シートの凹凸追従性を維持しつつ、転
写シートが横方向にずれる寄り皺による転写不良が防げ
る。また、衝突圧の小さい部分を使用しないので、広幅
の被転写基材に対しても、幅方向で均一な凹凸転写が安
定的にできる様になる。 しかも、固体粒子の加速は羽根車で行うので、吹出ノ
ズルによる固体粒子噴出装置に比べて、より広い衝突圧
印加領域をカバーできるので、少ない噴出装置の使用で
足りる。 また、従来のゴムローラ押圧方式の様に、被転写基材
の凹凸部によるローラ等部品の損耗も無い。 以上の結果、従来に無く極めて意匠性に優れた化粧材
等の転写製品が得られる。
According to the curved surface transfer method of the present invention, a transfer product such as a decorative material having a large three-dimensional uneven surface decorated can be easily obtained. The overall (envelope) shape of the transfer product is
Of course, two-dimensional irregularities such as a window frame and a sash are also possible, and in addition to a flat plate material, a tile having a wavy shape (envelope shape) as a whole, or a convex or concave curve Even those with shapes can be easily obtained. In addition, it is possible to transfer on the convex portion of the large irregular surface and also inside the concave portion (the bottom portion or the side surface which is the connecting portion between the convex portion and the bottom portion). Also,
On the convex part of large irregularities, a finer irregular pattern (for example,
Even if there is a hairline, satin finish, etc., it is possible to decorate by transfer even in the concave portion of the fine unevenness. In addition, the collision angle with respect to the base material to be transferred is set to 70 degrees or more, and solid particles having a collision angle of less than 70 degrees do not collide with the transfer sheet, so that the transfer sheet is shifted in the horizontal direction while maintaining the unevenness of the transfer sheet. Transfer defects due to wrinkles can be prevented. In addition, since a portion having a small collision pressure is not used, uniform transfer of unevenness in the width direction can be stably performed even on a wide transfer-receiving substrate. In addition, since the acceleration of the solid particles is performed by the impeller, a wider collision pressure application area can be covered as compared with the solid particle ejection device using the ejection nozzle, so that only a small number of ejection devices are required. Further, unlike the conventional rubber roller pressing method, there is no wear of parts such as the roller due to the concave and convex portions of the substrate to be transferred. As a result, a transfer product such as a decorative material having a very excellent design property is obtained, which has never been obtained before.

【0068】また、本発明の固体粒子噴出装置によれ
ば、上記曲面転写方法で使用する、衝突角度70度以上
の固体粒子のみを確実に、転写シートに衝突させる事が
でき、上記曲面転写方法を容易に実施できる。
Further, according to the solid particle ejecting apparatus of the present invention, only the solid particles having a collision angle of 70 ° or more, which are used in the above-mentioned curved surface transfer method, can reliably collide with the transfer sheet. Can be easily implemented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一つの噴出器から噴出された固体粒子の拡がり
具合を説明する概念図。
FIG. 1 is a conceptual diagram illustrating the spread of solid particles ejected from one ejector.

【図2】被転写基材の幅と、固体粒子の拡がりとの大小
関係を説明する概念図。
FIG. 2 is a conceptual diagram illustrating the magnitude relationship between the width of a substrate to be transferred and the spread of solid particles.

【図3】本発明の曲面転写方法にて、特定の衝突角度α
で衝突圧を与える様子を説明する概念図。
FIG. 3 shows a specific collision angle α according to the curved surface transfer method of the present invention.
FIG. 4 is a conceptual diagram illustrating a state in which a collision pressure is applied by using FIG.

【図4】被転写基材の幅方向を2台の噴出器で分担する
場合に、衝突角度αが70未満となる固体粒子の不良投
射部を説明する概念図。
FIG. 4 is a conceptual diagram illustrating a defective solid particle projection unit in which the collision angle α is less than 70 when the width direction of the transfer-receiving substrate is shared by two ejectors.

【図5】図4に対して、衝突角度設定手段として遮蔽板
を、噴出器と組み合わせた本発明の固体粒子噴出装置を
説明する概念図。
FIG. 5 is a conceptual diagram illustrating a solid particle ejection device of the present invention in which a shielding plate as a collision angle setting means is combined with an ejector with respect to FIG.

