JPH11304677A - Method and device for analyzing strength of joined product - Google Patents

Method and device for analyzing strength of joined product

Info

Publication number
JPH11304677A
JPH11304677A JP11516598A JP11516598A JPH11304677A JP H11304677 A JPH11304677 A JP H11304677A JP 11516598 A JP11516598 A JP 11516598A JP 11516598 A JP11516598 A JP 11516598A JP H11304677 A JPH11304677 A JP H11304677A
Authority
JP
Japan
Prior art keywords
strength
welding
joint
joined
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11516598A
Other languages
Japanese (ja)
Inventor
Akira Nakano
亮 中野
Miki Terada
幹 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP11516598A priority Critical patent/JPH11304677A/en
Publication of JPH11304677A publication Critical patent/JPH11304677A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten a period for product development, to reduce cost, and to improve joining strength by converting welding energy obtained by computations into the joining strength of a joined part and obtaining the strength of a joined product. SOLUTION: Analytical model data in which the shape of each injection-molded component is divided into microelements is created. In addition to this microelement data, molding conditions such as injection pressure, mold temperature and the property values of a resin in use such as viscosity, a specific heat ratio are inputted to obtain the state of deformation in each vibration-welded component by injection-molding CAE software. Then stress generated in each microelement at the time of the forceful joining of a welded part is obtained, and further stress generated in each microelement at the time of the addition of load such as internal pressure assumed at the time of use is obtained. Next, the conditions of vibration welding are inputted to compute welding energy generated with the progress of vibration welding by numerical analytical techniques such as finite element method. Then the welding energy is converted into welding strength through the use of a specific equation to obtain welding strength in each microelement of the welded part. Furthermore, the degree of safety in each microelement is obtained by the welding strength and the above-obtained generated stress.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は部品の接合加工にお
いて、限定的ではないがさらに好適には樹脂部品の振動
溶着加工において、接合強度の解析装置、解析方法、解
析方法を用いて接合部品の形状、材料、接合条件を決定
する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to, but not limited to, a joining process for a component, more preferably, but not exclusively, to a vibration welding process for a resin component, using a joining strength analyzing apparatus, an analyzing method, and an analyzing method. It relates to a method for determining a shape, a material, and joining conditions.

【0002】[0002]

【従来の技術】樹脂製品の成形法としては射出成形法や
ブロー成形法、押し出し成形法、圧縮成形法などが活用
されているが、一般的に金型構造などの制約から一度の
加工工程で成形できる形状には制約がある。例えば射出
成形法では金型構造の制約から屈曲したパイプやタンク
などの中空製品を作ることが困難である。このような場
合に予め複数の部品を通常の成形法により成形し、それ
らを組み合わせて接合することにより、中空部品などの
複雑な形状を成形することができる。接合の方法とし
て、例えば振動溶着法は製品形状を予め複数の部品に分
割して射出成形やブロー成形法、押し出し成形法、圧縮
成形法などにより成形した後に、各部品を組み合わせて
加圧しながら振動させ、摩擦熱により溶融接合させるこ
とで中空製品などの複雑形状を成形することができる加
工方法などがある。
2. Description of the Related Art Injection molding, blow molding, extrusion molding, compression molding, and the like are used as molding methods for resin products. There are restrictions on the shapes that can be molded. For example, in the injection molding method, it is difficult to produce a hollow product such as a bent pipe or a tank due to the restriction of the mold structure. In such a case, a complicated shape such as a hollow part can be formed by forming a plurality of parts in advance by a normal forming method and joining them in combination. As a joining method, for example, the vibration welding method divides the product shape into a plurality of parts in advance and forms them by injection molding, blow molding, extrusion molding, compression molding, etc., and then vibrates while pressing each part in combination. Then, there is a processing method capable of forming a complicated shape such as a hollow product by melt-joining by frictional heat.

