JPH11308974A - Method for judging noodle-preparation suitability of wheat or wheat flour - Google Patents
Method for judging noodle-preparation suitability of wheat or wheat flourInfo
- Publication number
- JPH11308974A JPH11308974A JP10191785A JP19178598A JPH11308974A JP H11308974 A JPH11308974 A JP H11308974A JP 10191785 A JP10191785 A JP 10191785A JP 19178598 A JP19178598 A JP 19178598A JP H11308974 A JPH11308974 A JP H11308974A
- Authority
- JP
- Japan
- Prior art keywords
- wheat
- noodles
- flour
- starch
- noodle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Noodles (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は小麦または小麦粉の
製麺適性の判定方法、前記の判定方法によって製麺適性
に優れると判定された小麦を用いて製麺用の小麦粉を製
造する方法、前記で製麺適性に優れると判定された麺類
用小麦粉および該麺類用小麦粉を用いて得られる麺類、
並びに前記の麺類用小麦粉を含有する穀粉組成物および
該穀粉組成物を用いて得られる麺類に関する。The present invention relates to a method for judging the suitability of wheat or flour for noodle making, a method for producing flour for noodle making using wheat determined to be excellent in noodle making suitability by the above-mentioned judgment method, Noodles obtained by using the wheat flour for noodles and the wheat flour for noodles determined to be excellent in noodle making,
The present invention also relates to a flour composition containing the flour for noodles and noodles obtained using the flour composition.
【0002】[0002]
【従来の技術】小麦を栽培する際の気象条件、小麦の産
地、品種、小麦粒のブレンド状態などによって、原料小
麦(以下単に「小麦」という)が麺類の製造に適するも
のとなったり、または適さないものとなることは従来か
ら広く知られている。また、小麦を製粉して得られる小
麦粉においても、小麦粉の製造に用いた小麦の品種(銘
柄)、小麦粉の貯蔵期間や、貯蔵状態などに応じて、そ
の製麺適性が種々変化することも良く知られている。2. Description of the Related Art Raw wheat (hereinafter simply referred to as "wheat") is suitable for the production of noodles depending on weather conditions when cultivating wheat, the place of cultivation of wheat, varieties, the state of blending wheat grains, or the like. It is widely known that they are not suitable. Also, in the flour obtained by milling the wheat, the suitability of the noodles may be variously changed depending on the variety (brand) of the wheat used for the production of the flour, the storage period of the flour, and the storage condition. Are known.
【0003】小麦または小麦粉の製麺適性の判定法とし
ては、従来、(1)小麦を製粉して得られる小麦粉また
は既に製粉されている小麦粉を用いて、麺類を実際に製
造して製麺時の加工性の判定やそれにより得られる麺類
の品質の官能試験などを行って小麦または小麦粉が麺類
の製造に適しているか否かを判定する方法、(2)アミ
ログラフ試験などで物性を試験して判定する方法などが
知られている。[0003] As a method for judging suitability of wheat or flour for noodle making, conventionally, (1) noodles are actually produced by using flour obtained by milling wheat or flour already milled, A method for determining whether wheat or flour is suitable for the production of noodles by performing a determination of the processability of the noodles and a sensory test of the quality of the noodles obtained thereby, and (2) testing the physical properties by an amylographic test or the like. A determination method and the like are known.
【0004】しかしながら、上記(1)の従来法による
場合は、麺類をいちいち製造して小麦や小麦粉の製麺適
性を判定する必要があるために、経験を要し、労力と時
間がかかるという欠点がある。また、上記(2)の従来
法による場合は多量の試料を必要とし、しかも小麦また
は小麦粉の製麺適性を直接的に判定することができない
という欠点がある。かかる点から、小麦または小麦粉の
製麺適性を簡便・迅速に且つ正確に行うことのできる判
定方法、および前記により判定された製麺適性に優れる
麺類用小麦粉が求められてきた。[0004] However, in the case of the above-mentioned conventional method (1), it is necessary to produce noodles one by one and to determine the suitability of wheat or flour for making noodles, which requires experience, labor and time. There is. In addition, the conventional method (2) requires a large amount of sample and has the disadvantage that the suitability of wheat or flour for making noodles cannot be determined directly. From such a point, there has been a demand for a determination method capable of easily, quickly and accurately determining the suitability of wheat or flour for noodles, and a flour for noodles excellent in the suitability of noodles determined as described above.
【0005】また、麺類は生麺、半乾燥麺、乾麺、茹
麺、蒸麺、冷凍麺、即席麺などの種々の形態で保存、流
通、販売されている。前記した生麺のうちで、マイクロ
波調理用生麺が消費者の簡便志向とも相俟って近年注目
されるようになっている。すなわち、マイクロ波調理用
生麺は、従来の生麺、半乾燥麺、乾麺などにおけるよう
な多量の湯を沸かしそこに麺を入れて長時間茹であげる
という手間がかからず、生の麺を容器に入れて少量の水
や湯を注いで電子レンジなどのマイクロ波調理器で加熱
調理するだけでそのまま簡単に喫食できるという長所が
あり、しかも従来の即席麺に比べて食感に優れているこ
とから、その需要の伸びが期待されている。しかしなが
ら、これまで開発された電子レンジ調理用生麺は、一般
にその調理時間が3〜5分と長く、より短い調理時間を
望む消費者の要望を十分に満たしておらず、そのため一
層短い調理時間で、しかも食感および食味に優れる電子
レンジ調理用生麺の開発が求められている。[0005] Noodles are stored, distributed and sold in various forms such as raw noodles, semi-dried noodles, dry noodles, boiled noodles, steamed noodles, frozen noodles, instant noodles and the like. Among the above-mentioned raw noodles, raw noodles for microwave cooking have recently attracted attention in combination with the consumer's simplicity. In other words, raw noodles for microwave cooking do not require the trouble of boiling a large amount of hot water as in conventional raw noodles, semi-dried noodles, dry noodles, etc. It has the advantage that it can be easily eaten as it is simply by putting it in a container, pouring a small amount of water or hot water and heating it with a microwave cooker such as a microwave oven, and it has a better texture than conventional instant noodles Therefore, demand is expected to grow. However, the raw noodles for microwave cooking that have been developed so far generally have a long cooking time of 3 to 5 minutes, and do not sufficiently satisfy the demands of consumers who desire a shorter cooking time. In addition, there is a demand for the development of raw noodles for microwave cooking which have excellent texture and taste.
【0006】[0006]
【発明が解決しようとする課題】本発明の目的は、製麺
適性の判定のために麺類をわざわざ製造するという手間
を要せずに、また小麦や小麦粉を化学解析する必要なし
に、小麦または小麦粉の製麺適性を簡便・迅速に且つ正
確に行うことのできる、小麦または小麦粉の製麺適性の
判定方法を提供することである。そして、本発明の目的
は、上記した方法で小麦または小麦粉の製麺適性を判定
し、その判定結果に基づいて、良好な作業性で製麺適性
に優れる麺類用小麦粉を製造し得る方法を提供するこ
と、製麺適性に優れる麺類用小麦粉を提供することおよ
び前記した麺類用小麦粉を用いて食感および食味に優れ
る麺類を提供することである。 さらに、本発明は、電子レンジなどのマイクロ波調理器
によって従来よりも一層短い時間で簡単に調理でき、し
かも食感および食味の点にも優れるマイクロ波調理用生
麺、その製造法、それに適した小麦粉および穀粉組成物
を提供することである。SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for judging wheat or wheat flour without the need for troublesome production of noodles for judging suitability for making noodles and without the need to chemically analyze wheat or flour. An object of the present invention is to provide a method for judging the suitability of wheat or flour for making noodles, which can easily, quickly and accurately determine the suitability of wheat flour for noodle making. The object of the present invention is to provide a method for judging the noodle-making suitability of wheat or flour by the above-described method and, based on the judgment result, producing a flour for noodles having good workability and excellent noodle-making suitability. The purpose of the present invention is to provide wheat flour for noodles that is excellent in noodle making suitability, and to provide noodles that are excellent in texture and taste using the above-mentioned flour for noodles. Further, the present invention provides a microwave cooking raw noodle which can be easily cooked by a microwave cooking device such as a microwave oven in a shorter time than before, and has excellent texture and taste. To provide a flour and flour composition.
【0007】[0007]
【課題を解決するための手段】上記の目的を達成すべく
本発明者らは色々検討を重ねてきた。その結果、小麦ま
たは小麦粉中に含まれる澱粉の示差走査熱量分析を行っ
てその熱的特性を解析したところ、該澱粉の示差走査熱
量分析により得られる解析結果と、小麦または小麦粉の
製麺適性との間に密接な相関関係があること、そのため
小麦または小麦粉に含まれる澱粉の示差走査熱量分析を
行うだけで、小麦または小麦粉の製麺適性を正確に判定
できることを見出した。さらに、本発明者らは、小麦ま
たは小麦粉に含まれる澱粉の前記した示差走査熱量分析
を澱粉に水を加えて行うと、その熱的特性を簡便に且つ
正確に解析できることを見出した。The present inventors have made various studies to achieve the above object. As a result, the differential scanning calorimetry of starch contained in wheat or flour was performed to analyze its thermal characteristics, and the analysis results obtained by differential scanning calorimetry of the starch and the suitability of wheat or flour for noodle-making It has been found that there is a close correlation between them, and therefore, it is possible to accurately determine the suitability of wheat or flour for making noodles only by performing differential scanning calorimetry of the starch contained in the wheat or flour. Furthermore, the present inventors have found that when the above-described differential scanning calorimetry of wheat or starch contained in flour is performed by adding water to starch, its thermal characteristics can be simply and accurately analyzed.
【0008】また、本発明者らは、小麦または小麦粉に
含まれる澱粉の示差走査熱量分析を行い、その解析結果
が所定の条件を満たす澱粉を含む小麦を製粉してそれか
ら得られる小麦粉を用いると、またはその解析結果が所
定の条件を満たす澱粉を有する既に製粉されている小麦
粉を用いると、食感および食味に優れる高品質の麺類を
良好な作業性で円滑に製造できることを見出した。本発
明者らが前記した判定方法により見出した製麺適性に優
れる小麦粉は、生麺、半乾燥麺、乾麺、茹麺、蒸麺、冷
凍麺、即席麺などの種々の形態の麺類に有効であり、し
かもうどん、きしめん、そうめん、冷麦、中華麺類、パ
スタ類、日本そばなどの種々の麺類、およびワンタンの
皮、ギョウザの皮などの麺皮類の製造において有効であ
ることが判明した。In addition, the present inventors conducted differential scanning calorimetry of starch contained in wheat or flour, and milled wheat containing starch, the analysis result of which satisfies predetermined conditions, and used wheat flour obtained therefrom. It has been found that high-quality noodles excellent in texture and taste can be smoothly produced with good workability by using already-milled flour having starch whose analysis result satisfies predetermined conditions. Wheat flour excellent in noodle-making suitability found by the present inventors' determination method is effective for various forms of noodles such as raw noodles, semi-dried noodles, dry noodles, boiled noodles, steamed noodles, frozen noodles, instant noodles, and the like. It was found to be effective in the production of various noodles such as seaweed noodles, kishimen, somen, cold wheat, Chinese noodles, pasta, and Japanese noodles, and noodle skins such as wonton skin and gyoza skin.
【0009】さらに、本発明者らは、前記した判定法に
よって見い出した製麺適性に優れる小麦粉を用いて上記
したマイクロ波調理用生麺を製造すると、これまで開発
されたマイクロ波調理用生麺に比べて、より短いマイク
ロ波調理時間で食感および食味に優れるマイクロ波調理
用生麺が得られることを見出した。さらに、本発明者
らは、前記した判定法によって見い出した製麺適性に優
れる小麦粉と共に澱粉を用いて麺類を製造すると、その
加熱調理時間が一層短縮でき、しかも調理後の茹でのび
が一層抑制されて食感および食味に一層優れる麺類が得
られること、特に前記した小麦粉と澱粉の併用はマイク
ロ波調理用生麺を製造する際により顕著な効果を発揮す
ることを見出し、それらの種々の知見に基づいて本発明
を完成した。Further, the present inventors produce the above-mentioned raw noodles for microwave cooking using flour excellent in suitability for noodles found by the above-mentioned determination method, and obtain the raw noodles for microwave cooking which have been developed so far. It has been found that, compared to, raw noodles for microwave cooking having excellent texture and taste can be obtained in a shorter microwave cooking time. Furthermore, the present inventors, when manufacturing noodles using starch together with flour excellent in noodle making found by the above-described determination method, the cooking time for heating can be further shortened, and the boiling after cooking is further suppressed. It has been found that noodles with even better texture and taste can be obtained, and in particular, the combination of the flour and starch described above exerts a more remarkable effect in producing raw noodles for microwave cooking. Based on this, the present invention has been completed.
【0010】すなわち、本発明は、小麦または小麦粉中
に含まれる澱粉の示差走査熱量分析を行ってその熱的特
性を解析し、それにより得られる解析結果に基づいて小
麦または小麦粉の製麺適性を判定することを特徴とす
る、小麦または小麦粉の製麺適性の判定方法である。そ
して、本発明では、上記した小麦または小麦粉の製麺適
性の判定方法を、澱粉に水を加えて行うことをその好ま
しい態様として包含する。That is, according to the present invention, the thermal properties of starch contained in wheat or flour are analyzed by differential scanning calorimetry, and the suitability of wheat or flour for making noodles is determined based on the analysis results obtained. It is a method for judging suitability of wheat or flour for making noodles, characterized by making a judgment. In a preferred embodiment of the present invention, the above-described method for determining the suitability of wheat or flour for making noodles is performed by adding water to starch.
【0011】さらに、本発明は、小麦中に含まれる澱粉
を加水下に示差走査熱量分析して、該澱粉の熱変化開始
温度(To)が80℃以上での吸熱エネルギー(ΔH)
が0.3J/乾物g以下である小麦を用いて製麺用の小
麦粉を製造する方法、および該方法により得られた麺類
用小麦粉である。[0011] Further, the present invention provides that the starch contained in wheat is subjected to differential scanning calorimetric analysis under water, and the endothermic energy (ΔH) of the starch at a temperature at which the thermal change starts (To) is 80 ° C or more.
Is a method of producing wheat flour for noodle making using wheat having a grain size of 0.3 J / g or less of dry matter, and wheat flour for noodles obtained by the method.
【0012】また、本発明は、小麦粉中に含まれる澱粉
を加水下に示差走査熱量分析して、該澱粉の熱変化開始
温度(To)が80℃以上での吸熱エネルギー(ΔH)
が0.3J/乾物g以下である麺類用小麦粉である。上
記した本発明の麺類用小麦粉では、前記吸熱エネルギー
(ΔH)が、好ましくは澱粉の5重量倍以上の水を加え
て示差走査熱量分析を行うことにより測定される。In the present invention, the starch contained in wheat flour is subjected to differential scanning calorimetry under water, and the endothermic energy (ΔH) of the starch at a temperature at which the thermal change starts (To) is 80 ° C. or more.
Is 0.3 J / g of dry matter or less. In the above-mentioned wheat flour for noodles of the present invention, the above-mentioned endothermic energy (ΔH) is measured by differential scanning calorimetry, preferably by adding water at least 5 times the weight of starch.
【0013】そして、本発明は、上記した製麺適性に優
れる麺類用小麦粉および澱粉を含有することを特徴とす
る麺類用穀粉組成物である。さらに、本発明は、上記し
た製麺適性に優れる小麦粉および澱粉を併用して麺類を
製造する方法である。上記した本発明の麺類用穀粉組成
物および麺類の製造方法において、澱粉の好ましい配合
量は、麺類の製造に用いる穀粉類の合計重量に基づいて
3〜40重量%である。また、上記した澱粉としては、
澱粉が馬鈴薯澱粉、タピオカ澱粉およびトウモロコシ澱
粉のうちの少なくとも1種が好ましく用いられる。[0013] The present invention is a flour composition for noodles comprising the above-mentioned wheat flour for noodles and starch excellent in suitability for noodle making. Furthermore, the present invention is a method for producing noodles using the above-mentioned wheat flour and starch excellent in noodle-making suitability in combination. In the above-described flour composition for noodles and the method for producing noodles of the present invention, the preferred amount of starch is 3 to 40% by weight based on the total weight of flours used for producing noodles. Also, as the above-mentioned starch,
As the starch, at least one of potato starch, tapioca starch, and corn starch is preferably used.
【0014】上記した本発明の麺類用小麦粉、麺類用穀
粉組成物および麺類の製造方法は、通常の生麺、マイク
ロ波調理用生麺、半乾燥麺、乾麺、茹麺、蒸麺、冷凍
麺、即席麺などの製造に有効に用いられ、また麺類の種
類では、うどん、きしめん、そうめん、冷麦、中華麺
類、パスタ類、日本そばなどの製造に有効に用いられ、
したがって本発明は、上記した本発明の麺類用小麦粉、
麺類用穀粉組成物または麺類の製造方法を用いて得られ
る前記した麺類を本発明の範囲に包含する。The above-mentioned wheat flour for noodles, flour composition for noodles and the method for producing noodles according to the present invention include the following: ordinary raw noodles, raw noodles for microwave cooking, semi-dried noodles, dry noodles, boiled noodles, steamed noodles, frozen noodles, It is effectively used in the production of instant noodles, etc., and in the types of noodles, it is effectively used in the production of udon, kishimen, somen, cold wheat, Chinese noodles, pasta, Japanese soba, etc.
