JPH11308773A - Active filter - Google Patents

Active filter

Info

Publication number
JPH11308773A
JPH11308773A JP10111713A JP11171398A JPH11308773A JP H11308773 A JPH11308773 A JP H11308773A JP 10111713 A JP10111713 A JP 10111713A JP 11171398 A JP11171398 A JP 11171398A JP H11308773 A JPH11308773 A JP H11308773A
Authority
JP
Japan
Prior art keywords
current
transformer
waveform
circuit
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10111713A
Other languages
Japanese (ja)
Inventor
Hidehiro Maekawa
英洋 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP10111713A priority Critical patent/JPH11308773A/en
Publication of JPH11308773A publication Critical patent/JPH11308773A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To compensate for distortions due to the excutation current of a transformer by obtaining the excitation current waveform of the transformer, including a core material in a magnetic flux density waveform, that is obtained from the primary voltage waveform of the transformer and adding the compensation current of an active filter to it. SOLUTION: When harmonics and reactive current generated by a load 2 are detected by a detection circuit 91 of a control circuit 9, the gate signal of a PWM waveform is generated by a PWM circuit 93 with it as a compensation current instruction, the gate control of an inverter main circuit 5 is made by a gate circuit 94 , and a compensation current from the inverter main circuit 4 is supplied to a power line via the transformer 3, an excitation current detection circuit 10 detects the primary voltage waveform of the transformer 3 as the excitation current waveform of the transformer 3 and adds it to the compensation current, thus compensating for the current corresponding to excitation of the transformer 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力系統の高調波
電流や無効電流を抑制するためのアクティブフィルタに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active filter for suppressing harmonic current and reactive current in a power system.

【0002】[0002]

【従来の技術】この種のアクティブフィルタは、需要家
の負荷で発生する高調波電流や逆相電流、無効電流を検
出し、これと逆極性の電流を電源ラインに供給すること
により、電源ラインに高調波等が発生するのを抑制し、
ラインの電圧歪み等を無くす。
2. Description of the Related Art An active filter of this type detects a harmonic current, a negative-phase current, and a reactive current generated in a load of a consumer, and supplies a current having the opposite polarity to the power supply line to thereby provide a power supply line. To suppress the generation of harmonics, etc.
Eliminates line voltage distortion and the like.

【0003】図5は、アクティブフィルタの回路構成を
示し、3相3線式を示し、電源1と負荷2を接続する3
相線路にΔ−Δ(3角−3角)結線のトランス3と高調
波フィルタ4を介してインバータ主回路5の出力端を接
続し、インバータ主回路5がコンデンサ6を直流電源と
して補償電流を発生し、フィルタ4、及びトランス3を
通して線路に供給する。線路に発生する高調波電流は電
流検出器7で検出し、線路電圧位相を電圧検出器8で検
出し、これら検出電流と電圧から制御回路9が必要な補
償電流波形と位相信号を得てインバータ主回路5のゲー
ト制御信号とする。
FIG. 5 shows a circuit configuration of an active filter, which shows a three-phase three-wire system.
An output terminal of an inverter main circuit 5 is connected to a phase line via a transformer 3 having a Δ-Δ (triangle-triangle) connection and a harmonic filter 4, and the inverter main circuit 5 uses a capacitor 6 as a DC power supply to supply a compensation current. It is generated and supplied to the line through the filter 4 and the transformer 3. The harmonic current generated in the line is detected by the current detector 7, the line voltage phase is detected by the voltage detector 8, and the control circuit 9 obtains a necessary compensation current waveform and a phase signal from the detected current and voltage to obtain an inverter. A gate control signal for the main circuit 5 is used.

【0004】図6の(a)には3相4線式を示し、図5
と異なる部分はトランス3を星形−星形結線とし、フィ
ルタ4を線路側に設けた点にある。この主回路構成は、
同図の(b)に示す。
FIG. 6A shows a three-phase four-wire system, and FIG.
The difference is that the transformer 3 has a star-star connection and the filter 4 is provided on the line side. This main circuit configuration is
This is shown in FIG.

