JPH11309469A - Gas-liquid reaction water treating device, and gas injection device - Google Patents

Gas-liquid reaction water treating device, and gas injection device

Info

Publication number
JPH11309469A
JPH11309469A JP10119100A JP11910098A JPH11309469A JP H11309469 A JPH11309469 A JP H11309469A JP 10119100 A JP10119100 A JP 10119100A JP 11910098 A JP11910098 A JP 11910098A JP H11309469 A JPH11309469 A JP H11309469A
Authority
JP
Japan
Prior art keywords
gas
water
porous body
hollow porous
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10119100A
Other languages
Japanese (ja)
Inventor
Katsuhiro Ishikawa
川 勝 廣 石
Hiroshi Tamura
村 博 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10119100A priority Critical patent/JPH11309469A/en
Publication of JPH11309469A publication Critical patent/JPH11309469A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas-liquid reaction water treating device and a gas injection device capable of efficiently performing gas-liquid contact of water to be treated with gas. SOLUTION: The gas-liquid reaction water treating device 30 is provided with an ozone reacting water tank 2 and an opening pipe 32 arranged vertically in the water tank 2 and having opened lower end. The gas injection device 20 for injecting ozone into a water to be treated is arranged in the upper part of the opening pipe 32. The gas injection device 20 has a hollow porous body, and an external pipe body provided outside the hollow porous body. The gaseous ozone fed into the external pipe is passed through the hollow porous body, then being injected into the water to be treated in the hollow porous body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、浄水場や下廃水処
理場などで用いられ、オゾンなどの気体を水に溶解反応
させる気液反応水処理装置および気体注入器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas-liquid reaction water treatment apparatus and gas injector used in a water purification plant, a sewage treatment plant, etc., for dissolving and reacting a gas such as ozone with water.

【0002】[0002]

【従来の技術】オゾン濃度10〜20g/Nm3 程度の
常用オゾンガスを用いた従来の気液反応水処理装置を図
7に示す。図7に示すように、気液反応水処理装置1は
オゾン反応水槽2を有し、このオゾン反応水槽2は気液
接触部3と滞留部4に区画されている。このうち気液接
触部3の底部には、多数のセラミック製散気筒からなる
散気ユニット5が敷設され、この散気ユニット5にオゾ
ンガスが供給される。
2. Description of the Related Art FIG. 7 shows a conventional gas-liquid reaction water treatment apparatus using ordinary ozone gas having an ozone concentration of about 10 to 20 g / Nm3. As shown in FIG. 7, the gas-liquid reaction water treatment device 1 has an ozone reaction water tank 2, and the ozone reaction water tank 2 is partitioned into a gas-liquid contact part 3 and a retention part 4. At the bottom of the gas-liquid contact part 3, an air diffusion unit 5 composed of a number of ceramic air diffusion tubes is laid, and ozone gas is supplied to the air diffusion unit 5.

【0003】気液接触部3に導入された被処理水は散気
ユニット5から発生するオゾンガスの上昇気泡と接触
し、オゾンガスの水への溶解とともに、オゾンガスと被
処理水中の被酸化物との酸化反応が進行する。次に滞留
部4において被処理水は仕上げ処理され、脱色・殺菌・
微生物難分解有機物の易分解性化などが実行される。そ
して滞留部4からの未反応オゾンは排オゾンガスにな
る。
The water to be treated introduced into the gas-liquid contact part 3 comes into contact with the rising bubbles of the ozone gas generated from the air diffuser unit 5 and dissolves the ozone gas in the water, as well as reacts with the ozone gas and the oxides in the water to be treated. The oxidation reaction proceeds. Next, the water to be treated is subjected to a finishing treatment in the stagnation section 4 for decolorization, sterilization,
For example, organic substances that are hardly decomposed by microorganisms are easily decomposed. The unreacted ozone from the stagnation section 4 becomes exhausted ozone gas.

【0004】最近では、オゾンの水溶解効率を上げるた
め、図8に示す常用オゾン濃度より高濃度のオゾンを用
いた下方注入方式の気液反応水処理装置の研究開発が行
われている。図8に示すように下方注入方式の気液反応
水処理装置10は、オゾン反応水槽2を有し、このオゾ
ン反応水槽2の気液接触部3a内に、下端開口の管体1
1が垂直敷設され、管体11の上端から加圧被処理水ま
たはポンプ12で加圧された被処理水が導入される。加
圧効果を生かすため、管体11の下端部にオリフィス等
の絞り13を設ける場合もあり、オゾンガスは、ノズル
型のオゾン注入器14から管体11の上端内部に気泡と
して注入される。この気泡は管体11内で被処理水の流
下とともに流下し、管体11の下端から気液接触部3a
内に放出されて上昇気泡となり、水面から出て排オゾン
ガスになる。気液接触部3aを出た水は、図7に示す場
合と同様に滞留部4aを経て水処理が行われる。
Recently, in order to increase the efficiency of dissolving ozone in water, research and development of a gas-liquid reaction water treatment apparatus of a downward injection type using ozone having a concentration higher than the normal ozone concentration shown in FIG. As shown in FIG. 8, the gas-liquid reaction water treatment device 10 of the downward injection type has an ozone reaction water tank 2, and a pipe 1 having a lower end opening is provided in the gas-liquid contact part 3 a of the ozone reaction water tank 2.
1 is laid vertically, and pressurized water to be treated or water to be treated pressurized by the pump 12 is introduced from the upper end of the tube 11. In order to make use of the pressurizing effect, a throttle 13 such as an orifice may be provided at the lower end of the tube 11, and the ozone gas is injected as bubbles into the upper end of the tube 11 from a nozzle-type ozone injector 14. These bubbles flow down together with the flow of the water to be treated in the tube 11, and from the lower end of the tube 11, the gas-liquid contact portion 3a
The gas is released into the air and rises as bubbles, and comes out of the water surface to become exhausted ozone gas. Water that has exited the gas-liquid contact portion 3a is subjected to water treatment via the stagnation portion 4a, as in the case shown in FIG.

【0005】管体11内に注入されるオゾンガスのオゾ
ン濃度は常用(10〜20g/m3)の10〜20倍を
想定しており、オゾン注入率を不変とすれば送気量が常
用の1/10〜1/20と小さくなるため、ノズル式の
オゾン注入器14と管体11が有効に作用することにな
る。この気液反応水処理装置10は、加圧と高濃度オゾ
ンの作用により、オゾンの溶解/反応が高速で行われる
ため、省スペースの装置化が可能とされる。
[0005] The ozone concentration of the ozone gas injected into the pipe 11 is assumed to be 10 to 20 times that of ordinary (10 to 20 g / m3). Since it becomes as small as / 10 to 1/20, the nozzle type ozone injector 14 and the tube 11 work effectively. In the gas-liquid reaction water treatment device 10, the dissolution / reaction of ozone is performed at a high speed by the action of pressurization and high-concentration ozone, so that a space-saving device can be realized.

