JPH11304782A - Method for separating sample by liquid chromatograph - Google Patents

Method for separating sample by liquid chromatograph

Info

Publication number
JPH11304782A
JPH11304782A JP11532998A JP11532998A JPH11304782A JP H11304782 A JPH11304782 A JP H11304782A JP 11532998 A JP11532998 A JP 11532998A JP 11532998 A JP11532998 A JP 11532998A JP H11304782 A JPH11304782 A JP H11304782A
Authority
JP
Japan
Prior art keywords
eluent
eluate
peak
elution
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11532998A
Other languages
Japanese (ja)
Inventor
Kazuhiko Shimada
一彦 嶋田
Toshiki Kawabe
俊樹 川辺
Kazuyuki Oishi
和之 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP11532998A priority Critical patent/JPH11304782A/en
Publication of JPH11304782A publication Critical patent/JPH11304782A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a peak of each component sufficiently sharp and measure in a short time without adversely influencing separation, by feeding an eluate by a gradient elution method or step elution method, and lowering an elution power of the eluate in the halfway. SOLUTION: This method is useful for separating and determining a saccharified hemoglobin or the like requiring a short-time analysis. A column filled with a cation exchange filler is used for the separation and determination. An eluate is fed in a range of a salt concentration of 20-1000 mM, pH4-9 by a gradient elution method or step elution method. The salt concentration of the eluate is lowered to a range of 5-100 mM, pH 0.1-1 in the halfway, thereby decreasing an elution force of the eluate to separate a sample. Eluates A, B, C, D have different elution forces and can be adapted to be switched at a set time by a solenoid valve 1. The eluate is introduced by a feed pump 2 together with the sample introduced from a sample injection part 3 to a column 4, where each component is detected by a detector 5. Each peak is calculated by an integrator 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体クロマトグラ
フによる試料の分離方法に関する。
[0001] The present invention relates to a method for separating a sample by liquid chromatography.

【0002】[0002]

【従来の技術】液体クロマトグラフを用いて試料を分離
する場合、溶離液として一定の溶出力のものを一種類用
いる方法の他に、各成分のピークを鋭くし、分離度を改
善したり、測定時間を短縮したりするなどの目的のため
に、溶離液を勾配溶出法または段階溶出法によって送液
することが一般的に行われている。
2. Description of the Related Art When a sample is separated by using a liquid chromatograph, besides a method of using one having a constant solution power as an eluent, the peak of each component is sharpened to improve the degree of separation. For the purpose of shortening the measurement time and the like, the eluent is generally sent by a gradient elution method or a step elution method.

【0003】勾配溶出法は、グラジエント溶離法とも言
われ、溶離液の溶出力を弱いものからから強いものへと
時間的に直線的に上昇させる方法(図1参照)であり、
送液ポンプを複数台用いて、溶出力の異なる液を送液
し、その比率を連続的に変化させることにより、全体的
な溶出力を変化させる方法である。
[0003] The gradient elution method is also referred to as a gradient elution method, and is a method of linearly increasing the dissolving power of an eluent from weak to strong in time (see FIG. 1).
This is a method in which a plurality of liquid sending pumps are used to send liquids having different melt outputs and the ratio is continuously changed to change the overall melt output.

【0004】段階溶出法は、ステップワイズ溶離法とも
言われ、溶離液の溶出力を段階的に上昇させる方法(図
2参照)であり、送液ポンプ1台を用い、送液ポンプの
上流側で電磁弁等により溶出力の異なる液を切り替え、
段階的に溶出力を変化させる方法である。
[0004] The stepwise elution method is also called a stepwise elution method, and is a method of increasing the dissolving power of an eluent in a stepwise manner (see FIG. 2). Switch the liquids with different melt output by solenoid valve, etc.
This is a method of changing the melting power stepwise.

【0005】これらの方法において、溶離液の溶出力を
変化させるには、例えば、溶離液の極性、イオン強度、
pHなどが挙げられる。(以上の従来の技術について
は、日本分析化学会関東支部編、高速液体クロマトグラ
フィーハンドブック、39〜40頁、117〜119
頁、1985年)。
In these methods, to change the dissolution power of the eluent, for example, the polarity, ionic strength,
pH and the like. (The above conventional techniques are described in the Handbook of High Performance Liquid Chromatography, edited by the Japan Society for Analytical Chemistry, Kanto Chapter, pp. 39-40, 117-119
1985).