【図6】羽根車を用いた噴出器の一形態を説明する概念
図(正面図)。
FIG. 6 is a conceptual diagram (front view) illustrating one embodiment of an ejector using an impeller.

【図7】図6の羽根車部分の斜視図。FIG. 7 is a perspective view of an impeller part of FIG. 6;

【図8】図6の羽根車内部を説明する概念図。FIG. 8 is a conceptual diagram illustrating the inside of the impeller of FIG. 6;

【図9】羽根車にて噴出方向を調整する説明図。FIG. 9 is an explanatory diagram for adjusting the ejection direction with an impeller.

【図10】羽根車を用いた噴出器の別の形態を説明する
概念図であり、(A)は正面図、(B)は側面図。
10A and 10B are conceptual diagrams illustrating another embodiment of the ejector using the impeller, wherein FIG. 10A is a front view, and FIG. 10B is a side view.

【図11】被転写基材の三次元的表面凹凸の一例を示す
要部拡大斜視図。
FIG. 11 is an enlarged perspective view of a main part showing an example of three-dimensional surface irregularities of a transfer-receiving substrate.

【図12】固体粒子の速度ベクトルの垂直及び水平成分
を説明する概念図。
FIG. 12 is a conceptual diagram illustrating vertical and horizontal components of a velocity vector of a solid particle.

【図13】被転写基材に固体粒子を衝突角度を変えて衝
突させる様子を示す斜視図。
FIG. 13 is a perspective view illustrating a state in which solid particles collide with a transfer substrate at different collision angles.

【図14】転写状況(寄り皺発生場所)を説明する平面
図。
FIG. 14 is a plan view illustrating a transfer situation (wrinkle generation location).

【符号の説明】[Explanation of symbols]

1、1a、1b 噴出器 2a、2b 不良投射部 3a、3b 遮蔽板(衝突角度設定手段) 4 コンベア(基材搬送装置) 5a、5b 固体粒子の衝突領域 6a、6b 寄り皺 10a、10b 固体粒子噴出装置 11 基材搬送装置 812、812a 羽根車 813、813a 羽根 814、814a 側面板 815 中空部 816 方向制御器 817 開口部 818 散布器 819、819a 回転軸 820 軸受 B 被転写基材 D 化粧材(転写製品) D(x) 投射密度分布 P 固体粒子 Pmax 許容最大衝突圧 Pmin 許容最小衝突圧 P(x) 衝突圧分布 S 転写シート Wb 被転写基材幅 Wp 有効加圧領域幅 x 被転写基材幅方向 1, 1a, 1b Ejector 2a, 2b Poor projection unit 3a, 3b Shielding plate (collision angle setting means) 4 Conveyor (base material transporting device) 5a, 5b Collision area of solid particles 6a, 6b Wrinkling 10a, 10b Solid particles Jetting device 11 Substrate conveying device 812, 812a Impeller 813, 813a Blade 814, 814a Side plate 815 Hollow portion 816 Direction controller 817 Opening 818 Spreader 819, 819a Rotating shaft 820 Bearing B Transferred substrate D Cosmetic material Transfer product) D (x) Projection density distribution P Solid particles Pmax Allowable maximum collision pressure Pmin Allowable minimum collision pressure P (x) Impact pressure distribution S Transfer sheet Wb Transfer base material width Wp Effective press area width x Transfer base material Width direction