【0006】[0006]

【発明が解決しようとする課題】図7に示す常用オゾン
ガスを用いた気液反応水処理装置1は、実用装置として
最も採用されているが、次のような問題点がある。 (1) オゾン吸収率が80〜90数%程度で高くな
く、利用されない損失オゾンが排オゾンガスとして排出
される。 (2) 上昇気泡が水面に到達する間にオゾンの溶解が
行われるため、オゾン反応水槽2の槽高を5〜7mと高
くしなければならないという構造的制約がある。 (3) 散気ユニット5の構造上の大きさと設置底面積
あたりの散気量特性とから、散気ユニット5が水の滞留
時間で5〜10分に相当する大きなスペースを有する気
液接触部3の底面全体に敷設される。そのため、散気ユ
ニット5の水平度や目詰まりの不均一が生じ易く、気泡
流の不均一によるオゾン溶解効率の低下を生じ易い。 (4) 散気ユニット5の保守上、オゾン反応水槽2の
全部の水抜きが必要であり、この系の運転停止と大きな
水損失を招く。
The gas-liquid reaction water treatment apparatus 1 using ordinary ozone gas shown in FIG. 7 is most often used as a practical apparatus, but has the following problems. (1) The ozone absorption rate is as low as about 80 to 90% and is not high, and the unused ozone loss is discharged as the exhausted ozone gas. (2) Since ozone is dissolved while the rising bubbles reach the water surface, there is a structural restriction that the tank height of the ozone reaction water tank 2 must be as high as 5 to 7 m. (3) From the structural size of the diffuser unit 5 and the characteristic of the amount of diffused air per installation bottom area, the diffuser unit 5 has a large space corresponding to 5 to 10 minutes of water retention time. 3 is laid on the entire bottom surface. Therefore, unevenness of the horizontality and clogging of the air diffusing unit 5 is likely to occur, and the ozone dissolving efficiency is likely to decrease due to unevenness of the bubble flow. (4) For the maintenance of the air diffuser unit 5, it is necessary to drain the entire water of the ozone reaction water tank 2, which causes an operation stop of this system and a large water loss.

【0007】一方、図8に示す下方注入方式の気液反応
水処理装置10も次のような問題がある。 (1) 高速のオゾンの溶解/反応を維持するために
は、気液接触部3aの槽高を、常用オゾンガスを用いた
気液反応水処理装置1と同様に5〜7mと高くしなけれ
ばならないという構造的制約がある。 (2) ノズル型のオゾン注入器14における気泡径は
比較的大きいため、気液接触効率上マイナス効果とな
る。また、オゾン注入器14における通気量と通気量変
化範囲が小さいため、オゾン注入率制御用に多数のオゾ
ン注入器14を敷設しなければならず装置が複雑化す
る。さらに、常用のオゾン濃度の10〜20倍のオゾン
ガスには使用できても、通気量が大きくなるこれより低
い高濃度オゾンガスには適用できないという問題があ
る。 (3) 管体11の下端部にオリフィス等の絞り13を
設けて加圧溶解する場合は、絞り13のオリフィス等が
1点に集中しているため、絞り度を上げるほど調整が困
難になり大きな加圧効果が期待できない。また経時的な
腐食・付着・詰まり等に対する保守が必要になり、保守
性も悪い。
On the other hand, the gas-liquid reaction water treatment apparatus 10 of the downward injection type shown in FIG. 8 also has the following problem. (1) In order to maintain high-speed ozone dissolution / reaction, the tank height of the gas-liquid contact part 3a must be as high as 5 to 7 m as in the case of the gas-liquid reaction water treatment apparatus 1 using ordinary ozone gas. There is a structural constraint that it must not. (2) Since the bubble diameter in the nozzle type ozone injector 14 is relatively large, it has a negative effect on the gas-liquid contact efficiency. Further, since the amount of ventilation and the range of change in the amount of ventilation in the ozone injector 14 are small, a large number of ozone injectors 14 must be laid for controlling the ozone injection rate, which complicates the apparatus. Further, there is a problem that even if it can be used for an ozone gas having an ozone concentration of 10 to 20 times the ordinary ozone concentration, it cannot be applied to a high-concentration ozone gas which has a lower ventilation rate and has a larger ventilation rate. (3) In the case where a throttle 13 such as an orifice is provided at the lower end of the tube body 11 to perform melting under pressure, the orifice and the like of the throttle 13 are concentrated at one point. A large pressurizing effect cannot be expected. In addition, maintenance for corrosion, adhesion, clogging, etc. over time is required, and the maintainability is poor.

【0008】本発明はこのような点を考慮してなされた
ものであり、オゾン反応水槽の槽高を大きくしなくても
効果的に気液反応を生じさせることができる気液反応水
処理装置および気体注入器を提供することを目的とす
る。
The present invention has been made in view of the above points, and a gas-liquid reaction water treatment apparatus capable of effectively generating a gas-liquid reaction without increasing the height of the ozone reaction water tank. And a gas injector.

【0009】[0009]

【課題を解決するための手段】本発明は、水槽と、水槽
内に垂直方向に配置され、下端が開口した開口管体と、
開口管体の上流側に設けられ、内部が水流路となる中空
多孔質体と、中空多孔質体の外方に取付けられ中空多孔
質体との間に気体導入路を形成する外管体とを有する気
体注入器と、を備えたことを特徴とする気液反応水処理
装置、内部が水流路となる中空多孔質体と、中空多孔質
体の外方に取付けられ中空多孔質体との間に気体導入路
を形成する外管体とを有する気体注入器と、この気体注
入器に接続された蛇行配管と、を備えたことを特徴とす
る気液反応水処理装置、および内部が水流路となる中空
多孔質体と、中空多孔質体の外方に取付けられ、中空多
孔質体との間に気体導入路を形成する外管体と、を備え
たことを特徴とする気体注入器である。
SUMMARY OF THE INVENTION The present invention provides a water tank, an open pipe vertically disposed in the water tank, and having an open lower end.
A hollow porous body provided on the upstream side of the open tubular body, the inside of which serves as a water flow path, and an outer tubular body attached outside of the hollow porous body and forming a gas introduction passage between the hollow porous body and A gas-liquid injector having a gas-liquid reaction water treatment device, a hollow porous body having an internal water flow path, and a hollow porous body attached to the outside of the hollow porous body. A gas-liquid reaction water treatment apparatus, comprising: a gas injector having an outer tube body forming a gas introduction passage therebetween; and a meandering pipe connected to the gas injector, and a water flow inside. A gas injector comprising: a hollow porous body serving as a passage; and an outer tube attached outside the hollow porous body and forming a gas introduction passage between the hollow porous body and the hollow porous body. It is.

【0010】本発明によれば、気体注入器の気体導入路
内に気体を導入し、気体導入路内の気体を中空多孔質体
を介して内部の水流路へ送り込む。水流路には被処理水
が供給され、水流路内において被処理水に対して気体が
注入される。気体が注入された被処理水は、その後開口
管体から水槽内へ送られこの水槽内で気液接触が行われ
るか、あるいは蛇行配管へ送られ、この蛇行配管内で気
液接触が行われる。
According to the present invention, gas is introduced into the gas introduction path of the gas injector, and the gas in the gas introduction path is sent to the internal water flow path through the hollow porous body. Water to be treated is supplied to the water channel, and gas is injected into the water channel in the water channel. The gas-injected water to be treated is then sent from the open pipe into the water tank, where gas-liquid contact is performed in the water tank, or sent to a meandering pipe, and gas-liquid contact is performed in the meandering pipe. .