【0005】[0005]

【発明が解決しようとする課題】従来のアクティブフィ
ルタは、負荷電流に含まれる高調波電流、逆相電流、無
効電流等を目的に応じて除去できるが、装置構成要素に
なるトランス3の励磁電流に伴う歪み電流を補償してい
ない。
The conventional active filter can remove a harmonic current, a negative-phase current, a reactive current and the like included in the load current according to the purpose. Does not compensate for the distortion current associated with

【0006】ここで、3相4線式アクティブフィルタの
トランス3は、3次巻線にΔ巻線を設けると、インバー
タよりの同相の電流がΔ巻線内を循環電流として流れる
ため、同相電流(基本波の零相電流や第3次高調波電
流)の抑制ができなくなる。このため、3次巻線を設け
ないトランス3としているが、この場合にはトランスの
励磁電流には鉄心材料の特性並びに運転時の最大磁束密
度によって決まってくる第3次、第5次、第7次等の高
調波電流を含むことになる。この量はトランスの励磁電
流の15〜60%にも大きくなる。
Here, in the transformer 3 of the three-phase four-wire active filter, if a Δ winding is provided in the tertiary winding, the in-phase current from the inverter flows through the Δ winding as a circulating current. (A zero-phase current or a third harmonic current of the fundamental wave) cannot be suppressed. For this reason, the transformer 3 is not provided with a tertiary winding, but in this case, the third, fifth, and fifth orders determined by the characteristics of the iron core material and the maximum magnetic flux density during operation are used as the exciting current of the transformer. This includes the seventh harmonic current. This amount is as large as 15 to 60% of the exciting current of the transformer.

【0007】この励磁電流に含まれる高調波電流は、上
記のように鉄心材質と運転時の最大磁束密度(つまり、
電源電圧)により決まるため、アクティブフィルタの出
力が低負荷時であっても同じ量となる。このことは、低
負荷時ほど励磁電流に含まれる高調波電流が無視できな
い目立った量になってしまうことを意味する。
As described above, the harmonic current contained in the excitation current is determined by the material of the iron core and the maximum magnetic flux density during operation (that is,
(Power supply voltage), the output is the same even when the output of the active filter is low. This means that the lower the load, the higher the harmonic current contained in the exciting current becomes, which cannot be ignored.

【0008】そこで、トランスの励磁電流に含まれる高
調波電流量を少なくするために、鉄心の磁束密度を下げ
ることが考えられるが、鉄心量が多くなり、、トランス
のコストアップや大型化を招く。
In order to reduce the amount of harmonic current included in the exciting current of the transformer, it is conceivable to lower the magnetic flux density of the iron core. However, the amount of the iron core increases, which leads to an increase in the cost and size of the transformer. .

【0009】特に、トランスの偏磁防止のために鉄心に
ギャップを設けたものは励磁電流が大きくなり、励磁電
流による電圧歪みも大きくなる。
In particular, a transformer having a gap in an iron core for preventing the transformer from being demagnetized has a large exciting current and a large voltage distortion due to the exciting current.

【0010】本発明の目的は、トランスの励磁電流に伴
う歪み補償ができるアクティブフィルタを提供すること
にある。
An object of the present invention is to provide an active filter capable of compensating for a distortion accompanying an exciting current of a transformer.

【0011】[0011]

【課題を解決するための手段】本発明は、トランスの励
磁電流がその鉄心材質とその磁束密度により決まり、磁
束密度はトランスの一次電圧により決まることを利用
し、トランスの一次電圧波形から得る磁束密度波形に鉄
心材質分を含めてトランスの励磁電流波形を求め、これ
をアクティブフィルタの補償電流に加えることにより、
トランスの励磁電流に伴う歪み補償ができるようにした
もので、以下の構成を特徴とする。
The present invention utilizes the fact that the exciting current of a transformer is determined by its iron core material and its magnetic flux density, and the magnetic flux density is determined by the primary voltage of the transformer. By calculating the transformer excitation current waveform including the iron core material in the density waveform and adding this to the active filter compensation current,
It is designed to compensate for distortion accompanying the exciting current of a transformer, and is characterized by the following configuration.

【0012】負荷で発生する高調波電流や逆相電流、無
効電流を検出し、この検出電流と逆極性の電流指令に従
った補償電流をトランスを介して電源ラインに供給する
アクティブフィルタにおいて、前記電源ラインの電圧波
形から前記トランスの励磁電流波形を求め、この励磁電
流波形を前記電流指令への加算信号にする励磁電流検出
回路を設けたことを特徴とする。
An active filter for detecting a harmonic current, a reverse-phase current, and a reactive current generated in a load and supplying a compensation current according to a current command having a polarity opposite to the detected current to a power supply line via a transformer. An exciting current detecting circuit is provided for obtaining an exciting current waveform of the transformer from a voltage waveform of a power supply line, and using the exciting current waveform as an addition signal to the current command.

【0013】[0013]

【発明の実施の形態】図1は、本発明の実施形態を示す
装置構成図であり、図5又は図6と同等の部分は同一符
号で示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an apparatus configuration diagram showing an embodiment of the present invention, and portions equivalent to those in FIG. 5 or FIG.

