JPH11304680A - Impact tester - Google Patents

Impact tester

Info

Publication number
JPH11304680A
JPH11304680A JP11304698A JP11304698A JPH11304680A JP H11304680 A JPH11304680 A JP H11304680A JP 11304698 A JP11304698 A JP 11304698A JP 11304698 A JP11304698 A JP 11304698A JP H11304680 A JPH11304680 A JP H11304680A
Authority
JP
Japan
Prior art keywords
collision
impact
light
photodetector
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11304698A
Other languages
Japanese (ja)
Inventor
Kazuo Suzuki
一男 鈴木
Takanori Minamitani
孝典 南谷
Shigeyuki Takahashi
重之 高橋
Tadayasu Machida
任康 町田
Takeaki Shimauchi
岳明 島内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP11304698A priority Critical patent/JPH11304680A/en
Publication of JPH11304680A publication Critical patent/JPH11304680A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the impact force measurement of a light and small object to be tested by processing signals from photodetectors obtained at the time when the object to be tested passes through two band-shaped parallel light and collides with a collision plate, measuring the time difference of passage, and computing an impact force. SOLUTION: The collision between an object to be tested 7 and a collision plate 6 occurs simultaneously with the complete passage of the object to be tested 7 through two band-shaped parallel light according to the location adjustment of a displacement detector 10 performed in advance. The object to be tested 7 is bounced after collision and starts to move in the opposite direction. Then by inputting signals obtained from the first and second photodetectors to an analyzing device 20, it is possible to measure the difference t1 between the first rise time of the output signals of the first and second photodetectors, the time t2 during which the output signal of the second photodetector continues to be of a maximum amplitude from the first rise, and the difference t3 between the fall time of the second photodetector and the fall time of the first photodetector. As a result, it becomes possible to obtain various amounts on the impact of the object to be tested by the analyzing device 20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、衝突の前後におけ
る被試験物の速度や衝撃作用時間や衝撃の大きさを測定
する機能を備えた衝撃試験機に関し、特に被試験物が小
さくて軽い場合に効果が大きい衝撃試験機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impact tester having a function of measuring the speed, impact action time and magnitude of an impact before and after a collision, particularly when the specimen is small and light. The present invention relates to an impact tester that is highly effective.

【0002】[0002]

【従来の技術】従来、衝撃試験機における衝撃を与える
方法としては、振り上げたハンマーで被試験物を叩く方
法や、被試験物を取り付けた部材の自由落下により衝撃
を与える方法が知られている。
2. Description of the Related Art Conventionally, as a method of applying an impact in an impact tester, a method of hitting a test object with a swung hammer and a method of applying an impact by free fall of a member to which the test object is attached are known. .

【0003】ハンマー衝撃試験機は通常衝撃の大きさを
同時に測定しようとすると被試験物に加速度ピックアッ
プを取り付けて試験を行う。また被試験物を取り付けた
部材の自由落下による衝撃試験機では、部材に取り付け
た加速度ピックアップを用いて衝撃の大きさを測定す
る。
[0003] A hammer impact tester usually carries out a test by attaching an acceleration pickup to an object to be measured in order to simultaneously measure the magnitude of the impact. Further, in an impact tester using a free fall of a member to which a test object is attached, the magnitude of impact is measured using an acceleration pickup attached to the member.

【0004】[0004]

【発明が解決しようとする課題】衝撃の大きさを正確に
測定するには加速度ピックアップを直接被試験物に取り
付けることが望ましいが、ハンマー衝撃試験機では加速
度ピックアップの質量が被試験物の質量に対して無視で
きない場合には直接加速度ピックアップを取り付けると
与える衝撃が被試験物単体の時と異なってしまう。した
がってハンマー衝撃試験機を用いて、小さいまたは軽い
被試験物に与える衝撃の大きさを正確に把握することは
困難である。
In order to accurately measure the magnitude of the impact, it is desirable to attach the acceleration pickup directly to the DUT. However, in a hammer impact tester, the mass of the acceleration pickup is equal to the mass of the DUT. On the other hand, if it cannot be neglected, the impact given by directly attaching the acceleration pickup differs from that of the test object alone. Therefore, it is difficult to accurately grasp the magnitude of an impact given to a small or light test object using a hammer impact tester.