Accordingly, the present invention provides the noodle flour of the present invention described above,
The above-mentioned noodles obtained by using the flour composition for noodles or the method for producing noodles are included in the scope of the present invention.
【0015】[0015]
【発明の実施の形態】以下に本発明について詳細に説明
する。本発明でいう「示差走査熱量分析」とは、入力補
償タイプの示差走査熱量解析(DSC;Differential
Scanning Calorimetry)および熱流束タイプの示差走
査熱量解析(DTA;Differential Thermal Analy
sis )の両方を包含する示差走査熱量解析をいう。本発
明では、小麦または小麦粉中に含まれる澱粉(以下「小
麦澱粉」という)の示差走査熱量分析を従来既知の示差
走査熱量分析方法により行うことができ、例えば、「応
用糖質科学」第41巻、第3号、第297〜303頁
(1994)などに記載されている方法により行うこと
ができる。また、本発明では、示差走査熱量分析に用い
る装置の種類などは特に制限されず、上記したDSCま
たはDTAを行い得る装置であればいずれの装置を用い
て行ってもよい。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The “differential scanning calorimetry” in the present invention refers to a differential scanning calorimetry (DSC) of an input compensation type.
Scanning Calorimetry) and heat flux type differential scanning calorimetry (DTA).
sis). In the present invention, differential scanning calorimetry of wheat or starch contained in wheat flour (hereinafter referred to as “wheat starch”) can be performed by a conventionally known differential scanning calorimetry method. Vol. 3, No. 3, pp. 297-303 (1994). In the present invention, the type of the device used for differential scanning calorimetry is not particularly limited, and any device may be used as long as it can perform the above-described DSC or DTA.
【0016】示差走査熱量分析では、通常、試料の熱変
化開始温度(To)、熱変化ピーク温度(Tp)、熱変
化終了温度(Tc)および吸熱エネルギー(ΔH)が測
定できる。本発明では、小麦または小麦粉に含まれる小
麦澱粉の前記した4つの物性の2つ以上を測定し、その
測定結果と小麦または小麦粉の製麺適性との関係を調べ
て、製麺適性に優れる小麦または小麦粉を選び出すよう
にすればよい。In the differential scanning calorimetry, usually, the thermal change start temperature (To), the thermal change peak temperature (Tp), the thermal change end temperature (Tc) and the endothermic energy (ΔH) can be measured. In the present invention, two or more of the above-mentioned four physical properties of wheat starch contained in wheat or flour are measured, and the relationship between the measurement results and the noodle-making suitability of wheat or flour is examined. Or you can select flour.
【0017】特に、本発明では、後述するように、前記
した4つの物性のうちで、小麦澱粉の熱変化開始温度
(To)と吸熱エネルギー(ΔH)の2者を測定するだ
けで小麦または小麦粉の製麺適性を簡単に且つ迅速に判
定することが可能であり、小麦または小麦粉中に含まれ
る小麦澱粉を加水下に示差走査熱量分析したときに、該
小麦澱粉の熱変化開始温度(To)が80℃以上での吸
熱エネルギー(ΔH)が0.3J/乾物g以下であると
きには、そのような小麦澱粉を含む小麦または小麦粉は
製麺適性に優れるものと判定される。In particular, in the present invention, as described below, wheat or flour can be obtained simply by measuring two of the above-mentioned four physical properties, namely, the thermal change start temperature (To) and the endothermic energy (ΔH) of wheat starch. Can easily and quickly determine the suitability of noodles for making noodles, and when wheat or wheat starch contained in flour is subjected to differential scanning calorimetry under water, the temperature at which heat of the wheat starch starts to change (To) When the endothermic energy (ΔH) at 80 ° C. or more is 0.3 J / g or less of dry matter, wheat or flour containing such wheat starch is determined to be excellent in noodle-making suitability.
【0018】本発明においては、小麦に含まれる小麦澱
粉の示差走査熱量分析を行うに当たっては、小麦を粉砕
して全粒粉を調製し、その全粒粉を小麦澱粉とその他の
成分に分別して小麦澱粉を回収し、前記で回収した小麦
澱粉を用いて示差走査熱量分析を行う方法が好ましく採
用される。また、本発明において、小麦粉に含まれる小
麦澱粉の示差走査熱量分析に当たっては、小麦粉を小麦
澱粉とその他の成分に分別し、それにより回収される小
麦澱粉を用いて示差走査熱量分析を行う方法が好ましく
採用される。上記において、全粒粉または小麦粉から回
収される、示差走査熱量分析用の小麦澱粉としては、粗
蛋白含量が0.5重量%以下であり、且つ未脱脂のもの
が好ましく用いられる。脱脂した小麦澱粉の場合は80
℃以上での吸熱ピークが現れなかったり、現れにくい場
合が多い。全粒粉または小麦粉から小麦澱粉を回収する
方法は特に制限されず、粗蛋白含量が前記した0.5重
量%以下である小麦澱粉が得られる回収方法であればい
ずれの方法を採用してもよく、例えば、ドウウオッシン
グ法、プロテアーゼ消化法などを挙げることができる。
また、得られた小麦澱粉を脱脂する必要はなく、未脱脂
のままで示差走査熱量分析に用いる。In the present invention, in performing differential scanning calorimetry of wheat starch contained in wheat, whole wheat flour is prepared by pulverizing wheat, and the whole wheat flour is separated into wheat starch and other components to recover wheat starch. However, a method of performing differential scanning calorimetry using the wheat starch collected above is preferably employed. Further, in the present invention, in performing differential scanning calorimetry of wheat starch contained in wheat flour, a method of separating wheat flour into wheat starch and other components, and performing differential scanning calorimetry using wheat starch recovered thereby. It is preferably adopted. In the above, as the wheat starch for differential scanning calorimetry, which is recovered from whole grain flour or wheat flour, a non-defatted wheat starch having a crude protein content of 0.5% by weight or less is preferably used. 80 for defatted wheat starch
In many cases, an endothermic peak at or above ° C does not appear or hardly appears. The method for recovering wheat starch from whole wheat flour or wheat flour is not particularly limited, and any method may be employed as long as the method for obtaining wheat starch having a crude protein content of 0.5% by weight or less is as follows. For example, a dough-washing method, a protease digestion method and the like can be mentioned.
Further, the obtained wheat starch does not need to be defatted, and is used for differential scanning calorimetry as it is without defatting.
【0019】ドウウオッシング法による場合は、例え
ば、次の小麦澱粉回収方法が好ましく採用される。すな
わち、全粒粉または小麦粉に少量の水を加えて生地(ド
ウ)を調製し、この生地を水中に浸漬した後に水中で繰
り返し揉んで生地中に含まれている小麦澱粉を澱粉乳と
して水中に洗い出し、その際に前記の洗い出し作業で分
離してくる細胞膜、表皮などの繊維質成分、グルテンな
どに残留している少量の小麦澱粉をも更に澱粉乳として
再度洗い出し、それらの澱粉乳を一緒にして、それを遠
心分離して小麦澱粉を沈殿させ、沈殿物の上層に灰褐色
画分がある場合はそれを除き、白色画分からなる小麦澱
粉を回収する方法などが好ましく採用される。前記で回
収された小麦澱粉を、一般に、凍結乾燥、送風乾燥、減
圧常温乾燥などの40℃以上の加熱を伴わない乾燥方法
によって乾燥処理して、示差走査熱量分析用の試料とし
て用いる。In the case of the dough-washing method, for example, the following wheat starch recovery method is preferably employed. That is, dough (dough) is prepared by adding a small amount of water to whole grain or flour, and after immersing the dough in water, repeatedly rubbing in water and washing out the wheat starch contained in the dough as starch milk into water, At that time, the cell membrane separated in the washing operation, fibrous components such as the epidermis, a small amount of wheat starch remaining in gluten and the like are further washed out again as starch milk, and those starch milks are put together, The wheat starch is precipitated by centrifugation, and if there is a grayish brown fraction in the upper layer of the precipitate, a method of recovering wheat starch consisting of a white fraction is preferably employed. The wheat starch collected as described above is generally dried by a drying method that does not involve heating at 40 ° C. or more, such as freeze drying, air drying, and drying under reduced pressure at room temperature, and is used as a sample for differential scanning calorimetry.
【0020】小麦または小麦粉から回収された小麦澱粉
の示差走査熱量分析は、加水下に行うことが正確な示差
走査熱量分析結果が得られる点から好ましい。より具体
的には、乾燥した小麦澱粉100重量部に対して、水を
500重量部以上加えて示差走査熱量分析を行うことが
好ましく、700重量部以上加えて示差走査熱量分析を
行うことがより好ましい。小麦澱粉100重量部に対す
る加水量が前記した500重量部よりも少ないと、熱変
化ピークが鮮明に現れにくくなって、測定誤差が生じ易
くなる場合がある。示差走査熱量分析の測定時に小麦澱
粉に加えられる水としては、蒸留水または純水が正確な
測定結果が得られる点から好ましく用いられる。The differential scanning calorimetric analysis of wheat or wheat starch recovered from wheat flour is preferably performed under water, since accurate differential scanning calorimetric analysis results can be obtained. More specifically, it is preferable to add 500 parts by weight or more of water to 100 parts by weight of dried wheat starch to perform differential scanning calorimetry, and it is more preferable to add 700 parts by weight or more and perform differential scanning calorimetry. preferable. If the amount of water is less than 500 parts by weight based on 100 parts by weight of the wheat starch, the thermal change peak is less likely to appear clearly and measurement errors may easily occur. As the water added to the wheat starch at the time of the differential scanning calorimetry measurement, distilled water or pure water is preferably used because accurate measurement results can be obtained.
【0021】本発明では、上記したように、小麦または
小麦粉から分離された小麦澱粉の熱変化開始温度(T
o)および吸熱エネルギー(ΔH)を、示差走査熱量分
析によって測定するだけで、小麦または小麦粉の製麺適
性を正確に且つ迅速に判定することができる。前記した
2つの測定値のうちで、吸熱エネルギー(ΔH)は、試
料、測定機器、測定条件などによって、測定値にバラツ
キが生ずる場合があるので、同じ試料について、吸熱エ
ネルギー(ΔH)の測定を好ましくは3回以上、より好
ましくは5回以上行い、その平均値を採って小麦澱粉の
吸熱エネルギー(ΔH)とし、その値に基づいて小麦ま
たは小麦粉の製麺適性を判定するのがよい。According to the present invention, as described above, the temperature at which the heat change of the wheat or wheat starch separated from the wheat flour starts (T
Only by measuring o) and the endothermic energy (ΔH) by differential scanning calorimetry, the suitability of wheat or flour for making noodles can be accurately and quickly determined. Of the above two measured values, the endothermic energy (ΔH) may vary depending on the sample, the measuring device, the measurement conditions, and the like. Therefore, the measurement of the endothermic energy (ΔH) is performed on the same sample. Preferably, it is performed at least 3 times, more preferably at least 5 times, and the average value is taken as the endothermic energy (ΔH) of wheat starch, and the noodle-making suitability of wheat or flour is determined based on the value.
【0022】小麦または小麦粉から回収された小麦澱粉
の示差走査熱量分析を加水下に行って、その熱変化開始
温度(To)および吸熱エネルギー(ΔH)を測定した
ときに、該小麦澱粉の熱変化開始温度(To)が80℃
以上での吸熱エネルギー(△H)の測定値が0.3J/
乾物g以下であるような小麦澱粉を含む小麦から得られ
る小麦粉、または既に製粉されている小麦粉を用いて麺
類を製造すると、粘弾性および滑らかさに優れ、ソフト
でモチモチまたはプリプリしていて、食感および食味に
優れる麺類を得ることができる。そして、製造する麺類
がマイクロ波調理用生麺、特にマイクロ波調理用生中華
麺類の場合には、従来のマイクロ波調理用生麺よりも短
いマイクロ波調理時間で、前記した優れた食感および食
味を有する調理麺を簡単に得ることができる。Differential scanning calorimetry of wheat or wheat starch recovered from wheat flour was performed with water to measure its thermal change onset temperature (To) and endothermic energy (ΔH). Starting temperature (To) is 80 ° C
The measured value of the endothermic energy (ΔH) was 0.3 J /
When noodles are manufactured using wheat flour obtained from wheat containing wheat starch having a dry matter of not more than g, or wheat flour already milled, the noodles are excellent in viscoelasticity and smoothness, soft and mochi or pre-prepared. Noodles excellent in texture and taste can be obtained. And, when the noodles to be produced are raw noodles for microwave cooking, particularly raw noodles for microwave cooking, the microwave cooking time is shorter than that of conventional raw noodles for microwave cooking, and the above-mentioned excellent texture and Cooking noodles having a taste can be easily obtained.
【0023】そのため、本発明による場合は、所定の小
麦または小麦粉が製麺適性を有するものであ るか否か
の判定を行うに当たっては、その小麦または小麦粉に含
まれる小麦澱粉を加水下に示差走査熱量分析して、該小
麦澱粉の熱変化開始温度(To)が80℃以上での吸熱
エネルギー(ΔH)を測定し、その吸熱エネルギー(Δ
H)の値が0.3J/乾物g以下である場合には、その
小麦または小麦粉が製麺に適していると判定することが
できる。一方、該小麦澱粉の熱変化開始温度(To)が
80℃以上での吸熱エネルギー(ΔH)が0.3J/乾
物gを超える場合には、その小麦または小麦粉は麺の製
造に適していないものと判定することができる。 そして、製麺適性に優れると判定された小麦から得られ
る小麦粉または既に製粉されている小麦粉を選んで麺類
の製造に用いることによって、製麺適性を判定するため
の試作用麺類を予め製造することなく、また小麦や小麦
粉を化学解析する必要なしに、目的とする食感および食
味に優れる麺類を良好な製麺時の作業性で簡単に且つ迅
速に製造することができる。Therefore, in the case of the present invention, in order to determine whether or not a given wheat or flour has noodle-making suitability, the wheat or wheat starch contained in the wheat or flour is differentially extracted under water. A scanning calorimetric analysis was performed to measure the endothermic energy (ΔH) at a temperature at which the heat change (To) of the wheat starch was 80 ° C. or more, and the endothermic energy (ΔH)
When the value of H) is 0.3 J / g of dry matter or less, it can be determined that the wheat or flour is suitable for noodle-making. On the other hand, when the endothermic energy (ΔH) of the wheat starch at a heat change initiation temperature (To) of 80 ° C. or more exceeds 0.3 J / g of dry matter, the wheat or flour is not suitable for producing noodles. Can be determined. Then, by selecting wheat flour obtained from wheat determined to have excellent noodle-making suitability or wheat flour that has already been milled and using the same in the production of noodles, a trial noodle for judging noodle-making suitability is produced in advance. Without the need for chemical analysis of wheat or flour, it is possible to easily and quickly produce desired noodles having excellent texture and taste with good workability during noodle making.
【0024】ここで、本明細書でいう、「小麦澱粉の示
差走査熱量分析による熱変化開始温度(To)が80℃
以上での吸熱エネルギー(ΔH)」とは以下の吸熱エネ
ルギー(ΔH)を言う 。すなわち、小麦または小麦粉
に含まれる小麦澱粉を加水下に示差走査熱量分析する
と、その熱変化ピークが、図1に例示するように、一般
に、その熱変化開始温度(To)が80℃よりも低い低
温部分と80℃以上である高温部分の2カ所で測定され
る。そのような2つの熱変化ピークのうちで、熱変化開
始温度(To)が80℃以上の部分に位置する熱変化ピ
ークの吸熱エネルギー(ΔH)(熱変化ピーク面積によ
り求められる吸熱エネルギー)を意味する。なお、その
際に、熱変化開始温度(To)は、図2に示すように、
吸熱ピークの開始と終了時のベースラインを結んだ線
と、熱量の減少時に傾きが最大になる点の接線との交点
を求め、その交点における温度として求められる。[0024] Here, the term "thermal change onset temperature (To) by differential scanning calorimetry of wheat starch" as used in the present specification is 80 ° C.
The above-mentioned endothermic energy (ΔH) ”means the following endothermic energy (ΔH). That is, when differential scanning calorimetry is performed on wheat or wheat starch contained in wheat flour with addition of water, the thermal change peak generally has a thermal change onset temperature (To) lower than 80 ° C. as illustrated in FIG. It is measured at two places: a low temperature part and a high temperature part at 80 ° C. or higher. Of such two thermal change peaks, the endothermic energy (ΔH) of the thermal change peak located at the portion where the thermal change start temperature (To) is 80 ° C. or higher (the endothermic energy obtained from the thermal change peak area) is meant. I do. At that time, the thermal change start temperature (To) is, as shown in FIG.