【0006】しかしながら、各成分の性質が類似してい
たり、短時間で溶出することが要求されていたりする場
合、勾配溶出法で勾配が大きすぎたり、段階溶出法で溶
出力を上げすぎたりすると、類似した性質の成分間でピ
ークが重なり、分離に悪影響を及ぼす恐れがある。そこ
で、このような場合、ピークが重なるポイントで勾配を
緩めたり、全くなくしたり、溶出力の上昇の程度を低く
したりしている。しかし、このような対策ではピークの
鋭さがなくなり、また、測定時間が延びたりするなど、
勾配溶出法または段階溶出法の利点が発揮されないこと
があった。
[0006] However, when the properties of the components are similar or when elution is required in a short time, if the gradient is too large in the gradient elution method or the dissolution output is too high in the step elution method, , Peaks may overlap between components having similar properties, which may adversely affect the separation. Therefore, in such a case, the slope is loosened or completely eliminated at the point where the peaks overlap, or the degree of increase in the melt output is reduced. However, such measures can reduce the sharpness of the peak and increase the measurement time.
In some cases, the advantages of the gradient elution method or the step elution method were not exhibited.

【0007】[0007]

【発明が解決しようとする課題】本発明はこのような問
題点に着目してなされたもので、本発明の目的は液体ク
ロマトグラフによる試料の分離に際して、勾配溶出法ま
たは段階溶出法で溶離液を送液する場合において、各成
分ピークを十分鋭くし、かつ分離に悪影響を与えず短時
間で測定できる分離方法を提供することにある。
DISCLOSURE OF THE INVENTION The present invention has been made in view of such problems, and an object of the present invention is to provide a gradient elution method or a step elution method for separating a sample by liquid chromatography. Is to provide a separation method in which each component peak is sufficiently sharpened and the measurement can be performed in a short time without adversely affecting the separation.

【0008】[0008]

【課題を解決するための手段】本発明は、液体クロマト
グラフによる試料の分離に際して、溶離液を勾配溶出法
または段階溶出法によって送液させ、その途中において
溶離液の溶出力を低下させることを特徴とする液体クロ
マトグラフによる試料の分離方法である。
SUMMARY OF THE INVENTION The present invention provides a method for separating a sample by liquid chromatography, in which an eluent is sent by a gradient elution method or a step elution method, and the dissolution output of the eluent is reduced during the separation. This is a characteristic method of separating a sample by liquid chromatography.

【0009】以下、本発明を詳細に説明する。本発明に
おいて、溶出力が低い溶離液とはピークの保持時間を遅
くするような溶離液のことを言い、溶出力が高い溶離液
とはピークの保持時間を早くするような溶離液のことを
言う。溶離液の溶出力を低下させるには、例えば、陽イ
オン交換クロマトグラフィーでは、溶離液の塩濃度を下
げる方法、pHを下げる方法などが挙げられ、陰イオン
交換クロマトグラフィーでは、溶離液の塩濃度を下げる
方法、pHを上げる方法などが挙げられ、逆相クロマト
グラフィーでは、溶離液の有機溶媒の極性を上げる方
法、順相クロマトグラフィーでは、溶離液の有機溶媒の
極性を下げる方法が挙げられる。
Hereinafter, the present invention will be described in detail. In the present invention, an eluent with a low elution power refers to an eluent that delays the retention time of a peak, and an eluent with a high elution power refers to an eluent that shortens the retention time of a peak. To tell. In order to lower the dissolution power of the eluent, for example, in cation exchange chromatography, a method of lowering the salt concentration of the eluent, a method of lowering the pH, and the like can be mentioned. In reverse phase chromatography, a method of increasing the polarity of the organic solvent of the eluent is used, and in normal phase chromatography, a method of reducing the polarity of the organic solvent of the eluent is used.