【0005】また被試験物を取り付けた部材の自由落下
を利用した衝撃試験機においては、被試験物が小さく軽
いものであっても加速度ピックアップはその部材に取り
付ければその点は問題ないものの、被試験物の固定にお
いて問題が生じる。すなわち本来被試験物上に加速度ピ
ックアップが固定されていることが必要であるが、この
方式では被試験物と加速度ピックアップの間に部材を介
在させた形となり、被試験物が受ける衝撃と加速度ピッ
クアップが受ける衝撃が異なる。また被試験物が、部材
に固定するための穴をもっていない場合はよりその違い
が大きくなる。しばしば接着剤による固定方法が採られ
るが、その場合被試験物の再利用が不可能になってしま
う。
In an impact tester utilizing the free fall of a member to which a DUT is attached, even if the DUT is small and light, the accelerometer can be mounted on that member without any problem. Problems arise in fixing the specimen. In other words, it is necessary that the acceleration pickup is fixed on the DUT, but in this method, a member is interposed between the DUT and the acceleration pickup. Impacts are different. Further, when the test object does not have a hole for fixing to the member, the difference becomes larger. Often, a fixing method using an adhesive is adopted, but in that case, it is impossible to reuse the test object.

【0006】以上の点から、加速度ピックアップを直接
取り付けて衝撃試験を行うことができない軽くて小さな
被試験物に対して、その衝撃の大きさを測定することが
課題である。
In view of the above, it is an object to measure the magnitude of the impact on a light and small test object which cannot be subjected to an impact test by directly attaching an acceleration pickup.

【0007】上記課題に対して、軽くて小さな被試験物
でもその衝撃の大きさを測定する方法と装置を提供する
ことを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method and an apparatus for measuring the magnitude of an impact even on a light and small test object.

【0008】[0008]

【課題を解決するための手段】本発明においては、ベー
スプレートと、ベースプレートに固定された支柱と、支
柱の先端に取り付けられた軸受けと、軸受けに勘合する
回転可能な腕と、腕の先端に被試験物を搭載することが
可能な載物台と、腕が回転し鉛直方向に来たとき被試験
物が衝突を起こすように配置された衝突板と、被試験物
が衝突板に衝突するときちょうど2本の帯状の平行光を
通過し終わるように配置された前述の2本の帯状の平行
光を発する光源と、その光源からの光を検出する2つの
光検出器と、その光検出器からの信号を処理して時間差
を測定することで衝撃の大きさを算出する解析装置と、
その結果を表示する表示器とから構成されることを特徴
としている。
According to the present invention, a base plate, a support fixed to the base plate, a bearing attached to a tip of the support, a rotatable arm fitted to the bearing, and a cover attached to the tip of the arm. A stage on which a test object can be mounted, a collision plate arranged so that the test object causes a collision when the arm rotates and comes in a vertical direction, and when the test object collides with the collision plate A light source that emits the above-mentioned two strips of parallel light arranged so as to pass through exactly two strips of parallel light, two photodetectors that detect light from the light sources, and the photodetector An analyzer that calculates the magnitude of the impact by processing the signal from and measuring the time difference,
And a display for displaying the result.

【0009】[0009]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。図1は本発明の原理に基づいて構
成した速度測定器をもつ衝撃試験機の側面図である。衝
撃試験機は主にベースプレート1と、ベースプレート1
に固定された支柱2と、支柱2の上部に設置された軸受
け3と、その軸受け3に勘合する回転軸を有する腕4
と、腕4の先端に取り付けられた被試験物7を載せる載
物台5と、ベースプレート1に固定された衝突板6と、
腕4を任意の角度で固定するための円弧板8と、円弧板
8上を動くことが可能でかつ腕4を一時的に固定する固
定解放装置9と、被試験物7の運動を調べるための変位
検出器10と、その変位検出器10からの信号を処理し
て被試験物の速度や受けた衝撃の大きさを求める解析装
置20と、その解析結果を表示する表示器21と、変位
検出器10の位置を微調整可能にする位置調整器22と
から構成される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a side view of an impact tester having a speed measuring device constructed based on the principle of the present invention. The impact tester mainly consists of base plate 1 and base plate 1
, A bearing 3 installed on the top of the support 2, and an arm 4 having a rotating shaft fitted to the bearing 3.
A stage 5 on which the DUT 7 mounted on the tip of the arm 4 is placed, a collision plate 6 fixed to the base plate 1,
An arc plate 8 for fixing the arm 4 at an arbitrary angle, a fixing release device 9 that can move on the arc plate 8 and temporarily fix the arm 4, and for examining the movement of the DUT 7. A displacement detector 10, an analyzer 20 for processing the signal from the displacement detector 10 to obtain the speed of the DUT and the magnitude of the impact received, a display 21 for displaying the analysis result, A position adjuster 22 that enables fine adjustment of the position of the detector 10.