【0014】従来と同等になる制御回路9は、高調波電
流・無効電流検出回路91の検出電流を補償電流指令と
し、この指令と電流検出器92に得るインバータ主回路
5の出力電流とを突き合わせ、その偏差に応じたパルス
幅と極性のPWM波形をPWM回路93に得、このPW
M波形をゲート回路94で増幅してインバータ主回路5
のゲート制御信号を得る。
The control circuit 9 which conventional become equivalent, the detection current of the harmonic current and a reactive current detecting circuit 9 1 a compensation current command, and the output current of the inverter main circuit 5 to obtain this instruction and the current detector 9 2 the butt, resulting pulse width and polarity of the PWM waveform according to the deviation to the PWM circuit 9 3, this PW
The inverter main circuit 5 amplifies the M waveform at the gate circuit 9 4
To obtain a gate control signal.

【0015】ここで、本実施形態では、制御回路9に追
加する回路として、励磁電流検出回路10を設ける。こ
の励磁電流検出回路10は、電圧検出器8の検出電圧か
らトランス3の励磁電流を検出し、これを高調波電流・
無効電流検出回路91からの検出電流に加算して電流指
令にする。これにより、トランス3の励磁電流分も補償
した出力をインバータ主回路5に得る。
Here, in the present embodiment, an exciting current detection circuit 10 is provided as a circuit added to the control circuit 9. The exciting current detecting circuit 10 detects the exciting current of the transformer 3 from the detection voltage of the voltage detector 8 and outputs
To the current command by adding the detected current from the reactive current detector 9 1. As a result, an output that compensates for the exciting current of the transformer 3 is obtained in the inverter main circuit 5.

【0016】トランス3の励磁電流波形は、その鉄心材
質とそのときの磁束密度により決まり、磁束密度はトラ
ンス3の一次電圧により決まる。したがって、励磁電流
検出回路10は、電源ラインの電圧検出波形とトランス
の鉄心材質から決まる定数からトランス3の励磁電流波
形を得ることができる。
The exciting current waveform of the transformer 3 is determined by the material of the iron core and the magnetic flux density at that time, and the magnetic flux density is determined by the primary voltage of the transformer 3. Therefore, the exciting current detection circuit 10 can obtain the exciting current waveform of the transformer 3 from the voltage detection waveform of the power supply line and the constant determined by the core material of the transformer.

【0017】図2は、励磁電流検出回路10の具体例を
示す。平均値演算回路101は、トランス3の一次電圧
検出波形を積分演算することで平均値を求める。つま
り、トランス3の磁束密度の平均値を求める。A/D変
換器102は、平均値演算回路101が求めた平均値をデ
ィジタル値に変換する。一方、A/D変換器103は、
トランス3の一次電圧検出波形をディジタル値に変換す
る。
FIG. 2 shows a specific example of the exciting current detecting circuit 10. Average value calculating circuit 10 1 calculates the average value by integrating calculating a primary voltage detection waveform of the transformer 3. That is, the average value of the magnetic flux density of the transformer 3 is obtained. A / D converter 10 2 converts the average value the average value calculating circuit 10 1 is determined to a digital value. On the other hand, the A / D converter 10 3
The primary voltage detection waveform of the transformer 3 is converted into a digital value.

【0018】ROM104は、トランス3の励磁電流の
パターンデータD0〜Dnが書込まれており、その下位ア
ドレスA0〜AK-1をA/D変換器103からのディジタ
ル値とし、上位アドレスAK〜AnをA/D変換器102
からのディジタル値とする。
[0018] ROM 10 4 is written pattern data D 0 to D n of the exciting current of the transformer 3, and the lower address A 0 ~A K-1 and the digital value from the A / D converter 10 3 , The upper addresses A K to An are converted to A / D converters 10 2
From the digital value.

【0019】ROM104のパターンデータD0〜D
nは、トランス3の磁束密度(平均値)の違いに応じて
区別したパターン領域に分けられ、この領域別で磁束密
度の位相変化に応じたデータが書込まれている。したが
って、平均値演算回路101で求めた平均値に応じて上
位アドレスを決定し、A/D変換器103で求めた位相
に応じて下位アドレスを決定することにより、トランス
3の磁束密度変化に応じたパターンデータ列を順次発生
する。
[0019] ROM10 4 of pattern data D 0 ~D
n is divided into pattern regions that are distinguished according to the difference in the magnetic flux density (average value) of the transformer 3, and data corresponding to the phase change of the magnetic flux density is written for each region. Therefore, the upper address is determined according to the average value obtained by the average value calculation circuit 10 1 , and the lower address is determined according to the phase obtained by the A / D converter 10 3. Are sequentially generated.