The intersection between the line connecting the baseline at the start and end of the endothermic peak and the tangent to the point at which the slope becomes maximum when the amount of heat is reduced is determined, and is determined as the temperature at the intersection.
【0025】本発明の方法によってその製麺適性を判定
し、麺類の製造に適すると判定された小麦は、既知の方
法によって製粉されて製麺用の小麦粉として用いられ
る。前記製粉により得られる小麦粉または既に製粉され
ている小麦粉を用いて麺類を製造する際の製麺方法は何
ら制限されず、麺類の種類などに応じて、従来と同様に
して製造することができる。より具体的には、麺類の種
類や製麺方法などに応じて、他の穀粉類を用いずに、小
麦中に含まれる澱粉の熱変化開始温度(To)が80℃
以上での吸熱エネルギー(ΔH)が上記した0.3J/
乾物g以下である小麦を製粉して得られる小麦粉(以下
これを「小麦粉a1 」ということがある)、および/ま
たは既に製粉されている小麦粉であって該小麦粉中に含
まれる澱粉の熱変化開始温度(To)が80℃以上での
吸熱エネルギー(ΔH)が0.3J/乾物g以下である
澱粉を有する小麦粉(以下これを「小麦粉a2 」という
ことがある)のみを穀粉類として用いて麺類を製造する
ことができる。さらに、本発明では、前記した小麦粉a
1 および/または小麦粉a2 と共に他の穀粉類を併用し
て麺類を製造してもよい。The wheat of which the noodle-making suitability is determined by the method of the present invention and which is determined to be suitable for the production of noodles is milled by a known method and used as flour for noodle-making. The method of producing noodles using wheat flour obtained by the above-mentioned milling or wheat flour that has already been milled is not limited at all, and it can be produced in the same manner as in the past according to the type of noodles and the like. More specifically, according to the type of noodles, the method of making noodles, etc., without using other flours, the thermal change start temperature (To) of starch contained in wheat is 80 ° C.
The above endothermic energy (ΔH) is 0.3 J /
Thermal change of flour obtained by milling wheat having a dry matter of g or less (hereinafter sometimes referred to as “flour a 1 ”) and / or starch already milled and contained in the flour Only wheat flour having starch whose endothermic energy (ΔH) at an onset temperature (To) of 80 ° C. or more is 0.3 J / g of dry matter or less (hereinafter sometimes referred to as “wheat flour a 2 ”) is used as a flour. Can produce noodles. Further, in the present invention, the flour a
With one and / or the flour a 2 may be manufactured noodles in combination with other cereal flour.
【0026】他の穀粉類を併用する場合は、該他の穀粉
類として、麺類の製造に従来から用いられている穀粉類
を用いることができ、例えば、馬鈴薯澱粉、タピオカ澱
粉、トウモロコシ澱粉、米澱粉、小麦澱粉、大麦澱粉、
甘薯澱粉、キャッサバ澱粉などの澱粉類、前記した澱粉
を加工してなる化工澱粉、小麦粉a1 および小麦粉a 2
以外の小麦粉、デュラム小麦粉、そば粉、米粉、大麦
粉、ライ麦粉、トウモロコシ粉、馬鈴薯粉、甘薯粉、里
芋粉などを挙げることができ、これらの他の穀粉類の1
種または2種以上を併用することができる。そのうちで
も、小麦粉a1 および/または小麦粉a2 と共に他の穀
粉類を併用する場合は、澱粉類が好ましく用いられ、特
に馬鈴薯澱粉、タピオカ澱粉およびトウモロコシ澱粉の
うちの1種または2種以上がより好ましく用いられる。
他の穀粉類を併用する場合は、その使用量を、麺類の製
造に用いる穀粉類の合計重量に基づいて、40重量%以
下にすることが好ましく、25重量%以下にすることが
より好ましい。When other flours are used in combination, the other flours
Flours conventionally used in the manufacture of noodles
For example, potato starch, tapioca starch
Flour, corn starch, rice starch, wheat starch, barley starch,
Starches such as potato starch, cassava starch, and the aforementioned starch
Starch, flour a1 And flour a Two
Other flour, durum flour, buckwheat flour, rice flour, barley
Flour, rye flour, corn flour, potato flour, sweet potato flour, village
Potato flour and the like, and one of these other flours
Species or two or more species can be used in combination. Among them
Also flour a1 And / or flour aTwo Along with other grains
When powders are used in combination, starches are preferably used.
Of potato starch, tapioca starch and corn starch
One or more of them are more preferably used.
If other flours are used in combination, the amount
40% by weight or less, based on the total weight of flour used for
It is preferable that the content be below 25% by weight or less.
More preferred.
【0027】特に、小麦粉a1 および/または小麦粉a
2 と共に澱粉(とりわけ馬鈴薯澱粉、タピオカ澱粉、ト
ウモロコシ澱粉およびそれらの化工澱粉のうちの1種ま
たは2種以上)を併用してマイクロ波調理用生麺、特に
マイクロ波調理用中華麺類を製造すると、マイクロ波調
理時間が一層短縮でき、しかも調理後の麺は食感および
食味が一層良好で、茹でのびが少なく高い品質を保つ。
その場合の澱粉の使用量は、マイクロ波調理用生麺の製
造に用いる穀 粉類の合計重量に基づいて3〜40重量
%であることが好ましく、7〜25重量%であることが
より好ましい。In particular, flour a 1 and / or flour a
2 together with starch (particularly one or more of potato starch, tapioca starch, corn starch and their modified starches) to produce raw noodles for microwave cooking, especially Chinese noodles for microwave cooking, The microwave cooking time can be further shortened, and the noodles after cooking have a better texture and taste, are less boiled and maintain high quality.
In this case, the amount of the starch used is preferably 3 to 40% by weight, more preferably 7 to 25% by weight, based on the total weight of the flours used for producing the raw noodles for microwave cooking. .
【0028】小麦粉a1 および/または小麦粉a2 と共
に澱粉などのその他の穀粉類を併用して麺類を製造する
に当たっては、小麦粉a1 および/または小麦粉a2 に
他の穀粉類を製麺時に加えても、或いは小麦粉a1 およ
び/または小麦粉a2 に他の穀粉類を予め配合して麺類
用穀粉組成物を調製しておき、その麺類用穀粉組成物を
用いて麺類を製造してもよい。前記麺類用穀粉組成物は
長期保存が可能であり、麺類用穀粉組成物(麺類用ミッ
クス粉)として、それ自体で流通、販売することができ
る。そして、この麺類用穀粉組成物を用いる場合は、製
麺時に小麦粉a 1 および/または小麦粉a2 に他の穀粉
類を配合する手間を要することなく、目的とする高品質
の麺類を簡単に且つ円滑に製造することができる。Flour a1 And / or flour aTwo With
Noodles by using other flours such as starch
Is flour a1 And / or flour aTwo To
Even if other flours are added during noodle making, or flour a1 And
And / or flour aTwo Noodles mixed with other flour in advance
A flour composition for noodles is prepared in advance.
The noodles may be manufactured using the noodles. The flour composition for noodles is
It can be stored for a long time, and the flour composition for noodles
Powder) can be distributed and sold as such
You. When using the flour composition for noodles,
Flour a when noodles 1 And / or flour aTwo To other flour
The desired high quality without the trouble of compounding
Noodles can be easily and smoothly manufactured.
【0029】また、本発明では、麺類の種類などに応じ
て、必要に応じて、麺類の製造に従来から用いられてい
る種々の添加剤、例えば、食塩、かん水、卵白(粉)、
全卵(粉)、卵黄(粉)、小麦グルテン、小麦グリアジ
ン、小麦グルテニン、乳清蛋白質などの蛋白質類、コン
ニャク粉、アルギン酸、グアーガム、カラギーナン、カ
ードラン、サイリュームシードガムなどのガム類および
ゲル化剤、卵殻粉、牡蛎殻粉などのカルシウム類、界面
活性剤、山芋粉、海草粉末、アミノ酸、ビタミン類、ミ
ネラル類の1種または2種以上を更に用いてもよい。In the present invention, various additives conventionally used in the production of noodles, such as salt, brine, egg white (powder),
Whole egg (powder), egg yolk (powder), proteins such as wheat gluten, wheat gliadin, wheat glutenin, whey protein, gums such as konjac flour, alginic acid, guar gum, carrageenan, curdlan, thyrum seed gum and gelation One or more of calcium, a surfactant, a yam powder, a seaweed powder, an amino acid, a vitamin, and a mineral may be further used.
【0030】[0030]
【実施例】以下に実施例などにより本発明について具体
的に説明するが、本発明はそれにより何ら限定されな
い。以下の例において、特に断らない限りは、%は重量
%を示す。また、以下の例において、示差走査熱量分析
の判定に用いた、凍結乾燥後の小麦澱粉(乾物)の水分
含量は、次のようにして求めた。EXAMPLES The present invention will be specifically described below with reference to examples and the like, but the present invention is not limited thereto. In the following examples,% indicates% by weight unless otherwise specified. In the following examples, the moisture content of the freeze-dried wheat starch (dry matter) used for the determination of the differential scanning calorimetry was determined as follows.
【0031】[小麦澱粉の水分含量(%)]135℃で
2時間乾燥処理した後の小麦澱粉の水分含量を0%とし
て、以下の数式にしたがって、小麦澱粉の水分含量
(%)を求め、その水分含量を元に澱粉の乾物量を求め
た[Moisture Content of Wheat Starch (%)] The moisture content of wheat starch after drying treatment at 135 ° C. for 2 hours is defined as 0%, and the moisture content of wheat starch (%) is calculated according to the following equation. The dry matter of starch was determined based on the water content
【0032】[0032]
【数1】 小麦澱粉の水分含量(%)={(W1−W2)/W1}×100 式中、W1=135℃で2時間乾燥処理する前の小麦澱
粉の重量(g) W2=135℃で2時間乾燥処理した後の小麦澱粉の重
量(g)[Number 1] Moisture content of the wheat starch (%) = weight of {(W 1 -W 2) / W 1} × 100 wherein, wheat starch prior to 2 hours drying at W 1 = 135 ° C. (g) W 2 = weight of wheat starch after drying at 135 ° C. for 2 hours (g)
【0033】また、以下の例において、示差走査熱量分
析の判定に用いた小麦澱粉の粗蛋白含量は次のようにし
て求めた。 [小麦澱粉の粗蛋白含量]小麦澱粉(乾物)1gを専用
のガラス試験管に精秤し、濃硫酸15mlおよび触媒(日
本ゼネラル株式会社製「KJELTAB KBC」)1
錠(5g)を加え、予め420℃に加温しておいた分解
処理装置(日本ゼネラル株式会社製「2020 Dig
estor」)に装着し、同温度で1時間加熱分解し
た。分解終了後、試験管を前記分解処理装置から取り外
し、室温程度まで放冷後、蒸留水75mlを加えた。それ
により得られた分解物 を自動解析装置(日本ゼネラル
株式会社製「KJELTEC AUTO 1030 A
nalyer」)に装着し、水蒸気蒸留および滴定を自
動的に行って、下記の数式により、小麦澱粉中の粗蛋
白含量を算出した。In the following examples, the crude protein content of wheat starch used for the differential scanning calorimetry was determined as follows. [Crude protein content of wheat starch] 1 g of wheat starch (dry matter) was precisely weighed in a dedicated glass test tube, and 15 ml of concentrated sulfuric acid and a catalyst ("KJELTAB KBC" manufactured by Nippon General Co., Ltd.) 1
A tablet (5 g) was added, and a decomposition treatment apparatus (“2020 Dig” manufactured by Nippon General Co., Ltd.) preliminarily heated to 420 ° C.
estor ") and pyrolyzed at the same temperature for 1 hour. After the decomposition was completed, the test tube was removed from the decomposition processing apparatus, allowed to cool to about room temperature, and then 75 ml of distilled water was added. The decomposed product obtained by this is analyzed by an automatic analyzer (“KJELTEC AUTO 1030 A manufactured by Nippon General Co., Ltd.”
, and the steam distillation and titration were automatically performed, and the crude protein content in the wheat starch was calculated by the following equation.
【0034】[0034]
【数2】 小麦澱粉の粗蛋白含量(%)={0. 798×(T1−T2)×F/S} [式中、T1 =小麦澱粉の分解物の滴定値(ml) 、T2
=蒸留水の滴定値(ml)、F=滴定に用いた1/10N
硫酸のファクター、S=小麦澱粉試料(乾物)の秤量
(g)を示す。]## EQU2 ## Crude protein content (%) of wheat starch = {0.798 × (T 1 −T 2 ) × F / S} [where T 1 = titration value of degraded product of wheat starch (ml), T 2
= Titration value of distilled water (ml), F = 1 / 10N used for titration
Sulfuric acid factor, S = weight (g) of wheat starch sample (dry matter). ]
【0035】《実施例1》[小麦の製麺適性の判定(う
どんの製造)] (1)小麦の準備および小麦澱粉の調製:試験区1〜6
として、軟質系国内産小麦4銘柄および軟質系外国産小
麦2銘柄の合計6銘柄の小麦を準備した。各銘柄の小麦
を用いて、示差走査熱量分析を行うための小麦澱粉を以
下のようにして調製した。Example 1 Judgment of Wheat Noodle Suitability (Production of Udon) (1) Preparation of Wheat and Preparation of Wheat Starch: Test Groups 1 to 6
As a result, a total of 6 brands of wheat were prepared: 4 brands of soft domestic wheat and 2 brands of soft foreign wheat. Using each brand of wheat, wheat starch for differential scanning calorimetry was prepared as follows.
【0036】[小麦澱粉の調製] (i) 小麦50gをコーヒーミルで十分に粉砕し、そ
れにより得られる全粒粉30gに水21mlを加え、サジ
を用いて十分に混練して生地を調製した。その生地を水
200ml中に30分間浸漬した後、水中で生地を繰り返
して揉んで澱粉を洗い出した。 (ii) 上記(i)で得られた懸濁液を100メッシュ
の篩で濾別して、表皮およびグルテンを分離して、澱粉
を澱粉乳として回収した。篩上の残渣とグルテンを合わ
せ、これに100mlの水を加えて前記と同様にして良く
揉んで澱粉を澱粉乳として洗い出し、それを前記で回収
した澱粉乳と合わせて、遠心分離(3000G、20分
間)を行い、上澄液を除去して、沈殿を回収した。 (iii) 上記(ii)で得られた沈殿に水50mlを加え
て再度懸濁させた後に、前記と同じ条件下に遠心分離
し、上澄液を除去し、沈殿物から上層の灰褐色画分をサ
ジで除き、下層の白色の小麦澱粉画分を回収した。これ
を凍結乾燥した後、乳鉢で粉砕して、100メッシュス
ルーの粒度にし、それにより得られた小麦澱粉を示差走
査熱量分析用の試料とした。[Preparation of Wheat Starch] (i) 50 g of wheat was sufficiently pulverized by a coffee mill, and 21 g of water was added to 30 g of whole wheat flour obtained, and kneaded sufficiently using a saji to prepare dough. After immersing the dough in 200 ml of water for 30 minutes, the starch was washed out by repeatedly rubbing the dough in water. (Ii) The suspension obtained in the above (i) was separated by filtration through a 100-mesh sieve to separate epidermis and gluten, and the starch was recovered as starch milk. The gluten and the residue on the sieve were combined, and 100 ml of water was added thereto, and the mixture was rubbed in the same manner as described above to wash out the starch as starch milk. The starch was combined with the starch milk recovered above and centrifuged (3000 G, 20 g). Min), the supernatant was removed, and the precipitate was collected. (Iii) 50 ml of water was added to the precipitate obtained in the above (ii), and the mixture was suspended again. The suspension was centrifuged under the same conditions as above, and the supernatant was removed. Then, the white wheat starch fraction in the lower layer was recovered. After freeze-drying this, it was pulverized in a mortar to a particle size of 100 mesh through, and the resulting wheat starch was used as a sample for differential scanning calorimetry.