【0010】陽イオン交換液体クロマトグラフィーの充
填剤としては、シリカ系または有機高分子系等の基材
に、官能基としてカルボキシル基またはスルホン酸基等
を導入したものが使用できる。陰イオン交換液体クロマ
トグラフィーの充填剤としては、シリカ系または有機高
分子系等の基材に、官能基として第3級アミノ基または
第4級アンモニウム基等を導入したものが使用できる。
イオン交換液体クロマトグラフィーの緩衝液としては、
リン酸、クエン酸、フタル酸、ホウ酸、炭酸系等のもの
の他、2−(N−モリホリノ)エタンスルホン酸(ME
S)、N−2−ヒドロキシエチルピペラジン−N’−2
−エタンスルホン酸(HEPES)、ビス(2−ヒドロ
キシエチル)イミノトリス−(ヒドロキシメチル)メタ
ン(Bis−Tris)等のGoodの緩衝液も使用で
きる。
As a filler for cation exchange liquid chromatography, a material obtained by introducing a carboxyl group or a sulfonic acid group or the like as a functional group into a silica or organic polymer base material can be used. As a filler for anion exchange liquid chromatography, a filler obtained by introducing a tertiary amino group, a quaternary ammonium group, or the like as a functional group into a silica-based or organic polymer-based substrate can be used.
As a buffer for ion exchange liquid chromatography,
Phosphoric acid, citric acid, phthalic acid, boric acid, carbonic acid, etc., and 2- (N-morpholino) ethanesulfonic acid (ME
S), N-2-hydroxyethylpiperazine-N'-2
Good's buffers such as ethanesulfonic acid (HEPES), bis (2-hydroxyethyl) iminotris- (hydroxymethyl) methane (Bis-Tris) can also be used.

【0011】逆相クロマトグラフィーの充填剤として
は、シリカ系または有機高分子系等の基材に、官能基と
してオクタデシル基、オクチル基、フェニル基等を導入
したものが使用できる。溶離液の溶媒としては、水、ア
セトニトリル、メタノール、エタノール等、一般に逆相
クロマトグラフィーに使用されてきた溶媒のいずれも使
用できる。順相クロマトグラフィーの充填剤としては、
シリカゲル、アルミナ等が使用できる。溶離液の溶媒と
しては、ベンゼン、トルエン、キシレン、ヘキサン等、
一般に順相クロマトグラフィーに使用されてきた溶媒の
いずれも使用できる。
As a packing material for reverse phase chromatography, a filler obtained by introducing an octadecyl group, an octyl group, a phenyl group, or the like as a functional group into a silica-based or organic polymer-based substrate can be used. As a solvent of the eluent, any of the solvents generally used for reverse phase chromatography, such as water, acetonitrile, methanol, ethanol, and the like can be used. As a packing material for normal phase chromatography,
Silica gel, alumina and the like can be used. As eluent solvent, benzene, toluene, xylene, hexane, etc.
Any of the solvents generally used for normal phase chromatography can be used.

【0012】本発明の方法の利用分野としては、特に限
定されないが、短時間での分析が要求される医療分野の
分析(例えば、糖尿病の診断の指標とされる糖化ヘモグ
ロビンなどの分離定量)に特に有用である。
Although the field of application of the method of the present invention is not particularly limited, it can be used for analysis in the medical field which requires analysis in a short time (for example, separation and quantification of glycated hemoglobin or the like which is used as an index for diagnosing diabetes). Particularly useful.

【0013】本発明の方法を糖化ヘモグロビンの分離定
量に用いる場合について以下述べる。糖化ヘモグロビン
の分離定量には、陽イオン交換充填剤が充填されたカラ
ムを用い、溶離液を塩濃度20〜1000mM、pH4
〜9の範囲で勾配溶出法または段階溶出法によって送液
させ、その途中において溶離液の塩濃度を5〜100m
M、pHを0.1〜1の範囲で下げることによって溶離
液の溶出力を低下させて分離を行う。
The case where the method of the present invention is used for separation and quantification of glycated hemoglobin will be described below. For separation and quantification of glycated hemoglobin, a column packed with a cation exchange packing material was used, and the eluent was used at a salt concentration of 20 to 1000 mM, pH4.
The solution is fed by the gradient elution method or the step elution method in the range of ~ 9, and the salt concentration of the eluate is 5-100m
The separation is performed by lowering the dissolution power of the eluent by lowering the M and pH in the range of 0.1 to 1.