【0020】このデータ列は、トランス3の励磁電流波
形に比例したサンプリングデータに相当するものにな
り、D/A変換器105によってアナログ信号に変換す
ることにより、トランス3の励磁電流波形として得るこ
とができる。トランス3の鉄心材質による励磁電流波形
の違いは、ROM104のパターンデータに予め組み込
んでおくか、D/A変換器105の変換定数として設定
しておく。
[0020] The data stream will become equivalent to the sampling data which is proportional to the exciting current waveform of the transformer 3, by conversion to an analog signal by a D / A converter 105 is obtained as an excitation current waveform of the transformer 3 be able to. The difference of the exciting current waveform due to the core material of the transformer 3, either leave incorporated in advance in the ROM 10 4 pattern data, is set as a conversion constant of the D / A converter 105.

【0021】この構成を励磁電流検出回路10とし、ト
ランスの励磁補償信号として加えることにより、トラン
スの励磁電流の無効電流及び高調波電流を補償すること
ができる。
By using this configuration as the excitation current detection circuit 10 and adding it as an excitation compensation signal for the transformer, it is possible to compensate for the reactive current and harmonic current of the excitation current for the transformer.

【0022】図3は、励磁電流検出回路10の他の回路
構成を示す。同図が図2と異なる部分は、A/D変換器
103に代えて、カウンタ回路とした点にある。
FIG. 3 shows another circuit configuration of the exciting current detecting circuit 10. Portions figure differs from FIG. 2, instead of the A / D converter 103, lies in that a counter circuit.

【0023】カウンタ回路は、トランス3の一次電圧波
形を同じ周波数の矩形波に変換する波形成形回路106
と、この矩形波信号に同期してN倍の周波数でパルス発
振する逓倍回路107及びこの発振パルスを計数入力と
するカウンタ108により構成される。
The counter circuit, a waveform shaping circuit 10 which converts the primary voltage waveform of the transformer 3 into a rectangular wave of the same frequency 6
When configured by the counter 108 to the multiplying circuit 107 and counting inputs the oscillation pulse in synchronism with the square wave signal to pulse oscillation at a frequency N times.

【0024】この構成における各部の入出力波形は、図
4に示すようになる。同図の(a)に示すように、電圧
検出器8の検出波形が正弦波になる。これに対して
(b)に示すように、波形成形回路106には1fの矩
形波を得る。そして、(c)に示すように、逓倍回路1
7にはN倍のパルスを得る。このパルスを計数するカ
ウンタ108の各桁出力と1fのパルスとをROM104
の下位アドレスとすることにより、図2の場合と同様
に、トランスの励磁電流の無効電流及び高調波電流を補
償することができる。
FIG. 4 shows input / output waveforms of each part in this configuration. As shown in FIG. 3A, the detection waveform of the voltage detector 8 is a sine wave. As shown contrast (b), the obtained square wave 1f the waveform shaping circuit 106. Then, as shown in FIG.
Obtain N-fold pulse to 0 7. A pulse of each digit output and 1f of the counter 108 for counting the pulses ROM 10 4
As in the case of FIG. 2, the reactive current and the harmonic current of the exciting current of the transformer can be compensated for by using the lower address of.

【0025】なお、励磁電流検出回路10は、上記まで
のハードウェア構成に限らず、制御回路9がプロセッサ
構成になる場合には追加のソフトウェア構成とすること
もできる。
The exciting current detecting circuit 10 is not limited to the hardware configuration described above, and may have an additional software configuration when the control circuit 9 has a processor configuration.

【0026】[0026]

【発明の効果】以上のとおり、本発明によれば、トラン
スの一次電圧波形から得る磁束密度波形に鉄心材質分を
含めてトランスの励磁電流波形を求め、これをアクティ
ブフィルタの補償電流に加えるようにしたため、トラン
スの励磁電流に伴う歪み補償をしながら負荷が発生する
高調波電流や無効電流を抑制できる。
As described above, according to the present invention, the excitation current waveform of the transformer is obtained by including the core material in the magnetic flux density waveform obtained from the primary voltage waveform of the transformer, and this is added to the compensation current of the active filter. Therefore, it is possible to suppress the harmonic current and the reactive current generated in the load while compensating for the distortion accompanying the exciting current of the transformer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示す装置構成図。FIG. 1 is an apparatus configuration diagram showing an embodiment of the present invention.