【0037】(2)小麦澱粉の示差走査熱量分析(DS
C):上記(1)で得られた小麦澱粉を用いて、以下の
(A)〜(C)の工程に従って、示差走査熱量分析を行
った。 (A)試料の調製: (i)密閉型試料容器に小麦澱粉(乾物)5±0.2mg
を精秤する。 (ii)脱気した蒸留水43±0.5mgを上記(i)で精
秤した小麦澱粉に加え、緩くかき混ぜて小麦澱粉に水を
浸透させる。 (iii)蓋を載せた密閉型試料容器をシーラーの試料台
中央のダイス受けの上に置く。 (iv)圧力ハンドルを時計回りに回して、ダイス先端か
ら圧力棒が出るようにする。 (v)サンプル・シーラーバーを反時計回りに回し、試
料容器の蓋が容器の縁より0.3〜0.5mm程度内部に
入るように圧入する。 (vi)レバーを時計方向に一回転程度戻し、圧力ハンド
ルを反時計回りに空回りするまで回し、圧力棒を上に上
げる。 (vii)レバーを再び反時計方向に回し、試料容器を堅
く締めた後、試料容器を取り出す。(このようにして調
製した試料は、室温下で1時間放置後、示差走査熱量分
析に供する。) (viii)対照として、密閉型試料容器に等量の脱気した
蒸留水のみを加え、上記の(iii)〜(vii)と同様にし
て密閉して蓋をする。(2) Differential scanning calorimetry (DS) of wheat starch
C): Differential scanning calorimetry was performed using the wheat starch obtained in the above (1) according to the following steps (A) to (C). (A) Preparation of sample: (i) 5 ± 0.2 mg of wheat starch (dry matter) in a closed sample container
Weigh precisely. (Ii) 43 ± 0.5 mg of degassed distilled water is added to the wheat starch precisely weighed in the above (i), and the mixture is gently stirred to allow water to permeate the wheat starch. (Iii) Place the sealed sample container with the lid on the die receiver in the center of the sample table of the sealer. (Iv) Turn the pressure handle clockwise so that the pressure bar comes out of the die tip. (V) Turn the sample sealer bar counterclockwise and press-fit so that the lid of the sample container is about 0.3 to 0.5 mm inside the edge of the container. (Vi) Return the lever clockwise one full turn, turn the pressure handle counterclockwise until it idles, and raise the pressure bar. (Vii) Turn the lever counterclockwise again to tighten the sample container, and then remove the sample container. (The sample thus prepared is allowed to stand at room temperature for 1 hour and then subjected to differential scanning calorimetry.) (Viii) As a control, an equal amount of degassed distilled water alone was added to a closed sample container. Seal and cover in the same manner as in (iii) to (vii).
【0038】(B)試料の設置: (i)示差走査熱量分析装置(セイコー電子工業株式会
社製「DSC120」)におけるファーナスカバー、S
US蓋、ヒートシンク外蓋、ヒートシンク蓋を順に取り
出す。 (ii)手前のホルダーに上記(A)の(vii)で調製し
た試料を入れた容器を載せ、後方のホルダーに上記
(A)の(viii)で準備した対照容器を載せる。 (iii)ヒートシンク蓋、ヒートシンク外蓋、SUS蓋
およびファーナスカバーの順にかぶせる。(B) Installation of sample: (i) Furnace cover, S in a differential scanning calorimeter ("DSC120" manufactured by Seiko Instruments Inc.)
Take out the US lid, heat sink outer lid and heat sink lid in order. (Ii) The container holding the sample prepared in (vii) above (A) is placed on the front holder, and the control container prepared in (viii) above (A) is placed on the rear holder. (Iii) Cover in order of heat sink cover, heat sink outer cover, SUS cover and furnace cover.
【0039】(C)分析: (i)TAステーションおよびDSCモジュール(セイ
コー電子工業株式会社製)の電源を入れ、以下に示す温
度プログラム、サンプル情報、サンプリングタイム、エ
ンドジョブを設定する。 (ii)温度プログラムを入力する(開始温度25℃、保
持時間3分間、終了温度140℃、保持時間5分間、昇
温速度4℃/分)。 (iii)サンプル情報は、試料名、試料重量(乾物重
量)、対照名、対照物重量(mg)を入力する。 (iv)サンプリング時間は0.5秒に設定する。 (v)エンドジョブを入力する。 (vi)示差走査熱量分析装置のチャンネルのZEROキ
ー、RUNキーを順に押し、測定を開始する。 (vii)熱変化開始温度(To)と吸熱エネルギー(Δ
H)の分析を行う。(C) Analysis: (i) Turn on the power of the TA station and the DSC module (manufactured by Seiko Instruments Inc.), and set the following temperature program, sample information, sampling time, and end job. (Ii) Input a temperature program (start temperature: 25 ° C., holding time: 3 minutes, end temperature: 140 ° C., holding time: 5 minutes, heating rate: 4 ° C./min). (Iii) For the sample information, input the sample name, sample weight (dry matter weight), control name, and control substance weight (mg). (Iv) The sampling time is set to 0.5 seconds. (V) Input an end job. (Vi) Press the ZERO key and the RUN key of the channel of the differential scanning calorimeter in order to start the measurement. (Vii) Thermal change start temperature (To) and endothermic energy (Δ
H) is analyzed.
【0040】その結果、各試験区(6銘柄)の小麦に含
まれていた小麦澱粉の、示差走査熱量分析による熱変化
開始温度(To)が80℃以上での吸熱エネルギー(Δ
H)は、下記の表3に示すとおりであった。As a result, the endothermic energy (Δ) of the wheat starch contained in the wheat in each of the test plots (six brands) when the thermal change onset temperature (To) by differential scanning calorimetry was 80 ° C. or higher was 80 ° C. or more.
H) was as shown in Table 3 below.
【0041】(3)各銘柄の小麦からの小麦粉の製造
(製粉):各銘柄の小麦を、ビューラーテストミルを用
いて挽砕し、下記の製粉方法にしたがって、歩留り60
%の6種類の小麦粉を得た。(3) Production of flour from each brand of wheat (milling): Each brand of wheat is ground using a Buhler test mill, and a yield of 60% is obtained according to the following milling method.
% Flour were obtained.
【0042】[小麦粉の製造方法(製粉)] (i)小麦の調質:原料小麦をビニール袋に秤り取り、
水分含量が14.0%になるように加水し、水分が良く
分散するように振り混ぜ、水分が飛ばないようにビニー
ル袋の口を固く縛り、恒温槽(約30℃)中に23時間
放置した。23時間後に、水分含量が14.5%になる
ように更に加水し、水分が良く分散するように振り混
ぜ、ビニール袋の口を固く縛り、恒温槽(約30℃)中
に30分間放置した。[Method of producing flour (milling)] (i) Refining of wheat: Raw wheat is weighed into a plastic bag,
Add water to make the water content 14.0%, shake to disperse the water well, tie tightly the mouth of the plastic bag so that the water does not fly, and leave it in a thermostat (about 30 ° C) for 23 hours did. After 23 hours, water was further added so that the water content became 14.5%, and the mixture was shaken so that the water was well dispersed, tightly tied the mouth of the plastic bag, and left in a thermostat (about 30 ° C.) for 30 minutes. .
【0043】(ii)挽砕:上記(i)で調質を終了した
小麦を、25℃に温度調整した室内に置いた挽砕機(ビ
ューラー社製「Buhler Laboratory Flour Mill
」)のホッパーに投入し、66.7g/分の供給量で
挽砕した。挽砕機におけるロール間隙は、ブレーキロー
ル左側0.1mm、ブレーキロール右側0.08mm、ミド
リングロール左側0.06mm、ミドリングロール右側
0.03mmに調整した。挽砕時のストック区分は、下記
の表1に示す1B〜3Mの6種類のストック区分と、大
表皮区分および小表皮区分とした。(Ii) Crushing: A crusher (“Buhler Laboratory Floor Mill” manufactured by Buehler Co., Ltd.) was placed in a room whose temperature was adjusted to 25 ° C.
) And crushed at a feed rate of 66.7 g / min. The roll gap in the mill was adjusted to 0.1 mm on the left side of the brake roll, 0.08 mm on the right side of the brake roll, 0.06 mm on the left side of the middle roll, and 0.03 mm on the right side of the middle ring. The stock categories at the time of grinding were six types of stock categories 1B to 3M shown in Table 1 below, a large epidermis category and a small epidermis category.
【0044】[0044]
【表1】 [Table 1]
【0045】(iii)挽砕物の処理(歩留り60%小麦
粉の調製):上記(ii)で挽砕を終了後、各ストック区
分1B、2B、3B、1M、2M、3Mと大表皮区分お
よび小表皮区分に集まったストックをそれぞれ計量し
て、合計出量(合計重量)(Wt)(g)を求めた。次
に、1B区分と1M区分と混合してAとし、2Bと2M
を混合してBとし、3Bと3Mを混合してCとした。合
計出量(Wt)の60%の値(0.6Wt)(g)を予
め算出しておき、Aのみで前記の値0.6Wt(g)を
満たす場合はAのみから歩留り60%の小麦粉を調製し
た。Aのみでは0.6Wt(g)に満たない場合は足り
ない分だけBで補って歩留り60%の小麦粉を調製し
た。また、AおよびBの合計では0.6Wt(g)に満
たない場合は足りない分だけCで補って歩留り60%の
小麦粉を調製した。(Iii) Treatment of the ground material (preparation of a 60% yield flour): After the completion of the grinding in the above (ii), each of the stock sections 1B, 2B, 3B, 1M, 2M, 3M, the large epidermis section and the small The stocks collected in the epidermis section were weighed to determine the total output (total weight) (Wt) (g). Next, A is mixed with the 1B section and the 1M section to obtain A, and 2B and 2M
Was mixed to obtain B, and 3B and 3M were mixed to obtain C. A value (0.6 Wt) (g) of 60% of the total output (Wt) is calculated in advance, and when only the A satisfies the above-mentioned value 0.6 Wt (g), the flour with a yield of 60% from A alone Was prepared. When only A was less than 0.6 Wt (g), the insufficient amount was supplemented with B to prepare flour with a yield of 60%. When the sum of A and B was less than 0.6 Wt (g), the insufficient amount was supplemented with C to prepare a flour with a yield of 60%.
【0046】(4)うどんの製造: (i) 上記(3)の(iii)で得られた、歩留り60
%小麦粉1000gに、食塩30gおよび水350g
(食塩は水に予め溶解させておく)を加えて、12分間
混合してそぼろ状の生地にした。 (ii) 上記(i)で得た生地を製麺ロールにてロール
間隙3.6mmで麺帯にまとめ、室温下(約20℃)にビ
ニール袋中で30分間熟成させた。熟成後、この麺帯を
さらに製麺ロールにて圧延して約2.5mm厚の麺帯にし
た後、No.10の角切刃を用いて麺線に切り出して生
うどんを製造した。(4) Production of udon: (i) A yield of 60 obtained in (iii) of (3) above.
% Flour 1000g, salt 30g and water 350g
(The salt was previously dissolved in water), and the mixture was mixed for 12 minutes to form a ragged dough. (Ii) The dough obtained in the above (i) was put together in a noodle band using a noodle roll with a roll gap of 3.6 mm, and aged in a plastic bag at room temperature (about 20 ° C.) for 30 minutes. After aging, the noodle belt was further rolled by a noodle roll to form a noodle belt having a thickness of about 2.5 mm. Noodles were cut out using 10 square cutting blades to produce raw udon.
【0047】(iii) 上記(ii)で得られた生うどん
100gづつを、直ちに、充分量の沸騰水(pH5〜6に
調整)中にて茹で歩留りが310±2%になるように茹
で時間を調節しながら茹であげた後、直ちに冷水中で水
洗し、ざるに上げて水を切った。なお、麺の茹で歩留り
は、下記の数式により算出した。(Iii) Immediately boil 100 g of the raw udon obtained in (ii) above in a sufficient amount of boiling water (adjusted to pH 5 to 6) so that the yield becomes 310 ± 2%. After boiled while adjusting the temperature, immediately washed with cold water, and then pryed and drained. In addition, the boiling yield of noodles was calculated by the following formula.
【0048】[0048]
【数3】 茹で歩留り(%)=(A/B)×100 式中、A=生麺100gを茹であげて水切りした後の茹
で麺の重量(g) B=茹であげ前の生麺100g中の穀粉類の重量(g) (但し、生麺の製造に用いた穀粉中の水分含量が14%
であるものとしてBの値を求めた。)## EQU00003 ## Boiling yield (%) = (A / B) .times.100 where A = 100 g of raw noodles and the weight of the boiled noodles after draining (g) B = 100 g of raw noodles before boiling Weight of flour (g) (However, the moisture content of flour used in the production of raw noodles is 14%
And the value of B was determined. )
【0049】(iv) 上記(iii)で得られた茹で麺の
品質を下記の表2に示す評価基準にしたがって10名の
パネラーにより点数評価してもらい、その平均値を算出
したところ、下記の表3に示すとおりであった。(Iv) The quality of the boiled noodles obtained in (iii) above was scored by ten panelists according to the evaluation criteria shown in Table 2 below, and the average value was calculated. As shown in Table 3.
【0050】(v) また、上記(iii)とは別に、上
記(ii)で得られた生うどん各200gずつを沸騰水
(pH調整剤にてpH5〜6に調整)中に入れて、茹で歩留
りが280±2%になるように茹で時間を調節しながら
茹であげた後、水洗氷冷し、その約200gずつを専用
のトレイに盛り付けて−30℃に急速冷凍した。それに
より得られた冷凍麺を、乾燥を防ぐためにビニール袋に
入れて密封した後、−20℃で1週間冷凍保存した。 (vi) 1週間冷凍保存後に冷凍麺を冷凍庫より取り出
して、十分量の沸騰水中に入れて1分間煮沸解凍し、解
凍後直ちに冷水中で水洗して水を切り、解凍した麺の品
質を下記の表2に示す評価基準にしたがって10名のパ
ネラーにより点数評価してもらい、その平均値を算出し
たところ、下記の表3に示すとおりであった。(V) Separately from the above (iii), 200 g of the raw udon obtained in the above (ii) is put in boiling water (adjusted to pH 5 to 6 with a pH adjuster) and boiled. After boiling while adjusting the boiling time so that the yield was 280 ± 2%, the mixture was washed with water and ice-cooled, and about 200 g of each was placed on a dedicated tray and rapidly frozen at −30 ° C. The frozen noodle thus obtained was put in a plastic bag to prevent drying, sealed, and then stored frozen at -20 ° C for 1 week. (Vi) After the frozen storage for one week, remove the frozen noodles from the freezer, put in a sufficient amount of boiling water, boil and defrost for 1 minute, wash immediately in cold water after thawing, drain the water, and check the quality of the thawed noodles as follows. According to the evaluation criteria shown in Table 2, scores were evaluated by ten panelists, and the average value was calculated. The result was as shown in Table 3 below.
【0051】[0051]
【表2】 [Table 2]
【0052】[0052]
【表3】 [Table 3]
【0053】(5)小麦の製麺適性の判定:上記の表3
の結果から、小麦中に含まれる小麦澱粉の示差走査熱量
分析による結果と製麺適性との間には強い相関関係があ
ること、特に、小麦中に含まれる小麦澱粉を示差走査熱
量分析したときに、その熱変化開始温度(To)が80
℃以上での吸熱エネルギー(ΔH)が0.3J/乾物g
以下である試験区4、5および6の小麦は良好な製麺適
性を有しており、該試験区4、5および6の小麦を製粉
して得られる小麦粉を用いてうどんを製造すると、生麺
を茹であげて得られる茹でうどん、および茹であげた麺
を冷凍してなる冷凍うどんのいずれの場合も、粘弾性が
強く、ソフトでモチモチしており、滑らかで、食感に極
めて優れたものとなることがわかる。(5) Judgment of wheat noodle suitability: Table 3 above
From the results, that there is a strong correlation between the differential scanning calorimetry results of wheat starch contained in wheat and the suitability of noodles, especially when differential scanning calorimetric analysis of wheat starch contained in wheat In addition, its thermal change onset temperature (To) is 80
Absorption energy (ΔH) above 0.3 ° C is 0.3 J / g dry matter
The following wheats in the test plots 4, 5 and 6 have good noodle-making aptitude, and when the udon is produced using the flour obtained by milling the wheat in the test plots 4, 5 and 6, Both boiled noodles obtained by boiling noodles and frozen udon obtained by freezing boiled noodles have strong viscoelasticity, are soft and chewy, smooth and extremely excellent in texture. It turns out that it becomes.
【0054】《実施例2》[小麦の製麺適性の判定(ラ
ーメンの製造)] (1) 試験区7〜10として、硬質系外国産小麦4銘
柄を準備し、各銘柄の小麦を用いて、実施例1の(1)
と同様にして小麦澱粉を調製した。 (2) 上記(1)で得られた小麦澱粉を用いて、実施
例1の(2)と同様にして示差走査熱量分析を行って、
その熱変化開始温度(To)が80℃以上での吸熱エネ
ルギー(ΔH)を求めたところ、下記の表6に示すとお
りであった。また、上記(1)で得られた小麦澱粉の粗
蛋白含量を実施例1と同様にして測定したところ、下記
の表6に示すとおりであった。Example 2 [Determination of Wheat Noodle Suitability (Manufacture of Ramen)] (1) Four hard-based foreign wheats were prepared as test plots 7 to 10 and wheat of each brand was used. , Example 1 (1)
A wheat starch was prepared in the same manner as described above. (2) Using the wheat starch obtained in (1) above, differential scanning calorimetry was performed in the same manner as in (2) of Example 1,
The endothermic energy (ΔH) when the temperature at which the thermal change started (To) was 80 ° C. or higher was determined. The results are as shown in Table 6 below. The crude protein content of the wheat starch obtained in the above (1) was measured in the same manner as in Example 1, and the results were as shown in Table 6 below.
