JPH11307865A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH11307865A
JPH11307865A JP11462598A JP11462598A JPH11307865A JP H11307865 A JPH11307865 A JP H11307865A JP 11462598 A JP11462598 A JP 11462598A JP 11462598 A JP11462598 A JP 11462598A JP H11307865 A JPH11307865 A JP H11307865A
Authority
JP
Japan
Prior art keywords
semiconductor laser
face
film
metal film
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11462598A
Other languages
Japanese (ja)
Inventor
Junji Shigeta
淳二 重田
Shigeo Goshima
滋雄 五島
Takeshi Kikawa
健 紀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11462598A priority Critical patent/JPH11307865A/en
Publication of JPH11307865A publication Critical patent/JPH11307865A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve heat radiation by laminating a metal film and dielectric film on at least a part of the end face of a semiconductor laser device. SOLUTION: An InGaAsP laminate layer having a p-n junction (light emission layer) with specified compsn. and impurity concn. is epitaxially grown in a GaAs substrate 7, the GaAs substrate 7 is polished to reduce the thickness, electrodes 4, 4' are formed, the front and rear end faces 10, 10' are exposed by cleaving, a dielectric reflective film 2' is deposited by the sputtering method on the exposed semiconductor laser rear end face 10', an Al metal film 6 is deposited on the semiconductor laser entire end face 10, the Al film covering the light emitting part is removed to form an opening 5, and the same dielectric reflective film 2 is deposited. The end face is formed by cleaving, hence the bonding property of the metal film and top face flatness can be improved and heat radiation can be improved as well as the suppression of the peeling of the dielectric film and metal film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体レーザの構造
に係わり、とくに放熱特性にすぐれ、信頼性の高い端面
構造を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure of a semiconductor laser, and more particularly to providing a highly reliable end face structure having excellent heat radiation characteristics.

【0002】[0002]

【従来の技術】従来の半導体レーザにおいては、図1の
ように半導体結晶1の端面にSiO2,SiN膜などの
誘電体の積層膜よりなる所定の反射率をもつ反射膜2,
2′を形成し、これにより半導体結晶1の内部で発生し
た光の反射と透過を所定の割合で行わせて外部へ光出力
3,3′をとりだすとともに、半導体端面の保護を行わ
せて信頼性の確保を行わせていた。このような従来技術
については、例えば伊藤良一,中村道治共編“半導体レ
ーザ”培風館(1984年)の8頁から9頁あるいは2
45頁から246頁にかけて解説されている。
In a conventional semiconductor laser, reflective film 2 having a predetermined reflectivity of the layer film of dielectric such as SiO 2, SiN film on the end face of the semiconductor crystal 1 as shown in FIG. 1,
2 'is formed, thereby reflecting and transmitting the light generated inside the semiconductor crystal 1 at a predetermined ratio, taking out the light output 3, 3' to the outside, and protecting the semiconductor end face, thereby providing reliability. Was ensured. Such a conventional technique is described in, for example, pages 8 to 9 or 2 of "Semiconductor Laser" Baifukan (1984), edited by Ryoichi Ito and Michiharu Nakamura.
It is explained from page 45 to page 246.

【0003】[0003]

【発明が解決しようとする課題】しかし上記誘電体膜は
一般に熱伝導率が良好でなく、半導体レーザの高出力化
とともに端面での熱の発生量が大きくなる。とくに半導
体レーザ前端面(図1においては右端)から射出する主
光出力3の発熱は大きく、上記誘電体膜では発生する熱
を速やかに除去できず、端面が急速に劣化するという問
題が発生する。
However, the above-mentioned dielectric film generally has poor thermal conductivity, and the amount of heat generated at the end face increases as the output of the semiconductor laser increases. In particular, the main light output 3 emitted from the front end face (the right end in FIG. 1) of the semiconductor laser generates a large amount of heat, so that the heat generated in the dielectric film cannot be quickly removed, and the end face is rapidly deteriorated. .