【0011】[0011]

【発明の実施の形態】第1の実施の形態 以下、図面を参照して本発明の実施の形態について説明
する。図1乃至図2は本発明の第1の実施の形態を示す
図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 and FIG. 2 are views showing a first embodiment of the present invention.

【0012】まず図2により気液反応水処理装置につい
て説明する。図2に示すように気液反応水処理装置30
は、内部が気液接触部31と滞留部4aとに区画された
オゾン反応水槽2と、気液接触部31内に垂直方向に配
置されるとともに下端が開口した管体(開口管体)32
とを備えている。
First, a gas-liquid reaction water treatment apparatus will be described with reference to FIG. As shown in FIG.
Is an ozone reaction water tank 2 having an interior partitioned into a gas-liquid contact portion 31 and a retaining portion 4a, and a tube (open tube) 32 which is vertically arranged inside the gas-liquid contact portion 31 and has an open lower end.
And

【0013】また管体32の上部には、被処理水に対し
てオゾンガスを注入する気体注入器20が接続されてい
る。また気体注入器20の上端には、加圧被処理水また
はポンプ12で加圧された被処理水が水流路配管25を
介して導入されるようになっており、加圧効果を生かす
ため、管体32の下端部にオリフィス等の絞り13が設
けられている。ポンプ12を用いる場合は、気体注入器
20をポンプ12の吸引側あるいは吐出側に移動させて
もよい。またオゾンガスは、気体注入器20から管体3
2の上端内部に気泡として注入されるようになってい
る。
A gas injector 20 for injecting ozone gas into the water to be treated is connected to an upper portion of the tube 32. Further, at the upper end of the gas injector 20, the pressurized water to be treated or the water to be treated pressurized by the pump 12 is introduced through the water flow pipe 25, so as to make use of the pressurizing effect. A throttle 13 such as an orifice is provided at the lower end of the tube 32. When the pump 12 is used, the gas injector 20 may be moved to the suction side or the discharge side of the pump 12. Ozone gas is supplied from the gas injector 20 to the tube 3.
2 are injected as bubbles inside the upper end.

【0014】次に気体注入器20について、図1により
詳述する。図1に示すように気体注入器20は、内部が
水流路21aとなるセラミックス製または焼結金属製の
中空多孔質体21と、中空多孔質体21を取囲むステン
レス製の外管体22とを有している。外管体22内に
は、外管体22と中空多孔質体21との間の空隙(気体
導入路)23の気液シールをするシール材24が配置さ
れている。また外管体22には水流路配管25に配管接
続するためのフランジなどの接続部26と、気体接続口
28と、ドレン口29とが設けられ、水流路配管25と
接続部26との間にはシール材27が設けられている。
また中空多孔質体21の両端部はシール性を維持するた
め、気液透過性の悪い部材の接合や表面処理が施されて
いる。オゾンなどの注入ガスのガス管28aは気体接続
口28に接続され、気体注入器20は接続部26を介し
て水流路配管25に接続される。またドレン口29には
図示していない開閉弁が設けられている。
Next, the gas injector 20 will be described in detail with reference to FIG. As shown in FIG. 1, the gas injector 20 includes a hollow porous body 21 made of ceramics or sintered metal having a water flow path 21 a therein, and a stainless steel outer pipe body 22 surrounding the hollow porous body 21. have. In the outer tube 22, a seal member 24 for gas-liquid sealing of a gap (gas introduction passage) 23 between the outer tube 22 and the hollow porous body 21 is arranged. The outer pipe body 22 is provided with a connection portion 26 such as a flange for connecting to the water flow pipe 25, a gas connection port 28, and a drain port 29. Is provided with a sealing material 27.
Both ends of the hollow porous body 21 are bonded or surface-treated with a member having poor gas-liquid permeability in order to maintain the sealing property. The gas pipe 28a of the injection gas such as ozone is connected to the gas connection port 28, and the gas injector 20 is connected to the water flow path pipe 25 via the connection portion 26. The drain port 29 is provided with an opening / closing valve (not shown).

【0015】次にこのような構成からなる本実施の形態
の作用について説明する。まず、加圧被処理水が、水流
路配管25から気体注入器20内に供給される。
Next, the operation of the embodiment having the above-described configuration will be described. First, pressurized water to be treated is supplied from the water channel pipe 25 into the gas injector 20.

【0016】次に被処理水は、気体注入器20の中空多
孔質体21内の水流路21aに入る。一方、オゾンなど
の注入ガスはガス管28aから気体接続口28を経て外
管体22と中空多孔質体21との間の気体導入路23内
に入り、その後中空多孔質体21の多孔質部を通して中
空多孔質体21内部の水流路21aに微細気泡となって
注入される。
Next, the water to be treated enters the water flow path 21 a in the hollow porous body 21 of the gas injector 20. On the other hand, an injection gas such as ozone enters the gas introduction passage 23 between the outer tube 22 and the hollow porous body 21 through the gas pipe 28a via the gas connection port 28, and then the porous portion of the hollow porous body 21 Through the water passage 21a inside the hollow porous body 21 as fine bubbles.

【0017】気体注入器20の中空多孔質体21は、従
来のノズル式のオゾン注入器14で使用するmmオーダ
の1本のノズル孔径よりはるかに小さいμmオーダの孔
径を多数有する多孔質体となっており、より細かい多数
のオゾンガス気泡を水流路21aに対して発生し、気液
接触効率を向上させることができる。さらに、中空多孔
質体21はノズル式のオゾン注入器14より通気量を効
率的に拡大でき、オゾン注入率の制御範囲を拡大するこ
とができ、常用のオゾン濃度(10〜20g/m3 )の
10〜20倍程度までの高濃度のオゾンガスにも適用が
可能となる。
The hollow porous body 21 of the gas injector 20 is composed of a porous body having a large number of pores on the order of μm, which is much smaller than the diameter of one nozzle on the order of mm used in the conventional nozzle type ozone injector 14. Thus, many finer ozone gas bubbles are generated in the water flow path 21a, and the gas-liquid contact efficiency can be improved. Further, the hollow porous body 21 can more efficiently increase the ventilation rate than the nozzle type ozone injector 14, can extend the control range of the ozone injection rate, and can obtain a normal ozone concentration (10 to 20 g / m 3). It can be applied to a high concentration ozone gas of about 10 to 20 times.

【0018】図1において、気体注入器20は横置きと
なっているが、縦横自在な設置ができる。通常、横置き
の気体注入器20では微細気泡が中空多孔質体21の水
流路21a内部の長手方向下流部の上方から発生し、縦
置きの気体注入器20では中空多孔質体21の水流路内
部の上方で内壁に沿って発生する。このように中空多孔
質体21の全面からではなく部分的な気泡発生となって
も、従来のノズル式のオゾン注入器14に比べて、より
多量の通気が気泡径を大きくすることなく実現される。
In FIG. 1, the gas injector 20 is placed horizontally, but it can be installed vertically and horizontally. Usually, in the horizontal gas injector 20, fine bubbles are generated from above the longitudinally downstream portion inside the water flow path 21a of the hollow porous body 21, and in the vertical gas injector 20, the water flow path of the hollow porous body 21 is generated. Occurs along the inner wall above the interior. In this way, even if bubbles are generated not from the entire surface of the hollow porous body 21 but locally, a larger amount of air can be realized without increasing the bubble diameter as compared with the conventional nozzle type ozone injector 14. You.