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 凹凸表面を有する被転写基材の凹凸表面
側に、支持体と転写層とからなる転写シートの転写層側
を対向させ、回転する羽根車によって加速した固体粒子
を、該転写シートの支持体側に衝突させ、その衝突圧を
利用して、被転写基材の凹凸表面への転写シートの圧接
を行い、転写層が被転写基材に接着後、転写シートの支
持体を剥離除去することで、転写層を被転写基材に転写
する曲面転写方法であって、 被転写基材の被転写面の包絡面に対する固体粒子の衝突
角度が70度以上の固体粒子のみの衝突圧を利用して行
う、曲面転写方法。
1. A method for transferring solid particles accelerated by a rotating impeller, with a transfer layer side of a transfer sheet comprising a support and a transfer layer facing the uneven surface side of a transfer-receiving substrate having an uneven surface. Using the collision pressure, the transfer sheet is pressed against the uneven surface of the substrate to be transferred, and the transfer layer is adhered to the substrate to be transferred. A method for transferring a transfer layer to a transfer substrate by removing the transfer layer, wherein the collision pressure of only the solid particles having a collision angle of 70 degrees or more against the envelope surface of the transfer surface of the transfer substrate. Surface transfer method using
【請求項2】 凹凸表面を有する被転写基材の凹凸表面
側に、支持体と転写層とからなる転写シートの転写層側
を対向させ、回転する羽根車によって加速した固体粒子
を、該転写シートの支持体側に衝突させ、その衝突圧を
利用して、被転写基材の凹凸表面への転写シートの圧接
を行い、転写層が被転写基材に接着後、転写シートの支
持体を剥離除去することで、転写層を被転写基材に転写
する曲面転写方法に用いる固体粒子噴出装置であって、 羽根車によって固体粒子を加速する粒子加速手段と、 転写シートに衝突する固体粒子を、被転写基材の被転写
面の包絡面に対する固体粒子の衝突角度が70度以上の
固体粒子のみとする衝突角度設定手段とを、少なくとも
備えた、固体粒子噴出装置。
2. The solid particles accelerated by a rotating impeller, with the transfer layer side of a transfer sheet comprising a support and a transfer layer facing the uneven surface side of the transfer-receiving substrate having the uneven surface, Using the collision pressure, the transfer sheet is pressed against the uneven surface of the substrate to be transferred, and the transfer layer is adhered to the substrate to be transferred. A solid particle jetting device used for a curved surface transfer method of transferring a transfer layer to a substrate to be transferred by removing, a particle accelerating means for accelerating solid particles by an impeller, and solid particles colliding with a transfer sheet, A solid particle ejection device, at least comprising: collision angle setting means for setting only the solid particles having a collision angle of 70 degrees or more with the envelope surface of the transfer-receiving surface of the transfer-receiving substrate.
JP13428198A 1998-04-30 1998-04-30 Method for transferring curved surface and solid particle injecting apparatus Withdrawn JPH11309999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13428198A JPH11309999A (en) 1998-04-30 1998-04-30 Method for transferring curved surface and solid particle injecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13428198A JPH11309999A (en) 1998-04-30 1998-04-30 Method for transferring curved surface and solid particle injecting apparatus

Publications (1)

Publication Number Publication Date
JPH11309999A true JPH11309999A (en) 1999-11-09

Family

ID=15124625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13428198A Withdrawn JPH11309999A (en) 1998-04-30 1998-04-30 Method for transferring curved surface and solid particle injecting apparatus

Country Status (1)

Country Link
JP (1) JPH11309999A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218018A (en) * 2013-05-09 2014-11-20 サン・トックス株式会社 Transfer decorative sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218018A (en) * 2013-05-09 2014-11-20 サン・トックス株式会社 Transfer decorative sheet

Similar Documents

Publication Publication Date Title
JPH11151769A (en) Decorative material and its production
JPH11245590A (en) Method and apparatus for transferring curved surface
JPH11309999A (en) Method for transferring curved surface and solid particle injecting apparatus
JPH11268123A (en) Production of embossed decorative material
JPH11348494A (en) Curved surface transferring method
JPH1120397A (en) Transfer sheet for base material with uneven face and method for transferring image to curved face using the transfer sheet
JPH10324095A (en) Preparation of decorative material
JP3208368B2 (en) Curved surface transfer method and transfer sheet
JP3247984B2 (en) Curved surface transfer method and curved surface transfer device
JPH11170793A (en) Method for transferring
JPH11170790A (en) Method and apparatus for transferring curved surface
JPH11170792A (en) Method for transferring
JPH11334294A (en) Method and apparatus for transferring to curved surface
JP2000006591A (en) Method and device for transfer to curved surface
JP2000006592A (en) Method and device for transfer to curved surface
JP2000037993A (en) Curved surface transferring method
JP2000006589A (en) Method and device for transfer to curved surface
JPH11115393A (en) Method and device for curved face transfer
JPH11227396A (en) Manufacture of decorative material
JP2000006590A (en) Method and device for transfer to curved surface
JPH10297191A (en) Method for transferring decoration to uneven face
JPH1159082A (en) Method for transferring to uneven backing and transfer apparatus
JPH11227395A (en) Method for transferring curved surface
JPH11129699A (en) Method and apparatus for transferring curved surface
JP2001039093A (en) Curved face transfer method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050705