【0003】振動溶着部分の形状設計や溶着条件の設定
において、製品の形状や使用する樹脂に応じた設定手法
は知られておらず、一般的な溶着部形状や溶着条件で実
行し、製品の強度試験を行って破壊した場合には条件変
更を行うといった試行錯誤で決定しているため製品開発
期間が長期に及ぶことがある。例えば特開平7−809
38号公報にて樹脂製パイプの製造方法として、分割体
を圧縮方向に対して傾けることにより、分割ラインの傾
斜部の長さを短くして振動溶着時の傾斜部の面圧を確保
し、溶着強度を高めることなどが知られているが、複雑
な製品形状に対して何度傾けることが必要かといった指
針を得ることは困難である。
[0003] In the design of the shape of the vibration welding portion and the setting of the welding conditions, there is no known setting method in accordance with the shape of the product and the resin to be used. If the product is broken by a strength test, the condition is determined by trial and error, such as changing the conditions. For example, JP-A-7-809
No. 38, as a method of manufacturing a resin pipe, the divided body is inclined with respect to the compression direction, thereby shortening the length of the inclined portion of the dividing line to secure the surface pressure of the inclined portion during vibration welding. Although it is known to increase the welding strength, it is difficult to obtain a guide as to how many tilts are required for a complicated product shape.

【0004】また製品設計の段階では、例えば製品使用
時に中空部分に内圧が負荷された場合の破壊の有無を予
測して肉厚や補強構造などを決定するが、振動溶着品で
は振動溶着部分の強度が正確に予想できないため、実際
に試作を行った後の強度試験により再度の設計変更を要
し、手間やコスト、製品開発期間の増大を招くことにな
る。
At the product design stage, for example, the thickness and the reinforcing structure are determined by predicting the presence or absence of breakage when an internal pressure is applied to a hollow portion when the product is used. Since the strength cannot be accurately predicted, a design change is required again by a strength test after actually producing a prototype, which leads to an increase in labor, cost, and a product development period.

【0005】また振動溶着前の各部品は射出成形で得ら
れることが多いが、射出成形品ではしばしばそり変形が
発生し、振動溶着部分の形状が当初の設計通りに一致し
ないことになる。一方、そり変形に関しては射出成形の
過程をコンピュータシミュレーションにより予測し、成
形不良を防止する手法として、射出成形CAEが活用さ
れている。ここでは射出成形品形状を微小要素に分割
し、射出成形条件および樹脂材料部性を入力することに
より、差分法、境界要素法、有限要素法、有限体積法な
どの数値解析手法により、樹脂圧力や温度、そり変形状
態などを求める。射出成形CAEによれば金型内を流動
する溶融樹脂の圧力、温度、せん断応力などがコンピュ
ータ上で計算され、最終的に成形品の収縮・そり変形形
状を求めることができ、製品形状や射出成形条件、樹脂
物性などを変更しそり変形の少ない条件を予めコンピュ
ータ上で検討することができる。しかし従来の射出成形
CAEでは各部品のそり変形を予測することができるが、
そり変形した複数の形状を組み合わせた場合に発生する
残留応力の製品強度への影響を予測することはできな
い。このためそり変形に影響する射出成形時の金型設計
や生産時の成形条件設定などへ溶着強度への影響を考慮
することができず、成形条件設定に際して試行錯誤を繰
り返すことになる。
[0005] Each component before vibration welding is often obtained by injection molding, but in an injection molded product, warpage often occurs, and the shape of the vibration welded portion does not match the original design. On the other hand, the injection molding CAE is used as a technique for predicting the process of the injection molding by computer simulation with respect to the warpage and preventing molding defects. Here, the injection molded product shape is divided into minute elements, and the injection molding conditions and the resin material properties are input, and the resin pressure is calculated by a numerical analysis method such as the difference method, boundary element method, finite element method, and finite volume method. , Temperature, warped state, etc. According to injection molding CAE, the pressure, temperature, shear stress, etc. of the molten resin flowing in the mold are calculated on a computer, and finally the shrinkage / warpage of the molded product can be obtained, and the product shape and injection By changing molding conditions, resin properties, and the like, conditions under which warpage is reduced can be examined in advance on a computer. But conventional injection molding
CAE can predict the warpage of each part,
It is not possible to predict the effect of residual stress generated when combining a plurality of warped shapes on product strength. For this reason, the influence on the welding strength cannot be considered in the design of the mold during injection molding or the setting of molding conditions during production, which influences the warpage, and trial and error is repeated when setting the molding conditions.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上述した問
題点に鑑みてなされたもので、その目的は個々の製品に
対して最適な形状や材料、成形加工条件を設定すること
により製品開発期間短縮、コスト低減、接合強度の向上
を実現するため、製品形状や材料、成形加工条件など個
々の製品に応じた接合強度の予測を可能とする方法およ
び装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to develop a product by setting optimal shapes, materials, and molding conditions for each product. An object of the present invention is to provide a method and an apparatus capable of predicting a joining strength according to each product such as a product shape, a material, and molding processing conditions in order to shorten a period, reduce a cost, and improve a joining strength.