【0014】本発明の方法を段階溶出法によって行う場
合の、装置の構成例を図3に示した。溶離液A,B,
C,Dは、各々溶出力の異なる(例えば、塩濃度、p
H、極性などにおいて異なる)ものであり、電磁弁1に
よって設定時間に各溶離液に切り替えられるように構成
されている。溶離液は、送液ポンプ2により、試料注入
部3から導入された試料とともにカラム4に導かれ、各
成分が検出器5により検出される。各ピークの面積、高
さなどはインテグレータ6により算出される。
FIG. 3 shows an example of the structure of the apparatus when the method of the present invention is carried out by the step elution method. Eluents A, B,
C and D have different melting powers (for example, salt concentration, p
H, polarity, etc.), and is configured to be switched to each eluent at a set time by the electromagnetic valve 1. The eluent is guided to the column 4 together with the sample introduced from the sample injection unit 3 by the liquid sending pump 2, and each component is detected by the detector 5. The area and height of each peak are calculated by the integrator 6.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施例について説
明する。 実施例1 図3に示した装置を用いて、血液試料中のヘモグロビン
類の分離定量を行った。カラムには陽イオン交換樹脂
(ミクロネックスA1c HS−IV、積水化学工業社
製)を充填したものを用いた。溶離液Aとして170m
M、溶離液Bとして190mM、溶離液Cとして150
mM、溶離液Dとして330mMの、それぞれリン酸緩
衝液でpH6のものを用いた。試料としては、健常人か
ら採血した血液を界面活性剤(トリトンX−100を
0.01重量%含有するリン酸緩衝液、pH7)を用い
て100倍に溶血、希釈したものを用いた。2分間でヘ
モグロビンA1cピーク(後述のピークP5)を各ヘモ
グロビン類のピークから分離定量するように溶離液を段
階溶出法を用いて切り替えた。溶離液の切り替え条件お
よび得られたクロマトグラムを図4に示した。すなわ
ち、溶離液は0〜38秒は溶離液Aを、38〜58秒は
溶出力のより高い溶離液Bを、58〜78秒はより溶出
力の低い溶離液Cを、78〜100秒は溶出力の最も高
い溶離液Dを、100〜120秒は溶離液Aを再び送液
した。ピークの検出には415nmの吸収強度を用い
た。
Embodiments of the present invention will be described below. Example 1 Separation and quantification of hemoglobins in a blood sample was performed using the apparatus shown in FIG. A column filled with a cation exchange resin (Micronex A1c HS-IV, manufactured by Sekisui Chemical Co., Ltd.) was used. 170m as eluent A
M, eluent B: 190 mM, eluent C: 150 mM
mM and eluent D were each 330 mM, each of which was a phosphate buffer at pH 6. As a sample, blood collected from a healthy person was hemolyzed and diluted 100-fold using a surfactant (phosphate buffer containing 0.01% by weight of Triton X-100, pH 7). The eluent was switched using the stepwise elution method so that the hemoglobin A1c peak (peak P5 described later) could be separated and quantified from the peak of each hemoglobin in 2 minutes. FIG. 4 shows the eluent switching conditions and the obtained chromatogram. That is, the eluent is eluent A for 0 to 38 seconds, eluent B having a higher elution power for 38 to 58 seconds, eluent C having a lower elution power for 58 to 78 seconds, and eluent C for a lower elution power for 78 to 100 seconds. The eluent D having the highest dissolution output was sent again for 100 to 120 seconds. 415 nm absorption intensity was used for peak detection.

【0016】図4のクロマトグラムにおいて、ピークP
1〜P3は、ヘモグロビンA1a(HbA1a)及びヘ
モグロビンA1b(HbA1b)類であり、ピークP4
はヘモグロビンF(HbF)であり、ピークP5はヘモ
グロビンA1c(HbA1c)であり、ピークP6はヘ
モグロビンA0(HbA0)である。
In the chromatogram of FIG.
1 to P3 are hemoglobin A1a (HbA1a) and hemoglobin A1b (HbA1b), and peak P4
Is hemoglobin F (HbF), peak P5 is hemoglobin A1c (HbA1c), and peak P6 is hemoglobin A0 (HbA0).