【0010】図2を用いて変位検出器10の構成を説明
する。変位検出器10は鉛直方向に長い2本の帯状平行
光を発する光源11と、2本の平行光を別々に検出する
第1の光検出器12と第2の光検出器13とからなって
いる。光源11と第1の光検出器12と第2の光検出器
13は相対するように配置され、2本の帯状平行光を被
試験物が通過するように高さ方向において調整されてい
る。
The configuration of the displacement detector 10 will be described with reference to FIG. The displacement detector 10 includes a light source 11 that emits two strip-shaped parallel lights that are long in the vertical direction, and a first light detector 12 and a second light detector 13 that separately detect the two parallel lights. I have. The light source 11, the first photodetector 12, and the second photodetector 13 are arranged so as to face each other, and are adjusted in the height direction so that the test object passes two strip-shaped parallel lights.

【0011】次に以上の構成による衝撃試験機の動作を
説明する。
Next, the operation of the impact tester having the above configuration will be described.

【0012】まず衝撃試験を行う前の準備から説明す
る。腕4を鉛直方向に垂らした状態で載物台5に被試験
物7を載せる。このとき被試験物7が衝突板6に接触し
た状態になり、位置調整器22によって変位検出器10
を図1において右から左へとゆっくり動かしていく。第
1の光検出器12は初め被試験物7を検出していないの
でその出力信号は最大振幅となっている。やがて被試験
物7を検出するとその出力信号は減少し始める。この減
少し始める直前において変位検出器10の移動を停止す
る。
First, preparations before conducting an impact test will be described. The DUT 7 is placed on the stage 5 with the arm 4 hanging down in the vertical direction. At this time, the DUT 7 comes into contact with the collision plate 6, and the position detector 22 controls the displacement detector 10.
Is slowly moved from right to left in FIG. Since the first photodetector 12 does not detect the DUT 7 at first, its output signal has the maximum amplitude. When the DUT 7 is detected, its output signal starts to decrease. Immediately before starting to decrease, the movement of the displacement detector 10 is stopped.

【0013】次に腕4を予め定めた角度まで持ち上げて
固定解放装置9で一時固定し、その後固定を解除すると
腕4は回転運動を開始し、同時に被試験物7も回転運動
を開始する。
Next, the arm 4 is lifted to a predetermined angle and temporarily fixed by the fixing and releasing device 9, and when the fixing is released, the arm 4 starts rotating and the DUT 7 starts rotating at the same time.

【0014】第1の光検出器12と第2の光検出器13
の出力信号の様子を図3を用いて説明する。腕4が重力
により徐々に加速されるが、このとき第1の光検出器1
2と第2の光検出器13はそれらの前に光を遮るものが
何も無いので最大の振幅を示す。
A first light detector 12 and a second light detector 13
Will be described with reference to FIG. The arm 4 is gradually accelerated by gravity. At this time, the first photodetector 1
The second and second photodetectors 13 exhibit the largest amplitude since there is nothing blocking them before them.

【0015】やがて被試験物7が第2の光検出器に入射
する帯状平行光に差し掛かると第2の光検出器13の振
幅は減少し始める。さらに載物台5が前述の帯状平行光
に掛かり始めると第2の光検出器13の振幅はより減少
し、最小の振幅を示す。
Then, when the device under test 7 approaches the strip parallel light incident on the second photodetector, the amplitude of the second photodetector 13 starts to decrease. Further, when the stage 5 starts to be hit by the above-mentioned band-shaped parallel light, the amplitude of the second photodetector 13 further decreases and shows the minimum amplitude.

【0016】さらに腕4が進んでいくと前述の帯状平行
光を遮るものが被試験物7のみとなり、若干第2の光検
出器13の出力信号は増加する。さらに腕4が進んでい
くと被試験物7が完全に通過してしまい、第2の光検出
器13の出力信号は再び元の最大振幅に復帰する。
As the arm 4 further advances, only the DUT 7 blocks the above-mentioned band parallel light, and the output signal of the second photodetector 13 slightly increases. As the arm 4 further advances, the DUT 7 completely passes, and the output signal of the second photodetector 13 returns to the original maximum amplitude again.