【0004】[0004]

【課題を解決するための手段】上記問題を解決するのに
好適な半導体レーザ装置の構造を、図2を例に説明す
る。半導体レーザ端面、とくに端面を劈開法で形成する
半導体レーザにおいては端面のうちレーザ光3が射出す
る部分はごく一部である。そこで上記の課題はたとえば
図2のように端面を開口部5を設けた金属等の熱伝導率
が良好で、外部環境に安定な膜6で被覆することにより
解決できることを本発明者は見出した。このとき光の射
出部にあたる開口部5は光学的特性が重要なため従来と
同じ誘電体膜2を用いるが、従来と異なり射出部のすぐ
周辺に金属膜6があるため、発生した熱はこの金属膜に
より除去される。
The structure of a semiconductor laser device suitable for solving the above problem will be described with reference to FIG. In a semiconductor laser end face, particularly in a semiconductor laser in which the end face is formed by a cleavage method, a portion of the end face where the laser light 3 is emitted is very small. The inventor has found that the above problem can be solved, for example, by coating the end face with a film 6 having a good thermal conductivity and a stable external environment, such as a metal provided with an opening 5 as shown in FIG. . At this time, the opening 5 corresponding to the light emitting portion uses the same dielectric film 2 as the conventional one because the optical characteristics are important. However, unlike the conventional one, the metal film 6 is located immediately around the light emitting portion. It is removed by the metal film.

【0005】即ち、本発明の半導体レーザ装置は、その
端面上の少なくとも一部に金属膜6及び誘電体膜2をこ
の順に積層した構成に特徴を有する。当該金属膜6の上
記端面との接合面からの金属元素のレーザ共振器への拡
散の影響を抑止する観点では、この金属膜の構成元素は
Al等のIII 族元素から選ばれることが望ましい。また
レーザ共振器の端面沿いにイオン打ち込み等を行い、共
振器内部に比べて電気抵抗を高くすることも望ましい。
これらは、レーザ発振のために注入される電流が金属膜
をバイパスすることを抑止するのに効果的である。ま
た、金属膜と端面とをショットキー接合させても上記効
果が期待でき、この観点からも上記III 族元素(半導体
層に拡散してもドーパントとして働かない元素)の利用
は推奨される。
That is, the semiconductor laser device of the present invention is characterized in that a metal film 6 and a dielectric film 2 are laminated in this order on at least a part of an end face thereof. From the viewpoint of suppressing the influence of the diffusion of the metal element from the junction surface of the metal film 6 with the end face to the laser resonator, it is preferable that the constituent element of the metal film be selected from Group III elements such as Al. It is also desirable that ion implantation or the like be performed along the end face of the laser resonator so that the electrical resistance is higher than that inside the resonator.
These are effective in suppressing the current injected for laser oscillation from bypassing the metal film. The above effect can be expected even if a Schottky junction is made between the metal film and the end face. From this viewpoint, the use of the group III element (element which does not act as a dopant even when diffused into the semiconductor layer) is recommended.

【0006】上記金属膜は、上記端面のレーザ光射出部
に開口を形成し、この部分には上記誘電体を付着させる
ようにしてもよい。但し、上記金属膜の厚さが実用上の
レーザ光射出の支障とならない程度に薄いときは、この
限りでない。また、上記誘電体は上記レーザ光射出部上
においてレンズ状に形成し、他の光学素子との光学結合
性を高めてもよい。さらに、上記端面を劈開により形成
すると、上記金属膜の接合性及びその上面の平坦性が改
善できるため、上記誘電体膜及び上記金属膜の剥離の抑
止は勿論のこと、放熱性も向上する。上記金属膜は、本
発明の半導体レーザ素子をヒートシンク上に搭載する
際、ヒートシンクに接するように素子端面の上部又は下
部に延伸させ、上記ヒートシンクに接合されるp型又は
n形のいずれか一方の電極に接続させると放熱性が向上
する。
The metal film may have an opening formed in the laser light emitting portion on the end face, and the dielectric may be attached to this portion. However, this does not apply when the thickness of the metal film is small enough not to hinder practical laser light emission. Further, the dielectric may be formed in a lens shape on the laser beam emitting portion to enhance optical coupling with another optical element. Furthermore, when the end face is formed by cleavage, the bonding property of the metal film and the flatness of the upper surface thereof can be improved, so that peeling of the dielectric film and the metal film can be suppressed, as well as heat dissipation. When mounting the semiconductor laser device of the present invention on a heat sink, the metal film extends to an upper portion or a lower portion of the device end surface so as to be in contact with the heat sink, and is either a p-type or an n-type bonded to the heat sink. When connected to the electrodes, the heat dissipation is improved.