【0017】上記の方法では、溶離液Aから溶離液Bへ
の切り替えにより溶出力を上昇させたことによりピーク
P6が早く溶出して、HbA1cのピークであるピーク
P5の正確な検出を妨害するのを防ぐため、溶離液Bか
ら溶出力のより低い溶離液Cへの切り替えを行ってい
る。
In the above-mentioned method, the peak P6 is eluted earlier due to an increase in the dissolution output by switching from the eluent A to the eluent B, which hinders accurate detection of the peak P5 which is the HbA1c peak. In order to prevent this, the eluent B is switched to the eluent C having a lower dissolution output.

【0018】再現性をみるために、この方法で同一試料
について10回繰り返し測定し、次式によりHbA1c
濃度を算出した。10回の各測定値、その平均値および
変動係数(単位%)(標準偏差÷平均値×100)を表
1に示した。 HbA1c濃度(%)=ピークP5の面積÷(ピークP
1の面積+ピークP2の面積+ピークP3の面積+ピー
クP4の面積+ピークP5の面積+ピークP6の面積)
×100
In order to check the reproducibility, the same sample was repeatedly measured 10 times by this method.
The concentration was calculated. Table 1 shows ten measured values, their average values, and their coefficient of variation (unit%) (standard deviation % average value × 100). HbA1c concentration (%) = area of peak P5 / (peak P
(1 area + peak P2 area + peak P3 area + peak P4 area + peak P5 area + peak P6 area)
× 100

【0019】比較例1 実施例1における溶離液Cを用いなかった他は、実施例
1に準じて実施例1と同一の試料中のヘモグロビン類の
分離定量を行った。溶離液の切り替え条件および得られ
たクロマトグラムを図5に示した。すなわち、溶離液は
0〜38秒は溶離液Aを、38〜78秒は溶出力のより
高い溶離液Bを、78〜100秒は溶出力の最も高い溶
離液Dを、100〜120秒は溶離液Aを再び送液し
た。溶離液Aから溶離液Bへの切り替えにより溶出力を
上昇させたことが影響し、図5に○で囲んだように、ピ
ークP6の一部が早く溶出し、ピークP5と重なってい
ることが分かる。再現性をみるために、この方法で同一
試料について10回繰り返し測定し、実施例1と同様に
してHbA1c濃度を算出した。10回の各測定値、そ
の平均値および変動係数を表1に示した。
Comparative Example 1 Separation and quantification of hemoglobins in the same sample as in Example 1 was performed in the same manner as in Example 1 except that the eluent C in Example 1 was not used. FIG. 5 shows the eluent switching conditions and the obtained chromatogram. That is, the eluent is eluent A for 0 to 38 seconds, eluent B having a higher elution power for 38 to 78 seconds, eluent D having the highest elution power for 78 to 100 seconds, and eluent D having the highest elution power for 100 to 120 seconds. The eluent A was sent again. The effect of raising the dissolution output by switching from the eluent A to the eluent B had an effect, and as indicated by a circle in FIG. 5, a part of the peak P6 eluted earlier and overlapped with the peak P5. I understand. In order to check the reproducibility, the same sample was repeatedly measured 10 times by this method, and the HbA1c concentration was calculated in the same manner as in Example 1. Table 1 shows the ten measured values, the average value and the coefficient of variation.