【0019】従来のオゾン注入器14では、複数のオゾ
ン注入器14を使用しても気泡発生個所が数点しかない
ため、経時的に付着する被処理水中の挟雑物や酸化物に
よる目詰まりが急激に発生し易く、オゾンなどの気体注
入制御を困難にし、かつ、この交換保守のため導水を停
止しなければならない不都合があった。これに対して本
発明による中空多孔質体21では、気泡発生個所が多数
の微細孔となるため、目詰まりが緩慢であり、かつ、気
体注入圧の若干の調整により中空多孔質体21の気泡発
生が無かった部位から気泡発生を継続でき、気体注入制
御の安定化と目詰まり保守期間の延長が可能となる。
In the conventional ozone injector 14, even if a plurality of ozone injectors 14 are used, only a few bubbles are generated, so that clogging due to contaminants or oxides in the water to be treated that adheres over time. Are likely to occur rapidly, which makes it difficult to control the injection of gas such as ozone, and has the disadvantage that the water supply must be stopped for the replacement and maintenance. On the other hand, in the hollow porous body 21 according to the present invention, since bubbles are generated in a large number of micropores, clogging is slow and bubbles in the hollow porous body 21 are slightly adjusted by adjusting the gas injection pressure. The generation of air bubbles can be continued from the part where the generation has not occurred, so that the gas injection control can be stabilized and the clogging maintenance period can be extended.

【0020】次に気体注入器20内においてオゾンが注
入された被処理水は、その後管体32内を流下し、管体
32の下端から気液接触部31内に放出される。この場
合、オゾンの気泡は気液接触部31内で上昇気泡とな
り、水面から出て排オゾンガスになる。気液接触部31
を出た処理水は滞留部4aを経て水処理が行われる。
Next, the water to be treated, into which ozone has been injected in the gas injector 20, then flows down in the tube 32 and is discharged from the lower end of the tube 32 into the gas-liquid contact portion 31. In this case, the ozone bubble becomes an ascending bubble in the gas-liquid contact portion 31, and comes out of the water surface to become exhausted ozone gas. Gas-liquid contact part 31
The treated water that has exited is subjected to water treatment via the retaining section 4a.

【0021】本実施の形態では気体注入器20を用いる
ことにより、気液接触効率の向上、気体注入率の制御範
囲の拡大、および常用オゾン濃度の(10〜20g/m
3 )の10〜20倍程度までの高濃度のオゾンガスへの
適用が可能となる。また気体注入制御の安定化と目詰ま
り保守期間の延長化も可能になる。
In this embodiment, by using the gas injector 20, the gas-liquid contact efficiency is improved, the control range of the gas injection rate is expanded, and the normal ozone concentration (10 to 20 g / m
Application to ozone gas of high concentration up to about 10 to 20 times of 3) is possible. Further, it is possible to stabilize the gas injection control and extend the clogging maintenance period.

【0022】第2の実施の形態 次に図3により本発明の第2の実施の形態について説明
する。図3に示す第2の実施の形態は、オゾン反応水槽
2内に設置された気体注入器20の上流側に、垂直方向
に配置された密閉型管体41を接続するとともに、管体
41の上部に気体注入器20と同様の構造の追加気体注
入器20aを設けたものである。図3において、図1お
よび図2に示す実施の形態と同一部分には同一符号を付
して詳細な説明は省略する。
Second Embodiment Next, a second embodiment of the present invention will be described with reference to FIG. In the second embodiment shown in FIG. 3, a vertically arranged hermetic tube 41 is connected to the upstream side of the gas injector 20 installed in the ozone reaction water tank 2. An additional gas injector 20a having a structure similar to that of the gas injector 20 is provided at the upper part. In FIG. 3, the same portions as those of the embodiment shown in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description is omitted.

【0023】図3において、まず加圧被処理水が追加気
体注入器20a内に流入し、この追加気体注入器20a
内において加圧被処理水に対してオゾンが注入される。
オゾンが注入された被処理水は、その後、密閉型管体4
1内において気液接触が行われる。次に被処理水は気体
注入器20に流入し、この気体注入器20内において被
処理水に対してオゾンが再度注入される。被処理水は、
その後管体32から気液接触部31を経て滞留部4aへ
送られる。
In FIG. 3, first, the pressurized water to be treated flows into the additional gas injector 20a, and this additional gas injector 20a
Inside, ozone is injected into the pressurized water to be treated.
The treated water into which ozone has been injected is then removed from the closed pipe 4
Gas-liquid contact takes place in 1. Next, the water to be treated flows into the gas injector 20, and ozone is again injected into the water to be treated in the gas injector 20. The water to be treated is
Thereafter, the gas is sent from the pipe 32 to the retaining portion 4a via the gas-liquid contact portion 31.

【0024】図3に示す実施の形態によれば、次のよう
な作用効果を奏する。すなわち常用の10〜20倍程度
までの高濃度のオゾンガスの適用を図るとき、図2に示
す気液反応水処理装置30を使用しても、通気量が過大
となり気泡径の増大などによるオゾン溶解効率の低下が
起こることがある。この場合、図2に示す気液反応水処
理装置10を複数台並列接続することも考えられるが、
設備費の増大と調整の困難性を伴う。本実施の形態によ
れば、通気量の大きい追加気体注入器20aと、水没の
必要がなく設置性が優れた密閉型管体41とをオゾン反
応水槽2の上流側に配置したので、上記の過大通気量の
一部を効率的に分担することができる。またオゾン注入
率の制御範囲の拡大を図ることができ、かつ常用の10
〜20倍程度までの高濃度のオゾンガスの適用化の拡大
を図ることができる。また、本実施の形態によれば、密
閉型管体41内で、被処理水とオゾンガスとのより大き
い接触反応時間を確保することができる。このため設置
性の悪いオゾン反応水槽2の滞留部4aを省略もしくは
簡略化できる。
According to the embodiment shown in FIG. 3, the following operational effects are obtained. That is, when applying a high-concentration ozone gas up to about 10 to 20 times that of ordinary use, even if the gas-liquid reaction water treatment apparatus 30 shown in FIG. A decrease in efficiency may occur. In this case, it is conceivable to connect a plurality of gas-liquid reaction water treatment devices 10 shown in FIG. 2 in parallel,
This involves an increase in equipment costs and difficulty in adjustment. According to the present embodiment, the additional gas injector 20a having a large ventilation amount and the sealed tube 41 which does not need to be submerged and has excellent installation properties are arranged on the upstream side of the ozone reaction water tank 2, so that Part of the excessive ventilation can be efficiently shared. In addition, the control range of the ozone injection rate can be expanded, and a common 10
The application of ozone gas having a high concentration up to about 20 times can be expanded. Further, according to the present embodiment, a longer contact reaction time between the water to be treated and the ozone gas can be ensured in the sealed tube 41. For this reason, the stagnation part 4a of the ozone reaction water tank 2, which is difficult to install, can be omitted or simplified.