【0007】[0007]

【課題を解決するための手段】前記の課題を解決するた
めに、本発明によれば、複数の部材が溶着により接合さ
れてなる接合品の強度解析方法であって、前記複数の部
材の接合部位の少なくとも一部に印加される溶着エネル
ギーを計算によりもとめ、得られた溶着エネルギーを前
記接合部位の接合強度に変換し、前記接合品の強度を求
めることを特徴とする接合品強度の解析方法が提供され
る。
According to the present invention, there is provided a method for analyzing the strength of a joined product in which a plurality of members are joined by welding. Calculating the welding energy applied to at least a part of the part by converting the obtained welding energy into the bonding strength of the bonding part, and obtaining the strength of the bonded part; Is provided.

【0008】また本発明の別の態様によれば、複数の部
材が溶着により接合されてなる接合品の強度解析方法で
あって、前記複数の部材の接合部位の少なくとも一部の
接合強度を求め、前記接合品の負荷時における発生応力
を計算により求め、得られた前記接合部位の接合強度と
負荷応力とに基づいて前記接合部位の強度安全度を求め
ることを特徴とする接合品強度の解析方法が提供され
る。
According to another aspect of the present invention, there is provided a method for analyzing the strength of a joined product in which a plurality of members are joined by welding, wherein a joining strength of at least a part of a joint portion of the plurality of members is obtained. Calculating the stress generated at the time of loading the joint by calculating, and calculating the strength safety of the joint based on the obtained joint strength and load stress of the joint; analyzing the joint strength. A method is provided.

【0009】また本発明の別の態様によれば、複数の部
材が溶着により接合されてなる接合品の強度解析方法で
あって、前記接合部位の少なくとも一部の接合強度を求
め、前記複数の部材の成形時のそり変形形状を計算によ
り求め、前記そり変形を受けた前記複数の部材を強制的
に接合した際の残留応力を計算により求め、前記接合品
の負荷時における発生応力を計算により求め、得られた
前記接合部位の接合強度と残留応力と負荷応力とに基づ
いて前記接合部位の強度安全度を求めることを特徴とす
る接合品強度の解析方法が提供される。
According to another aspect of the present invention, there is provided a method of analyzing the strength of a joined product in which a plurality of members are joined by welding. The warpage deformation shape at the time of molding of the member is obtained by calculation, the residual stress at the time of forcibly joining the plurality of members subjected to the warpage is obtained by calculation, and the stress generated at the time of loading of the joined product is calculated by calculation. A method for analyzing the strength of a joint product is provided, wherein the strength safety of the joint part is obtained based on the obtained and obtained joint strength, residual stress and load stress of the joint part.

【0010】また本発明の別の態様によれば、複数の部
材が溶着により接合されてなる接合品の強度解析装置で
あって、前記複数の部材の接合部位の少なくとも一部に
印加される溶着エネルギーを計算により求める手段と、
得られた溶着エネルギーを前記接合部位の接合強度に変
換し、前記接合品の強度を求める手段を有することを特
徴とする接合品強度の解析装置が提供される。
According to another aspect of the present invention, there is provided an apparatus for analyzing the strength of a joined product in which a plurality of members are joined by welding, wherein the welding is applied to at least a part of a joint portion of the plurality of members. Means for calculating energy by calculation;
An apparatus for analyzing the strength of a joined article is provided, which has means for converting the obtained welding energy into the joining strength of the joining portion and determining the strength of the joined article.

【0011】また本発明の別の態様によれば、複数の部
材が溶着により接合されてなる接合品の強度解析装置で
あって、前記複数の部材の接合部位の少なくとも一部の
接合強度を求める手段と、前記接合品の負荷時における
発生応力を計算により求める手段と、得られた前記接合
部位の接合強度と負荷応力とに基づいて前記接合部位の
強度安全度を求める手段を有することを特徴とする接合
品強度の解析装置が提供される。
According to another aspect of the present invention, there is provided an apparatus for analyzing the strength of a joined product in which a plurality of members are joined by welding, wherein a joining strength of at least a part of a joining portion of the plurality of members is obtained. Means, means for calculating the stress generated at the time of loading of the joint product by calculation, and means for calculating the strength safety of the joint part based on the obtained joint strength and load stress of the joint part. And an analyzer for analyzing the strength of the bonded product.