【0007】[0007]

【発明の実施の形態】本発明の第1の実施例として図2
に示した半導体レーザを説明する。図2に示すような本
発明による半導体レーザにおいては半導体レーザ前端面
は光の射出部に開口5をもった金属膜6で被覆され、該
金属膜のうえに誘電体反射膜2が被着される。
FIG. 2 shows a first embodiment of the present invention.
The semiconductor laser shown in FIG. In the semiconductor laser according to the present invention as shown in FIG. 2, the front end face of the semiconductor laser is covered with a metal film 6 having an opening 5 at a light emitting portion, and a dielectric reflection film 2 is applied on the metal film. You.

【0008】図3は図2の半導体レーザを前端面方向か
らみた図である。金属膜6には光の射出部に楕円状の開
口5がもうけられ、上記開口部5には従来と同じく誘電
体反射膜2のみが被着されており光の反射、透過特性に
関しては従来と変わりがない。
FIG. 3 is a view of the semiconductor laser of FIG. 2 as viewed from the front end face direction. The metal film 6 is provided with an elliptical opening 5 at a light emitting portion, and the opening 5 is covered with only the dielectric reflection film 2 as in the conventional case, and the light reflection and transmission characteristics are the same as those in the conventional case. There is no change.

【0009】このような端面構造は、たとえば図4,図
5に示す製造工程によって作成される。本発明による端
面構造は劈開によって端面を形成するすべての半導体レ
ーザに適用できるが、本実施例においてはGaAs/In
GaAsP 系半導体レーザについて説明する。
Such an end face structure is produced, for example, by the manufacturing steps shown in FIGS. Although the end face structure according to the present invention can be applied to all semiconductor lasers that form an end face by cleavage, in this embodiment, GaAs / In
A GaAsP-based semiconductor laser will be described.

【0010】GaAs基板7上に所定の組成、不純物濃
度によってpn接合部(発光部)を形成したInGaAsP の
積層膜8をエピタキシャル成長する(図4a)。ホトリ
ソグラフィとウエットエッチングにより発光部を所定の
寸法に形成し(図4b)、周辺にp型InGaP9をエピタキ
シャル再成長して電流が発光部以外に漏洩しないように
する(図4c)。ここまでの図は光の射出方向からみた
図である。
An InGaAsP laminated film 8 having a pn junction (light emitting portion) formed with a predetermined composition and impurity concentration on a GaAs substrate 7 is epitaxially grown (FIG. 4A). A light-emitting portion is formed to a predetermined size by photolithography and wet etching (FIG. 4B), and p-type InGaP9 is epitaxially regrown around the light-emitting portion so that current does not leak to a portion other than the light-emitting portion (FIG. 4C). The figures up to this point are views seen from the light emission direction.

【0011】ついでGaAs基板を研磨によって厚さを
減じ、電極4,4′を形成し、前端面10および後端面
10′を劈開によって露出する(図5a)。ここで、本
図においては図4aないし図4cと作図方向が90度異
なっており、半導体レーザの側面からみた図である。こ
こまでは従来の半導体レーザ製造プロセスと同様であ
る。
Next, the thickness of the GaAs substrate is reduced by polishing, electrodes 4 and 4 'are formed, and the front end face 10 and the rear end face 10' are exposed by cleavage (FIG. 5a). Here, the drawing direction is different from those of FIGS. 4a to 4c by 90 degrees in FIG. 4 and is a view from the side of the semiconductor laser. The process up to this point is the same as the conventional semiconductor laser manufacturing process.