【0020】比較例2 実施例1における溶離液Cを用いなかったこと、および
溶離液Bの代わりに溶離液B1(180mM、pH6の
リン酸緩衝液)を用いた他は、実施例1に準じて実施例
1と同一の試料中のヘモグロビン類の分離定量を行っ
た。溶離液の切り替え条件および得られたクロマトグラ
ムを図6に示した。すなわち、溶離液は0〜38秒は溶
離液Aを、38〜78秒は溶離液B1を、78〜100
秒は溶出力の最も高い溶離液Dを、100〜120秒は
溶離液Aを再び送液した。比較例1に比較して、溶離液
Aから溶離液Bよりも溶出力の低い溶離液B1へ切り替
えたため、ピークP6の一部が早く溶出することはない
が、ピークP5は鋭くはならず、図6に○で囲んだよう
に、ピークP5にピークP4およびピークP6が一部重
なっていることが分かる。再現性をみるために、この方
法で同一試料について10回繰り返し測定し、実施例1
と同様にしてHbA1c濃度を算出した。10回の各測
定値、その平均値および変動係数を表1に示した。
Comparative Example 2 The procedure of Example 1 was repeated, except that the eluent C in Example 1 was not used, and the eluent B1 (180 mM, pH 6 phosphate buffer) was used instead of the eluent B. Thus, the hemoglobins in the same sample as in Example 1 were separated and quantified. The conditions for switching the eluent and the resulting chromatogram are shown in FIG. That is, the eluent is eluent A for 0 to 38 seconds, eluent B1 for 38 to 78 seconds, and 78 to 100 seconds.
In the second, the eluent D having the highest solution output was sent, and in the 100 to 120 seconds, the eluent A was sent again. Compared to Comparative Example 1, since the eluent A was switched to the eluent B1 having a lower dissolution output than the eluent B, a part of the peak P6 did not elute early, but the peak P5 did not become sharp, As can be seen from FIG. 6, the peak P4 partially overlaps the peak P4 and the peak P6 as circled in FIG. In order to check reproducibility, the same sample was repeatedly measured 10 times by this method.
The HbA1c concentration was calculated in the same manner as described above. Table 1 shows the ten measured values, the average value and the coefficient of variation.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【発明の効果】本発明に係る液体クロマトグラフによる
試料の分離方法の構成は、上述の通りであり、本発明の
方法を用いると、勾配溶出法または段階溶出法におい
て、各成分ピークを十分鋭くでき、かつ各成分ピーク間
の分離も良好となる。その結果として再現性等の性能を
向上できる。
The structure of the method for separating a sample by liquid chromatography according to the present invention is as described above. When the method of the present invention is used, the peaks of the respective components are sufficiently sharpened in the gradient elution method or the step elution method. And the separation between component peaks is also good. As a result, performance such as reproducibility can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】勾配溶出法を説明するための説明図。FIG. 1 is an explanatory diagram for explaining a gradient elution method.

【図2】段階溶出法を説明するための説明図。FIG. 2 is an explanatory diagram for explaining a step elution method.

【図3】段階溶出法によって行う場合の、装置の構成例
を示す図。
FIG. 3 is a diagram showing an example of the configuration of an apparatus when performing the step elution method.

【図4】実施例1の溶離液の切り替え条件および得られ
たクロマトグラムを示す図。
FIG. 4 is a diagram showing conditions for switching the eluent of Example 1 and the obtained chromatogram.

【図5】比較例1の溶離液の切り替え条件および得られ
たクロマトグラムを示す図。
FIG. 5 is a diagram showing switching conditions of an eluent of Comparative Example 1 and the obtained chromatogram.

【図6】比較例2の溶離液の切り替え条件および得られ
たクロマトグラムを示す図。
FIG. 6 is a diagram showing switching conditions of the eluent of Comparative Example 2 and the obtained chromatogram.

【符号の説明】[Explanation of symbols]

1 電磁弁 2 送液ポンプ 3 試料注入部 4 カラム 5 検出器 6 インテグレータ A,B,B1,C,D 溶離液 DESCRIPTION OF SYMBOLS 1 Solenoid valve 2 Liquid sending pump 3 Sample injection part 4 Column 5 Detector 6 Integrator A, B, B1, C, D Eluent

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 液体クロマトグラフによる試料の分離に
際して、溶離液を勾配溶出法または段階溶出法によって
送液させ、その途中において溶離液の溶出力を低下させ
ることを特徴とする液体クロマトグラフによる試料の分
離方法。
1. A sample according to a liquid chromatograph, wherein an eluent is sent by a gradient elution method or a stepwise elution method when a sample is separated by a liquid chromatograph, and the dissolution output of the eluate is reduced in the middle of the eluent. Separation method.
JP11532998A 1998-04-24 1998-04-24 Method for separating sample by liquid chromatograph Withdrawn JPH11304782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11532998A JPH11304782A (en) 1998-04-24 1998-04-24 Method for separating sample by liquid chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11532998A JPH11304782A (en) 1998-04-24 1998-04-24 Method for separating sample by liquid chromatograph

