JPH11307863A - Surface light-emitting semiconductor laser element and manufacture thereof - Google Patents

Surface light-emitting semiconductor laser element and manufacture thereof

Info

Publication number
JPH11307863A
JPH11307863A JP11173998A JP11173998A JPH11307863A JP H11307863 A JPH11307863 A JP H11307863A JP 11173998 A JP11173998 A JP 11173998A JP 11173998 A JP11173998 A JP 11173998A JP H11307863 A JPH11307863 A JP H11307863A
Authority
JP
Japan
Prior art keywords
film
layer
gaas
alas
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11173998A
Other languages
Japanese (ja)
Inventor
Seiji Uchiyama
誠治 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Real World Computing Partnership
Original Assignee
Furukawa Electric Co Ltd
Real World Computing Partnership
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Real World Computing Partnership filed Critical Furukawa Electric Co Ltd
Priority to JP11173998A priority Critical patent/JPH11307863A/en
Publication of JPH11307863A publication Critical patent/JPH11307863A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18341Intra-cavity contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • H01S5/1835Non-circular mesa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18363Structure of the reflectors, e.g. hybrid mirrors comprising air layers

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reflection mirror which is manufactured with no dispersion in reflectivity with a reflection mirror of high reflectivity. SOLUTION: The element comprises a GaAs substrate 101, a first reflection mirror 102 comprising a multi-layer film of GaAs/AlAs provided on the GaAs substrate 101, laminating structures 103, 104, 105, and 106 constituting a light- emitting part formed on the first reflection mirror 102, and a second reflection mirror 115 formed on the laminating structures 103-106. The second reflection mirror 115 comprises a multi-layer film having a pair of a GaAs film 111 and an air layer 110 comprising an A10 supporting layer 109 along both side edges.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、面発光半導体レー
ザ素子及びその製作方法に関し、更に詳細には、製作が
容易で、寸法及び反射率にばらつきが無い反射鏡構造を
備えた面発光半導体レーザ素子及びその製作方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface emitting semiconductor laser device and a method of manufacturing the same, and more particularly, to a surface emitting semiconductor laser having a reflector structure which is easy to manufacture and has no variation in dimensions and reflectivity. The present invention relates to an element and a method for manufacturing the element.

【0002】[0002]

【従来の技術】垂直共振器面発光半導体レーザは、半導
体基板に対して垂直方向に光を出射し、2次元並列集積
化が可能なレーザ素子であって、並列光情報処理や光イ
ンターコネクションなどの新しい光エレクロトニクスの
分野への適用を目指した半導体レーザ素子として注目さ
れている。面発光半導体レーザ素子(以下、簡単に面発
光レーザ素子と言う)は、半導体基板上に活性領域と反
射鏡とを備え、基板側からレーザ光を放出する構造を備
えた半導体レーザ素子であって、一般には、反射率99
%以上の高反射率の反射鏡が必要であると言われてい
る。
2. Description of the Related Art A vertical cavity surface emitting semiconductor laser emits light in a direction perpendicular to a semiconductor substrate and is capable of two-dimensional parallel integration, such as parallel optical information processing and optical interconnection. Is attracting attention as a semiconductor laser device aimed at application to a new field of optical electronics. 2. Description of the Related Art A surface emitting semiconductor laser device (hereinafter, simply referred to as a surface emitting laser device) is a semiconductor laser device having a structure in which an active region and a reflecting mirror are provided on a semiconductor substrate and a laser beam is emitted from the substrate side. , Generally a reflectivity of 99
It is said that a reflector having a high reflectance of at least% is required.

【0003】高反射率の反射鏡を形成する方法は、従来
から盛んに研究されており、例えば以下のように、多層
膜により反射鏡を形成する方法が提案されている。第1
の方法は、相互に異なる屈折率を有する2種類の半導体
層からなる多層膜で反射鏡を構成するやり方である。例
えば、屈折率nが3.5のGaAs層と、屈折率nが3
のAlAs層とを積層してなる多層膜により高反射率反
射鏡を構成する。この半導体多層膜型反射鏡は、反射鏡
を構成する多層膜の各半導体層をエピタキシャル成長法
により形成できるので、面発光レーザ素子の活性領域を
形成する際に、同時に多層膜を形成できるという利点が
あるが、多層膜を構成する各対の異なる2層の半導体材
料の屈折率差が小さいため、99%以上の反射率を得る
ためには、少なくとも20対以上の層数が必要であり、
高反射率の帯域も80nm程度と狭い。
[0003] A method of forming a reflector having a high reflectance has been actively studied in the past, and for example, a method of forming a reflector with a multilayer film as described below has been proposed. First
Is a method in which a reflecting mirror is constituted by a multilayer film composed of two types of semiconductor layers having mutually different refractive indexes. For example, a GaAs layer having a refractive index n of 3.5 and a refractive index n of 3
A high-reflectance mirror is constituted by a multilayer film formed by laminating the above-mentioned AlAs layer. This semiconductor multilayer film-type reflecting mirror has an advantage that since the respective semiconductor layers of the multilayer film constituting the reflecting mirror can be formed by the epitaxial growth method, the multilayer film can be formed simultaneously when the active region of the surface emitting laser element is formed. However, since the difference in the refractive index between the two different layers of the semiconductor material constituting each multilayer film is small, at least 20 pairs or more layers are required to obtain a reflectance of 99% or more.
The band of high reflectance is as narrow as about 80 nm.