【0055】(3) 上記(1)で準備した各銘柄の小
麦を、ビューラーテストミルを用いて挽砕し、下記の製
粉方法にしたがって、歩留り60%の4種類の小麦粉を
得た。 [小麦粉の製造方法(製粉)] (i)小麦の調質:原料小麦をビニール袋に秤取り、水
分含量が15.0%になるように加水し、水分が良く分
散するように振り混ぜ、水分が飛ばないようにビニール
袋の口を固く縛り、恒温槽(約30℃)中に23時間放
置した。23時間後に、水分含量が15.5%になるよ
うに更に加水し、水分が良く分散するように振り混ぜ、
ビニール袋の口を固く縛り、恒温槽(約30℃)中に3
0分間放置した。 (ii)挽砕:上記(i)で調質を終了した小麦を、25
℃に温度調整した室内に置いた挽砕機(ビューラー社製
「Buhler Laboratory Flour Mill 」)のホッパー
に投入し、66.7g/分の供給量で挽砕した。挽砕機
におけるロール間隙は、ブレーキロール左側0.1mm、
ブレーキロール右側0.08mm、ミドリングロール左側
0.05mm、ミドリングロール右側0.02mmに調整し
た。挽砕時のストック区分は、下記の表4に示す1B〜
3Mの6種類のストック区分と、大表皮区分および小表
皮区分とした。(3) Each brand of wheat prepared in the above (1) was ground using a Buehler test mill to obtain four types of flour with a yield of 60% according to the following milling method. [Method of producing flour (milling)] (i) Refining of wheat: Raw wheat is weighed in a plastic bag, water is added so as to have a water content of 15.0%, and shaken so that water is well dispersed. The mouth of the plastic bag was tightly tied so that moisture did not fly, and left in a thermostat (about 30 ° C.) for 23 hours. After 23 hours, further water is added so that the water content becomes 15.5%, and shaken so that the water is well dispersed.
Firmly tie the mouth of the plastic bag and place it in a thermostat (about 30 ° C).
Left for 0 minutes. (Ii) Grinding: 25 g of wheat that has been tempered in (i) above
The mixture was charged into a hopper of a grinder ("Buhler Laboratory Floor Mill" manufactured by Buehler) placed in a room adjusted to a temperature of ° C, and was ground at a supply rate of 66.7 g / min. The roll gap in the grinder is 0.1 mm on the left side of the brake roll,
Adjustment was made to 0.08 mm on the right side of the brake roll, 0.05 mm on the left side of the middle roll, and 0.02 mm on the right side of the middle roll. The stock classification at the time of grinding is as shown in Table 4 below.
Six types of stocks of 3M were classified into a large epidermis and a small epidermis.
【0056】[0056]
【表4】 [Table 4]
【0057】(iii)挽砕物の処理(歩留り60%小麦
粉の調製):上記(ii)で挽砕を終了後、各ストック区
分1B、2B、3B、1M、2M、3Mと大表皮区分お
よび小表皮区分に集まったストックをそれぞれ計量し
て、合計出量(合計重量)(Wt)(g)を求めた。次
に、1B区分と1M区分と混合してAとし、2Bと2M
を混合してBとし、3Bと3Mを混合してCとした。合
計出量(Wt)の60%の値(0.6Wt)(g)を予
め算出しておき、Aのみで前記の値0.6Wt(g)を
満たす場合はAのみから歩留り60%の小麦粉を調製し
た。Aのみでは0.6Wt(g)に満たない場合は足り
ない分だけBで補って歩留り60%の小麦粉を調製し
た。また、AおよびBの合計では0.6Wt(g)に満
たない場合は足りない分だけCで補って歩留り60%の
小麦粉を調製した。(Iii) Treatment of the ground material (preparation of a 60% yield flour): After the completion of the grinding in the above (ii), each of the stock sections 1B, 2B, 3B, 1M, 2M, 3M, the large epidermis section and the small The stocks collected in the epidermis section were weighed to determine the total output (total weight) (Wt) (g). Next, A is mixed with the 1B section and the 1M section to obtain A, and 2B and 2M
Was mixed to obtain B, and 3B and 3M were mixed to obtain C. A value (0.6 Wt) (g) of 60% of the total output (Wt) is calculated in advance, and when only the A satisfies the above-mentioned value 0.6 Wt (g), the flour with a yield of 60% from A alone Was prepared. When only A was less than 0.6 Wt (g), the insufficient amount was supplemented with B to prepare flour with a yield of 60%. When the sum of A and B was less than 0.6 Wt (g), the insufficient amount was supplemented with C to prepare a flour with a yield of 60%.
【0058】(4)ラーメンの製造: (i) 上記(3)の(iii)で得られた、歩留り60
%小麦粉1000gに、かん粉(オリエンタル酵母工業
株式会社製)12gを溶解した水330gを加えて、1
2分間混合してそぼろ状の生地にした。 (ii) 上記(i)で得た生地を製麺ロールにてロール
間隙3.0mmで麺帯にまとめ、室温下(約20℃)にビ
ニール袋中で30分間熟成させた。熟成後、この麺帯を
さらに製麺ロールにて圧延して約1.5mm厚の麺帯にし
た後、No.20の角切刃を用いて麺線に切り出し、そ
れをビニール袋に入れて室温下(約20℃)に一晩放置
して、生ラーメンを製造した。(4) Production of Ramen: (i) Yield 60 obtained in (iii) of (3) above
% Flour (1000 g), water (330 g) prepared by dissolving 12 g of starch (manufactured by Oriental Yeast Co., Ltd.),
Mix for 2 minutes to make rags. (Ii) The dough obtained in the above (i) was put together in a noodle band with a roll gap of 3.0 mm using a noodle-making roll, and aged in a plastic bag at room temperature (about 20 ° C.) for 30 minutes. After aging, the noodle belt was further rolled with a noodle making roll into a noodle belt having a thickness of about 1.5 mm. Noodle strings were cut out using a square cutting blade of No. 20, placed in a plastic bag, and allowed to stand at room temperature (about 20 ° C.) overnight to produce raw ramen.
【0059】(iii) 上記(ii)で得られた生ラーメ
ンを、直ちに、充分量の沸騰水中にて茹で歩留りが24
0±2%になるように茹で時間を調節しながら茹であげ
た後、熱いスープの入ったドンブリに入れて、その品質
を下記の表5に示す評価基準にしたがって10名のパネ
ラーにより点数評価してもらい、その平均値を算出した
ところ、下記の表6に示すとおりであった。なお、上記
の茹で歩留りは、上記の数式により算出した。(Iii) The raw ramen obtained in (ii) is immediately boiled in a sufficient amount of boiling water to obtain a yield of 24.
After boiling while adjusting the boiling time so that it becomes 0 ± 2%, put it in a donburi containing hot soup and evaluate the quality by a score of 10 panelists according to the evaluation criteria shown in Table 5 below. The average value was calculated, and it was as shown in Table 6 below. The boiling yield was calculated by the above formula.
【0060】(iv) また、上記(iii)とは別に、上
記(ii)で得られた生中華麺各200gずつを沸騰水中
に入れて、茹で歩留りが220±2%になるように茹で
時間を調節しながら茹であげた後、水洗氷冷し、その約
200gずつを専用のトレイに盛り付けて−30℃に急
速冷凍した。それにより得られた冷凍麺を、乾燥を防ぐ
ためにビニール袋に入れて密封した後、−20℃で1週
間冷凍保存した。 (v) 1週間冷凍保存後に冷凍麺を冷凍庫より取り出
して、十分量の沸騰水中に入れて1分間煮沸解凍し、解
凍後直ちに熱いスープの入ったドンブリに入れて、その
品質を下記の表5に示す評価基準にしたがって10名の
パネラーにより点数評価してもらい、その平均値を算出
したところ、下記の表6に示すとおりであった。なお、
上記の茹で歩留りは、上記の数式により算出した。(Iv) Separately from the above (iii), 200 g of the raw Chinese noodles obtained in the above (ii) are placed in boiling water, and the boiling time is set so that the yield is 220 ± 2%. The mixture was boiled while adjusting the temperature, and then washed with water and cooled with ice. About 200 g of the mixture was placed on a dedicated tray and rapidly frozen at -30 ° C. The frozen noodle thus obtained was put in a plastic bag to prevent drying, sealed, and then stored frozen at -20 ° C for 1 week. (V) After storing for 1 week in a frozen state, the frozen noodles are taken out of the freezer, put in a sufficient amount of boiling water, boiled and defrosted for 1 minute, and immediately put into a donburi containing hot soup. The score was evaluated by ten panelists according to the evaluation criteria shown in Table 2, and the average value was calculated. The result was as shown in Table 6 below. In addition,
The boiling yield was calculated by the above formula.
【0061】[0061]
【表5】 [Table 5]
【0062】[0062]
【表6】 [Table 6]
【0063】(5)小麦の製麺適性の判定:上記の表6
の結果から、小麦に含まれる小麦澱粉の示差走査熱量分
析による結果と製麺適性との間には強い相関関係がある
こと、特に、小麦中に含まれる小麦澱粉を示差走査熱量
分析したときに、熱変化開始温度(To)が80℃以上
での吸熱エネルギー(ΔH)が0.3J/乾物g以下で
ある試験区10の小麦は良好な製麺適性を有しており、
試験区10の小麦を製粉して得られる小麦粉を用いてラ
ーメンを製造すると、生麺を茹であげて得られる茹でラ
ーメン、および茹であげたラーメンを冷凍してなる冷凍
ラーメンのいずれもが、粘弾性が強く、プリプリしてお
り、滑らかで、食感に極めて優れたものとなることがわ
かる。(5) Judgment of wheat noodle suitability: Table 6 above
From the results, that there is a strong correlation between the results of differential scanning calorimetry of wheat starch contained in wheat and suitability for noodle making, especially when differential scanning calorimetric analysis of wheat starch contained in wheat is performed. The wheat in the test section 10 in which the endothermic energy (ΔH) at a heat change initiation temperature (To) of 80 ° C. or more is 0.3 J / g of dry matter or less has good noodle-making suitability,
When ramen is manufactured using flour obtained by milling the wheat in the test section 10, both the boiled ramen obtained by boiling the raw noodles and the frozen ramen obtained by freezing the boiled ramen have viscoelastic properties. It can be seen that it is strong, crisp, smooth and extremely excellent in texture.
【0064】《実施例3》[小麦の製麺適性の判定(マ
イクロ波調理用生ラーメンの製造)] (1) 試験区11〜16として、軟質系国内産小麦4
銘柄および軟質系外国産商業小麦2銘柄の合計6銘柄の
小麦を準備し、各銘柄の小麦を用いて、実施例1の
(1)と同様にして小麦澱粉を調製した。 (2) 上記(1)で得られた小麦澱粉を用いて、実施
例1の(2)と同様にして示差走査熱量分析を行って、
その熱変化開始温度(To)が80℃以上での吸熱エネ
ルギー(ΔH)を求めたところ、下記の表8に示すとお
りであった。また、上記(1)で得られた小麦澱粉の粗
蛋白含量を実施例1と同様にして測定したところ、下記
の表8に示すとおりであった。 (3) 上記(1)で準備した6銘柄の小麦を用いて、
実施例1の(3)と同様にして製粉を行って、歩留り6
0%の小麦粉を調製した。Example 3 [Determination of Wheat Noodle Suitability (Manufacture of Raw Ramen for Microwave Cooking)] (1) As test sections 11 to 16, soft domestic wheat 4
A total of six brands of wheat, two brands of soft foreign commercial wheat, were prepared, and wheat starch was prepared in the same manner as (1) of Example 1 using each brand of wheat. (2) Using the wheat starch obtained in (1) above, differential scanning calorimetry was performed in the same manner as in (2) of Example 1,
The endothermic energy (ΔH) when the heat change start temperature (To) was 80 ° C. or higher was obtained, and the results are as shown in Table 8 below. Further, the crude protein content of the wheat starch obtained in the above (1) was measured in the same manner as in Example 1, and the result was as shown in Table 8 below. (3) Using the six brands of wheat prepared in (1) above,
Milling was performed in the same manner as in (3) of Example 1, and the yield was 6%.
0% flour was prepared.
【0065】(4)ラーメンの製造: (i) 上記(3)で得られた、歩留り60%小麦粉1
000gに、かん粉(オリエンタル酵母工業株式会社
製)10gを溶解した水350gを加えて、横型減圧下
ミキサーを用いて、減圧下(−600mmHg)にて10分
間混合してそぼろ状の生地にした。 (ii) 上記(i)で得た生地を製麺ロールにてロール
間隙3.2mmで麺帯にまとめ、2つに折り畳んで、さら
に同じロール間隙で2回合わせを行った後、室温下(約
20℃)にビニール袋中で30分間熟成させた。熟成
後、この麺帯をさらに製麺ロールにて圧延して約1.4
mm厚の麺帯にした後、No.20の角切刃を用いて麺線
に切り出してマイクロ波調理用生ラーメンを製造した。
この生ラーメンを100gづつビニール袋に入れて、口
をシールして室温下(約20℃)に一晩放置した。(4) Production of ramen: (i) 60% yield flour 1 obtained in (3) above
To 000 g, 350 g of water in which 10 g of shrimp (manufactured by Oriental Yeast Industry Co., Ltd.) was dissolved was added, and the mixture was mixed under reduced pressure (-600 mmHg) for 10 minutes using a horizontal mixer under reduced pressure to form a rough dough. . (Ii) The dough obtained in the above (i) is put together in a noodle band at a roll gap of 3.2 mm with a noodle-making roll, folded into two pieces, and further combined twice with the same roll gap, and then at room temperature ( (About 20 ° C.) in a plastic bag for 30 minutes. After aging, the noodle belt was further rolled with a noodle-making roll to about 1.4.
After making the noodle belt with a thickness of mm, Raw noodles for microwave cooking were manufactured by cutting into noodle strings using 20 square cutting blades.
100 g of the raw ramen was put into a plastic bag, the mouth was sealed, and the raw ramen was left overnight at room temperature (about 20 ° C.).
【0066】(iii) 翌日、上記(ii)で得られた生
ラーメンを、耐熱容器に移し、熱湯(95℃前後)を3
00g注ぎ、容器の口を開放してマイクロ波調理器具
[(株)東芝製「ER−CS型電子レンジ」:650
W]にて1〜2分調理した。調理後、直ちに濃縮スープ
を加えて、麺の品質を下記の表7に示す評価基準にした
がって10名のパネラーにより点数評価してもらい、そ
の平均値を算出したところ、下記の表8に示すとおりで
あった。(Iii) On the next day, the raw ramen obtained in (ii) above was transferred to a heat-resistant container, and heated with hot water (about 95 ° C.) for 3 hours.
Pour 00g, open the mouth of the container and open a microwave cooker [ER-CS type microwave oven manufactured by Toshiba Corporation: 650]
W] for 1-2 minutes. Immediately after cooking, the concentrated soup was added and the quality of the noodles was scored by ten panelists according to the evaluation criteria shown in Table 7 below, and the average value was calculated. As shown in Table 8 below, Met.
【0067】[0067]
【表7】 [Table 7]
【0068】[0068]
【表8】 [Table 8]
【0069】(5)小麦の製麺適性の判定:上記の表8
の結果から、小麦に含まれる小麦澱粉の示差走査熱量分
析による結果と製麺適性との間には強い相関関係がある
こと、特に、小麦中に含まれる小麦澱粉を示差走査熱量
分析したときに、熱変化開始温度(To)が80℃以上
での吸熱エネルギー(ΔH)が0.3J/乾物g以下で
ある試験区14〜16の小麦は良好な製麺適性を有して
おり、試験区14〜16の小麦を製粉して得られる小麦
粉を用いてマイクロ波調理用生ラーメンを製造すると、
60〜120秒(1〜2分)の短時間の調理(電子レン
ジ加熱)により可食状態になり、特に90〜120秒
(1.5〜2分)の短い調理時間で滑らかさおよび粘弾
性に優れる調理ラーメンとなることがわかる。それに対
して、小麦中に含まれる小麦澱粉を示差走査熱量分析し
たときに、熱変化開始温度(To)80℃以上での吸熱
エネルギー(ΔH)が0.3J/乾物gよりも大きい試
験区11〜13の小麦から得られる小麦粉を用いて製造
したマイクロ波調理用生ラーメンは、90秒の調理時間
(電子レンジ加熱時間)では可食状態にならず、100
秒以上の調理時間でようやく可食状態になり、しか12
0秒の加熱後もその食感は普通であることがわかる。(5) Judgment of wheat noodle suitability: Table 8 above
From the results, that there is a strong correlation between the results of differential scanning calorimetry of wheat starch contained in wheat and suitability for noodle making, especially when differential scanning calorimetric analysis of wheat starch contained in wheat is performed. The wheat in the test plots 14 to 16 in which the endothermic energy (ΔH) at a heat change initiation temperature (To) of 80 ° C. or more is 0.3 J / g of dry matter or less has good noodle making aptitude. When raw ramen for microwave cooking is manufactured using flour obtained by milling 14 to 16 wheat,
Short-time cooking (microwave heating) for 60-120 seconds (1-2 minutes) makes food edible, especially smoothness and viscoelasticity for short cooking times of 90-120 seconds (1.5-2 minutes) It turns out that it becomes a cooking ramen which is excellent. On the other hand, when the wheat starch contained in the wheat was subjected to differential scanning calorimetry, the endothermic energy (ΔH) at a heat change starting temperature (To) of 80 ° C. or more was larger than 0.3 J / g of dry matter 11. Raw ramen for microwave cooking manufactured using flour obtained from wheat of No. 13 to 13 does not become edible in a cooking time of 90 seconds (microwave heating time),
After a cooking time of more than a second, it becomes edible at last and only 12
It can be seen that the texture is normal even after heating for 0 seconds.