【0025】第3の実施の形態 次に図4および図5により、本発明の第3の実施の形態
について説明する。図4に示すように、気液反応水処理
装置30は気体注入器20と、この気体注入器20に取
外継手54を介して接続された蛇行配管51とを組合せ
て構成され気液反応配管系50からなっている。
Third Embodiment Next, a third embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 4, the gas-liquid reaction water treatment apparatus 30 is configured by combining a gas injector 20 and a meandering pipe 51 connected to the gas injector 20 via a disconnecting joint 54. It consists of system 50.

【0026】また気体注入器20と蛇行配管51とから
なる気液反応配管系50は一組以上設けられ、各組の気
液反応配管系50は流路切替器53により連結されてい
る。また各流路切替器53間には、バイパス配管52が
接続されている。
One or more gas-liquid reaction piping systems 50 each composed of the gas injector 20 and the meandering piping 51 are provided, and the gas-liquid reaction piping systems 50 of each set are connected by a flow path switch 53. In addition, a bypass pipe 52 is connected between the flow path switches 53.

【0027】さらに気液反応水処理装置30は、水槽6
1内に配置されるとともに下端が開口した開口管体62
を備えている(図5(a))。
Further, the gas-liquid reaction water treatment apparatus 30 includes a water tank 6
1 and an open tubular body 62 whose lower end is open
(FIG. 5A).

【0028】この管体62は、図4に示す気液反応配管
系50の下流側に接続されるとともに下端に絞り13が
設けられている。
This pipe 62 is connected to the downstream side of the gas-liquid reaction piping system 50 shown in FIG. 4 and has a throttle 13 at the lower end.

【0029】なお、図4に示す気体注入器20は、図1
に示す気体注入器と同様の構造を有している。
The gas injector 20 shown in FIG.
Has the same structure as the gas injector shown in FIG.

【0030】次にこのような構成からなる本実施の形態
の作用について説明する。図4に示すように加圧被処理
水が、流路切替器53を経て気液反応配管系50の気体
注入器20内に入り、この気体注入器20において被処
理水に対してオゾンが注入される。
Next, the operation of the present embodiment having the above configuration will be described. As shown in FIG. 4, pressurized water to be treated enters the gas injector 20 of the gas-liquid reaction piping system 50 via the flow path switch 53, and ozone is injected into the water to be treated in the gas injector 20. Is done.

【0031】次に被処理水は蛇行配管51内を流れ、こ
の間、気液接触が十分行われる。その後、被処理水は図
5(a)に示す管体62を経て水槽61内に流出し、こ
の水槽61内でも気液接触が行われる。
Next, the water to be treated flows through the meandering pipe 51, during which gas-liquid contact is sufficiently performed. Thereafter, the water to be treated flows out into the water tank 61 via the pipe 62 shown in FIG. 5A, and gas-liquid contact is also made in the water tank 61.

【0032】本実施の形態によれば、気体注入器20と
蛇行配管51を設置条件に応じて3次元方向に自在に変
形することができ、必要な気液接触容積だけでなく滞留
部容積にまでおよぶ容積を排オゾン損失の無い密閉した
蛇行配管51で確保することができる。蛇行配管51内
の気泡は横引き配管では流路内上面を通過するので、有
効気液接触容積は縦引きの蛇行配管51部分で確保す
る。また、気泡溜まりになる凹や突起物を避け、気泡を
含む被処理水に許容される最低流速を確保している。
According to the present embodiment, the gas injector 20 and the meandering pipe 51 can be freely deformed in the three-dimensional direction according to the installation conditions, so that not only the necessary gas-liquid contact volume but also the stagnation portion volume is reduced. A volume extending to a closed meandering pipe 51 without loss of exhausted ozone can be secured. Since the air bubbles in the meandering pipe 51 pass through the upper surface in the flow path in the horizontal drawing pipe, the effective gas-liquid contact volume is secured in the vertical drawing meandering pipe 51 portion. In addition, a concave or a projection that becomes a bubble pool is avoided, and a minimum flow velocity allowed for the water to be treated containing bubbles is secured.

【0033】またバイパス配管52と、流路切替器53
と、取外継手54を設けたので、気体注入器20と蛇行
配管51とからなる気液反応配管系50を流路切替器5
3によりバイパス配管52に切替えることができ、複数
の気液反応配管系50から任意の気液反応配管系50を
選択することが可能になる。これにより、将来の季節的
な水質変化によるオゾン注入率変化に対応して、気液接
触を最適に行うことができ、気体注入器20の保守管理
を水流路の中断なく実施できる。
A bypass pipe 52 and a flow path switch 53
And the removal joint 54, the gas-liquid reaction piping system 50 composed of the gas injector 20 and the meandering piping 51 is connected to the flow switching device 5.
By switching to 3, the bypass pipe 52 can be switched, and an arbitrary gas-liquid reaction pipe system 50 can be selected from the plurality of gas-liquid reaction pipe systems 50. Accordingly, the gas-liquid contact can be optimally performed in response to a change in the ozone injection rate due to a future seasonal change in water quality, and the maintenance of the gas injector 20 can be performed without interruption of the water flow path.

【0034】また図5(a)に示すように気液反応配管
系50に続いて、水槽61の水面上から底面近くまで縦
方向に敷設され下端が開放された管体62を設け、管体
62の下端に絞り13を設けたので、水槽61内の水深
を気液反応配管系50と管体62の設置条件に応じて自
由に設計することができる。
Further, as shown in FIG. 5 (a), a pipe 62 laid vertically from the water surface of the water tank 61 to near the bottom and having a lower end opened is provided following the gas-liquid reaction piping system 50. Since the throttle 13 is provided at the lower end of the tank 62, the water depth in the water tank 61 can be freely designed according to the installation conditions of the gas-liquid reaction piping system 50 and the pipe 62.

【0035】ところで水槽61の水深は4〜6m以上に
維持することが、流路全体の内圧を安定的に高めるため
望ましい。この場合、管体62の形態は水深の維持に主
眼が置かれるため、図8に示す従来の管体11のよう
に、下方への気泡移動速度を可能な限り遅くする必要が
無く、管体62の管口径を細くでき、水槽61を含めて
設置が簡単になる。
It is desirable to maintain the water depth of the water tank 61 at 4 to 6 m or more in order to stably increase the internal pressure of the entire flow path. In this case, since the main purpose of the form of the tube 62 is to maintain the water depth, unlike the conventional tube 11 shown in FIG. 8, it is not necessary to make the downward bubble moving speed as slow as possible. The diameter of the tube 62 can be reduced, and the installation including the water tank 61 is simplified.