【0012】また本発明の別の態様によれば、複数の部
材が溶着により接合されてなる接合品の強度解析装置で
あって、前記接合部位の少なくとも一部の接合強度を求
める手段と、前記複数の部材の成形時のそり変形形状を
計算により求める手段と、前記そり変形を受けた前記複
数の部材を強制的に接合した際の残留応力を計算により
求める手段と、前記接合品の負荷時における発生応力を
計算により求める手段と、得られた前記接合部位の接合
強度と残留応力と負荷応力とに基づいて前記接合部位の
強度安全度を求める手段を有することを特徴とする接合
品強度の解析装置が提供される。
According to another aspect of the present invention, there is provided an apparatus for analyzing the strength of a joined product in which a plurality of members are joined by welding, wherein the means for determining the joining strength of at least a part of the joint portion; Means for calculating a warp deformation shape during molding of a plurality of members, means for calculating a residual stress when the plurality of members subjected to the warp deformation are forcibly joined, and And a means for calculating the strength safety of the joint portion based on the obtained joint strength, residual stress, and load stress of the joint portion. An analysis device is provided.

【0013】また、本発明の別の態様によれば、前記接
合強度の解析方法により接合部分の強度を予測し、強度
仕様を満足する接合条件を決定し、該条件にもとづいて
接合加工を行うことを特徴とする、接合品の製造方法が
提供される。
According to another aspect of the present invention, the joint strength is predicted by the joint strength analyzing method, joining conditions satisfying the strength specifications are determined, and joining is performed based on the conditions. A method for manufacturing a bonded article is provided.

【0014】また、本発明の記憶媒体によれば、上記の
接合強度の解析方法の各手順をコンピュータを用いて実
施できるようにコンピュータを動作させるソフトウェア
を記憶した記憶媒体が提供される。
Further, according to the storage medium of the present invention, there is provided a storage medium storing software for operating a computer so that each procedure of the above-described joint strength analysis method can be performed by the computer.

【0015】[0015]

【発明の実施の形態】以下、本発明を屈曲パイプの振動
溶着に適用した例について説明する。図1は本発明の解
析装置の実施態様例の装置構成を説明するブロック図で
ある。(101)は条件入力装置、(102)は微小要
素分割装置、(103)はデータ保存装置1、(10
4)はそり変形解析装置、(105)は残留応力解析装
置、(106)は負荷応力解析装置、(107)は溶着
強度解析装置、(108)はデータ保存装置2、(10
9)は安全度解析装置、(110)はデータ保存装置
3、(111)は出力装置である。(103)、(10
8)、(110)は例えば同一のハードディスク内の別
メモリ領域とすることも可能である。また、(101)
(102)(103)(105)(106)(107)
(109)は同一または別体のコンピュータのメモリ上
の機能として実現されてもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to vibration welding of a bent pipe will be described below. FIG. 1 is a block diagram for explaining a device configuration of an embodiment of the analysis device of the present invention. (101) is a condition input device, (102) is a minute element dividing device, (103) is a data storage device 1, (10)
4) is a warpage deformation analyzer, (105) is a residual stress analyzer, (106) is a load stress analyzer, (107) is a welding strength analyzer, (108) is a data storage device 2, (10)
9) is a safety analysis device, (110) is a data storage device 3, and (111) is an output device. (103), (10
8) and (110) may be different memory areas in the same hard disk, for example. Also, (101)
(102) (103) (105) (106) (107)
(109) may be realized as a function on the memory of the same or a separate computer.

【0016】次に、本実施態様例の動作の概要を図2の
フローチャートを用いて説明する。
Next, the outline of the operation of this embodiment will be described with reference to the flowchart of FIG.