【0070】《実施例4》[小麦の製麺適性の判定(マ
イクロ波調理用生ラーメンの製造)] (1) 試験区17〜20として、硬質系外国産小麦4
銘柄を準備し、各銘柄の小麦を用いて、実施例1の
(1)と同様にして小麦澱粉を調製した。 (2) 上記(1)で得られた小麦澱粉を用いて、実施
例1の(2)と同様にして示差走査熱量分析を行って、
その熱変化開始温度(To)が80℃以上での吸熱エネ
ルギー(ΔH)を求めたところ、下記の表10に示すと
おりであった。また、上記(1)で得られた小麦澱粉の
粗蛋白含量を実施例1と同様にして測定したところ、下
記の表10に示すとおりであった。 (3) 上記(1)で準備した4銘柄の小麦を用いて、
実施例2の(3)の(i)と同様にして調質した後、2
5℃に温度調整した室内に置いた挽砕機(ビューラー社
製「Buhler Laboratory Flour Mill 」)のホッパ
ーに投入し、66.7g/分の供給量で挽砕した。挽砕
機におけるロール間隙は、ブレーキロール左側0.1m
m、ブレーキロール右側0.08mm、ミドリングロール
左側0.06mm、ミドリングロール右側0.03mmに調
整した。挽砕時のストック区分は、下記の表9に示す1
B〜3Mの6種類のストック区分と、大表皮区分および
小表皮区分とした。Example 4 [Judgment of Wheat Noodle Making Suitability (Production of Raw Ramen for Microwave Cooking)] (1) Hardened foreign wheat 4 as test groups 17 to 20
Brands were prepared, and wheat starch was prepared in the same manner as (1) of Example 1 using wheat of each brand. (2) Using the wheat starch obtained in (1) above, differential scanning calorimetry was performed in the same manner as in (2) of Example 1,
The endothermic energy (ΔH) at a temperature at which the thermal change started (To) was 80 ° C. or higher was determined, and was as shown in Table 10 below. Further, the crude protein content of the wheat starch obtained in the above (1) was measured in the same manner as in Example 1, and the result was as shown in Table 10 below. (3) Using the four brands of wheat prepared in (1) above,
After tempering in the same manner as (i) of (3) of Example 2, 2
The mixture was charged into a hopper of a grinder (“Buhler Laboratory Floor Mill” manufactured by Buehler) placed in a room adjusted to a temperature of 5 ° C., and was ground at a supply rate of 66.7 g / min. The roll gap in the grinder is 0.1 m on the left side of the brake roll.
m, the right side of the brake roll was adjusted to 0.08 mm, the left side of the middle ring roll was adjusted to 0.06 mm, and the right side of the middle ring roll was adjusted to 0.03 mm. The stock classification at the time of grinding is as shown in Table 9 below.
Six types of stock categories B to 3M, a large epidermis category and a small epidermis category were used.
【0071】[0071]
【表9】 [Table 9]
【0072】(4) 上記(3)で得られた挽砕物を実
施例1におけるのと同様に処理して歩留り60%の小麦
粉を調製した。 (5)(i) 上記(4) で得られた歩留り60%小麦
粉を用いて実施例3の(4) と同様にしてマイクロ波調
理用用生ラーメンを製造した。この生ラーメンを100
gづつビニール袋に入れて、口をシールして室温下(約
20℃)に一晩放置した。 (ii) 翌日、上記(i)で得られた生ラーメンを、耐
熱容器に移し、熱湯(95℃前後)を300g注ぎ、容
器の口を開放してマイクロ波調理器具[(株)東芝製
「ER−CS型電子レンジ」:650W]にて1〜2分
調理した。調理後、直ちに濃縮スープを加えて、麺の品
質を上記の表7に示す評価基準にしたがって10名のパ
ネラーにより点数評価してもらい、その平均値を算出し
たところ、下記の表10に示すとおりであった。(4) The ground material obtained in the above (3) was treated in the same manner as in Example 1 to prepare flour with a yield of 60%. (5) (i) Raw ramen for microwave cooking was produced in the same manner as (4) of Example 3 using the 60% yield flour obtained in (4) above. 100 of this raw ramen
g of the mixture was placed in a plastic bag, the mouth was sealed, and the mixture was allowed to stand at room temperature (about 20 ° C.) overnight. (Ii) On the next day, transfer the raw ramen obtained in (i) above to a heat-resistant container, pour 300 g of boiling water (around 95 ° C.), open the container, and open a microwave cooker [manufactured by Toshiba Corporation] ER-CS type microwave oven ": 650 W] for 1-2 minutes. Immediately after cooking, the concentrated soup was added, and the quality of the noodles was scored by ten panelists according to the evaluation criteria shown in Table 7 above, and the average value was calculated, as shown in Table 10 below. Met.
【0073】[0073]
【表10】 [Table 10]
【0074】(6)小麦の製麺適性の判定:上記の表1
0の結果から、小麦に含まれる小麦澱粉の示差走査熱量
分析による結果と製麺適性との間には強い相関関係があ
ること、特に、小麦中に含まれる小麦澱粉を示差走査熱
量分析したときに、熱変化開始温度(To)が80℃以
上での吸熱エネルギー(ΔH)が0.3J/乾物g以下
である試験区20の小麦は良好な製麺適性を有してお
り、試験区20の小麦を製粉して得られる小麦粉を用い
てマイクロ波調理用生ラーメンを製造すると、60〜1
20秒(1〜2分)の短時間の調理(電子レンジ加熱)
により可食状態になり、特に90〜120秒(1.5〜
2分)の短い調理時間で滑らかさおよび粘弾性に優れる
ラーメンに調理できることがわかる。それに対して、小
麦中に含まれる小麦澱粉を示差走査熱量分析したとき
に、熱変化開始温度(To)80℃以上での吸熱エネル
ギー(ΔH)が0.3J/乾物gよりも大きい試験区1
7〜19の小麦から得られる小麦粉を用いて製造したマ
イクロ波調理用生ラーメンは、90秒の調理時間(電子
レンジ加熱時間)では可食状態にならず、100秒以上
の調理時間でようやく可食状態になり、しかも120秒
の加熱後もその食感は普通であることがわかる。(6) Judgment of wheat noodle suitability: Table 1 above
0, there is a strong correlation between the differential scanning calorimetry result of wheat starch contained in wheat and the suitability for noodle making, especially when the differential scanning calorimetric analysis of wheat starch contained in wheat was carried out. In addition, the wheat in the test section 20 having an endothermic energy (ΔH) of not more than 0.3 J / g of dry matter at a heat change initiation temperature (To) of 80 ° C. or more has good noodle making aptitude. When raw ramen for microwave cooking is manufactured using flour obtained by milling wheat,
20 seconds (1-2 minutes) of short-time cooking (microwave heating)
Edible state, especially 90-120 seconds (1.5-
It can be seen that ramen having excellent smoothness and viscoelasticity can be cooked in a short cooking time (2 minutes). On the other hand, when differential scanning calorimetry was performed on wheat starch contained in wheat, the test section 1 in which the endothermic energy (ΔH) at a heat change initiation temperature (To) of 80 ° C. or more was larger than 0.3 J / g dry matter.
Raw ramen for microwave cooking manufactured using flour obtained from wheat of 7 to 19 does not become edible in a cooking time of 90 seconds (microwave heating time), but is finally possible in a cooking time of 100 seconds or more. It turns out that it is in a food state, and its texture is normal even after heating for 120 seconds.
【0075】《実施例5》[小麦粉の製麺適性の判定
(うどんの製造)] (1) 試験区21〜24として小麦粉4種類を準備し
た。これらの小麦粉の粗蛋白含量(乾物換算)を上記し
た方法で測定したところ、いずれも9.8〜9.9%の
範囲であった。また、小麦を粉砕した全粒粉の代わりに
この試験区21〜24の小麦粉を用いた以外は実施例1
の(1)と同様にして小麦澱粉を調製した。 (2) 上記(1)で得られた小麦澱粉を用いて、実施
例1の(2)と同様にして示差走査熱量分析を行って、
その熱変化開始温度(To)が80℃以上での吸熱エネ
ルギー(ΔH)を求めたところ、下記の表11に示すと
おりであった。また、上記(1)で得られた小麦澱粉の
粗蛋白含量を実施例1と同様にして測定したところ、下
記の表11に示すとおりであった。Example 5 [Judgment of Wheat Flour for Making Noodles (Manufacture of Udon)] (1) Four types of flour were prepared as test plots 21 to 24. When the crude protein content (in terms of dry matter) of these flours was measured by the method described above, all were in the range of 9.8 to 9.9%. Example 1 was repeated except that the wheat flours in the test plots 21 to 24 were used instead of the whole wheat flour.
A wheat starch was prepared in the same manner as in (1). (2) Using the wheat starch obtained in (1) above, differential scanning calorimetry was performed in the same manner as in (2) of Example 1,
The endothermic energy (ΔH) when the heat change start temperature (To) was 80 ° C. or higher was obtained, and was as shown in Table 11 below. The crude protein content of the wheat starch obtained in the above (1) was measured in the same manner as in Example 1, and the results were as shown in Table 11 below.
【0076】(3) この試験区21〜24の小麦粉の
各々を用いて、実施例1の(4)と同様にして、生うど
んを製造した後に茹であげて、その品質を上記の表2に
示す評価基準にしたがって10名のパネラーにより点数
評価してもらい、その平均値を算出したところ、下記の
表11に示すとおりであった。 (4) また、上記(3) とは別に、この試験区21〜
24の小麦粉の各々を用いて実施例1の(4) と同様に
して生うどんを製造した後、生うどん各200gずつを
沸騰水(pH調整剤にてpH5〜6に調整)中に入れて、茹
で歩留りが280±2%になるように茹で時間を調節し
ながら茹であげた後、水洗氷冷し、その約200gずつ
を専用のトレイに盛り付けて−30℃に急速冷凍した。
それにより得られた冷凍麺を、乾燥を防ぐためにビニー
ル袋に入れて密封した後、−20℃で1週間冷凍保存し
た。1週間冷凍保存後に冷凍麺を冷凍庫より取り出し
て、十分量の沸騰水中に入れて1分間煮沸解凍し、解凍
後直ちに冷水中で水洗して水を切り、解凍した麺の品質
を上記の表2に示す評価基準にしたがって10名のパネ
ラーにより点数評価してもらい、その平均値を算出した
ところ、下記の表11に示すとおりであった。なお、上
記の茹で歩留りは、上記の数式により算出した。(3) Using each of the flours in the test plots 21 to 24, in the same manner as in (4) of Example 1, raw udon is produced and then boiled, and the quality is shown in Table 2 above. Score evaluation was performed by ten panelists according to the evaluation criteria shown, and the average value was calculated. The result was as shown in Table 11 below. (4) Apart from the above (3), the test plots 21 to 21
Using each of the 24 flours, raw udon was produced in the same manner as in (4) of Example 1, and then 200 g of each raw udon was placed in boiling water (adjusted to pH 5 to 6 with a pH adjuster). After adjusting the boiling time so that the yield was 280 ± 2%, the mixture was washed with water and ice-cooled, and about 200 g of each was placed on a special tray and rapidly frozen at -30 ° C.
The frozen noodle thus obtained was put in a plastic bag to prevent drying, sealed, and then stored frozen at -20 ° C for 1 week. After one week of frozen storage, the frozen noodles are taken out of the freezer, put in a sufficient amount of boiling water, boiled and defrosted for 1 minute, and immediately after defrosting, washed with cold water and drained. The score was evaluated by ten panelists according to the evaluation criteria shown in Table 2, and the average value was calculated. The result was as shown in Table 11 below. The boiling yield was calculated by the above formula.
【0077】[0077]
【表11】 [Table 11]
【0078】(5)小麦粉の製麺適性の判定:上記の表
11の結果から、小麦粉中に含まれる小麦澱粉の示差走
査熱量分析による結果と製麺適性との間には強い相関関
係があること、特に、小麦粉中に含まれる小麦澱粉を示
差走査熱量分析したときに、熱変化開始温度(To)が
80℃以上での吸熱エネルギー(ΔH)が0.3J/乾
物g以下である試験区23および24の小麦粉は良好な
製麺適性を有しており、試験区23および24の小麦粉
を用いてうどんを製造すると、生麺を茹であげて得られ
る茹でうどん、および茹であげたうどんを冷凍してなる
冷凍うどんのいずれもが、粘弾性が強く、ソフトでモチ
モチしており、滑らかで、食感に極めて優れるものとな
ることがわかる。(5) Judgment of Wheat Flour for Noodle Making: From the results in Table 11, there is a strong correlation between the result of differential scanning calorimetry of wheat starch contained in flour and the noodle making suitability. In particular, when the wheat starch contained in the wheat flour was subjected to differential scanning calorimetry, the heat change starting temperature (To) was 80 ° C. or more, and the endothermic energy (ΔH) was 0.3 J / g of dry matter or less. The flours 23 and 24 have good suitability for making noodles. When udon is manufactured using the flours in the test plots 23 and 24, the boiled noodles obtained by boiling the raw noodles, and the boiled noodles are frozen. It can be seen that each of the frozen udon noodles has strong viscoelasticity, is soft and chewy, and is smooth and extremely excellent in texture.
【0079】《実施例6》[小麦粉の製麺適性の判定
(ラーメンの製造)] (1) 試験区25〜27として小麦粉3種類を準備し
た。これらの小麦粉の粗蛋白含量(乾物換算)を上記し
た方法で測定したところ、いずれも12.7〜13.0
%の範囲であった。小麦を粉砕した全粒粉の代わりにこ
の試験区25〜27の小麦粉を用いた以外は、実施例1
の(1)と同様にして小麦澱粉を調製した。 (2) 上記(1)で得られた小麦澱粉を用いて、実施
例1の(2)と同様にして示差走査熱量分析を行って、
その熱変化開始温度(To)が80℃以上での吸熱エネ
ルギー(ΔH)を求めたところ、下記の表12に示すと
おりであった。また、上記(1)で得られた小麦澱粉の
粗蛋白含量を実施例1と同様にして測定したところ、下
記の表12に示すとおりであった。Example 6 [Judgment of Wheat Flour for Making Noodles (Manufacture of Ramen)] (1) Three kinds of flour were prepared as test groups 25 to 27. When the crude protein content (in terms of dry matter) of these flours was measured by the method described above, all were 12.7 to 13.0.
% Range. Example 1 Example 1 was repeated except that the flours of the test plots 25 to 27 were used instead of whole wheat flour.
A wheat starch was prepared in the same manner as in (1). (2) Using the wheat starch obtained in (1) above, differential scanning calorimetry was performed in the same manner as in (2) of Example 1,
The endothermic energy (ΔH) at a temperature at which the thermal change started (To) was 80 ° C. or higher was determined, and was as shown in Table 12 below. Further, the crude protein content of the wheat starch obtained in the above (1) was measured in the same manner as in Example 1, and the result was as shown in Table 12 below.
【0080】(3) また、この試験区25〜27の小
麦粉の各々を用いて、実施例2の(4)と同様にして、
生ラーメンを製造した後に茹あげて、その品質を上記の
表5に示す評価基準にしたがって10名のパネラーによ
り点数評価してもらい、その平均値を算出したところ、
下記の表12に示すとおりであった。 (4) また、上記( 3) とは別に、この試験区25〜
27の小麦粉の各々を用いて実施例2の(4) と同様に
して生ラーメンを製造した後、生ラーメン各200gず
つを沸騰水中に入れて、茹で歩留りが220±2%にな
るように茹で時間を調節しながら茹であげた後、水洗氷
冷し、その約200gずつを専用のトレイに盛り付けて
−30℃に急速冷凍した。それにより得られた冷凍ラー
メンを、乾燥を防ぐためにビニール袋に入れて密封した
後、−20℃で1週間冷凍保存した。1週間冷凍保存後
に冷凍ラーメンを冷凍庫より取り出して、十分量の沸騰
水中に入れて1分間煮沸解凍し、解凍後直ちに熱いスー
プの入ったドンブリに入れて、その品質を上記の表5に
示す評価基準にしたがって10名のパネラーにより点数
評価してもらい、その平均値を算出したところ、下記の
表12に示すとおりであった。(3) Using each of the flours in the test plots 25 to 27, in the same manner as in (4) of Example 2,
After producing the raw ramen, it was boiled and the quality was scored by 10 panelists according to the evaluation criteria shown in Table 5 above, and the average value was calculated.