【0036】また望ましい水深が確保できない設置条件
の場合、本発明では、不足する水深相当の圧力を気液反
応配管系50から管体62の出口までの水流路全体の流
路抵抗により確保することができる。この場合、加圧効
果上からは、水流路端末すなわち管体62の管口径を細
くすることが望まれる。これは、設置上の利点でもあ
る。なお、本発明において気液反応配管系50から管体
62までの水流路内で滞留部機能を持たせることは可能
であるが、水槽61を滞留部として利用することも当然
できる。
In the case of an installation condition where a desired water depth cannot be secured, in the present invention, a pressure corresponding to the insufficient water depth is secured by the flow resistance of the entire water flow path from the gas-liquid reaction piping system 50 to the outlet of the pipe 62. Can be. In this case, from the viewpoint of the pressurizing effect, it is desired to reduce the diameter of the water passage terminal, that is, the pipe diameter of the pipe body 62. This is also an installation advantage. In the present invention, it is possible to have a retaining portion function in the water flow path from the gas-liquid reaction piping system 50 to the pipe 62, but it is also possible to use the water tank 61 as the retaining portion.

【0037】次に本実施の形態の変形例について説明す
る。図5(a)に示す管体62の代わりに、気液反応配
管系50の下流側に立上げ管体71を接続し、立上げ管
体71の上部で大気開放するとともに、管体71に受水
管体72を介して、あるいは直接に水槽73が連結され
ている(図5(b))。立上げ管体71の立上げ高さ
は、気液反応配管系50と立上げ管体71の設置条件に
応じて自由に設計できる。
Next, a modified example of this embodiment will be described. Instead of the tube 62 shown in FIG. 5A, a rising tube 71 is connected to the downstream side of the gas-liquid reaction piping system 50, and the upper portion of the rising tube 71 is opened to the atmosphere. The water tank 73 is connected via the water receiving pipe 72 or directly (FIG. 5B). The rising height of the rising pipe 71 can be freely designed according to the installation conditions of the gas-liquid reaction piping system 50 and the rising pipe 71.

【0038】本変形例において立上げ管体71の高さ位
置を気体注入器20から4〜6m以上に維持すること
が、流路全体の内圧を安定的に高めるため、加圧効果と
その安定性上望ましい。この場合、立上げ管体71の形
態は高さの維持に主眼が置かれるため、図8に示す従来
の下方注入方式の管体11よりも、立上げ端末管体71
の管口径を細くでき、設置が簡単になる。望ましい高さ
が確保できない設置条件の場合、本発明では、不足する
高さ相当の圧力を気液反応配管系50から立上げ管体7
1の出口までの水流路全体の流路抵抗で確保することが
できる。この場合、加圧効果上からは、水流路端末すな
わち立上げ管体71の管口径を細くすることが望まれ
る。これは、設置上の利点でもある。
In the present modification, maintaining the height position of the riser pipe 71 at 4 to 6 m or more from the gas injector 20 is because the internal pressure of the entire flow path is stably increased, and the pressurizing effect and its stability Sexually desirable. In this case, since the configuration of the riser tube 71 focuses on maintaining the height, the riser terminal tube 71 is smaller than the conventional downward injection tube 11 shown in FIG.
The diameter of the pipe can be reduced, and the installation is simplified. In the case of installation conditions where a desired height cannot be secured, in the present invention, a pressure corresponding to the insufficient height is raised from the gas-liquid reaction piping system 50 to the rising pipe 7.
It can be ensured by the flow path resistance of the entire water flow path up to the first outlet. In this case, from the viewpoint of the pressurizing effect, it is desired to reduce the diameter of the water flow path terminal, that is, the diameter of the rising pipe 71. This is also an installation advantage.

【0039】また本変形例によれば、端末管体の水深確
保や土木水槽の設置が困難で高さに余裕がある場合に、
性能維持を図りながら簡単に設置できる利点を有する。
Further, according to this modification, when it is difficult to secure the depth of the terminal pipe and to install the civil engineering tank, and there is a margin in the height,
It has the advantage that it can be easily installed while maintaining performance.

【0040】次に更なる変形例について説明する。図5
(a)に示す管体62の代わりに、気液反応配管系50
の下流側に、水路の絞り機構81を接続してもよい(図
5(c))。水路の絞り機構81は導入配管85aと、
導入配管85aに泡溜りのできないレジューサ85、8
6、87を介して接続された細管82、83とからなっ
ており、レジューサ85と、レジューサ86、87との
間には流路切替器84が設けられている。
Next, a further modification will be described. FIG.
Instead of the tube 62 shown in FIG.
A water channel throttle mechanism 81 may be connected to the downstream side of FIG. 5 (FIG. 5C). The water channel throttle mechanism 81 includes an introduction pipe 85a,
Reducers 85, 8 that do not allow bubbles to accumulate in the inlet pipe 85a
The flow path switch 84 is provided between the reducer 85 and the reducers 86 and 87.

【0041】本実施の形態によれば、気液接触反応の加
圧効果は、気液反応配管系50の水路の絞り機構81ま
での水流路全体の流路抵抗で確保されるが、管路型気体
注入器20の内圧を水柱4〜6m以上に高めることが望
まれ、気液反応水処理装置30の端末となる水路の絞り
機構81で集中的に大部分の流路抵抗が得られるように
することが望まれる。この流路抵抗は処理水流量の変動
の影響を受けるので、この変動ステップに対応した複数
の細管82、83を設け、細管82、83を流路切替器
84で切替え選択することができる。
According to the present embodiment, the pressurizing effect of the gas-liquid contact reaction is ensured by the flow resistance of the entire water flow path up to the throttle mechanism 81 of the water path of the gas-liquid reaction piping system 50. It is desired to increase the internal pressure of the mold type gas injector 20 to 4 to 6 m or more, so that most of the flow path resistance can be obtained intensively by the water channel restricting mechanism 81 serving as a terminal of the gas-liquid reaction water treatment device 30. Is desired. Since this flow path resistance is affected by fluctuations in the flow rate of the treated water, a plurality of thin tubes 82, 83 corresponding to the fluctuation steps can be provided, and the thin tubes 82, 83 can be switched and selected by the flow path switch 84.

【0042】細管82、83による絞り機構は、細管8
2、83の口径と長さの自在設計により、従来の絞りよ
りも安定性が高く、水柱4〜6m以上の高内圧にするこ
とも可能になり、気液接触反応効率を飛躍的に向上させ
ることも可能になる。流路切替器84は手動で切替えて
もよいが、処理水流量の変動値を測定し、流路切替器8
4の切替えと、管路型気体注入器20へのオゾンガスの
注入量調整を連動させた自動制御にすることが望まし
い。
The squeezing mechanism by the thin tubes 82 and 83
The 2,83 diameter and length are freely designed, so that the stability is higher than that of the conventional throttle, and it is possible to increase the internal pressure to 4 to 6 m or more, which dramatically improves the efficiency of gas-liquid contact reaction. It becomes possible. Although the flow path switching device 84 may be switched manually, the fluctuation value of the treated water flow rate is measured, and the flow switching device 8
It is desirable that automatic control be performed in conjunction with the switching of No. 4 and the adjustment of the amount of ozone gas injected into the pipeline gas injector 20.