【0017】第1の光検出器12に入射する帯状平行光
は、第2の光検出器13に入射する帯状平行光より図1
において僅かに左にずれているので、第2の光検出器1
3の信号の変化と同じ変化が時間的に僅かに遅れて現れ
る。
The strip parallel light incident on the first photodetector 12 is different from the strip parallel light incident on the second photodetector 13 in FIG.
Is slightly shifted to the left, the second photodetector 1
The same change as the change of the signal of No. 3 appears slightly later in time.

【0018】被試験物7が2本の帯状平行光を完全に通
過したと同時に、予め行っていた変位検出器10の位置
調整の通りに、被試験物7と衝突板6の衝突が起こる。
衝突板6による被試験物7への衝撃作用時間は両者の材
質によって変化するが、今回用いたテフロン製の衝突板
6と真鍮製の被試験物7ではおよそ数百マイクロ秒であ
った。この衝撃作用時間の間は第1の光検出器12と第
2の光検出器13の出力信号は最大振幅のままである。
At the same time as the test object 7 has completely passed through the two parallel beams of light, the test object 7 and the collision plate 6 collide with each other in accordance with the previously performed adjustment of the position of the displacement detector 10.
The impact action time of the impact plate 6 on the DUT 7 varies depending on the material of both, but the impact plate 6 made of Teflon and the DUT 7 made of brass used this time were about several hundred microseconds. During this shock operation time, the output signals of the first photodetector 12 and the second photodetector 13 remain at the maximum amplitude.

【0019】腕4と載物台5は衝突板6と衝突しないよ
うに設計されているので、被試験物7と衝突板6の衝突
の後、そのまま以前の回転運動を継続する。被試験物7
は衝突後に跳ね返り、それまでと逆方向の運動を始め
る。載物台5と被試験物7の両者の接触面は摩擦が非常
に小さくしてあるので、被試験物7の跳ね返りの運動を
妨げる力は非常に小さく、ほとんど影響を与えない。
Since the arm 4 and the stage 5 are designed so as not to collide with the collision plate 6, after the collision between the DUT 7 and the collision plate 6, the previous rotary motion is continued. DUT 7
Bounces off after the collision and begins to move in the opposite direction. Since the friction between the contact surface of both the stage 5 and the DUT 7 is very small, the force that hinders the bouncing motion of the DUT 7 is very small and has little effect.

【0020】したがって、跳ね返るとすぐに第1の光検
出器12に入射する帯状平行光を遮り始め、第1の光検
出器12の出力信号は減少し始める。やがて被試験物7
が前述の帯状平行光を通過してしまうと第1の光検出器
12の出力信号は最大振幅に復帰する。
Therefore, as soon as it bounces, it starts to block the band parallel light incident on the first photodetector 12, and the output signal of the first photodetector 12 starts to decrease. Test object 7
Has passed through the above-mentioned band parallel light, the output signal of the first photodetector 12 returns to the maximum amplitude.

【0021】第2の光検出器13の出力信号の変化は、
今度は第1の光検出器12の出力信号の変化と同じ変化
が時間的に僅かに遅れて現れることになる。
The change in the output signal of the second photodetector 13 is as follows:
This time, the same change as the change in the output signal of the first photodetector 12 appears slightly later in time.

【0022】以上により、図3に示されるような信号が
得られるわけである。これらの信号を解析装置20に入
力すると、腕4が解放された時から時刻を追っていくと
き、第1の光検出器12の出力信号の最初の立ち上がり
時刻と第2の光検出器13の最初の立ち上がり時刻の差
であるt1、第2の光検出器13の出力信号が最初に立
ち上がってからの最大振幅であり続ける時間t2、第2
の光検出器13次のたち下がり時刻と第1の光検出器1
2の立ち下がり時刻の差であるt3を計測することがで
きる。
As described above, a signal as shown in FIG. 3 is obtained. When these signals are input to the analyzer 20, when the time is tracked from when the arm 4 is released, the first rising time of the output signal of the first light detector 12 and the first rising time of the second light detector 13 T2, which is the difference between the rising times, and the time t2, at which the output signal of the second photodetector 13 continues to have the maximum amplitude since it first rises,
Photodetector 13th fall time and first photodetector 1
It is possible to measure t3, which is the difference between the falling times of the two.