【0012】露出された半導体レーザの後端面10′に
は従来と同様の誘電体反射膜2′をスパッタ法で被着
し、ついで半導体レーザの前端面10に金属のAl膜6
を200nmの厚さにスパッタ法で被着する(図5b)。
A conventional dielectric reflection film 2 'is applied to the exposed rear end face 10' of the semiconductor laser by sputtering, and a metal Al film 6 is applied to the front end face 10 of the semiconductor laser.
Is sputtered to a thickness of 200 nm (FIG. 5b).

【0013】ついで収束イオンビームを用いた加工機に
より発光部を覆うAl膜を除去して開口5を設け、さら
に従来と同じ誘電体反射膜2を被着して図5c(図2に
同じ)に示す半導体レーザを完成する。このときイオン
ビームで半導体表面に損傷を与えないように、Alが完
全に除去されて半導体が露出してしまう寸前にイオンビ
ームをとめ、残りのわずかなAlはダメージのないウエ
ットエッチングにより除去した。Al膜の加工にイオン
ビーム加工機を用いたのは、被加工物が微小なため通常
のフォトリソグラフィ技術が使用できないためである。
Next, an Al film covering the light emitting portion is removed by a processing machine using a focused ion beam to form an opening 5, and a dielectric reflection film 2 same as that of the related art is applied, and FIG. 5C (same as FIG. 2) Is completed. At this time, the ion beam was stopped just before Al was completely removed and the semiconductor was exposed so as not to damage the semiconductor surface by the ion beam, and the remaining slight Al was removed by undamaged wet etching. The reason why the ion beam processing machine was used for processing the Al film is that normal photolithography technology cannot be used because the workpiece is very small.

【0014】図6はこのような構造をもつ半導体レーザ
と従来の半導体レーザの入力電流と光出力の相関を示し
たものである。本発明による半導体レーザは端面の放熱
に優れるため発熱による出力飽和がおさえられ、最大出
力が約30%も改善された。
FIG. 6 shows the correlation between the input current and the optical output of a semiconductor laser having such a structure and a conventional semiconductor laser. The semiconductor laser according to the present invention has excellent heat dissipation at the end face, so that output saturation due to heat generation is suppressed, and the maximum output is improved by about 30%.

【0015】図7は本発明の第2の実施例を示す図であ
る。図7においては図2と異なり、端面における金属膜
6と誘電体膜2の積層順序が逆になっている。この構造
においてはイオンビームを用いた金属膜の加工時に、半
導体表面は保護されているため、金属膜の加工が終了す
る寸前にイオンビームをとめるという配慮が不要になる
利点がある。
FIG. 7 is a diagram showing a second embodiment of the present invention. 7, the stacking order of the metal film 6 and the dielectric film 2 on the end face is reversed, unlike FIG. In this structure, the semiconductor surface is protected during the processing of the metal film using the ion beam, so that there is an advantage that it is not necessary to stop the ion beam immediately before the processing of the metal film is completed.

【0016】図8は第3の実施例を示す図で、半導体レ
ーザ前面と同様な積層構造を半導体レーザ後端面にも設
けた例である。通常後端面はモニター用受光素子のため
に前面の光出力3の数分の一の弱い光3′しか出力しな
いため熱的負荷は前面より弱い。しかし大出力レーザで
は後端面といえども発熱は無視できない。本実施例のよ
うに両方の端面の一部に金属膜を被覆する方法は特に大
出力の半導体レーザにきわめて有効である。
FIG. 8 shows a third embodiment, in which a laminated structure similar to the front surface of a semiconductor laser is also provided on the rear end surface of the semiconductor laser. Normally, the rear end face outputs only a fraction of the light output 3 'of the front light output 3 for the light receiving element for monitoring, so that the thermal load is weaker than the front face. However, with a high-power laser, heat generation cannot be ignored even at the rear end face. The method of covering both end faces with a metal film as in this embodiment is extremely effective particularly for a high-output semiconductor laser.