【0043】第4の実施の形態 次に本発明の第4の実施の形態について図6により説明
する。図6に示す実施の形態は、上記第1乃至第3の実
施の形態に示す気液反応水処理装置において、最下流に
図6に示す密閉滞留筒91、93を配置したものであ
る。また密閉滞留筒91、93は連結配管92により互
いに連結されている。
Fourth Embodiment Next, a fourth embodiment of the present invention will be described with reference to FIG. In the embodiment shown in FIG. 6, in the gas-liquid reaction water treatment apparatus shown in the first to third embodiments, the closed retention cylinders 91 and 93 shown in FIG. The closed retaining cylinders 91 and 93 are connected to each other by a connecting pipe 92.

【0044】各密閉滞留筒91、93は、下部から水を
導入し上部から水を流出する構造となっており、比較的
大きな口径を有している。密閉滞留筒91、93の口径
・高さ、数は、設置条件に合わせて所定の水滞留時間が
得られるように設計され、水流出部に連通する上部構造
は泡溜りが生じないよう口径を徐々に狭めて連結配管9
2の口径に合わされている。連結配管92の口径は、水
流中の気泡が流下方向に搬送される最低の水流線速が維
持できるようになっている。
Each of the closed retaining cylinders 91 and 93 has a structure in which water is introduced from below and water is discharged from above, and has a relatively large diameter. The diameter, height, and number of the closed retention cylinders 91 and 93 are designed so that a predetermined water retention time is obtained according to the installation conditions, and the upper structure communicating with the water outflow portion has a diameter so that bubble accumulation does not occur. Narrow connection pipe 9
It is adjusted to the caliber of 2. The diameter of the connecting pipe 92 is such that the lowest linear velocity of the water flow at which the bubbles in the water flow are conveyed in the downflow direction can be maintained.

【0045】滞留筒91の下部に導入された被処理水
は、滞留筒91の口径拡大により水流線速が低下し緩や
かな流れとなり、滞留筒91の上部に至るまでに所定の
滞留時間が確保される。滞留筒91の上部から水流出部
までの口径の減少に伴い水流線速が上がり、連結配管9
2を介して気泡を搬送しながら滞留筒93に流入する。
The water to be treated introduced into the lower part of the retaining cylinder 91 has a gentle flow due to a decrease in the linear velocity of the water stream due to the increase in the diameter of the retaining cylinder 91, and a predetermined residence time is secured before reaching the upper part of the retaining cylinder 91. Is done. As the diameter from the upper portion of the retaining cylinder 91 to the water outflow portion decreases, the water stream linear velocity increases, and the connecting pipe 9
The air bubbles flow into the retaining cylinder 93 while being transported through the air cylinder 2.

【0046】本実施の形態によれば、より大きい滞留時
間を水流路配管長を伸ばすことなく、排オゾンロスの無
い密閉滞留筒91、93により簡単に確保することがで
き、より長い滞留時間を要する気液反応系への適用が可
能になる。
According to the present embodiment, a longer residence time can be easily ensured by the closed retention cylinders 91 and 93 having no waste ozone loss without increasing the length of the water passage pipe, and a longer residence time is required. Application to a gas-liquid reaction system becomes possible.

【0047】[0047]

【発明の効果】以上のように本発明によれば、被処理水
と気体との気液接触を効率的に行うことができる。この
ため装置全体を大型化することなく、装置をコンパクト
にした状態で被処理水を効果的に処理することができ
る。
As described above, according to the present invention, gas-liquid contact between the water to be treated and the gas can be performed efficiently. Therefore, the water to be treated can be effectively treated in a state where the apparatus is compact, without increasing the size of the entire apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態を示す気体注入器の
側断面図
FIG. 1 is a side sectional view of a gas injector showing a first embodiment of the present invention.

【図2】気液反応水処理装置の概略図FIG. 2 is a schematic diagram of a gas-liquid reaction water treatment device.

【図3】本発明の第2の実施の形態を示す気液反応水処
理装置の概略図
FIG. 3 is a schematic diagram of a gas-liquid reaction water treatment apparatus showing a second embodiment of the present invention.

【図4】本発明の第3の実施の形態を示す気液反応水処
理装置の概略図
FIG. 4 is a schematic diagram of a gas-liquid reaction water treatment apparatus showing a third embodiment of the present invention.

【図5】気液反応配管系の下流側に配置された装置を示
す図
FIG. 5 is a diagram showing an apparatus disposed downstream of a gas-liquid reaction piping system.

【図6】本発明の第4の実施の形態を示す気液反応水処
理装置の概略図
FIG. 6 is a schematic view of a gas-liquid reaction water treatment apparatus showing a fourth embodiment of the present invention.

【図7】従来の気液反応水処理装置を示す図FIG. 7 is a diagram showing a conventional gas-liquid reaction water treatment apparatus.

【図8】他の従来の気液反応水処理装置を示す図FIG. 8 is a diagram showing another conventional gas-liquid reaction water treatment apparatus.

【符号の説明】[Explanation of symbols]

2 オゾン反応水槽 4a 滞留部 20 気体注入器 21 中空多孔質体 22 外管体 30 気液反応水処理装置 31 気液接触部 32,62 開口管体 41 密閉型管体 50 気液反応配管系 51 蛇行配管 52 バイパス配管 53,84 流路切替器 54 取外継手 61,73 水槽 81 水路の絞り機構 82,83 細管 85,86,87 レジューサ 2 Ozone reaction water tank 4a Retaining portion 20 Gas injector 21 Hollow porous body 22 Outer tube 30 Gas-liquid reaction water treatment device 31 Gas-liquid contact portion 32, 62 Open tube 41 Closed tube 50 Gas-liquid reaction piping system 51 Meandering pipe 52 Bypass pipe 53,84 Flow path switch 54 Removal joint 61,73 Water tank 81 Throttle mechanism 82,83 Small pipe 85,86,87 Reducer