【0004】これに対して、第2の方法は、屈折率差が
大きな相互に異なる2種類の誘電体材料を用いる方法で
あって、例えば屈折率nが3.2のSi膜と、屈折率n
1.5がSiO2 膜とを1対とする多層膜を用いると、
6対程度で反射率が99%以上の反射鏡を形成すること
ができ、また、その帯域幅も600nm程度とかなり広
い。しかし、誘電体は、熱伝導が悪く、またエピタキシ
ャル成長させることができないので、多層膜の成膜及び
加工が困難である等の問題があった。
On the other hand, a second method is to use two different dielectric materials having a large difference in the refractive index, for example, a Si film having a refractive index n of 3.2 and a refractive index n. n
When using a multilayer film in which 1.5 is a pair of a SiO 2 film,
A reflector having a reflectivity of 99% or more can be formed by about 6 pairs, and its bandwidth is considerably wide, about 600 nm. However, the dielectric has poor heat conduction and cannot be epitaxially grown, and thus has problems such as difficulty in forming and processing a multilayer film.

【0005】これらの方法に対して、第3の方法では、
図4に示すように、先ず、Ga As基板上にMBE法に
より、Alx Ga1-x As(x<0.3))膜と、Al
y Ga1-y As(y>0.6)膜との多層膜を形成す
る。次いで、Aly Ga1-y As(y>0.6)膜を選
択的エッチング法によって取り除いて空気層を形成し
て、Alx Ga1-x As(x<0.3)膜と空気層とか
らなる多層膜反射鏡を形成する方法が、例えばS. -T. H
oet al., Appl. Phys. Lett., Vol. 57 pp.1387-1389,
1990により、提案されている。
[0005] In contrast to these methods, in a third method,
As shown in FIG. 4, first, an Al x Ga 1 -x As (x <0.3)) film and an Al film are formed on a GaAs substrate by MBE.
y Ga 1-y As (y > 0.6) to form a multilayer film of a film. Next, the Al y Ga 1-x As (y> 0.6) film is removed by a selective etching method to form an air layer, and the Al x Ga 1-x As (x <0.3) film and the air layer are formed. The method of forming a multilayer reflector consisting of, for example, S.-T.H
oet al., Appl. Phys. Lett., Vol. 57 pp. 1387-1389,
Proposed by 1990.

【0006】この方法によれば、半導体の屈折率が3程
度に対して、空気の屈折率が1であるから、1対では9
0.6%、2対では99.2%、3対では99.9%の
高反射率の反射鏡が得られ、帯域幅も600nm程度
と、非常に広く、エピタキシャル成長により多層膜を形
成できる等の利点がある。尚、Alx Ga1-x As(x
<0.3))膜及びAly Ga1-y As(y>0.6)
膜に代えて、それぞれ、GaAs膜とAlAs膜との多
層膜を形成し、AlAs膜を選択的に除去して、GaA
s膜と空気層との多層膜を形成しても良い。
According to this method, the refractive index of air is 1 while the refractive index of a semiconductor is about 3, so that 9
A reflector having a high reflectivity of 0.6%, 29.2% for 9 pairs, and 99.9% for 3 pairs can be obtained, and has a very wide bandwidth of about 600 nm. A multilayer film can be formed by epitaxial growth. There are advantages. In addition, Al x Ga 1-x As (x
<0.3)) film and Al y Ga 1-y As ( y> 0.6)
Instead of a film, a multilayer film of a GaAs film and an AlAs film is formed, and the AlAs film is selectively removed to form a GaAs film.
A multilayer film of an s film and an air layer may be formed.

【0007】[0007]

【発明が解決しようとする課題】しかし、上述した第3
の方法では、GaAs膜、又はAlx Ga1-x As(x
<0.3))膜からなる第1の層と、空気層との多層膜
を形成する場合、図1に示すように、選択エッチング法
により、AlAs膜又はAly Ga1-y As(y>0.
6)膜を膜と平行な横方向に選択的にエッチングしてい
るので、エッチングの制御が技術的に難しく、空気層を
作るために必要な支持体となるGaAs膜又はAlx
1-x As(x<0.3)膜まで過剰にエッチングした
り、逆にエッチングが不足して所定の空気層を形成でき
ないという問題があった。従って、膜厚の薄い対からな
る多層膜を形成することが難しく、また、エッチングの
再現性が悪く、多層膜を構成する空気層の層厚にばらつ
きが生じ、結果的に反射率のばらつきが反射鏡に生じ勝
ちであった。
However, the above-mentioned third method
In the method of ( 1) , a GaAs film or Al x Ga 1 -x As (x
<0.3)) and the first layer of film, when forming a multilayer film of an air layer, as shown in FIG. 1, by selective etching, AlAs film or Al y Ga 1-y As ( y > 0.
6) Since the film is selectively etched in the lateral direction parallel to the film, it is technically difficult to control the etching, and a GaAs film or Al x G as a support necessary for forming an air layer is used.
There has been a problem that the etching is excessively performed up to the a 1-x As (x <0.3) film, or conversely, a predetermined air layer cannot be formed due to insufficient etching. Therefore, it is difficult to form a multilayer film composed of a pair having a small thickness, the reproducibility of etching is poor, and the thickness of the air layer constituting the multilayer film varies, resulting in a variation in reflectance. It was a winning mirror.

【0008】以上のように、従来の反射鏡の形成方法
は、必ずしも満足できる成果を収めているとは言えな
い。よって、本発明の目的は、反射率にばらつき無く製
作でき、しかも反射率の高い反射鏡構造を有する面発光
レーザ素子及びその製作方法を提供することである。
As described above, the conventional method of forming a reflecting mirror does not always achieve satisfactory results. Accordingly, an object of the present invention is to provide a surface emitting laser device having a reflecting mirror structure which can be manufactured without variation in reflectance and has a high reflectance, and a method of manufacturing the same.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る面発光半導体レーザ素子は、Ga As
基板と、Ga As 基板上に設けられたGa As /AlA
s の多層膜からなる第1の反射鏡と、第1の反射鏡上に
形成された発光部を構成する積層構造と、積層構造上に
形成された第2の反射鏡とを備えた面発光半導体レーザ
素子であって、第2の反射鏡は、GaAs膜と、両側縁
に沿って設けられたAlO層によって区画された空気層
とを1対とする多層膜で構成されていることを特徴とし
ている。
In order to achieve the above object, a surface emitting semiconductor laser device according to the present invention comprises a GaAs laser.
A substrate and a GaAs / AlA provided on the GaAs substrate
s, a first reflecting mirror comprising a multilayer film, a laminated structure forming a light emitting portion formed on the first reflecting mirror, and a second reflecting mirror formed on the laminated structure. In the semiconductor laser device, the second reflecting mirror is constituted by a multilayer film having a pair of a GaAs film and an air layer defined by AlO layers provided along both side edges. And

【0010】AlO層の幅は、通常、10μm 程度で良
い。また、本発明に係る面発光半導体レーザ素子では、
Ga As 膜に代えて、Alx Ga1-x As(x<0.
3)膜と、両側縁に沿ってAlO支持層を有する空気層
とを1対とする多層膜で構成しても良い。
Generally, the width of the AlO layer may be about 10 μm. In the surface emitting semiconductor laser device according to the present invention,
Instead of the GaAs film, Al x Ga 1 -x As (x <0.
3) It may be composed of a multilayer film in which a film and an air layer having an AlO support layer along both side edges are paired.

【0011】本発明に係る面発光半導体レーザ素子を製
作する方法は、発光部を構成する積層構造上に第2の反
射鏡を形成するに当たり、GaAs膜とAlAs膜とを
1対とする多層膜を形成する工程と、多層膜をストライ
プメサ状に加工する工程と、ストライプメサ状の多層膜
のAlAs膜の側縁部を酸化してAlOに転化し、Al
O層を形成する工程と、残存のAlAs膜をエッチング
して除去し、両側縁に沿って設けられたAlO層によっ
て区画された空気層を形成する工程とを有する。
In the method of manufacturing a surface emitting semiconductor laser device according to the present invention, a multi-layer film comprising a pair of a GaAs film and an AlAs film when forming a second reflecting mirror on a laminated structure constituting a light emitting portion. Forming a multi-layered film into a stripe mesa, and oxidizing a side edge of the AlAs film of the multi-layered mesa film to convert it to AlO.
The method includes a step of forming an O layer and a step of etching and removing the remaining AlAs film to form an air layer partitioned by AlO layers provided along both side edges.

【0012】AlO層を形成する工程で、ストライプメ
サ状の多層膜のAlAs膜の側縁部を酸化する方法は、
特に限定はなく、例えば水蒸気酸化法により酸化する。
また、空気層を形成する工程で、好適には、残存のAl
As膜をエッチングする際のエッチングでは、GaAs
とAlOとの間のエッチング選択比が大きいエッチング
液、例えばHF10%水溶液等のHF系エッチャントに
よるウエットエッチングを施す。
In the step of forming an AlO layer, a method of oxidizing a side edge of an AlAs film of a stripe-mesa multilayer film is as follows.
There is no particular limitation, and oxidation is performed by, for example, a steam oxidation method.
In the step of forming the air layer, preferably, the remaining Al
In the etching for etching the As film, GaAs is used.
Wet etching is performed using an etchant having a large etching selectivity between Al and AlO, for example, an HF-based etchant such as a 10% aqueous HF solution.

【0013】また、Alx Ga1-x As(x<0.3)
膜とAlAs膜とを1対とする多層膜を形成する工程を
備え、GaAs膜と、両側縁に沿ってAlO支持層を有
する空気層とを1対とする多層膜の反射鏡構造を形成し
ても良い。更には、AlAs膜に代えて、GaAs膜と
Aly Ga1-y As(y>0.6)膜とを1対とする多
層膜を形成する工程、GaAs膜とAlAs膜と多層膜
に代えて、Alx Ga1-x As(x<0.3)膜とAl
y Ga1-y As(y>0.6)膜とを1対とする多層膜
を形成する工程を備え、Aly Ga1-y As(y>0.
6)膜を酸化し、残存部をエッチングして空気層を形成
するようにしても良い。
Further, Al x Ga 1 -x As (x <0.3)
Forming a multilayer film including a pair of a film and an AlAs film, and forming a multilayer mirror reflector structure including a pair of a GaAs film and an air layer having an AlO support layer along both side edges. May be. Further, a step of forming a multilayer film having a pair of a GaAs film and an Al y Ga 1-y As (y> 0.6) film instead of the AlAs film, and replacing the GaAs film, the AlAs film, and the multilayer film with each other. And an Al x Ga 1 -x As (x <0.3) film and Al
y Ga 1-y As (y> 0.6) film and a step of forming a multilayer film as a pair, wherein Al y Ga 1-y As (y> 0.
6) The air layer may be formed by oxidizing the film and etching the remaining portion.

【0014】本発明では、Ga As 又はAlx Ga1-x
As(x<0.3)及びAlOと、AlAs又はAly
Ga1-y As(y>0.6)との間のエッチングレート
の差を利用して、選択的にAlAs、又はAly Ga
1-y As(y>0.6)を除去して、両側縁にAlO層
を残留させている。これにより、GaAs膜、又はAl
x Ga1-x As(x<0.3))膜と、両側縁に沿って
設けられたAlO層によって区画された空気層(空隙)
との多層膜からなる、構造的に強固で高反射率の反射鏡
を寸法及び反射率にばらつき無く形成することができ
る。
In the present invention, GaAs or Al x Ga 1 -x
As (x <0.3) and the AlO, AlAs or Al y
Utilizing a difference in etching rate between Ga 1-y As (y> 0.6) and selectively using AlAs or Al y Ga
1-y As (y> 0.6) is removed to leave AlO layers on both side edges. Thereby, the GaAs film or Al
x Ga 1-x As (x <0.3)) film and air layer (gap) partitioned by AlO layers provided along both side edges
Thus, it is possible to form a structurally strong and high-reflectance reflecting mirror composed of a multilayer film of the above with no variations in dimensions and reflectivity.

【0015】[0015]

【発明の実施の形態】以下に、実施形態例を挙げ、添付
図面を参照して、本発明の実施の形態を具体的かつ詳細
に説明する。実施形態例1 本実施形態例は、本発明に係る面発光半導体レーザ素子
(以下、簡単に面発光レーザ素子と言う)の実施形態の
一例であって、図1は本実施形態例の面発光レーザ素子
の構成を示す部分破断斜視図である。本実施形態例の面
発光レーザ素子10は、図1に示すように、Ga As 基
板101と、Ga As 基板101上に設けられたGa A
s /AlAs の多層膜からなる基板側反射鏡102と、
基板側反射鏡102上に形成された発光部を構成する積
層構造と、積層構造上に形成された反射鏡115と、電
極112、113とを備えている。発光部を構成する積
層構造は、下部クラッド層103、活性層104、上部
クラッド層105、AlAs 層107、AlAs 層10
7の周囲を埋め込んだ、AlAsの酸化層からなる電流
閉じ込め層106、及びキャップ層108からなる。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. Embodiment 1 This embodiment is an example of an embodiment of a surface emitting semiconductor laser device (hereinafter simply referred to as a surface emitting laser device) according to the present invention, and FIG. FIG. 2 is a partially cutaway perspective view showing a configuration of a laser element. As shown in FIG. 1, the surface emitting laser element 10 of this embodiment includes a GaAs substrate 101 and a GaAs substrate 101 provided on the GaAs substrate 101.
a substrate-side reflecting mirror 102 comprising a multilayer film of s / AlAs;
The light emitting device includes a laminated structure forming a light emitting unit formed on the substrate-side reflecting mirror 102, a reflecting mirror 115 formed on the laminated structure, and electrodes 112 and 113. The light-emitting portion has a laminated structure including a lower cladding layer 103, an active layer 104, an upper cladding layer 105, an AlAs layer 107, and an AlAs layer 10.
7, a current confinement layer 106 made of an AlAs oxide layer and a cap layer 108 are embedded.

【0016】反射鏡115は、発振波長をλとした時、
膜厚λ/(4nGaAs)のGaAs膜111と、両側縁部
にAlO支持層109を有する層厚λ/4の空気層11
0との少なくとも3対の多層膜で構成されている。例え
ば発振波長λが980nmの時、Ga As の屈折率n
GaAs=3.5であるから、Ga As 膜111の膜厚は7
0nm、空気層110の層厚は245nmである。反射
鏡115の反射率は、GaAs膜111と空気層110
とを1対とする多層膜を考えると、1対では90.6
%、2対では99.2%、また、3対では99.9%の
反射率が得られる。また、反射鏡115は、Ga As 膜
と空気層との屈折率差ΔnがΔn=2.5と大きいの
で、3対の多層膜の反射鏡で、600nm程度の広帯域
を有する。一方、基板側反射鏡102は、従来と同様
に、20〜30対のGaAs/AlAsの多層膜102
を形成し、反射率99%以上の反射鏡を構成している。
本面発光レーザ素子10では、電流は、反射鏡115の
周りに形成された電極113から注入され、例えば、電
流閉じ込め層106により、反射鏡直下の活性領域のみ
に流れる。
When the oscillation wavelength is λ, the reflecting mirror 115
A GaAs film 111 having a thickness of λ / (4n GaAs ) and an air layer 11 having a thickness of λ / 4 having AlO support layers 109 on both side edges.
0 and at least three pairs of multilayer films. For example, when the oscillation wavelength λ is 980 nm, the refractive index n of GaAs
Since GaAs = 3.5, the thickness of the GaAs film 111 is 7
The thickness of the air layer 110 is 245 nm. The reflectance of the reflecting mirror 115 depends on the GaAs film 111 and the air layer 110.
Considering a multi-layer film having a pair of
%, 2 pairs, 99.2%, and 3 pairs, 99.9%. Further, since the refractive index difference Δn between the GaAs film and the air layer is as large as Δn = 2.5, the reflecting mirror 115 is a three-layer reflecting mirror having a wide band of about 600 nm. On the other hand, the substrate-side reflecting mirror 102 is composed of 20 to 30 pairs of GaAs / AlAs
To form a reflecting mirror having a reflectance of 99% or more.
In the surface emitting laser device 10, a current is injected from the electrode 113 formed around the reflecting mirror 115, and flows only to the active region immediately below the reflecting mirror by the current confinement layer 106, for example.

【0017】面発光レーザ素子の作製方法の実施形態例 次に、図2及び図3を参照して、本実施形態例の面発光
レーザ素子10の作製方法を説明する。図2(a)から
(c)及び図3(d)と(e)は、本実施形態例の面発
光レーザ素子10を作製する際の各工程毎の層構造を示
す断面図である。 (1)先ず、図2(a)に示すように、Ga As 基板1
01上に、Ga As /AlAs の多層膜からなる基板側
反射鏡102、下部クラッド層103、活性層104、
上部クラッド層105、AlAs 層107、AlAs 層
107を埋め込む電流閉じ込め層106、及びキャップ
層108からなる面発光レーザの積層構造を形成する。
なお、図2(a)では、電流閉じ込め層106は表示さ
れていない。次いで、積層構造上に、GaAs膜111
とAlAs膜114を1対とする少なくとも3対の多層
膜115の反射鏡構造をエピタキシャル成長法により形
成する。
Embodiment of Manufacturing Method of Surface-Emitting Laser Device Next, a method of manufacturing the surface-emitting laser device 10 of the present embodiment will be described with reference to FIGS. FIGS. 2A to 2C and FIGS. 3D and 3E are cross-sectional views showing the layer structure in each step when manufacturing the surface emitting laser element 10 of the present embodiment. (1) First, as shown in FIG. 2A, a GaAs substrate 1
01, a substrate-side reflecting mirror 102 composed of a multilayer film of GaAs / AlAs, a lower cladding layer 103, an active layer 104,
A stacked structure of a surface emitting laser including an upper cladding layer 105, an AlAs layer 107, a current confinement layer 106 for embedding the AlAs layer 107, and a cap layer 108 is formed.
In FIG. 2A, the current confinement layer 106 is not shown. Next, the GaAs film 111 is formed on the laminated structure.
Then, a reflecting mirror structure of at least three pairs of multilayer films 115 each including one pair of AlAs films 114 is formed by an epitaxial growth method.

【0018】(2)次いで、図2(b)に示すように、
多層膜115上にストライプマスク(図示せず)を形成
し、乾式エッチング法、又は湿式エッチング法により多
層膜反射鏡構造を例えば幅30nmのストライプメサ状
に加工する。 (3)次に、図2(c)に示すように、水蒸気酸化法に
より、ストライプメサ状の多層膜のAlAs膜114の
側縁部を約10μmの深さ酸化してAlOに転化させ、
AlO支持層109を形成する。 (4)続いて、ストライプメサ状多層膜115上に長さ
約30μmのマスクを形成し、乾式エッチング法により
エッチングし、多層膜反射鏡構造を30μm角程度の四
角柱状メサにする。そして、GaAsとAlOとの間の
エッチング選択比が大きいエッチング液、例えばHF1
0%水溶液等のHF系エッチャントにより、残留してい
るAlAsのみをエッチングで除去して、図3(d)に
示すように、空隙層、即ち空気層110を形成する。こ
れにより、Ga As 膜111と、両側縁に沿ってAlO
支持層109を有する空気層110との多層膜構造の反
射鏡115を形成することができる。
(2) Next, as shown in FIG.
A stripe mask (not shown) is formed on the multilayer film 115, and the multilayer film reflecting mirror structure is processed into a stripe mesa shape having a width of, for example, 30 nm by a dry etching method or a wet etching method. (3) Next, as shown in FIG. 2 (c), the side edge of the AlAs film 114 of the striped mesa-like multilayer film is oxidized to a depth of about 10 μm to be converted to AlO by a steam oxidation method.
An AlO support layer 109 is formed. (4) Subsequently, a mask having a length of about 30 μm is formed on the stripe-shaped mesa-shaped multilayer film 115 and is etched by a dry etching method to make the multilayer-film reflective mirror structure into a square pillar-shaped mesa of about 30 μm square. Then, an etching solution having a large etching selectivity between GaAs and AlO, for example, HF1
With a HF-based etchant such as a 0% aqueous solution, only the remaining AlAs is removed by etching to form a void layer, that is, an air layer 110, as shown in FIG. As a result, the GaAs film 111 and the AlO
The reflecting mirror 115 having a multilayer structure with the air layer 110 having the support layer 109 can be formed.

【0019】(5)次いで、図3(e)に示すように、
電流閉じ込め構造、例えばAlAsの酸化層106及び
電極112、113を形成することにより、図1に示す
面発光レーザ素子10を得ることができる。
(5) Next, as shown in FIG.
By forming the current confinement structure, for example, the AlAs oxide layer 106 and the electrodes 112 and 113, the surface emitting laser device 10 shown in FIG. 1 can be obtained.

【0020】本実施形態例によれば、GaAs及びAl
Oと、AlAs との間のエッチング選択比が大きい、例
えばHF10%水溶液等のHF系エッチャントにより、
残留しているAlAs膜のみをエッチングで除去して、
空隙層、即ち空気層110を形成しているので、エッチ
ングの再現性が高く、製品にばらつきが少なく、製品歩
留りを向上させることができる。
According to this embodiment, GaAs and Al
The etching selectivity between O and AlAs is large, for example, by using an HF-based etchant such as a 10% aqueous HF solution.
Only the remaining AlAs film is removed by etching,
Since the air gap layer, that is, the air layer 110, is formed, the reproducibility of etching is high, there is little variation among products, and the product yield can be improved.

【0021】実施形態例2 本実施形態例は、実施形態例1の改変例であって、実施
形態例2の面発光レーザ素子では、面発光レーザ素子1
0のGaAs膜111に代えて、Alx Ga1- x As
(x<0.3)膜と、両側縁に沿ってAlO支持層10
9を有する空気層110とを1対とする多層膜で第2の
反射鏡115を構成する。その際には、上述の(1)の
工程では、GaAs膜111に代えて、Alx Ga1-x
As(x<0.3)膜と、AlAs膜114とを1対と
する多層膜を形成する。
Embodiment 2 This embodiment is a modification of the embodiment 1, and the surface emitting laser device of the embodiment 2 is different from the surface emitting laser device 1 of the first embodiment.
0 GaAs film 111, instead of Al x Ga 1 -x As
(X <0.3) film and AlO support layer 10 along both side edges
The second reflecting mirror 115 is constituted by a multilayer film including a pair of the air layer 110 having the first and the second reflecting mirrors 9. At that time, in the above-mentioned step (1), Al x Ga 1 -x is used instead of the GaAs film 111.
A multilayer film including a pair of an As (x <0.3) film and an AlAs film 114 is formed.

【0022】実施形態例3 本実施形態例は、実施形態例1の面発光レーザ素子10
と同じ構成を有するものの、製作方法が異なる例であ
る。本例では、上述の(1)の工程で、AlAs膜11
4に代えて、GaAs膜111とAly Ga1-y As
(y>0.6)膜とを1対とする多層膜を形成し、次い
で(3)の工程でAly Ga1-y As(y>0.6)膜
を酸化してAlO支持層109を形成し、(4)の工程
で残存のAly Ga1-y As(y>0.6)膜をエッチ
ングして除去する。
Embodiment 3 This embodiment is a modification of the surface emitting laser device 10 of Embodiment 1.
Although this example has the same configuration as that of Example 1, the manufacturing method is different. In this example, in the above-mentioned step (1), the AlAs film 11 is formed.
GaAs film 111 and Al y Ga 1-y As
(Y> 0.6), a multilayer film is formed as a pair, and then in step (3), the Al y Ga 1-y As (y> 0.6) film is oxidized to form an AlO support layer 109. Is formed, and the remaining Al y Ga 1 -y As (y> 0.6) film is removed by etching in the step (4).

【0023】実施形態例4 本実施形態例は、実施形態例2の面発光レーザ素子と同
じ構成を有するものの、製作方法が異なる例である。本
例では、上述の(1)の工程で、GaAs膜111及び
AlAs膜114に代えて、それぞれ、Alx Ga1-x
As(x<0.3)膜とAly Ga1-y As(y>0.
6)膜とを1対とする多層膜を形成し、次いで(3)の
工程でAlyGa1-y As(y>0.6)膜を酸化して
AlO支持層109を形成し、(4)の工程で残存のA
y Ga1-y As(y>0.6)膜をエッチングして除
去する。
Embodiment 4 This embodiment is an example having the same structure as the surface emitting laser element of Embodiment 2 but a different manufacturing method. In this example, Al x Ga 1 -x is used instead of the GaAs film 111 and the AlAs film 114 in the step (1).
As (x <0.3) film and Al y Ga 1-y As (y> 0.
6) forming a multilayer film having a pair with the film, and then oxidizing the Al y Ga 1-y As (y> 0.6) film in the step (3) to form the AlO support layer 109; A remaining in step 4)
l y Ga 1-y As ( y> 0.6) film is removed by etching.

【0024】実施形態例2から実施形態例3の面発光レ
ーザ素子及びその作製方法も、実施形態例1と同様の効
果を奏し、2対〜3対という非常に少ない対数で高い反
射率の反射鏡を形成することができる。しかも、実施形
態例1と同様にAlAs 膜又はAly Ga1-y As(y
>0.6)膜のエッチングの再現性が高く、製品にばら
つきが少なく、製品歩留りを向上させることができる。
The surface emitting laser elements of Embodiments 2 to 3 and the method of fabricating the same also exhibit the same effects as those of Embodiment 1, and have a high reflectivity with a very small logarithm of 2 to 3 pairs. A mirror can be formed. Moreover, similarly to the first embodiment, the AlAs film or the Al y Ga 1-y As (y
> 0.6) Reproducibility of film etching is high, there is little variation in products, and product yield can be improved.

【0025】[0025]

【発明の効果】本発明によれば、GaAs膜と、両側縁
に沿ってAlO層を有する空気層とを1対とする多層膜
で、基板とは反対側の反射鏡を構成することにより、少
ない対数の多層膜で高い反射率の反射鏡構造を、反射率
にばらつきが生じないようにして製作することができ
る。本発明に係る面発光レーザ素子は、光通信及び光イ
ンターコネクション分野の光源として最適である。
According to the present invention, it is possible to form a pair of a GaAs film and an air layer having an AlO layer along both side edges by forming a reflecting mirror opposite to the substrate. A reflector structure having a high reflectance with a small number of logarithmic multilayer films can be manufactured without causing a variation in the reflectance. The surface emitting laser device according to the present invention is most suitable as a light source in the field of optical communication and optical interconnection.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1の面発光レーザ素子の層構造を示
す部分破断斜視図である。
FIG. 1 is a partially broken perspective view showing a layer structure of a surface emitting laser element according to a first embodiment.

【図2】図2(a)から(c)は、実施形態例1の面発
光レーザ素子を作製する際の各工程毎の層構造を示す断
面図である。
FIGS. 2A to 2C are cross-sectional views illustrating a layer structure in each step when manufacturing the surface emitting laser element of the first embodiment.

【図3】図3(d)と(e)は、本実施形態例の面発光
レーザ素子10を作製する際の各工程毎の層構造を示す
断面図である。
FIGS. 3D and 3E are cross-sectional views showing a layer structure in each step when manufacturing the surface emitting laser element 10 of the present embodiment.

【図4】従来の反射鏡の構成及びその問題点を説明する
ための反射鏡構造の模式的断面図である。
FIG. 4 is a schematic cross-sectional view of a reflecting mirror structure for explaining the configuration of a conventional reflecting mirror and its problems.

【符号の説明】[Explanation of symbols]

10 実施形態例1の面発光レーザ素子 101 Ga As 基板 102 Ga As /AlAs の多層膜からなる基板側反
射鏡 103 下部クラッド層 104 活性層 105 上部クラッド層 106 電流閉じ込め層 107 AlAs 層 108 キャップ層 109 AlO支持層 110 空気層 111 Ga As 層 112、113 電極 114 AlAs 層 115 第2の反射鏡
10 Surface-Emitting Laser Device of Embodiment 1 101 GaAs Substrate 102 GaAs / AlAs Multilayered Film-Side Reflector 103 Lower Cladding Layer 104 Active Layer 105 Upper Cladding Layer 106 Current Confinement Layer 107 AlAs Layer 108 Cap Layer 109 AlO support layer 110 air layer 111 GaAs layer 112, 113 electrode 114 AlAs layer 115 second reflecting mirror

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Ga As 基板と、Ga As 基板上に設け
られたGa As /AlAs の多層膜からなる第1の反射
鏡と、第1の反射鏡上に形成された発光部を構成する積
層構造と、積層構造上に形成された第2の反射鏡とを備
えた面発光半導体レーザ素子であって、 第2の反射鏡は、GaAs膜と、両側縁に沿って設けら
れたAlO層によって区画された空気層とを1対とする
多層膜で構成されていることを特徴とする面発光半導体
レーザ素子。
1. A GaAs substrate, a first reflecting mirror made of a GaAs / AlAs multilayer film provided on the GaAs substrate, and a light-emitting portion formed on the first reflecting mirror. A surface emitting semiconductor laser device having a structure and a second reflector formed on the laminated structure, wherein the second reflector is formed by a GaAs film and an AlO layer provided along both side edges. A surface emitting semiconductor laser device comprising a multilayer film having a pair of partitioned air layers.
【請求項2】 第2の反射鏡が、Ga As 膜に代えて、
Alx Ga1-x As(x<0.3)膜と、両側縁に沿っ
てAlO支持層を有する空気層とを1対とする多層膜で
構成されていることを特徴とする請求項1に記載の面発
光半導体レーザ素子。
2. The method according to claim 1, wherein the second reflecting mirror is replaced with a GaAs film.
2. A multi-layer film comprising a pair of an Al x Ga 1 -x As (x <0.3) film and an air layer having an AlO support layer along both side edges. 4. The surface emitting semiconductor laser device according to item 1.
【請求項3】 請求項1又は2に記載の面発光半導体レ
ーザ素子の製作方法であって、発光部を構成する積層構
造上に第2の反射鏡を形成するに当たり、 GaAs膜とAlAs膜とを1対とする多層膜を形成す
る工程と、 多層膜をストライプメサ状に加工する工程と、 ストライプメサ状の多層膜のAlAs膜の側縁部を酸化
してAlOに転化し、AlO層を形成する工程と、 残存のAlAs膜をエッチングして除去し、両側縁に沿
って設けられたAlO層によって区画された空気層を形
成する工程とを有することを特徴とする面発光半導体レ
ーザ素子の製作方法。
3. The method for manufacturing a surface emitting semiconductor laser device according to claim 1, wherein a GaAs film and an AlAs film are formed when forming the second reflecting mirror on the laminated structure forming the light emitting portion. Forming a multi-layered film, a step of processing the multi-layered film into a striped mesa, oxidizing a side edge of the AlAs film of the striped mesa-shaped multi-layered film to convert it to AlO, and forming an AlO layer. Forming an air layer separated by AlO layers provided along both side edges by etching the remaining AlAs film and removing the remaining AlAs film by etching. Production method.
【請求項4】 GaAs膜に代えて、Alx Ga1-x
s(x<0.3)膜とAlAs膜とを1対とする多層膜
を形成する工程とを備えることを特徴とする請求項3に
記載の面発光半導体レーザ素子の製作方法。
4. An Al x Ga 1 -x A film instead of a GaAs film.
4. The method for manufacturing a surface emitting semiconductor laser device according to claim 3, further comprising the step of forming a multilayer film having a pair of an s (x <0.3) film and an AlAs film.
【請求項5】 AlAs膜に代えて、GaAs膜とAl
y Ga1-y As(y>0.6)膜とを1対とする多層膜
を形成する工程と、 ストライプメサ状の多層膜のAly Ga1-y As(y>
0.6)膜の側縁部を酸化してAlOに転化し、AlO
層を形成する工程と、 残存のAly Ga1-y As(y>0.6)膜をエッチン
グして除去し、両側縁に沿って設けられたAlO層によ
って区画された空気層を形成する工程とを備えることを
特徴とする請求項3に記載の面発光半導体レーザ素子の
製作方法。
5. A GaAs film and an Al film instead of the AlAs film.
y Ga 1-y As (y > 0.6) forming a multilayer film to the film pair, the stripe-shaped mesa-shaped multi-layer Al y Ga 1-y As ( y>
0.6) Oxidize the side edges of the film to convert it to AlO,
Forming a layer, and etching away the remaining Al y Ga 1-y As (y> 0.6) film to form an air layer defined by AlO layers provided along both side edges. The method according to claim 3, further comprising the steps of:
【請求項6】 GaAs膜とAlAs膜と多層膜に代え
て、Alx Ga1-xAs(x<0.3)膜とAly Ga
1-y As(y>0.6)膜とを1対とする多層膜を形成
する工程と、 ストライプメサ状の多層膜のAly Ga1-y As(y>
0.6)膜の側縁部を酸化してAlOに転化し、AlO
層を形成する工程と、 残存のAly Ga1-y As(y>0.6)膜をエッチン
グして除去し、両側縁に沿って設けられたAlO層によ
って区画された空気層を形成する工程とを備えることを
特徴とする請求項3に記載の面発光半導体レーザ素子の
製作方法。
6. An Al x Ga 1 -x As (x <0.3) film and an Al y Ga film instead of the GaAs film, the AlAs film and the multilayer film.
A step of forming a multilayer film in which a pair of a 1-y As (y> 0.6) film is formed, and Al y Ga 1-y As (y>) of a stripe-mesa multilayer film.
0.6) Oxidize the side edges of the film to convert it to AlO,
Forming a layer, and etching away the remaining Al y Ga 1-y As (y> 0.6) film to form an air layer defined by AlO layers provided along both side edges. The method according to claim 3, further comprising the steps of:
JP11173998A 1998-04-22 1998-04-22 Surface light-emitting semiconductor laser element and manufacture thereof Pending JPH11307863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11173998A JPH11307863A (en) 1998-04-22 1998-04-22 Surface light-emitting semiconductor laser element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11173998A JPH11307863A (en) 1998-04-22 1998-04-22 Surface light-emitting semiconductor laser element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH11307863A true JPH11307863A (en) 1999-11-05

Family

ID=14568968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11173998A Pending JPH11307863A (en) 1998-04-22 1998-04-22 Surface light-emitting semiconductor laser element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH11307863A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1320157A2 (en) * 2001-12-14 2003-06-18 Agilent Technologies, Inc. Distributed bragg reflectors and method of fabrication
EP1328049A2 (en) * 2002-01-09 2003-07-16 Agilent Technologies, Inc. Vertical-cavity surface-emitting laser including a supported airgap distributed bragg reflector
US6989312B2 (en) 2003-11-28 2006-01-24 Electronics And Telecommunications Research Institute Method for fabricating semiconductor optical device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1320157A2 (en) * 2001-12-14 2003-06-18 Agilent Technologies, Inc. Distributed bragg reflectors and method of fabrication
EP1320157A3 (en) * 2001-12-14 2004-05-06 Agilent Technologies, Inc. Distributed bragg reflectors and method of fabrication
US6947217B2 (en) 2001-12-14 2005-09-20 Agilent Technologies, Inc. Distributed Bragg reflector and method of fabrication
EP1328049A2 (en) * 2002-01-09 2003-07-16 Agilent Technologies, Inc. Vertical-cavity surface-emitting laser including a supported airgap distributed bragg reflector
EP1328049A3 (en) * 2002-01-09 2005-04-27 Agilent Technologies, Inc. Vertical-cavity surface-emitting laser including a supported airgap distributed bragg reflector
US6989312B2 (en) 2003-11-28 2006-01-24 Electronics And Telecommunications Research Institute Method for fabricating semiconductor optical device

Similar Documents

Publication Publication Date Title
US7965755B2 (en) Surface-emitting laser
JPH0669585A (en) Surface emitting semiconductor laser and its manufacture
JP2000151015A (en) Matched oxide opening and semiconductor device provided with contact-point to intermediate layer
WO2002075263A1 (en) A micro-electromechanically tunable vertical cavity photonic device and a method of fabrication thereof
JPH11340565A (en) Surface light-emitting semiconductor laser element and its manufacture
JP2008028120A (en) Surface-emitting semiconductor element
JP3188658B2 (en) Surface emitting semiconductor laser and method of manufacturing the same
JPH05299689A (en) Surface input output photoelectric fusing element
JPH11307882A (en) Surface light-emitting semiconductor laser, laser array thereof, and manufacture thereof
US20040213310A1 (en) Surface emitting semiconductor laser and communication system using the same
JP4599865B2 (en) Surface emitting semiconductor laser device
JP2000058958A (en) Multiwavelength surface luminescent semiconductor laser array
JP2605640B2 (en) Semiconductor optical device and method of manufacturing the same
JP5006242B2 (en) Surface emitting semiconductor laser device
JPH11307863A (en) Surface light-emitting semiconductor laser element and manufacture thereof
KR100404043B1 (en) Vertically integrated high-power surface-emitting laser diode and method of manufacturing the same
JP3800852B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
KR100527108B1 (en) Method for fabricating semiconductor optical device
JPH06188518A (en) Variable wavelength surface emission laser
JP2000012962A (en) Surface emitting semiconductor laser and its manufacture
JP2000294873A (en) Surface emitting type laser array and manufacture of the same
JPH11220206A (en) Manufacture of multiple-wavelength surface light-emitting semiconductor laser device
WO2007102600A1 (en) Surface emitting semiconductor laser element
JPH07321405A (en) Surface emitting semiconductor laser and its control method
JP2005108983A (en) Surface emitting laser element