【0017】図9は第4の実施例を示す図である。本実
施例においては第1の実施例と同様の工程で金属膜に開
口を設けたのち、さらにスパッター法でSiO2 膜を被
着した。この方法では開口部周辺では膜の形成速度が遅
いため開口中央と周辺で膜厚が異なり、これによって形
成され凸レンズ状の形状をもつ誘電体膜2が形成され
る。このため従来光ファイバ等へ光を収束するために用
いていた微小レンズが不要となり、組立工程が大幅に簡
略化される。
FIG. 9 is a diagram showing a fourth embodiment. In this embodiment, an opening was formed in the metal film in the same process as in the first embodiment, and then a SiO 2 film was applied by a sputtering method. In this method, since the film formation speed is low around the opening, the film thickness is different between the center and the periphery of the opening, thereby forming the dielectric film 2 having a convex lens shape. For this reason, a micro lens conventionally used for converging light to an optical fiber or the like becomes unnecessary, and the assembling process is greatly simplified.

【0018】また図10は第5の実施例を示す図で、誘
電体膜として低融点ガラス11をもちいた例である。開
口部を設けた金属膜6の上に低融点ガラス膜11を形成
し、加熱によって一旦溶融し再び凝固させると、開口部
周辺の膜厚が厚い、凹レンズ状の膜が形成される。この
ような構造においては光が拡散するため眼球等にたいし
て安全な光とすることができる。
FIG. 10 shows a fifth embodiment, in which a low-melting glass 11 is used as a dielectric film. When the low-melting glass film 11 is formed on the metal film 6 provided with the opening, and once melted and solidified again by heating, a concave lens-like film having a large film thickness around the opening is formed. In such a structure, light is diffused, so that the light can be made safe for eyes and the like.

【0019】[0019]

【発明の効果】以上のように本発明によれば放熱にすぐ
れた大出力、高信頼性半導体レーザを構成できるのみな
らず、外部の微小レンズが不要な半導体レーザも実現す
ることが可能となり、産業上の利益は大きい。
As described above, according to the present invention, not only can a large-output, high-reliability semiconductor laser excellent in heat dissipation be constructed, but also a semiconductor laser that does not require an external microlens can be realized. The industrial benefits are great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の半導体レーザの断面図。FIG. 1 is a cross-sectional view of a conventional semiconductor laser.

【図2】本発明の半導体レーザの第1の実施例の断面
図。
FIG. 2 is a sectional view of a first embodiment of the semiconductor laser of the present invention.

【図3】図2の半導体レーザを端面方向から見た正面
図。
FIG. 3 is a front view of the semiconductor laser of FIG. 2 viewed from an end face direction.

【図4】図2の半導体レーザの製造工程を示す断面図。FIG. 4 is a sectional view showing a manufacturing process of the semiconductor laser of FIG. 2;

【図5】図2の半導体レーザの製造工程を示す断面図。FIG. 5 is a sectional view showing a manufacturing process of the semiconductor laser of FIG. 2;

【図6】本発明と従来例の半導体レーザの光出力特性
図。
FIG. 6 is a diagram showing light output characteristics of the semiconductor laser of the present invention and a conventional example.

【図7】本発明の半導体レーザの第2の実施例の断面
図。
FIG. 7 is a sectional view of a second embodiment of the semiconductor laser of the present invention.

【図8】本発明の半導体レーザの第3の実施例の断面
図。
FIG. 8 is a sectional view of a third embodiment of the semiconductor laser of the present invention.

【図9】本発明の半導体レーザの第4の実施例の断面
図。
FIG. 9 is a sectional view of a fourth embodiment of the semiconductor laser according to the present invention.

【図10】本発明の半導体レーザの第5の実施例の断面
図。
FIG. 10 is a sectional view of a fifth embodiment of the semiconductor laser of the present invention.