【図2】実施形態における励磁電流検出回路(その
1)。
FIG. 2 is an excitation current detection circuit (part 1) according to the embodiment;

【図3】実施形態における励磁電流検出回路(その
2)。
FIG. 3 is an excitation current detection circuit (part 2) according to the embodiment;

【図4】図3におけるカウンタ回路の波形図。FIG. 4 is a waveform chart of the counter circuit in FIG. 3;

【図5】従来の3相3線式アクティブフィルタの構成
図。
FIG. 5 is a configuration diagram of a conventional three-phase three-wire active filter.

【図6】従来の3相4線式アクティブフィルタの構成
図。
FIG. 6 is a configuration diagram of a conventional three-phase four-wire active filter.

【符号の説明】[Explanation of symbols]

1…電源 2…負荷 3…トランス 4…フィルタ 5…インバータ主回路 9…制御回路 91…高調波電流・無効電流検出回路 93…PWM回路 10…励磁電流検出回路DESCRIPTION OF SYMBOLS 1 ... Power supply 2 ... Load 3 ... Transformer 4 ... Filter 5 ... Inverter main circuit 9 ... Control circuit 9 1 ... Harmonic current / reactive current detection circuit 9 3 ... PWM circuit 10 ... Excitation current detection circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 負荷で発生する高調波電流や逆相電流、
無効電流を検出し、この検出電流と逆極性の電流指令に
従った補償電流をトランスを介して電源ラインに供給す
るアクティブフィルタにおいて、 前記電源ラインの電圧波形から前記トランスの励磁電流
波形を求め、この励磁電流波形を前記電流指令への加算
信号にする励磁電流検出回路を設けたことを特徴とする
アクティブフィルタ。
1. A harmonic current or a negative-phase current generated in a load,
In an active filter that detects a reactive current and supplies a compensation current according to a current command having a polarity opposite to that of the detected current to a power supply line via a transformer, an excitation current waveform of the transformer is obtained from a voltage waveform of the power supply line. An active filter comprising an exciting current detecting circuit for converting the exciting current waveform into an addition signal to the current command.
JP10111713A 1998-04-22 1998-04-22 Active filter Pending JPH11308773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10111713A JPH11308773A (en) 1998-04-22 1998-04-22 Active filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10111713A JPH11308773A (en) 1998-04-22 1998-04-22 Active filter

Publications (1)

Publication Number Publication Date
JPH11308773A true JPH11308773A (en) 1999-11-05

Family

ID=14568282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10111713A Pending JPH11308773A (en) 1998-04-22 1998-04-22 Active filter

Country Status (1)

Country Link
JP (1) JPH11308773A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004013951A3 (en) * 2002-08-05 2004-10-14 Engineering Matters Inc Self-powered direct current mitigation circuit for transformers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004013951A3 (en) * 2002-08-05 2004-10-14 Engineering Matters Inc Self-powered direct current mitigation circuit for transformers

Similar Documents

Publication Publication Date Title
EP0293869B1 (en) Power conversion system
KR920004007B1 (en) Power source device
JPH0799785A (en) Saturation-preventing circuit device of transformer in dc/ac converter with feedback control inverter
Mihalache A high performance DSP controller for three-phase PWM rectifiers with ultra low input current THD under unbalanced and distorted input voltage
JP2607648B2 (en) Power converter
JPH0471331A (en) Active filter device
JP4614439B2 (en) Uninterruptible power supply and input current control method thereof
JPH0777516B2 (en) Output DC component prevention device for multi-phase inverter
JPH11308773A (en) Active filter
JPH0330895Y2 (en)
JPH1189219A (en) Circuit arrangement for supply from trunk line of energy source to load of single phase or polyphase
JP3779061B2 (en) Active filter device
JP3395641B2 (en) Power converter
JP2783069B2 (en) Power converter
JPH11225477A (en) Sine wave converter with filtering function
JP3427656B2 (en) Control method of inverter for photovoltaic power generation
JPH10234183A (en) Voltage controller for voltage-type pwm inverter
JP2005311472A (en) Class d amplifier
JPH0767286B2 (en) Constant voltage, constant frequency power supply
JP2006136107A (en) Semiconductor power converter and its magnetic asymmetry control method
JP2534035Y2 (en) Inverter demagnetization prevention circuit for inverter
JPH1066344A (en) Control circuit of power converter
JPH0937554A (en) Control device of pwm converter and uninterruptible power supply device using the control device
JPH06245387A (en) Controlling method for system interconnection and system circuit apparatus
JPH078112B2 (en) Active filter