The results are shown in Table 12 below. (4) Separately from (3) above, this test zone 25-
After preparing raw ramen using each of the 27 flours in the same manner as in (4) of Example 2, 200 g of each raw ramen is put into boiling water and boiled so that the yield is 220 ± 2%. After being boiled while adjusting the time, the mixture was washed with water and ice-cooled, and about 200 g thereof was placed on a dedicated tray and rapidly frozen at -30 ° C. The frozen ramen thus obtained was sealed in a plastic bag to prevent drying, and then stored frozen at -20 ° C for 1 week. After storing for 1 week in a frozen state, the frozen ramen is taken out of the freezer, put in a sufficient amount of boiling water, boiled and defrosted for 1 minute, and immediately put into a donburi containing hot soup after thawing, and the quality is evaluated as shown in Table 5 above. The score was evaluated by ten panelists according to the standard, and the average value was calculated. The result was as shown in Table 12 below.
【0081】[0081]
【表12】 [Table 12]
【0082】(5)小麦粉の製麺適性の判定:上記の表
12の結果から、小麦粉中に含まれる小麦澱粉の示差走
査熱量分析による結果と製麺適性との間には強い相関関
係があること、特に、小麦粉中に含まれる小麦澱粉を示
差走査熱量分析したときに、熱変化開始温度(To)が
80℃以上での吸熱エネルギー(ΔH)が0.3J/乾
物g以下である試験区27の小麦粉は良好な製麺適性を
有しており、試験区27の小麦粉を用いてラーメンを製
造すると、生麺を茹であげて得られる茹でラーメン、お
よび茹であげた麺を冷凍してなる冷凍ラーメンのいずれ
もが、粘弾性が強く、プリプリしており、滑らかで、食
感に極めて優れるものとなることがわかる。(5) Judgment of Noodle Manufacturability of Wheat Flour: From the results in Table 12 above, there is a strong correlation between the result of differential scanning calorimetry of wheat starch contained in flour and the noodle qualification. In particular, when the wheat starch contained in the wheat flour was subjected to differential scanning calorimetry, the heat change starting temperature (To) was 80 ° C. or more, and the endothermic energy (ΔH) was 0.3 J / g of dry matter or less. Wheat flour 27 has good noodle-making suitability, and when ramen is manufactured using flour of test section 27, boiled ramen obtained by boiling raw noodles, and freezing obtained by freezing boiled noodles It can be seen that each of the ramen has a strong viscoelasticity, is prettier, smooth and extremely excellent in texture.
【0083】《実施例7》[小麦粉の製麺適性の判定
(マイクロ波調理用生ラーメンの製造)] (1) 試験区28〜34として小麦粉7種類を準備し
た。これらの小麦粉の粗蛋白含量(乾物換算)を上記し
た方法で測定したところ下記の表13に示すとおりであ
った。小麦を粉砕した全粒粉の代わりにこの試験区28
〜34の小麦粉を用いた以外は実施例1の(1)と同様
にして小麦澱粉を調製した。 (2) 上記(1)で得られた小麦澱粉を用いて、実施
例1の(2)と同様にして示差走査熱量分析を行って、
その熱変化開始温度(To)が80℃以上での吸熱エネ
ルギー(ΔH)を求めたところ、下記の表13に示すと
おりであった。また、上記(1)で得られた小麦澱粉の
粗蛋白含量を実施例1と同様にして測定したところ、下
記の表13に示すとおりであった。Example 7 [Judgment of Wheat Flour for Making Noodles (Production of Raw Ramen for Microwave Cooking)] (1) Seven types of flour were prepared as test sections 28 to 34. The crude protein content (in terms of dry matter) of these flours was measured by the method described above, and was as shown in Table 13 below. Instead of whole wheat flour, this test plot 28
Wheat starch was prepared in the same manner as in Example 1, (1) except that the flours Nos. To 34 were used. (2) Using the wheat starch obtained in (1) above, differential scanning calorimetry was performed in the same manner as in (2) of Example 1,
The endothermic energy (ΔH) when the heat change start temperature (To) was 80 ° C. or higher was obtained, and was as shown in Table 13 below. The crude protein content of the wheat starch obtained in the above (1) was measured in the same manner as in Example 1, and the results were as shown in Table 13 below.
【0084】(3)(i) この試験区28〜34の小
麦粉の各々を用いて実施例3と同様にしてマイクロ波調
理用生ラーメンを製造した。この生ラーメンを100g
づつビニール袋に入れて、口をシールして室温下(約2
0℃)に一晩放置した。 (ii) 翌日、上記(i)で得られた生ラーメンを、耐
熱容器に移し、熱湯(95℃前後)を300g注ぎ、開
放型マイクロ波調理器具[(株)東芝製「ER−CS型
電子レンジ」:650W]にて1〜2分調理した。調理
後、直ちに濃縮スープを加えて、麺の品質を上記の表7
に示す評価基準にしたがって10名のパネラーにより点
数評価してもらい、その平均値を算出したところ、下記
の表13に示すとおりであった。(3) (i) Raw ramen for microwave cooking was produced in the same manner as in Example 3 using each of the flours in the test sections 28 to 34. 100g of this raw ramen
Put each in a plastic bag, seal the mouth, and at room temperature (about 2
(0 ° C.) overnight. (Ii) On the next day, transfer the raw ramen obtained in (i) above to a heat-resistant container, pour 300 g of hot water (around 95 ° C.), and use an open-type microwave cooking appliance [ER-CS type electronic device manufactured by Toshiba Corporation. Range: 650 W] for 1-2 minutes. Immediately after cooking, the concentrated soup was added and the quality of the noodles was adjusted according to Table 7 above.
The score was evaluated by ten panelists according to the evaluation criteria shown in Table 2, and the average value was calculated. The result was as shown in Table 13 below.
【0085】[0085]
【表13】 [Table 13]
【0086】(4)小麦の製麺適性の判定:上記の表1
3の結果から、小麦粉に含まれる小麦澱粉の示差走査熱
量分析による結果と製麺適性との間には強い相関関係が
あること、特に、小麦粉中に含まれる小麦澱粉を示差走
査熱量分析したときに、熱変化開始温度(To)が80
℃以上での吸熱エネルギー(ΔH)が0.3J/乾物g
以下である試験区32〜34の小麦粉は良好な製麺適性
を有しており、試験区32〜34の小麦粉を用いてマイ
クロ波調理用生ラーメンを製造すると、60〜120秒
(1〜2分)の短時間の調理(電子レンジ加熱)により
可食状態になり、特に90〜120秒(1.5〜2分)
の短い調理時間で滑らかさおよび粘弾性に優れる調理ラ
ーメンとなることがわかる。それに対して、小麦粉中に
含まれる小麦澱粉を示差走査熱量分析したときに、熱変
化開始温度(To)80℃以上での吸熱エネルギー(Δ
H)が0.3J/乾物gよりも大きい試験区28〜31
の小麦粉を用いて製造したマイクロ波調理用生ラーメン
は、90秒の調理時間(電子レンジ加熱時間)では可食
状態にならず、100秒以上の調理時間でようやく可食
状態になり、しか120秒の加熱後もその食感は普通で
あることがわかる。(4) Judgment of wheat noodle suitability: Table 1 above
From the result of No. 3, there is a strong correlation between the result of differential scanning calorimetry of wheat starch contained in flour and the suitability for noodle making, especially when the differential scanning calorimetric analysis of wheat starch contained in flour was performed. In addition, the heat change starting temperature (To) is 80
Absorption energy (ΔH) above 0.3 ° C is 0.3 J / g dry matter
The following flours in the test sections 32-34 have good suitability for making noodles. When raw wheat noodles for microwave cooking are manufactured using the flour in the test sections 32-34, 60-120 seconds (1-2) Minutes), the food becomes edible by short-time cooking (microwave heating), especially 90 to 120 seconds (1.5 to 2 minutes)
It can be seen that a cooking ramen excellent in smoothness and viscoelasticity can be obtained in a short cooking time. On the other hand, when the wheat starch contained in the wheat flour was subjected to differential scanning calorimetry, the endothermic energy (Δ) at a heat change start temperature (To) of 80 ° C. or higher was obtained.
Test plots 28-31 where H) is greater than 0.3 J / g dry matter
The raw ramen for microwave cooking manufactured using wheat flour does not become edible in a cooking time of 90 seconds (microwave heating time), but finally becomes edible in a cooking time of 100 seconds or more, and only 120 It can be seen that the texture is normal even after heating for 2 seconds.
【0087】《実施例8》[小麦粉の製麺適性の判定
(ギョウザの皮の製造)] (1) 試験区35〜37として小麦粉3種類を準備し
た。これらの小麦粉の粗蛋白含量(乾物換算)を上記し
た方法で測定したところ下記の表15に示すとおりであ
った。小麦を粉砕した全粒粉の代わりにこの試験区35
〜37の小麦粉を用いた以外は実施例1の(1)と同様
にして小麦澱粉を調製した。 (2) 上記(1)で得られた小麦澱粉を用いて、実施
例1の(2)と同様にして示差走査熱量分析を行って、
その熱変化開始温度(To)が80℃以上での吸熱エネ
ルギー(ΔH)を求めたところ、下記の表15に示すと
おりであった。また、上記(1)で得られた小麦澱粉の
粗蛋白含量を実施例1と同様にして測定したところ、下
記の表15に示すとおりであった。 (3) この試験区35〜37の小麦粉用いて、下記の
方法によりギョウザの皮を製造し、その皮を用いてギョ
ウザを製造した。 [ギョウザの皮およびギョウザの製造] (i) 小麦粉200gに水72gを加え、12分間混
合してそぼろ状の生地を得た。この生地を製麺ロールに
てロール間隙3.0mmで麺帯にまとめ、ビニール袋に入
れて室温下に30分間熟成した。熟成後、麺帯をさらに
製麺ロールにて圧延し、約0.8mm厚の麺帯にした後、
直径8.7mmの円形の金型で麺帯をくり抜いて、ギョウ
ザの皮を製造した。 (ii) 上記(i)で得られたギョウザの皮に、ひき肉
とみじん切りにした野菜および調味料よりなる具を12
g/1枚の割合で入れて包み成形して生ギョウザを製造
した。Example 8 [Judgment of Wheat Flour for Making Noodles (Manufacture of Gyoza Peel)] (1) Three types of flour were prepared as test sections 35 to 37. The crude protein content (in terms of dry matter) of these flours was measured by the method described above, and was as shown in Table 15 below. This test plot 35 was used instead of whole wheat flour.
Wheat starch was prepared in the same manner as (1) of Example 1 except that the flours Nos. To 37 were used. (2) Using the wheat starch obtained in (1) above, differential scanning calorimetry was performed in the same manner as in (2) of Example 1,
The endothermic energy (ΔH) at a temperature at which the thermal change started (To) was 80 ° C. or higher was determined, and was as shown in Table 15 below. The crude protein content of the wheat starch obtained in the above (1) was measured in the same manner as in Example 1, and the results were as shown in Table 15 below. (3) Using the flour of the test plots 35 to 37, gyoza skin was produced by the following method, and gyoza was produced using the skin. [Production of Gyoza Skin and Gyoza] (i) To 200 g of flour, 72 g of water was added and mixed for 12 minutes to obtain a tattered dough. This dough was put together in a noodle band with a roll gap of 3.0 mm using a noodle-making roll, placed in a plastic bag, and aged at room temperature for 30 minutes. After aging, the noodle belt was further rolled with a noodle roll to make a noodle belt of about 0.8 mm thickness,
The noodle belt was hollowed out with a circular mold having a diameter of 8.7 mm to produce gyoza skin. (Ii) Ingredients consisting of minced meat, minced vegetables and seasonings are added to the skin of the gyoza obtained in (i) above.
g / 1 piece was wrapped and molded to produce raw gyoza.
【0088】(iii) 上記(ii)で得られた生ギョウ
ザを、サラダ油を敷き、熱したフライパンに並べ、加熱
して焼き色が付いたところで少量の水を加え蓋をしてさ
らに加熱した。フライパンの水がなくなり具の内部まで
十分に火が通ったところで調理をやめ、皿に直ちに移し
て、その皮の部分の品質を下記の表14に示す評価基準
にしたがって10名のパネラーにより点数評価してもら
い、その平均値を算出したところ、下記の表15に示す
とおりであった。 (iv) また、上記(iii)とは別に、上記(i)およ
び(ii)と同様にして得られた生ギョウザを蒸籠に入
れ、霧吹きにて水を噴霧した後、約8分間蒸煮した。蒸
煮後、ギョウザを−30℃に急速冷凍して冷凍ギョウザ
をつくり、それをビニール袋に入れて、−20℃の冷凍
庫で1週間保存した。1週間後に冷凍ギョウザを取り出
して、上記(iii)と同様にして加熱調理し、その皮の
部分の品質を下記の表14に示す評価基準にしたがって
10名のパネラーにより点数評価してもらい、その平均
値を算出したところ、下記の表15に示すとおりであっ
た。(Iii) The raw gyoza obtained in the above (ii) was laid with salad oil, arranged in a heated frying pan, heated, and when it was browned, a small amount of water was added, and the lid was further heated with a lid. When the frying pan has run out of water and the inside of the utensil has been fully cooked, stop cooking, immediately transfer to a plate, and evaluate the quality of the skin by a score of 10 panelists according to the evaluation criteria shown in Table 14 below. The average value was calculated and was as shown in Table 15 below. (Iv) Separately from the above (iii), raw gyoza obtained in the same manner as in the above (i) and (ii) was put into a steaming basket, sprayed with water by spraying, and steamed for about 8 minutes. After steaming, the gyoza was quickly frozen at −30 ° C. to make frozen gyoza, which was put in a plastic bag and stored in a −20 ° C. freezer for one week. One week later, the frozen gyoza was taken out, heated and cooked in the same manner as in (iii), and the quality of the skin was evaluated by a score of 10 panelists according to the evaluation criteria shown in Table 14 below. When the average value was calculated, it was as shown in Table 15 below.
【0089】[0089]
【表14】 [Table 14]
【0090】[0090]
【表15】 [Table 15]
【0091】(2)小麦粉の製麺適性の判定:上記の表
15の結果から、小麦粉中に含まれる小麦澱粉の示差走
査熱量分析による結果と製麺適性との間には強い相関関
係があること、特に小麦粉中に含まれる小麦澱粉を示差
走査熱量分析したときに、熱変化開始温度(To)が8
0℃以上での吸熱エネルギー(ΔH)が0.3J/乾物
g以下である試験区37の小麦粉は良好な製麺適性を有
しており、試験区37の小麦粉を用いてギョウザの皮を
製造すると、生ギョウザ、および蒸したギョウザを冷凍
してなる冷凍ギョウザのいずれの場合も、その皮がしな
やかでありながらしっかりしており、口溶けが良いもの
となることがわかる。(2) Judgment of Noodle Manufacturability of Wheat Flour: From the results shown in Table 15 above, there is a strong correlation between the result of differential scanning calorimetry of wheat starch contained in flour and the noodle maker suitability. In particular, when the wheat starch contained in the wheat flour was subjected to differential scanning calorimetry, the thermal change onset temperature (To) was 8
The wheat flour in the test plot 37 having an endothermic energy (ΔH) at 0 ° C. or higher of 0.3 J / g or less of dry matter has good noodle-making suitability. Then, it can be seen that in both the case of the raw gyoza and the frozen gyoza obtained by freezing the steamed gyoza, the skin is supple but firm, and the mouth melts well.