Publications (1)

Publication Number Publication Date
JPH11304782A true JPH11304782A (en) 1999-11-05

Family

ID=14659877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11532998A Withdrawn JPH11304782A (en) 1998-04-24 1998-04-24 Method for separating sample by liquid chromatograph

Country Status (1)

Country Link
JP (1) JPH11304782A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093407A1 (en) * 2004-03-26 2005-10-06 Isuzu Motors Limited Method and apparatus for pre-treating polynuclear aromatic hydrocarbon before analyzing
JP2008510024A (en) * 2004-08-12 2008-04-03 リポクセン テクノロジーズ リミテッド Separation
US20200393472A1 (en) * 2018-04-18 2020-12-17 Sekisui Medical Co., Ltd. Haemoglobin analysis method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093407A1 (en) * 2004-03-26 2005-10-06 Isuzu Motors Limited Method and apparatus for pre-treating polynuclear aromatic hydrocarbon before analyzing
US7628922B2 (en) 2004-03-26 2009-12-08 Isuzu Motors Limited Preanalysis treatment method and apparatus for analysis of polycyclic aromatic hydrocarbons
JP2008510024A (en) * 2004-08-12 2008-04-03 リポクセン テクノロジーズ リミテッド Separation
US20200393472A1 (en) * 2018-04-18 2020-12-17 Sekisui Medical Co., Ltd. Haemoglobin analysis method

Similar Documents

Publication Publication Date Title
Flanagan et al. High performance liquid chromatographic analysis of basic drugs on silica columns using non-aqueous ionic eluents
Quirino et al. On-line concentration of neutral analytes for micellar electrokinetic chromatography. 5. Field-enhanced sample injection with reverse migrating micelles
Eckerbom et al. Improved method for analysis of glycated haemoglobin by ion exchange chromatography
Figeys et al. Data-dependent modulation of solid-phase extraction capillary electrophoresis for the analysis of complex peptide and phosphopeptide mixtures by tandem mass spectrometry: application to endothelial nitric oxide synthase
JPH09510792A (en) Capillary electrophoresis of glycosylated proteins
EP2447712A2 (en) Calibration method in measurement of hemoglobin A1c
Yao et al. Simultaneous determination of aminothiols, ascorbic acid and uric acid in biological samples by capillary electrophoresis with electrochemical detection
Soini et al. Electrochromatographic solid-phase extraction for determination of cimetidine in serum by micellar electrokinetic capillary chromatography
JP2010164579A (en) Method of measuring hemoglobin
Jeppsson et al. Simplified determination of hemoglobin A1c in diabetic patients by use of electrofocusing
JP3012685B2 (en) Method and apparatus for analyzing amino acids in biological fluid
Hanash et al. Separation of human hemoglobins by ion exchange high performance liquid chromatography
JP2000111539A (en) Measuring method for hemoglobins
JPH11304782A (en) Method for separating sample by liquid chromatograph
Snyder et al. High-performance liquid chromatographic computer simulation based on a restricted multi-parameter approach: II. Applications
Fenn et al. Determination of zinc pyrithione in hair care products by normal phase liquid chromatography
JP4473999B2 (en) Column cleaning solution
JPH02141659A (en) Analysis of sample and liquid chromatography apparatus
JP3053664B2 (en) Apparatus for analyzing hemoglobins and method for analyzing hemoglobins using liquid chromatography
Jager et al. Novel approach for the analysis of glycated hemoglobin using capillary isoelectric focusing with chemical mobilization
Krejči et al. Enrichment techniques and trace analysis with microbore columns in liquid chromatography
Stroink et al. Development of an on-line size exclusion chromatographic—reversed-phase liquid chromatographic two-dimensional system for the quantitative determination of peptides with concentration prior to reversed-phase liquid chromatographic separation
Iguchi et al. Development of an isotope dilution mass spectrometry assay for HbA1c based on enzyme-cleaved peptide analysis
Lin et al. Capillary zone electrophoresis: an additional technique for the identification of hemoglobin variants
JP2001221788A (en) Measuring method for hemoglobin and the like

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040928

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051207

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060209