【0023】前記t1は2本の帯状平行光の通過時間で
あるので前記2本の帯状平行光の間隔dを前記t1で除
すことで被試験物7の衝突直前速度v1を算出すること
ができる。なお帯状平行光の間隔は小さい方が瞬間速度
に近い値になるので望ましい。今回は1mmの間隔を用
いた。同様に前記dを前記t3で除すことで被試験物7
の衝突直後速度v2を算出することができる。
Since t1 is the transit time of the two parallel strips of light, the speed v1 immediately before the collision of the test object 7 can be calculated by dividing the interval d between the two parallel strips of light by the t1. it can. It is preferable that the interval between the strip-shaped parallel lights is smaller because the value becomes closer to the instantaneous speed. This time, an interval of 1 mm was used. Similarly, by dividing the d by the t3, the DUT 7
Immediately after collision v2 can be calculated.

【0024】今回用いたテフロン製の衝突板6と真鍮製
の被試験物7の衝突においては、被試験物7の加速度変
化は図4に示すような三角波であることがわかってい
る。加速度のピーク値をApとすると、衝撃作用時間は
前述のt2であるので、この三角波を積分したものつま
り面積が、被試験物7に与えた速度変化である。
In the collision between the Teflon collision plate 6 and the brass DUT 7 used in this case, it is known that the acceleration change of the DUT 7 is a triangular wave as shown in FIG. Assuming that the peak value of the acceleration is Ap, the impact action time is the above-mentioned t2, and thus the integral of the triangular wave, that is, the area is the change in speed given to the DUT 7.

【0025】このことから加速度のピーク値Apは式A
p=2×(v2−v1)/t2で求めることができる。
このようにして解析装置20によって被試験物の衝突に
関する様々な量を求めることが可能である。
From this, the peak value of acceleration Ap is given by the following equation:
p = 2 × (v2−v1) / t2.
In this way, it is possible for the analyzer 20 to determine various quantities relating to the collision of the test object.

【0026】衝突板6と被試験物7にテフロンと真鍮以
外のものを組み合わせた場合においても衝撃の大きさを
算出することは可能である。例えばゴム製の衝突板6と
炭素鋼製の被試験物を用いた時には加速度の波形は正弦
半波になる。このとき加速度のピーク値Apは式Ap=
(π/2)×(v2−v1)/t2で求めることができ
る。
It is possible to calculate the magnitude of the impact even when the impact plate 6 and the DUT 7 are made of a material other than Teflon and brass. For example, when a rubber collision plate 6 and a test object made of carbon steel are used, the waveform of the acceleration becomes a half sine wave. At this time, the peak value Ap of the acceleration is expressed by the formula Ap =
(Π / 2) × (v2−v1) / t2.

【0027】解析装置20で解析した結果であるt1か
らt3までの時間と、衝突直前速度v1と、衝突直後速
度v2と、加速度のピーク値Apとは表示器21によっ
て同時にもしくは切り替えて表示することが可能であ
る。必要に応じてパーソナルコンピュータにこれら表示
された数値を取り込むとデータ管理をすることも可能に
なる。
The time from t1 to t3, which is the result of analysis by the analysis device 20, the speed v1 immediately before the collision, the speed v2 immediately after the collision, and the peak value Ap of the acceleration are displayed simultaneously or switched by the display 21. Is possible. When these displayed numerical values are taken into a personal computer as needed, data management can be performed.

【0028】今回は帯状平行光を用いたが、被試験物に
適切に光を照射できるのであれば細いビームでもよい。
さらに1つの光線を発する光源と前述の帯状平行光また
は細いビームと同じ形状の開口部をもつマスクを付けた
光検出器によって変位検出器を構成しても同様の効果が
期待できる。
In this case, the strip-shaped parallel light is used. However, a narrow beam may be used as long as the light can be appropriately applied to the test object.
Further, the same effect can be expected even if the displacement detector is constituted by a light source that emits one light beam and a photodetector provided with a mask having an opening having the same shape as the above-mentioned strip-shaped parallel light or a narrow beam.

【0029】[0029]

【発明の効果】本発明による方法によれば、非接触で測
定を行うことができるので、加速度ピックアップを搭載
することによる被試験物の質量の増加の影響を回避して
衝撃の大きさを測定することが可能である。また本発明
による方法によれば、被測定物のジグへの固定が必要な
く、ただ載物台に載せるだけという簡単な手続きで測定
準備が整う。さらに衝突時の被試験物の挙動は変位検出
器でモニタでき、衝突前後の速度や衝撃作用時間も測定
できるなど従来にない多くの利点がある。
According to the method of the present invention, since the measurement can be performed in a non-contact manner, the magnitude of the impact can be measured by avoiding the influence of the increase in the mass of the DUT by mounting the acceleration pickup. It is possible to Further, according to the method of the present invention, it is not necessary to fix the object to be measured to the jig, and the preparation for measurement is completed by a simple procedure of merely mounting the object on the stage. Furthermore, the behavior of the test object at the time of collision can be monitored by a displacement detector, and the velocity before and after the collision and the duration of impact can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態における衝撃試験機の側面
図。
FIG. 1 is a side view of an impact tester according to an embodiment of the present invention.

【図2】本発明の実施形態における変位検出器の上面
図。
FIG. 2 is a top view of the displacement detector according to the embodiment of the present invention.

【図3】本発明の第1の光検出器の出力信号と第2の光
検出器の出力信号を説明する概念図。
FIG. 3 is a conceptual diagram illustrating an output signal of a first photodetector and an output signal of a second photodetector according to the present invention.

【図4】本発明の衝撃試験時に被試験物が受ける加速度
変化を説明する概念図。
FIG. 4 is a conceptual diagram illustrating a change in acceleration applied to a test object during an impact test according to the present invention.

【符号の説明】[Explanation of symbols]

1 ベースプレート 2 支柱 3 軸受け 4 腕 5 載物台 6 衝突板 7 被試験物 8 円弧板 9 固定解放装置 10 変位検出器 11 光源 12 第1の光検出器 13 第2の光検出器 20 解析装置 21 表示器 22 位置調整器 REFERENCE SIGNS LIST 1 base plate 2 support 3 bearing 4 arm 5 mounting table 6 collision plate 7 DUT 8 arc plate 9 fixing release device 10 displacement detector 11 light source 12 first photodetector 13 second photodetector 20 analysis device 21 Display 22 Position adjuster

───────────────────────────────────────────────────── フロントページの続き (72)発明者 町田 任康 埼玉県所沢市大字下富字武野840番地 シ チズン時計株式会社技術研究所内 (72)発明者 島内 岳明 埼玉県所沢市大字下富字武野840番地 シ チズン時計株式会社技術研究所内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor, Michida Michiyasu, 840 Takeno, Shimotomi, Tokorozawa-shi, Saitama Citizen Watch Co., Ltd. 840 Takeno Citizen Watch Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ベースプレートと、ベースプレートに固
定された支柱と、支柱の先端に取り付けられた軸受け
と、軸受けに勘合する回転可能な腕と、腕の先端に被試
験物を搭載することが可能な載物台と、腕が回転し鉛直
方向に来たとき被試験物が衝突を起こすように配置され
た衝突板と、被試験物が衝突板に衝突するときちょうど
2本の帯状の平行光を通過し終わるように配置された前
述の2本の帯状の平行光を発する光源と、その光源から
の光を検出する2つの光検出器と、その光検出器からの
信号を処理して時間差を測定することで衝撃の大きさを
算出する解析装置と、その結果を表示する表示器とから
なり、被試験物が2本の帯状平行光と直角の方向から2
本の帯状平行光を通過して衝突板に衝突する際、2本の
帯状平行光を検出する光検出器の出力波形より衝突直前
の被試験物の通過時間差と衝突直後の被試験物の通過時
間差と衝撃作用時間を求め、それら時間差と帯状平行光
の間隔とから衝突直後の速度と衝突直前の速度を算出
し、衝突直後の速度と衝突直前の速度の差を求めてそれ
を2倍し、その値を衝撃作用時間で除すことで被試験物
が受ける衝撃の大きさを算出することを特徴とした衝撃
試験機。
1. A base plate, a support fixed to the base plate, a bearing attached to a tip of the support, a rotatable arm fitted to the bearing, and a test object mounted on the tip of the arm. A stage, a collision plate arranged so that the test object causes a collision when the arm rotates and comes in the vertical direction, and just two strips of parallel light when the test object collides with the collision plate A light source that emits the above-mentioned two strips of parallel light arranged so as to finish passing, two photodetectors that detect light from the light source, and a signal from the photodetector are processed to determine a time difference. It consists of an analyzer that calculates the magnitude of the impact by measuring it, and a display that displays the result.
When passing through two parallel strips of light and colliding with the collision plate, the difference between the transit time of the DUT immediately before the collision and the passage of the DUT immediately after the collision is determined from the output waveform of the photodetector that detects the two parallel strips of light. The time difference and the impact action time are obtained, the speed immediately after the collision and the speed immediately before the collision are calculated from the time difference and the interval between the parallel strips of light, the difference between the speed immediately after the collision and the speed immediately before the collision is obtained, and the result is doubled. And an impact tester for calculating the magnitude of the impact on the DUT by dividing the value by the impact action time.
JP11304698A 1998-04-23 1998-04-23 Impact tester Pending JPH11304680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11304698A JPH11304680A (en) 1998-04-23 1998-04-23 Impact tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11304698A JPH11304680A (en) 1998-04-23 1998-04-23 Impact tester

Publications (1)

Publication Number Publication Date
JPH11304680A true JPH11304680A (en) 1999-11-05

Family

ID=14602128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11304698A Pending JPH11304680A (en) 1998-04-23 1998-04-23 Impact tester

Country Status (1)

Country Link
JP (1) JPH11304680A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170909A (en) * 2004-12-17 2006-06-29 Fujitsu Ltd Rotational impact tester
KR101274770B1 (en) * 2010-11-19 2013-06-14 한국건설기술연구원 Equipment for testing impact characteristic of mesh window for building construction
KR102026693B1 (en) * 2018-08-31 2019-09-30 한국수력원자력 주식회사 Nondestructive Testing Device and Method for Searching of Unfilled Concrete
JP2020176880A (en) * 2019-04-17 2020-10-29 株式会社ナベル Inspection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170909A (en) * 2004-12-17 2006-06-29 Fujitsu Ltd Rotational impact tester
JP4522250B2 (en) * 2004-12-17 2010-08-11 富士通株式会社 Rotational impact test equipment
KR101274770B1 (en) * 2010-11-19 2013-06-14 한국건설기술연구원 Equipment for testing impact characteristic of mesh window for building construction
KR102026693B1 (en) * 2018-08-31 2019-09-30 한국수력원자력 주식회사 Nondestructive Testing Device and Method for Searching of Unfilled Concrete
JP2020176880A (en) * 2019-04-17 2020-10-29 株式会社ナベル Inspection device

Similar Documents

Publication Publication Date Title
US4979125A (en) Non-destructive evaluation of ropes by using transverse impulse vibrational wave method
JP2008224632A (en) Method for measuring impact absorption energy using dropping weight type impact testing machine, and dropping weight type impact testing machine
Fujii Measurement of impulse response of force transducers
CN109238880A (en) A kind of device and method for detecting deformation quantity during material is hit
Fujii Measurement of steep impulse response of a force transducer
SU1227978A1 (en) Arrangement for determining dynamic characteristics of elastic materials
CN110082199A (en) Percussion device and intrinsic frequency measurement device
JPH11304680A (en) Impact tester
CN108414178A (en) Percussion mechanism with pooling feature and its application process
JPH08136429A (en) Shock destructive test method and device
JPH10260123A (en) Device for testing physical property of elastic body
JP3682744B2 (en) Echo chip type hardness tester
JPH1194722A (en) Method and device for conducting impact tension test on sheet-like material
EP0222346A2 (en) Method of measuring a sound pressure distribution in a solid body due to a ultrasonic probe by using photoelasticity
JP2004033626A (en) Method of measuring rigidity distribution of golf club head and golf club
KR100254556B1 (en) Dynamic characteristics measuring device of each part of vehicle engine
CN210094842U (en) Sports shoe shock attenuation testing arrangement
Ravi-Chandar Experimental challenges in the investigation of dynamic fracture of brittle materials
JP5286524B2 (en) Frequency measuring apparatus and frequency measuring method
RU2749702C1 (en) Pendulum calibration vibrobench
Fujii Evaluation of momentum transfer responses of commercial force transducers
SU1594382A1 (en) Method of determining distribution of sizes of particles in gas-dust jet
CN212111265U (en) Ultrasonic spheroidization searchlighting instrument for high-strength supporting steel member
JPH03146843A (en) Impact fracture test method for electronic parts
SU1040353A1 (en) Method of determination of firing pin penetration force