【符号の説明】[Explanation of symbols]

1…半導体結晶、2,2′…誘電体膜、3,3′…光出
力、4,4′…電極、5…開口部、6…金属膜、7…G
aAs基板、8…InGaAsP 積層エピタキシャル結晶、9
…InGaAs再成長エピタキシャル結晶、10,10′…劈
開端面。
DESCRIPTION OF SYMBOLS 1 ... Semiconductor crystal, 2,2 '... Dielectric film, 3,3' ... Light output, 4,4 '... Electrode, 5 ... Opening, 6 ... Metal film, 7 ... G
aAs substrate, 8 ... InGaAsP laminated epitaxial crystal, 9
... InGaAs regrown epitaxial crystal, 10, 10 '... cleavage end face.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】半導体レーザの端面の少なくとも一部が金
属と誘電体の積層膜で被覆されていることを特徴とする
半導体レーザ。
1. A semiconductor laser, wherein at least a part of an end face of the semiconductor laser is covered with a laminated film of a metal and a dielectric.
【請求項2】半導体レーザの端面において、光の射出部
は誘電体で被覆され、他の部分は金属と誘電体の積層膜
で被覆されていることを特徴とする請求項1の半導体レ
ーザ。
2. The semiconductor laser according to claim 1, wherein, at the end face of the semiconductor laser, a light emitting portion is covered with a dielectric, and the other portion is covered with a laminated film of a metal and a dielectric.
【請求項3】上記光の射出部を被覆する誘電体が光学的
レンズの形状をなしていることを特徴とする請求項2の
半導体レーザ。
3. The semiconductor laser according to claim 2, wherein the dielectric covering said light emitting portion is in the form of an optical lens.
【請求項4】端面が劈開によって形成されていることを
特徴とする、上記請求項1ないし3のいずれか記載の半
導体レーザ。
4. The semiconductor laser according to claim 1, wherein an end face is formed by cleavage.
JP11462598A 1998-04-24 1998-04-24 Semiconductor laser Pending JPH11307865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11462598A JPH11307865A (en) 1998-04-24 1998-04-24 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11462598A JPH11307865A (en) 1998-04-24 1998-04-24 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH11307865A true JPH11307865A (en) 1999-11-05

Family

ID=14642547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11462598A Pending JPH11307865A (en) 1998-04-24 1998-04-24 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH11307865A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040490A (en) * 2009-08-07 2011-02-24 Sumitomo Electric Ind Ltd Semiconductor laser device
JP2020129653A (en) * 2019-02-08 2020-08-27 シャープ株式会社 Light emitting device and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040490A (en) * 2009-08-07 2011-02-24 Sumitomo Electric Ind Ltd Semiconductor laser device
JP2020129653A (en) * 2019-02-08 2020-08-27 シャープ株式会社 Light emitting device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5358880A (en) Method of manufacturing closed cavity LED
JP2573907B2 (en) Radiation emitting diode with improved radiation capability
JP2004506331A (en) Optoelectronic semiconductor chip and method of manufacturing the same
CN101882755B (en) Semiconductor laser element and semiconductor laser device
JP2001144321A (en) Light-emitting device and manufacturing method therefor
US7620088B2 (en) Surface emitting-semiconductor laser component featuring emission in a vertical direction
US8158995B2 (en) Optoelectronic semiconductor chip
EP0772248B1 (en) Microactivity LED with photon recycling
JP5307300B2 (en) Optical device, optical device manufacturing method, and laser module
JPH0738196A (en) Surface light emitting element
JP2006303299A (en) Semiconductor laser
JP2799328B2 (en) Surface emitting semiconductor laser
JP3212008B2 (en) Gallium nitride based compound semiconductor laser device
JPH11307865A (en) Semiconductor laser
WO2020019326A1 (en) Semiconductor luminous element
US8811448B2 (en) Optoelectronic component
WO2022019054A1 (en) Semiconductor laser and semiconductor laser device
JPH05152683A (en) Multibeam semiconductor laser array
JPS6386578A (en) Light emitting diode
JP2006190762A (en) Semiconductor laser
JP3417581B2 (en) Surface emitting laser by oxygen ion implantation followed by epitaxial regrowth
US4628514A (en) Multimode laser
JP2910710B2 (en) Surface emitting laser
JP5122708B2 (en) Multi-beam semiconductor laser device
JP2005276900A (en) Light-emitting element