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】水槽と、 水槽内に垂直方向に配置され、下端が開口した開口管体
と、 開口管体の上流側に設けられ、内部が水流路となる中空
多孔質体と、中空多孔質体の外方に取付けられ中空多孔
質体との間に気体導入路を形成する外管体とを有する気
体注入器と、 を備えたことを特徴とする気液反応水処理装置。
1. A water tank, an open pipe vertically arranged in the water tank and having an open lower end, a hollow porous body provided upstream of the open pipe and having a water flow passage therein, and a hollow porous body. A gas injector having an outer tube mounted outside the porous body and forming a gas introduction passage between the porous body and the hollow porous body.
【請求項2】気体注入器の上流側に接続され垂直方向に
配置された密閉型管体と、 密閉型管体の上部に設けられ、内部が水流路となる中空
多孔質体と、中空多孔質体の外方に取付けられ中空多孔
質体との間に気体導入路を形成する外管体とを有する追
加気体注入器と、 を更に備えたことを特徴とする請求項1記載の気液反応
水処理装置。
2. A closed-type tube connected to the upstream side of the gas injector and arranged vertically, a hollow porous body provided on the upper portion of the closed-type tube and having a water flow passage therein, and a hollow porous body. The gas-liquid according to claim 1, further comprising: an additional gas injector having an outer tube attached to the outside of the porous body and forming a gas introduction passage with the hollow porous body. Reaction water treatment equipment.
【請求項3】内部が水流路となる中空多孔質体と、中空
多孔質体の外方に取付けられ中空多孔質体との間に気体
導入路を形成する外管体とを有する気体注入器と、 この気体注入器に接続された蛇行配管と、 を備えたことを特徴とする気液反応水処理装置。
3. A gas injector having a hollow porous body having a water flow passage therein, and an outer tube mounted outside the hollow porous body and forming a gas introduction passage between the hollow porous body. And a meandering pipe connected to the gas injector.
【請求項4】水槽と、 水槽内に垂直方向に配置され、下端が開口するとともに
蛇行配管の下流側に接続された開口管体と、 を更に備えたことを特徴とする請求項3記載の気液反応
水処理装置。
4. The water tank according to claim 3, further comprising: a water tank; and an opening pipe vertically disposed in the water tank, having a lower end opened and connected to a downstream side of the meandering pipe. Gas-liquid reaction water treatment equipment.
【請求項5】開口管体の上端は、大気開放していること
を特徴とする請求項4記載の気液反応水処理装置。
5. The gas-liquid reaction water treatment apparatus according to claim 4, wherein an upper end of the open pipe is open to the atmosphere.
【請求項6】蛇行配管の下流側に水路の絞り機構を設け
たことを特徴とする請求項3記載の気液反応水処理装
置。
6. The gas-liquid reaction water treatment apparatus according to claim 3, wherein a water channel throttle mechanism is provided downstream of the meandering pipe.
【請求項7】気体が導入された水を下部から導き、上部
から流出させる密閉滞留筒を更に備えたことを特徴とす
る請求項1乃至6のいずれか記載の気液反応水処理装
置。
7. The gas-liquid reaction water treatment apparatus according to claim 1, further comprising a closed retention cylinder that guides the gas-introduced water from a lower portion and allows the water to flow out from an upper portion.
【請求項8】内部が水流路となる中空多孔質体と、 中空多孔質体の外方に取付けられ、中空多孔質体との間
に気体導入路を形成する外管体と、 を備えたことを特徴とする気体注入器。
8. A hollow porous body having a water flow passage therein, and an outer tube mounted outside the hollow porous body and forming a gas introduction passage between the hollow porous body and the hollow porous body. A gas injector characterized in that:
JP10119100A 1998-04-28 1998-04-28 Gas-liquid reaction water treating device, and gas injection device Pending JPH11309469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10119100A JPH11309469A (en) 1998-04-28 1998-04-28 Gas-liquid reaction water treating device, and gas injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10119100A JPH11309469A (en) 1998-04-28 1998-04-28 Gas-liquid reaction water treating device, and gas injection device

Publications (1)

Publication Number Publication Date
JPH11309469A true JPH11309469A (en) 1999-11-09

Family

ID=14752915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10119100A Pending JPH11309469A (en) 1998-04-28 1998-04-28 Gas-liquid reaction water treating device, and gas injection device

Country Status (1)

Country Link
JP (1) JPH11309469A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360593B1 (en) * 1999-12-23 2002-11-13 동부전자 주식회사 Ozonated water generation apparatus
JP2008173631A (en) * 2006-12-19 2008-07-31 Kumamoto Univ Fluid mixer and fluid mixing method
JP2010214222A (en) * 2009-03-13 2010-09-30 Tashizen Techno Works:Kk Liquid treatment apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115563A (en) * 1976-03-24 1977-09-28 Okawa Teru Ozonization method utilizing water jet type gas engulfing apparatus
JPS53100659A (en) * 1977-02-15 1978-09-02 Sumitomo Precision Prod Co Device for treating water with ozone
JPS62221426A (en) * 1986-03-20 1987-09-29 Ishimori Seisakusho:Kk Fluid contact device
JPH01310726A (en) * 1989-04-28 1989-12-14 Ise Kagaku Kogyo Kk Apparatus for dispersing and mixing fluid
JPH05131195A (en) * 1991-03-22 1993-05-28 Senichi Masuda Purification using ozone in water tank and its device
JPH0724478A (en) * 1993-07-14 1995-01-27 Kubota Corp Bubble tower type reactor
JPH07275873A (en) * 1994-04-11 1995-10-24 Meidensha Corp U-tube type ozone reaction tank

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115563A (en) * 1976-03-24 1977-09-28 Okawa Teru Ozonization method utilizing water jet type gas engulfing apparatus
JPS53100659A (en) * 1977-02-15 1978-09-02 Sumitomo Precision Prod Co Device for treating water with ozone
JPS62221426A (en) * 1986-03-20 1987-09-29 Ishimori Seisakusho:Kk Fluid contact device
JPH01310726A (en) * 1989-04-28 1989-12-14 Ise Kagaku Kogyo Kk Apparatus for dispersing and mixing fluid
JPH05131195A (en) * 1991-03-22 1993-05-28 Senichi Masuda Purification using ozone in water tank and its device
JPH0724478A (en) * 1993-07-14 1995-01-27 Kubota Corp Bubble tower type reactor
JPH07275873A (en) * 1994-04-11 1995-10-24 Meidensha Corp U-tube type ozone reaction tank

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360593B1 (en) * 1999-12-23 2002-11-13 동부전자 주식회사 Ozonated water generation apparatus
JP2008173631A (en) * 2006-12-19 2008-07-31 Kumamoto Univ Fluid mixer and fluid mixing method
JP2010214222A (en) * 2009-03-13 2010-09-30 Tashizen Techno Works:Kk Liquid treatment apparatus

Similar Documents

Publication Publication Date Title
US5514267A (en) Apparatus for dissolving a gas into and mixing the same with a liquid
KR20170051543A (en) Air diffusion device, air diffusion method, and water treatment device
EP2226294B1 (en) Diffuser apparatus, and diffuser apparatus running method
JP4426596B2 (en) Air diffuser
WO2015060382A1 (en) Microbubble generating device and contaminated water purifying system provided with microbubble generating device
US20110277856A1 (en) Valve for regulating water quantity
AU595842B2 (en) Pulp bleaching
JPH11309469A (en) Gas-liquid reaction water treating device, and gas injection device
KR20160006252A (en) Operating method for air diffusion apparatus
JP3770133B2 (en) Gas dissolving device
JP2004174325A (en) Water treatment apparatus and water treatment method
JPH0513439Y2 (en)
KR101936915B1 (en) Cleaning Apparatus Using Liquid Mixed with Gas
JP2010001744A (en) Ejector and ion exchange equipment
WO2022080322A1 (en) Chemical spray system and operation method thereof
RU2151634C1 (en) Water aerator
JPH06285482A (en) Gas-liquid contact device and gas-liquid contact system
KR101972934B1 (en) Apparatus for Preventing Tube Plugging and Fire Due to Monosilane Produced in Semiconductor or Silicon Manufacturing Process and Method for Preventing Tube Plugging and Fire Thereby
JPH081185A (en) Underwater air supply pipe device in treatment tank
KR20160090572A (en) Apparatus for adjusting specific resistance of ultra pure water
KR100289230B1 (en) Gas dissolving equipment of sound resonance type having helical guide groove in chamber
KR200438010Y1 (en) Oxygen dissolution Apparatus for waste water disposal
JPH0615254A (en) Membrane degassing apparatus of pure water
JPH11179398A (en) Activated sludge processing equipment
JP2516830B2 (en) Fluid feeding pipe

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040518