【0092】《実施例9》[マイクロ波調理用生ラーメ
ンの製造] (1) 実施例7の試験区29、30、33および34
で使用したのと同じ市販の小麦粉のいずれかに対して、
下記の表17に示す澱粉を表17に示す割合で添加した
麺類用穀粉組成物を用いて、実施例3と同様にしてマイ
クロ波調理用生ラーメンを製造した。この生ラーメンを
100gづつビニール袋に入れて、口をシールして室温
下(約20℃)に一晩放置した。 (ii) 翌日、上記(i)で得られた生ラーメンを、耐
熱容器に移し、熱湯(95℃前後)を300g注ぎ、容
器の口を開放してマイクロ波調理器具[(株)東芝製
「ER−CS型電子レンジ」:650W]にて1〜2分
調理した。調理後、直ちに濃縮スープを加えて、調理直
後の麺の品質を上記の表7に示す評価基準にしたがって
10名のパネラーにより点数評価してもらい、その平均
値を算出したところ、下記の表17に示すとおりであっ
た。 (iii) また、上記(ii)における調理後に5分経過
した時点での麺の品質を下記の表16に示す評価基準に
したがって10名のパネラーにより点数評価してもら
い、その平均値を算出したところ、下記の表17に示す
とおりであった。Example 9 [Production of Raw Ramen for Microwave Cooking] (1) Test sections 29, 30, 33 and 34 of Example 7
For any of the same commercial flours used in
Using the flour composition for noodles to which the starch shown in Table 17 below was added in the ratio shown in Table 17, raw ramen for microwave cooking was produced in the same manner as in Example 3. 100 g of the raw ramen was put into a plastic bag, the mouth was sealed, and the raw ramen was left overnight at room temperature (about 20 ° C.). (Ii) On the next day, transfer the raw ramen obtained in (i) above to a heat-resistant container, pour 300 g of boiling water (around 95 ° C.), open the container, and open a microwave cooker [manufactured by Toshiba Corporation] ER-CS type microwave oven ": 650 W] for 1-2 minutes. Immediately after cooking, the concentrated soup was added, and the quality of the noodles immediately after cooking was scored by ten panelists according to the evaluation criteria shown in Table 7 above, and the average value was calculated. Was as shown in FIG. (Iii) Also, the quality of the noodles at the time when 5 minutes passed after the cooking in (ii) above was scored by ten panelists according to the evaluation criteria shown in Table 16 below, and the average value was calculated. However, it was as shown in Table 17 below.
【0093】[0093]
【表16】 [Table 16]
【0094】[0094]
【表17】 [Table 17]
【0095】(2) 上記の表17の結果から、小麦粉
中に含まれる小麦澱粉を示差走査熱量分析したときに、
熱変化開始温度(To)が80℃以上での吸熱エネルギ
ー(ΔH)が0.3J/乾物g以下である小麦粉に対し
て澱粉を配合した試験区38〜53のマイクロ波調理用
生ラーメンの場合は、90秒以下の極めて短い調理時間
で滑らかさおよび粘弾性に優れる食感の良好な調理ラー
メンが得られること、しかもそれらのラーメンは調理後
に時間が経っての茹でのびが少なく、良好な食感を保ち
得ることがわかる。それに対して、小麦粉中に含まれる
小麦澱粉を示差走査熱量分析したときに、熱変化開始温
度(To)が80℃以上での吸熱エネルギー(ΔH)が
0.3J/乾物gよりも大きい小麦粉を用いている試験
区55および56の場合は、澱粉を併用していても可食
状態になるまで比較的長い調理時間を要することがわか
る。(2) From the results in Table 17 above, when the wheat starch contained in the flour was subjected to differential scanning calorimetry,
In the case of raw ramen for microwave cooking in test sections 38 to 53 in which starch is blended with wheat flour having an endothermic energy (ΔH) at a heat change initiation temperature (To) of 80 ° C. or more and 0.3 J / g of dry matter or less, Is to obtain cooked ramen with excellent texture and excellent smoothness and viscoelasticity in an extremely short cooking time of 90 seconds or less, and furthermore, these ramen have little boil over time after cooking and have a good food quality. It can be seen that the feeling can be maintained. On the other hand, when the wheat starch contained in the wheat flour was subjected to differential scanning calorimetry, the flour having an endothermic energy (ΔH) at a heat change initiation temperature (To) of 80 ° C. or more and greater than 0.3 J / g of dry matter was obtained. In the case of the test plots 55 and 56 used, it can be seen that a relatively long cooking time is required to reach an edible state even when starch is used in combination.
【0096】[0096]
【発明の効果】本発明による場合は、小麦または小麦粉
から、それらに含まれる澱粉を回収して、その示差走査
熱量分析を行うだけで、該小麦または小麦粉が製麺適性
を有しているか否かを簡便・迅速に且つ正確に行うこと
ができる。特に、本発明では、示差走査熱量分析によっ
て、小麦または小麦粉中に含まれる小麦澱粉の熱変化開
始温度(To)が80℃以上での吸熱エネルギー(Δ
H)が0.3J/乾物g以下であるか否かを調べるだけ
で、その小麦または小麦粉が製麺適性を有するか否かを
簡単に判定できる。そして、示差走査熱量分析を行った
ときに、そこに含まれる小麦澱粉の熱変化開始温度(T
o)が80℃以上での吸熱エネルギー(ΔH)が0.3
J/乾物g以下ある小麦を原料小麦として用いて得られ
る小麦粉、または既に製粉されている小麦粉を用いて麺
類を製造することによって、粘弾性、ソフト感、モチモ
チ感、プリプリ感、滑らかさになどの特性に優れる、良
好な食感を有する高品質の各種の麺類を得ることができ
る。特に、示差走査熱量分析を行ったときに、そこに含
まれる小麦澱粉の熱変化開始温度(To)が80℃以上
での吸熱エネルギー(ΔH)が0.3J/乾物g以下あ
る小麦を原料小麦として用いて得られる小麦粉、または
既に製粉されている小麦粉を用いてなる本発明のマイク
ロ波調理用生麺は、該生麺を容器に入れて水や湯を注い
で電子レンジなどのマイクロ波調理器で従来よりも短い
時間加熱調理するだけで、で喫食可能で且つ食感および
食味に優れる麺にすることができる。そして、前記した
小麦粉と共に澱粉を併用してなる本発明のマイクロ波調
理用生麺は、マイクロ波調理器による加熱時間が一層短
縮され、しかも茹でのびが生じにくく、良好な品質を長
時間保つことができる。According to the present invention, the starch or starch contained therein is recovered from wheat or flour and subjected to differential scanning calorimetry to determine whether the wheat or flour has the suitability for noodle-making. Can be performed simply, quickly and accurately. In particular, in the present invention, the endothermic energy (Δ) at which the thermal change initiation temperature (To) of wheat or wheat starch contained in wheat flour is 80 ° C. or more is determined by differential scanning calorimetry.
By simply checking whether or not H) is 0.3 J / g or less of dry matter, it is possible to easily determine whether or not the wheat or flour has suitability for noodle-making. Then, when the differential scanning calorimetry was performed, the heat change starting temperature (T
o) When the endothermic energy (ΔH) at 80 ° C. or more is 0.3
J / Measuring noodles using flour obtained by using wheat having a dry matter of not more than g as raw wheat, or flour that has already been milled, provides viscoelasticity, soft feeling, mochi feeling, prepuri feeling, smoothness, etc. And various kinds of high-quality noodles having a good texture can be obtained. In particular, when the differential scanning calorimetry was performed, wheat having a heat endurance energy (ΔH) of 0.3 J / g or less of dry matter at a temperature of 80 ° C. or more of wheat starch contained therein was used as a raw material wheat. The raw noodles for microwave cooking of the present invention obtained by using flour obtained as a raw material or flour that has already been milled are prepared by placing the raw noodles in a container and pouring water or hot water into a microwave cooker such as a microwave oven. It is possible to make noodles that can be eaten and have excellent texture and taste only by heating in a cooking vessel for a shorter time than before. Further, the raw noodle for microwave cooking of the present invention using starch in combination with the above-mentioned flour is further shortened in the heating time by the microwave cooker, hardly causes boiling, and maintains good quality for a long time. Can be.
【図1】小麦または小麦粉に含まれる小麦澱粉を加水下
に示差走査熱量分析して得られる解析パターンの代表的
な例を示す図である。FIG. 1 is a diagram showing a typical example of an analysis pattern obtained by differential scanning calorimetry of wheat or wheat starch contained in wheat flour under water.
【図2】図1に示すような解析パターンにおいて、その
解析熱変化開始温度(To)の求め方を示す図である。FIG. 2 is a diagram showing a method of obtaining an analytical heat change start temperature (To) in an analytical pattern as shown in FIG.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 水上 将一 東京都千代田区神田錦町一丁目25番地 日 清製粉株式会社内 (72)発明者 鎌田 真彦 東京都千代田区神田錦町一丁目25番地 日 清製粉株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shoichi Minakami 1-25-25 Kandanishikicho, Chiyoda-ku, Tokyo Nisshin Flour Milling Co., Ltd. (72) Inventor Masahiko Kamada 1-25-25 Kandanishikicho, Chiyoda-ku, Tokyo Milling Co., Ltd.
Claims (14)
差走査熱量分析を行ってその熱的特性を解析し、それに
より得られる解析結果に基づいて小麦または小麦粉の製
麺適性を判定することを特徴とする、小麦または小麦粉
の製麺適性の判定方法。1. A method for performing differential scanning calorimetry on starch contained in wheat or flour to analyze its thermal characteristics, and judging the suitability of wheat or flour for noodle making based on the analysis result obtained. A method for determining the suitability of wheat or flour for making noodles.
行う請求項1記載の判定方法。2. The method according to claim 1, wherein the differential scanning calorimetric analysis of the wheat starch is performed under water.
査熱量分析して、該澱粉の熱変化開始温度(To)が8
0℃以上での吸熱エネルギー(ΔH)が0.3J/乾物
g以下である小麦を用いて製麺用の小麦粉を製造する方
法。3. The starch contained in wheat is subjected to differential scanning calorimetry under water, and the thermal change onset temperature (To) of the starch is 8%.
A method for producing wheat flour for noodle making using wheat having an endothermic energy (ΔH) at 0 ° C. or more of 0.3 J / g or less of dry matter.
査熱量分析して、該澱粉の熱変化開始温度(To)が8
0℃以上での吸熱エネルギー(ΔH)が0.3J/乾物
g以下である小麦を製粉して得られる麺類用小麦粉。4. The starch contained in wheat is subjected to differential scanning calorimetry under water, and the thermal change onset temperature (To) of the starch is 8%.
Wheat flour for noodles obtained by milling wheat having an endothermic energy (ΔH) at 0 ° C. or higher of 0.3 J / g or less of dry matter.
走査熱量分析して、該澱粉の熱変化開始温度(To)が
80℃以上での吸熱エネルギー(ΔH)が0.3J/乾
物g以下である麺類用小麦粉。5. The starch contained in the wheat flour is subjected to differential scanning calorimetry under water, and the endothermic energy (ΔH) of the starch at a temperature at which the thermal change starts (To) is 80 ° C. or more is 0.3 J / g of dry matter g. The following noodle flour.
共に澱粉を含有することを特徴とする麺類用穀粉組成
物。6. A flour composition for noodles, comprising starch together with the wheat flour for noodles according to claim 4. Description:
モロコシ澱粉およびそれらの化工澱粉のうちの少なくと
も1種である請求項6記載の麺類用穀粉組成物。7. The flour composition for noodles according to claim 6, wherein the starch is at least one of potato starch, tapioca starch, corn starch and modified starch thereof.
重量に基づいて澱粉を3〜40重量%の割合で含有する
請求項6または7記載の麺類用穀粉組成物。8. The flour composition for noodles according to claim 6, wherein starch is contained at a ratio of 3 to 40% by weight based on the total weight of flours in the flour composition for noodle making.
麺、乾麺、茹麺、蒸麺、冷凍麺または即席麺用である請
求項4または5に記載の麺類用小麦粉或いは請求項6〜
8のいずれか1項に記載の麺類用穀粉組成物。9. The flour for noodles according to claim 4 or 5, which is for raw noodles, raw noodles for microwave cooking, semi-dried noodles, dry noodles, boiled noodles, steamed noodles, frozen noodles or instant noodles.
9. The flour composition for noodles according to any one of 8 above.
中華麺類、パスタ類または日本そば用である請求項4ま
たは5記載の麺類用小麦粉或いは請求項6〜9のいずれ
か1項に記載の麺類用穀粉組成物。10. Udon, kishimen, somen, cold wheat,
The wheat flour for noodles according to claim 4 or 5, or the flour composition for noodles according to any one of claims 6 to 9, which is for Chinese noodles, pasta or Japanese buckwheat noodles.
請求項4または5記載の麺類用小麦粉或いは請求項6〜
10のいずれか1項に記載の麺類用穀粉組成物。11. The flour for noodles according to claim 4 or 5, which is for raw Chinese noodles for microwave cooking.
11. The flour composition for noodles according to any one of 10.
および澱粉を併用して麺類を製造する方法。12. A method for producing noodles using the wheat flour for noodles and starch according to claim 4 or 5 in combination.
粉、請求項7〜11のいずれか1項に記載の麺類用穀粉
組成物或いは請求項12の方法を用いて得られる麺類。13. A flour for noodles according to claim 4 or 5, a flour composition for noodles according to any one of claims 7 to 11, or noodles obtained by using the method of claim 12.
求項13記載の麺類。14. The noodles according to claim 13, which are raw Chinese noodles for microwave cooking.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19178598A JP3943720B2 (en) | 1997-07-07 | 1998-07-07 | Method for judging suitability of wheat or flour for noodle making |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9-195258 | 1997-07-07 | ||
JP19525897 | 1997-07-07 | ||
JP6451498 | 1998-02-27 | ||
JP10-64514 | 1998-02-27 | ||
JP19178598A JP3943720B2 (en) | 1997-07-07 | 1998-07-07 | Method for judging suitability of wheat or flour for noodle making |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11308974A true JPH11308974A (en) | 1999-11-09 |
JP3943720B2 JP3943720B2 (en) | 2007-07-11 |
Family
ID=27298500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19178598A Expired - Fee Related JP3943720B2 (en) | 1997-07-07 | 1998-07-07 | Method for judging suitability of wheat or flour for noodle making |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3943720B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007159476A (en) * | 2005-12-14 | 2007-06-28 | Nippon Flour Mills Co Ltd | Method for evaluating noodle-making property of wheat flour, and wheat flour composition used in the method |
JP2010193851A (en) * | 2009-02-27 | 2010-09-09 | Nisshin Flour Milling Inc | Grain flour composition for boiled noodle and method for producing boiled noodle |
CN103404786A (en) * | 2013-08-10 | 2013-11-27 | 青岛品品好制粉有限公司 | Tailored flour of udon noodles, and manufacturing method thereof |
-
1998
- 1998-07-07 JP JP19178598A patent/JP3943720B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007159476A (en) * | 2005-12-14 | 2007-06-28 | Nippon Flour Mills Co Ltd | Method for evaluating noodle-making property of wheat flour, and wheat flour composition used in the method |
JP4493035B2 (en) * | 2005-12-14 | 2010-06-30 | 日本製粉株式会社 | Noodle-making evaluation method for flour and flour composition used therefor |
JP2010193851A (en) * | 2009-02-27 | 2010-09-09 | Nisshin Flour Milling Inc | Grain flour composition for boiled noodle and method for producing boiled noodle |
CN103404786A (en) * | 2013-08-10 | 2013-11-27 | 青岛品品好制粉有限公司 | Tailored flour of udon noodles, and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3943720B2 (en) | 2007-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5228060B2 (en) | Korean-style pancake powder formulation using rice flour | |
CA3008247C (en) | Pulse-based pasta and process for manufacturing the same | |
CA2807596A1 (en) | Use of hulled rapeseed | |
JP4548672B2 (en) | Whole grain flour production method | |
JP6920103B2 (en) | Noodles containing bran and its manufacturing method | |
JPH11308974A (en) | Method for judging noodle-preparation suitability of wheat or wheat flour | |
JP2018050568A (en) | Meat product, method for reducing smell of meat product and agent for reducing smell of meat product | |
US7335390B2 (en) | Composition containing soybean flakes and potato flakes, method for making a food product therefrom, and said food product | |
JPH11313627A (en) | Production of processed wheat bran product and food containing the same | |
JP7427402B2 (en) | Flour for noodles | |
US5989617A (en) | Method of assessing wheat or wheat flour regarding suitability for producing noodles | |
JPH1042811A (en) | Production of frozen noodles | |
JP2014217321A (en) | Buckwheat-like food and method for producing the same | |
JP2022097951A (en) | Composition for noodles, and noodles | |
Chavan et al. | Preparation and nutritional quality of Sorghum Shankarpali | |
Agustia et al. | Utilization of pregerminated jackbean and soybean for increasing the protein content of instant tiwul | |
JPH0239865A (en) | Coating composition for fry | |
US20240349764A1 (en) | Pulse-based pasta and process for manufacturing the same | |
JP2014158431A (en) | Bean jam derived from soybean, and manufacturing method of bean jam | |
JPS5857143B2 (en) | Manufacturing method for cooked processed foods | |
Yadav et al. | Studies on development of technology for preparation of millet based extruded snack | |
JP2023102513A (en) | Noodle-producing composition including wheat flour and wheat bran | |
KR101938525B1 (en) | Dumpling including Fresh Black Raspberry Juice and Method for Manufacturing the same | |
EP3918923A1 (en) | Immature bean-containing powder maintaining color tone, food and beverage, and method for producing same | |
JP5248417B2 (en) | Udon production method, udon raw noodle wire production method, udon raw noodle wire, and udon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041207 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20041207 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060711 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061219 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070215 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070403 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070406 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110413 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110413 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120413 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120413 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130413 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140413 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |