JPH11307056A - Tubular bulb closing part structure - Google Patents

Tubular bulb closing part structure

Info

Publication number
JPH11307056A
JPH11307056A JP12666798A JP12666798A JPH11307056A JP H11307056 A JPH11307056 A JP H11307056A JP 12666798 A JP12666798 A JP 12666798A JP 12666798 A JP12666798 A JP 12666798A JP H11307056 A JPH11307056 A JP H11307056A
Authority
JP
Japan
Prior art keywords
alumina
conductive
conductive inorganic
inorganic material
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12666798A
Other languages
Japanese (ja)
Inventor
Koji Tagawa
幸治 田川
Masaki Yoshioka
正樹 吉岡
Mitsuru Ikeuchi
満 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP12666798A priority Critical patent/JPH11307056A/en
Publication of JPH11307056A publication Critical patent/JPH11307056A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a leak in lighting a lamp by forming with almost column functionally gradient materials whose one side is a non-conductive region and other side is a conductive region, constituting the end part of the non-conductive region with mainly alumina, and including a non-conductive inorganic material component having lower melting point than alumina in the region where a conductive material component is mixed to the alumina. SOLUTION: The end part of a closing tube 12 connected to an arc tube 11 is sealed with a closing part structure 40, an electrode core rod 30 of an electrode 20 is made of a tungsten rod, and fixed by the sintering of the closing part structure 40. A non-conductive region side end surface 41 of the closing part structure 40 is a layer of only a non-conductive inorganic material component whose main component is alumina, and the concentration of a conductive inorganic material component such as tungsten is gradually increased toward a conductive region side end surface 42 to form a multiple layer. As a second non-conductive inorganic material component having a melting point lower than alumina, silica is added. Thereby, generation of cracks in sintering is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルミナ製の発光
管に連設された閉塞管を閉塞する管球の閉塞部構造体に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bulb closing structure for closing a closed tube connected to an alumina arc tube.

【0002】[0002]

【従来の技術】管球、例えば放電ランプは、そのバルブ
は一般的には石英ガラス製であり、球状や楕円球状をし
た発光管内に一対の電極が対向配置され、水銀などの発
光金属、および放電用ガスなどが封入される。そして、
発光管の端部に筒状の閉塞管が連設されるが、この閉塞
管は、先端に電極を有する電極芯棒が閉塞部構造体の中
央孔に固定された電極マウントの閉塞部構造体で閉塞さ
れる。ここで、タングステンからなる電極芯棒と石英ガ
ラス製の閉塞部は熱膨張率が大きく異なるために閉塞管
を電極芯棒に直接溶着して閉塞することができない。
2. Description of the Related Art A bulb, for example, a discharge lamp has a bulb generally made of quartz glass, and a pair of electrodes are arranged in a spherical or elliptical arc tube to face each other. A discharge gas or the like is sealed. And
A cylindrical occlusion tube is connected to the end of the arc tube. The occlusion tube has an electrode core rod having an electrode at a tip thereof fixed to a central hole of the occlusion structure. Is closed. Here, since the electrode core rod made of tungsten and the closed portion made of quartz glass have a large difference in thermal expansion coefficient, it is not possible to close the closed tube by directly welding the closed tube to the electrode core bar.

【0003】このため従来は箔シール法や段継ぎ法など
で閉塞していたが、最近では、シリカなどの非導電性無
機物質成分とモリブデンなどの導電性無機物質成分で成
形された傾斜機能材料を焼結法で略円柱状に形成した閉
塞部構造体で発光管端部の閉塞管を閉塞することが注目
されている。かかる傾斜機能材料で形成された閉塞部構
造体は、一方の端部はシリカなどの非導電性成分がリッ
チであり、他方の端部に向かうにつれてモリブデンなど
の導電性成分の割合が連続的に、または段階的に増加す
るものである。従って、シリカ粉末とモリブデン粉末で
成形された傾斜機能材料の場合、閉塞部構造体の一方の
端部近傍は、非導電性であるとともに熱膨張率が石英ガ
ラスの熱膨張率に近く、溶着時に石英ガラスからなる閉
塞管とよく馴染む。そして、他方の端部近傍は、導電性
であるとともに熱膨張率がモリブデンの熱膨張率に近い
特性を有する。
[0003] For this reason, conventionally, the sealing was performed by a foil sealing method or a step joint method, but recently, a functionally graded material formed of a non-conductive inorganic material component such as silica and a conductive inorganic material component such as molybdenum. Attention has been focused on closing an obstruction tube at the end of an arc tube with an obstruction portion structure formed in a substantially columnar shape by a sintering method. The closed portion structure formed of such a functionally graded material has a non-conductive component such as silica rich at one end, and the ratio of a conductive component such as molybdenum continuously increases toward the other end. Or incrementally. Therefore, in the case of a functionally graded material formed of silica powder and molybdenum powder, the vicinity of one end of the closed part structure is non-conductive and has a coefficient of thermal expansion close to that of quartz glass, and during welding, It fits well with a quartz glass closed tube. The vicinity of the other end is electrically conductive and has a characteristic that the coefficient of thermal expansion is close to that of molybdenum.

【0004】導電性無機物質成分と非導電性無機物質成
分からなる傾斜機能材料で閉塞部構造体を成形すると
き、先ず、混合割合を順次変化させたこれらの粉末にバ
インダーを添加して粉末混合体を調製し、この粉末混合
体を金型内でプレスして略円柱状の加圧成形体を得る。
そして加圧成形体を仮焼結して仮焼結体を得る。次に、
この仮焼結体の軸心に電極芯棒を埋設するための孔あけ
加工を施して中央孔を形成する。或いは、中央孔成形用
の突出部材を有する金型内でプレスして予め中央孔が形
成された加圧成形体とし、これを仮焼結する。そして、
仮焼結体の中央孔に、その先端に例えばタングステンか
らなる電極と一体になった電極芯棒を挿入してから本焼
結する。そして、この本焼結の温度は、非導電性無機物
質成分がシリカの場合は、1700℃程度である。
[0004] When molding a closed structure using a functionally gradient material composed of a conductive inorganic material component and a non-conductive inorganic material component, first, a binder is added to these powders whose mixing ratios are sequentially changed, and a powder is mixed. A powder body is prepared, and the powder mixture is pressed in a mold to obtain a substantially cylindrical pressure-formed body.
Then, the press-formed body is temporarily sintered to obtain a temporarily sintered body. next,
A hole is formed in the axis of the pre-sintered body so as to embed the electrode core rod, thereby forming a central hole. Alternatively, it is pressed in a mold having a protruding member for forming a center hole to obtain a press-formed body in which a center hole is formed in advance, and this is temporarily sintered. And
An electrode core rod integrated with an electrode made of, for example, tungsten is inserted into the center hole of the temporary sintered body at the end thereof, and then the main body is sintered. The temperature of the main sintering is about 1700 ° C. when the non-conductive inorganic substance component is silica.

【0005】[0005]

【発明が解決しようとする課題】ところで、例えばメタ
ルハライドランプの場合、封入される金属ハロゲン化物
の種類によっては、バルブを石英ガラスで成形すると、
点灯時に金属蒸気が石英ガラスと反応し易いので、バル
ブを金属蒸気と反応しにくいアルミナで成形することが
ある。また、封止部は小型で低コストであることが求め
られており、この点から傾斜機能材料からなる閉塞部構
造体で封止するのが好ましい。従って、バルブがアルミ
ナ製の場合は、閉塞管を封止する閉塞部構造体は、非導
電性無機物質成分がバルブと同材質のアルミナである傾
斜機能材料を使用する。
By the way, in the case of a metal halide lamp, for example, depending on the type of metal halide to be sealed, if the bulb is formed of quartz glass,
Since the metal vapor easily reacts with the quartz glass at the time of lighting, the bulb may be formed of alumina which does not easily react with the metal vapor. In addition, the sealing portion is required to be small in size and low in cost. In this regard, it is preferable that the sealing portion is sealed with a closing portion structure made of a functionally gradient material. Therefore, when the valve is made of alumina, the closing portion structure for sealing the closing tube uses a functionally gradient material whose non-conductive inorganic substance component is alumina of the same material as the valve.

【0006】しかし、アルミナの融点はシリカよりも高
いので、非導電性無機物質成分がアルミナである傾斜機
能材料を本焼結するときは、1900℃以上の高温で焼
結する必要がある。つまり、非導電性無機物質成分がシ
リカの場合に比べて200℃以上も高温で焼結する必要
がある。このため、焼結用の電気炉のヒーターなどの消
耗が激しくて実用的でない。従って、できるだけ低い温
度で焼結したいが、非導電性無機物質成分がアルミナで
ある傾斜機能材料を1700℃程度の温度で本焼結する
と、アルミナにモリブデンやタングステンなどの導電性
無機物質成分を混合した領域にクラックが入って気密性
が低下する。また、アルミナのみからなる非導電性領域
側の端部も焼結が不十分なために気密性が低下し、ラン
プ点灯時にリークする。
However, since the melting point of alumina is higher than that of silica, it is necessary to perform sintering at a high temperature of 1900 ° C. or more when fully sintering a functionally gradient material in which the non-conductive inorganic substance component is alumina. That is, it is necessary to sinter at a higher temperature than 200 ° C. as compared with the case where the non-conductive inorganic substance component is silica. For this reason, the heaters of the electric furnace for sintering are greatly consumed, which is not practical. Therefore, it is desirable to sinter at the lowest possible temperature, but if the non-conductive inorganic material component is alumina, the functionally graded material is finally sintered at a temperature of about 1700 ° C. Cracks occur in the damaged area, and the airtightness is reduced. In addition, the end portion of the non-conductive region made of only alumina is insufficiently sintered, so that the airtightness is reduced and the lamp leaks when the lamp is turned on.

【0007】そこで本発明は、非導電性無機物質成分が
アルミナである傾斜機能材料を低い温度で本焼結しても
高い気密性が得られ、ランプ点灯時にリークすることの
ない管球の閉塞部構造体を提供することを目的とする。
Accordingly, the present invention provides a high airtightness even when a non-conductive inorganic material component is alumina at which a functionally graded material is alumina at a low temperature, and has a blockage of a lamp tube which does not leak when the lamp is turned on. It is intended to provide a partial structure.

【0008】[0008]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明は、導電性無機物質成分と非導電性無機物
質成分とが長手方向に段階的な濃度勾配を持ち、一方が
非導電性領域であって他方が導電性領域である略円柱状
の傾斜機能材料からなり、アルミナ製の発光管に連設さ
れた閉塞管を封止する管球の閉塞部構造体において、非
導電性無機物質成分の主成分はアルミナであって、非導
電性領域側の端部はアルミナを主成分とする非導電性無
機物質成分のみの層からなり、少なくとも、アルミナを
主成分とする非導電性無機物質成分に導電性無機物質成
分が混合された領域には、アルミナより低融点の第2の
非導電性無機物質成分を含有させる。また、この第2の
非導電性無機物質成分としては、シリカまたはシリカを
主成分とするガラスが好ましい。
In order to achieve this object, the present invention provides a conductive inorganic material component and a non-conductive inorganic material component having a stepwise concentration gradient in the longitudinal direction, and one of the conductive inorganic material component and the non-conductive inorganic material component having a non-conductive concentration gradient. In a closed portion structure of a bulb for sealing a closed tube connected to an alumina arc tube, which is made of a substantially columnar functionally graded material that is a conductive region and the other is a conductive region, The main component of the inorganic substance component is alumina, and the end on the non-conductive region side is formed of a layer of only a non-conductive inorganic substance component containing alumina as a main component. A region where the conductive inorganic material component is mixed with the inorganic material component contains a second non-conductive inorganic material component having a lower melting point than alumina. As the second non-conductive inorganic substance component, silica or glass containing silica as a main component is preferable.

【0009】[0009]

【発明の実施の形態】以下に、図面に基づいて本発明の
実施の形態を具体的に説明する。図1は、アルミナ製の
バルブ10の閉塞管12を傾斜機能材料からなる閉塞部
構造体40で閉塞した定格消費電力が20Wのメタルハ
ライドランプを示す。図1において、バルブ10中央の
発光管11の内部には、タングステンからなる一対の電
極20が対向配置されている。また、発光管11の内部
には、金属成分とハロゲンが封入されている。金属成分
としては、ジスプロシウム、インジウム、スズなどが挙
げられる。そして、発光管11の両端に閉塞管12,1
2が連設されており、閉塞管12,12の端部は閉塞部
構造体40で封止されている。電極20の電極芯棒30
はタングステン棒からなり、閉塞部構造体40に形成さ
れた軸方向の中央孔43に埋設されて焼結による焼き締
めにより固定されている。そして、閉塞部構造体40の
非導電性領域側端面41に形成された凹部44に閉塞管
12の端部が嵌め込まれ、例えばSiO2−Al23
Dy23−La23 からなるフリット50にて溶着封
止されている。
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 shows a metal halide lamp having a rated power consumption of 20 W in which a closed tube 12 of a valve 10 made of alumina is closed by a closed structure 40 made of a functionally graded material. In FIG. 1, a pair of electrodes 20 made of tungsten are opposed to each other inside an arc tube 11 at the center of a bulb 10. Further, a metal component and a halogen are sealed inside the arc tube 11. Examples of the metal component include dysprosium, indium, and tin. The closed tubes 12, 1 are provided at both ends of the arc tube 11, respectively.
2 are connected in series, and the ends of the closed pipes 12 and 12 are sealed with a closed structure 40. Electrode core 30 of electrode 20
Is made of a tungsten rod, is embedded in an axial central hole 43 formed in the closing portion structure 40, and is fixed by baking by sintering. Then, the end of the closing tube 12 is fitted into the concave portion 44 formed in the non-conductive region side end surface 41 of the closing portion structure 40, for example, SiO 2 —Al 2 O 3
Are sealed welded sealed at a frit 50 made of Dy 2 O 3 -La 2 O 3 .

【0010】閉塞部構造体40は、タングステンやモリ
ブデンである導電性無機物質成分とアルミナを主成分と
する非導電性無機物質成分からなる傾斜機能材料の焼結
体である。閉塞部構造体40の非導電性領域側端面41
は、導電性無機物質成分であるタングステンやモリブデ
ンが混合されないアルミナを主成分とする非導電性無機
物質成分のみの層であり、導電性領域側端面42に向け
て順次導電性無機物質成分の濃度が増加した層が積層さ
れた多層体である。そして、アルミナより低融点の第2
の非導電性無機物質成分として、シリカが添加されてい
る。このアルミナより低融点の第2の非導電性無機物質
成分としては、シリカ以外にも、アルミナシリケートガ
ラス、アルミナホウケイ酸ガラス、ホウケイ酸ガラスな
どを使用することができる。
The closed part structure 40 is a sintered body of a functionally gradient material composed of a conductive inorganic material component such as tungsten or molybdenum and a non-conductive inorganic material component mainly composed of alumina. Non-conductive area side end face 41 of closing part structure 40
Is a layer of only a non-conductive inorganic material component mainly composed of alumina in which tungsten or molybdenum, which is a conductive inorganic material component, is not mixed, and the concentration of the conductive inorganic material component sequentially toward the conductive region side end face 42. Is a multilayer body in which layers with increased numbers are laminated. And the second melting point lower than alumina
Silica is added as a non-conductive inorganic substance component. As the second non-conductive inorganic component having a lower melting point than alumina, alumina silicate glass, alumina borosilicate glass, borosilicate glass, or the like can be used in addition to silica.

【0011】このように、アルミナより低融点の第2の
非導電性無機物質成分が添加されているので、かかる傾
斜機能材料を本焼結して閉塞部構造体40とするとき、
焼結温度が例えば1700℃程度であっても、焼結時に
おいてクラックが発生せず、焼結の程度が十分に進行し
て気密性が向上する。従って、かかる閉塞部構造体40
で閉塞管12を閉塞した管球は、点灯時に発光管11内
の高圧ガスがリークすることがない。
As described above, since the second non-conductive inorganic substance component having a lower melting point than alumina is added, when such a functionally gradient material is fully sintered to form the closed structure 40,
Even if the sintering temperature is, for example, about 1700 ° C., no crack is generated during sintering, and the degree of sintering is sufficiently advanced to improve airtightness. Therefore, the closed part structure 40
When the lamp is turned on, the high-pressure gas in the arc tube 11 does not leak when the bulb is closed.

【0012】[0012]

【実施例】次に、実際に閉塞部構造体40を製造し、こ
の閉塞部構造体40で閉塞管12を閉塞したメタルハラ
イドランプを点灯したときのリーク状況を調査した実施
例を説明する。
Next, a description will be given of an embodiment in which a closed structure 40 is actually manufactured, and a leak state when a metal halide lamp in which the closed tube 12 is closed by the closed structure 40 is turned on is investigated.

【0013】〔実施例1〕アルミナ−タングステン系の
傾斜機能材料で閉塞部構造体40を製造した例を説明す
る。先ず、平均粒径が0.4μmのアルミナ粉末と1μ
mのタングステン粉末の混合比率を変化させた混合粉末
に、更に平均粒径が5.6μmのシリカ粉末をそれぞれ
添加して6種類の混合粉末体を調製した。6種類の混合
粉末のアルミナ粉末、タングステン粉末、およびシリカ
粉末の混合割合と焼結時の層厚は表1に示すとおりであ
る。
[First Embodiment] An example in which the closing structure 40 is made of an alumina-tungsten functionally gradient material will be described. First, an alumina powder having an average particle diameter of 0.4 μm and 1 μm
Silica powder having an average particle size of 5.6 μm was further added to the mixed powder obtained by changing the mixing ratio of the tungsten powder of m, thereby preparing six types of mixed powder bodies. Table 1 shows the mixing ratios of the six types of mixed powders of the alumina powder, the tungsten powder, and the silica powder and the layer thickness during sintering.

【表1】 [Table 1]

【0014】これらの混合粉末体に有機バインダー、例
えばステアリン酸の溶液を5wt%混合した。この混合
物を、中心孔43用および凹部44用の突出部材を有す
る筒状の金型に、アルミナとタングステンの混合割合が
順次変化するように、つまり、表1の層番号の順に充填
した。そして、筒状の金型の外方から、1.0〜1.5
ton/cm2 の荷重で加圧して中心孔が形成された略
円柱状の加圧成形体を得た。次に、得られた加圧成形体
を非酸化性雰囲気において、1200℃で30分間焼結
し、有機バインダーを除去して仮焼結体を得た。
An organic binder, for example, a solution of stearic acid was mixed with these mixed powders in an amount of 5 wt%. This mixture was filled into a cylindrical mold having protruding members for the center hole 43 and the concave portion 44 so that the mixing ratio of alumina and tungsten was sequentially changed, that is, in the order of the layer numbers in Table 1. Then, from the outside of the cylindrical mold, 1.0 to 1.5
By applying a pressure of ton / cm 2 , a substantially cylindrical pressure-formed body having a center hole formed therein was obtained. Next, the obtained pressure-molded body was sintered at 1200 ° C. for 30 minutes in a non-oxidizing atmosphere to remove an organic binder to obtain a temporarily sintered body.

【0015】この仮焼結体の中心孔に電極芯棒30を挿
入し、非酸化性雰囲気において、1700℃で10分間
本焼結した。これによって、電極芯棒30が中央孔43
に焼き締められて固定され、閉塞部構造体40が完成す
るが、1700℃の本焼結温度は、シリカ−タングステ
ン系の傾斜機能材料の焼結温度と同等であり、焼結用の
電気炉のヒーターなどの消耗が少なくて実用的である。
そして、焼結温度が低いにもかかわらず、閉塞部構造体
40にクラックは発生しなかった。かかる閉塞部構造体
40の非導電性領域側端面41に形成された凹部44に
閉塞管12の端部が嵌め込み、フリット50にて溶着封
止してメタルハライドランプを作成した。そして、この
メタルハライドランプを点灯したが、発光管11内の高
圧ガスがリークせず、正常に動作した。
The electrode core 30 was inserted into the center hole of the pre-sintered body, and main-sintered at 1700 ° C. for 10 minutes in a non-oxidizing atmosphere. As a result, the electrode core rod 30 is
The sintering temperature of 1700 ° C. is the same as the sintering temperature of the silica-tungsten functionally gradient material, and the sintering electric furnace is used. It is practical because it consumes less heaters.
And, despite the low sintering temperature, no crack occurred in the closed part structure 40. The end of the closed tube 12 was fitted into the concave portion 44 formed on the non-conductive region side end surface 41 of the closed portion structure 40, and was welded and sealed with the frit 50 to produce a metal halide lamp. Then, when the metal halide lamp was turned on, the high-pressure gas in the arc tube 11 did not leak, and the lamp operated normally.

【0016】〔実施例2〕アルミナ−モリブデン系の傾
斜機能材料で閉塞部構造体40を製造した。先ず、平均
粒径が0.4μmのアルミナ粉末と1μmのモリブデン
粉末の混合比率を変化させた混合粉末に、更に平均粒径
が5.6μmのシリカ粉末をそれぞれ添加して、実施例
1と同様に、6種類の混合粉末体を調製した。6種類の
混合粉末のアルミナ粉末、モリブデン粉末、およびシリ
カ粉末の混合割合と焼結時の層厚は表2に示すとおりで
ある。
Example 2 A closed part structure 40 was manufactured from an alumina-molybdenum functionally graded material. First, silica powder having an average particle size of 5.6 μm was added to a mixed powder obtained by changing the mixing ratio of alumina powder having an average particle size of 0.4 μm and molybdenum powder having a particle size of 1 μm. Then, six kinds of mixed powder bodies were prepared. Table 2 shows the mixing ratio of the alumina powder, molybdenum powder, and silica powder of the six types of mixed powders and the layer thickness during sintering.

【表2】 [Table 2]

【0017】次に、実施例1と同様に、この混合粉末体
から加圧成形体を得、そして、加圧成形体から仮焼結体
を得た。そして、この仮焼結体を10-3Pa以下の真空
中において、1700℃で10分間本焼結した。この場
合も、閉塞部構造体40にクラックは発生せず、点灯時
において、発光管11内の高圧ガスがリークせず、正常
に動作した。
Next, in the same manner as in Example 1, a pressed compact was obtained from the mixed powder, and a temporary sintered body was obtained from the pressed compact. The pre-sintered body was fully sintered at 1700 ° C. for 10 minutes in a vacuum of 10 −3 Pa or less. In this case as well, no cracks occurred in the closed part structure 40, and during lighting, the high-pressure gas in the arc tube 11 did not leak, and it operated normally.

【0018】〔実施例3〕前記の実施例1においては、
傾斜機能材料の各層に一様にシリカを5vol%添加し
たが、本実施例においては、表3に示すように、タング
ステンが混合されずにアルミナのみからなる層番号1の
層には、シリカを添加せず、アルミナにタングステンが
混合された層にシリカを添加して6種類の混合粉末体を
調製した。なお、閉塞管12の端部が結合される閉塞部
構造体40の凹部44は、アルミナのみからなる層番号
1の層に形成されている。
[Embodiment 3] In Embodiment 1 described above,
Although 5 vol% of silica was uniformly added to each layer of the functionally graded material, in this example, as shown in Table 3, silica was added to the layer of layer number 1 made of alumina alone without mixing tungsten. Without addition, silica was added to a layer in which tungsten was mixed with alumina to prepare six types of mixed powders. The concave portion 44 of the closed portion structure 40 to which the end of the closed tube 12 is connected is formed in the layer of layer number 1 made of only alumina.

【表3】 [Table 3]

【0019】本実施例においても、実施例1と同様の方
法で、混合粉末体→加圧成形体→仮焼結体とし、この仮
焼結体を、非酸化性雰囲気において、1750℃で10
分間本焼結した。つまり、実施例1及び実施例2におけ
る本焼結温度よりも50℃高い温度で本焼結した。この
結果、得られた閉塞部構造体40にクラックは発生せ
ず、気密性も十分であり、点灯時において、発光管11
内の高圧ガスがリークせず、正常に動作した。そして、
1750℃で本焼結しても、アルミナのみからなる層が
フリット50で覆われているため、リークを生じず、結
果として、アルミナ系傾斜機能材料の従来の本焼結温度
である1900℃よりもずっと低くてすみ、焼結用の電
気炉のヒーターなどの消耗が少なくて実用的である。
In this embodiment, a mixed powder, a press-formed body, and a pre-sintered body are formed in the same manner as in the first embodiment, and the pre-sintered body is heated at 1750 ° C. in a non-oxidizing atmosphere.
Main sintering for minutes. That is, the main sintering was performed at a temperature higher by 50 ° C. than the main sintering temperature in Examples 1 and 2. As a result, no cracks occur in the obtained closed part structure 40, the airtightness is sufficient, and the light emitting tube 11
The high-pressure gas inside did not leak and operated normally. And
Even if the main sintering is performed at 1750 ° C., the layer made of only alumina is covered with the frit 50, so that no leak occurs. Is much lower, and the heater of the electric furnace for sintering is less consumed and practical.

【0020】因みに、本実施例における仮焼結体を、非
酸化性雰囲気において、実施例1の場合と同じく、17
00℃で10分間本焼結したところ、得られた閉塞部構
造体40にクラックは発生しなかったが、閉塞管12が
接続される閉塞部構造体40の凹部44、つまり、アル
ミナのみの層の焼結が十分でなくて気密性が低下し、点
灯時において、発光管11内の高圧ガスが幾分リークし
た。
Incidentally, the pre-sintered body in this embodiment was heated in a non-oxidizing atmosphere in the same manner as in the first embodiment.
When main sintering was performed at 00 ° C. for 10 minutes, no crack was generated in the obtained closed part structure 40, but the concave part 44 of the closed part structure 40 to which the closed tube 12 was connected, that is, a layer of only alumina Was not sufficiently sintered, the airtightness was reduced, and the high-pressure gas in the arc tube 11 leaked to some extent during lighting.

【0021】この実施例3におけるシリカの添加量は5
vol%であるが、次に、表3のシリカの添加量を変化
させて、点灯時の高圧ガスのリークの有無を試験した。
この試験においては、1750℃で10分間本焼結し
た。その結果を表4に示す。
In Example 3, the amount of silica added was 5
Next, the presence or absence of high-pressure gas leakage during lighting was tested by changing the amount of silica shown in Table 3 in terms of vol%.
In this test, main sintering was performed at 1750 ° C. for 10 minutes. Table 4 shows the results.

【表4】 これから分かるように、シリカの添加量が5vol%以
上であれば、点灯時においてリークしないが、シリカの
添加量が0vol%(つまり、従来例と同じ)および
2.5vol%の時はリークした。従って、本焼結温度
を1750℃で行うときは、シリカの添加量は5vol
%以上にする必要がある。
[Table 4] As can be seen from this, when the added amount of silica is 5 vol% or more, no leakage occurs at the time of lighting, but when the added amount of silica is 0 vol% (that is, the same as the conventional example) and 2.5 vol%, it leaks. Therefore, when the main sintering temperature is 1750 ° C., the amount of silica added is 5 vol.
% Or more.

【0022】[0022]

【発明の効果】以上説明したように、本発明は、アルミ
ナ系の傾斜機能材料からなり、アルミナ製の発光管に連
設された閉塞管を封止する管球の閉塞部構造体におい
て、非導電性領域側の端部はアルミナを主成分とする非
導電性無機物質成分のみの層からなり、少なくとも、非
導電性無機物質成分に導電性無機物質成分が混合された
領域には、アルミナより低融点の第2の非導電性無機物
質成分を含有させたので、この傾斜機能材料を低い温度
で本焼結しても高い気密性が得られ、ランプ点灯時にリ
ークすることのない管球の閉塞部構造体とすることがで
きる。
As described above, the present invention relates to a non-closing portion structure of a bulb for sealing a closing tube formed of an alumina-based functionally gradient material and connected to an alumina arc tube. The end portion on the conductive region side is composed of a layer of only a non-conductive inorganic material component containing alumina as a main component, and at least a region in which the conductive inorganic material component is mixed with the non-conductive inorganic material component is made of alumina. Since the low-melting second non-conductive inorganic substance component is contained, high airtightness can be obtained even when the functionally graded material is fully sintered at a low temperature, and a tube which does not leak when the lamp is turned on can be obtained. An occlusion structure may be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の閉塞部構造体を使用したランプの説明
図である。
FIG. 1 is an explanatory view of a lamp using a closure structure according to the present invention.

【符号の説明】[Explanation of symbols]

10 バルブ 11 発光管 12 閉塞管 20 電極 30 電極芯棒 40 閉塞部構造体 41 閉塞部構造体の非導電性領域側端面 42 閉塞部構造体の導電性領域側端面 43 閉塞部構造体の中央孔 44 閉塞部構造体の凹部 50 フリット DESCRIPTION OF SYMBOLS 10 Bulb 11 Arc tube 12 Occlusion tube 20 Electrode 30 Electrode core rod 40 Occlusion part structure 41 Non-conductive area side end face of occlusion part structure 42 Conductive area side end face of occlusion part structure 43 Central hole of occlusion part structure 44 Recess of closed part structure 50 Frit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 導電性無機物質成分と非導電性無機物質
成分とが長手方向に段階的な濃度勾配を持ち、一方が非
導電性領域であって他方が導電性領域である略円柱状の
傾斜機能材料からなり、アルミナ製の発光管に連設され
た閉塞管を封止する管球の閉塞部構造体において、 前記非導電性無機物質成分の主成分はアルミナであっ
て、非導電性領域側の端部はアルミナを主成分とする非
導電性無機物質成分のみの層からなり、少なくとも、ア
ルミナを主成分とする非導電性無機物質成分に導電性無
機物質成分が混合された領域には、アルミナより低融点
の第2の非導電性無機物質成分を含有していることを特
徴とする管球の閉塞部構造体。
1. A substantially columnar shape in which a conductive inorganic material component and a non-conductive inorganic material component have a stepwise concentration gradient in a longitudinal direction, one of which is a non-conductive region and the other is a conductive region. In the closed part structure of the bulb, which is made of a functionally graded material and seals the closed tube connected to the alumina arc tube, the main component of the non-conductive inorganic substance component is alumina, The end on the region side is composed of a layer of only a non-conductive inorganic material component containing alumina as a main component, and at least in a region where a conductive inorganic material component is mixed with a non-conductive inorganic material component containing alumina as a main component. (3) A closed structure of a bulb, comprising a second non-conductive inorganic substance component having a lower melting point than alumina.
【請求項2】 前記第2の非導電性無機物質成分がシリ
カまたはシリカを主成分とするガラスであることを特徴
とする請求項1記載の管球の閉塞部構造体。
2. The structure according to claim 1, wherein the second non-conductive inorganic substance component is silica or glass containing silica as a main component.
JP12666798A 1998-04-22 1998-04-22 Tubular bulb closing part structure Pending JPH11307056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12666798A JPH11307056A (en) 1998-04-22 1998-04-22 Tubular bulb closing part structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12666798A JPH11307056A (en) 1998-04-22 1998-04-22 Tubular bulb closing part structure

Publications (1)

Publication Number Publication Date
JPH11307056A true JPH11307056A (en) 1999-11-05

Family

ID=14940897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12666798A Pending JPH11307056A (en) 1998-04-22 1998-04-22 Tubular bulb closing part structure

Country Status (1)

Country Link
JP (1) JPH11307056A (en)

Similar Documents

Publication Publication Date Title
US6232719B1 (en) High-pressure discharge lamp and method for manufacturing same
KR100538392B1 (en) Ceramic envelope device, lamp with such a device, and method of manufacture of such devices
US7438621B2 (en) Hermetical end-to-end sealing techniques and lamp having uniquely sealed components
US20070159105A1 (en) Hermetical lamp sealing techniques and lamp having uniquely sealed components
WO1996021940A1 (en) High pressure discharge lamp and production method thereof
WO2006007177A2 (en) Lamp comprising an end structure for supporting an arc electrode and receiving a dosing material, and methods of forming such lamp
US7615929B2 (en) Ceramic lamps and methods of making same
WO1999045570A1 (en) Electricity lead-in body for bulb and method for manufacturing the same
JP3528649B2 (en) Lamp cermets and ceramic discharge lamps
CZ95797A3 (en) High-pressure discharge lamp and process for producing thereof
JPH11162409A (en) High-pressure discharge lamp and its manufacture
JPH11307056A (en) Tubular bulb closing part structure
US8053990B2 (en) High intensity discharge lamp having composite leg
US7301282B2 (en) High pressure mercury lamps and sealing members therefor
CZ20012448A3 (en) Coupled body and high-pressure discharge lamp
JP3119264B2 (en) Tube with a closure made of functionally graded material
JP3806794B2 (en) Tube occlusion structure
JP3437547B2 (en) High pressure discharge lamp
JP3411810B2 (en) Ceramic discharge lamp
JP3827428B2 (en) Tube closure and tube
JPH11273626A (en) Ceramic discharge lamp
EP2284861A1 (en) Compound hid electric arc tube
JP3991109B2 (en) Functionally graded material and tube
JPH10280009A (en) Functionally gradient material, sealing member for lump and production thereof
JP2002367564A (en) Arc tube for metal vapor discharge lamp and its electrode system