【0017】ステップ1にて各射出成形部品形状を4角
形や3角形、6面体、4面体、5面体、はり要素などの
微小要素に分割した2次元または3次元の解析モデルデ
ータを作成する。解析モデルデータの作成は有限要素法
のプリプロセッサと呼ばれるソフトウェアを用い、デー
タは微小要素の頂点座標値および要素を構成する頂点番
号より構成される。図3は屈曲中空成形品を四角形の微
小要素へ分割した様子を示している。図4は図3の微小
要素を上下パーツに分けて表示したものである。
In step 1, two-dimensional or three-dimensional analysis model data in which each injection-molded part shape is divided into minute elements such as a square, a triangle, a hexahedron, a tetrahedron, a pentahedron, and a beam element is created. The analysis model data is created using software called a preprocessor of the finite element method, and the data is composed of vertex coordinate values of minute elements and vertex numbers constituting the elements. FIG. 3 shows a state in which the bent hollow molded article is divided into square minute elements. FIG. 4 shows the microelements of FIG. 3 divided into upper and lower parts.

【0018】( ステップ2ではステップ1で作成した
微小要素データに加えて、射出成形時のゲート位置や樹
脂温度や射出圧力、金型温度などの成形条件と、使用す
る樹脂の粘度や比熱等の物性値を入力し、射出成形CA
Eソフトウェアにより、各振動溶着部品のそり変形状態
を図5のように求める。図5はそり変形量を10倍に拡
大して表示している。例えば特開平8−99341号公
報に記載の3次元モデルを用いたCAEソフトウェアな
どの射出成形CAEによれば、入力された製品形状に対
して射出成形時の材料圧力や温度の履歴が算出され、最
終的に成形後の微小要素頂点位置の変位量が出力され
る。
(In step 2, in addition to the microelement data created in step 1, molding conditions such as gate position, resin temperature, injection pressure, and mold temperature during injection molding, and viscosity and specific heat of the resin used, etc.) Enter the physical property values and use the injection molding CA
Using software E, the warped state of each vibration welded part is determined as shown in FIG. FIG. 5 shows the warpage deformation amount 10 times enlarged. For example, according to injection molding CAE such as CAE software using a three-dimensional model described in JP-A-8-99341, a history of material pressure and temperature at the time of injection molding is calculated for an input product shape, Finally, the amount of displacement of the apex of the microelement after molding is output.

【0019】ステップ3では有限要素法などを用いた構
造解析ソフトウェアを用い、そり変形した各振動溶着部
品の対応する溶着部分を強制的に接合した際に、各微小
要素に発生する応力を求める。この解析は例えば振動溶
着部品間の対応する微小要素の頂点間に高剛性の棒要素
を仮想的に生成し、該棒要素に対して長さが零となるよ
うに収縮荷重を与えることにより実現できる。図5中符
号503は上下パーツ(501および502)の溶着部
分間に生成した棒要素の一部を表しており、実際には溶
着部分のすべての微小要素間に生成されるものの一部を
表示したものである。
In step 3, using structural analysis software using a finite element method or the like, the stress generated in each minute element when the corresponding welded portion of each warped and deformed vibration welded part is forcibly joined is determined. This analysis is realized, for example, by virtually creating a high-rigidity rod element between the vertices of the corresponding minute element between the vibration welding parts and applying a shrinkage load to the rod element so that the length becomes zero. it can. In FIG. 5, reference numeral 503 denotes a part of a rod element generated between the welded portions of the upper and lower parts (501 and 502), and in fact, a part of the rod element generated between all the small elements of the welded part is displayed. It was done.

【0020】ステップ4ではステップ3にて強制的に接
合された製品に対し、有限要素法などを用いた構造解析
ソフトウェアを用い、使用時に想定される内圧などの荷
重を加えた場合の各微小要素に発生する応力を求める。
なお設計の初期段階で各振動溶着部品の射出成形条件な
どが不明の場合や解析に十分な時間的余裕がない場合な
ど、簡略化のためステップ2の射出成形CAEを省略し
てそり変形形状を強制接合したことによる応力を零と仮
定し、溶着後の製品形状を微小要素に分割して、有限要
素法などを用いた構造解析ソフトウェアを用い、使用時
に想定される内圧などの荷重を加えた場合の各微小要素
に発生する応力を簡便に求めることも、本発明の態様の
一つとして有効である。
In step 4, using the structural analysis software using the finite element method or the like to the product forcibly joined in step 3, each minute element when a load such as an internal pressure assumed during use is applied. Find the stress that occurs in
In the initial stage of design, when the injection molding conditions of each vibration welded part are unknown or when there is not enough time for analysis, the injection molding CAE in step 2 is omitted for simplification and the warped shape is reduced. Assuming that the stress due to the forced joining is zero, the product shape after welding is divided into small elements, and a load such as the internal pressure assumed during use was applied using structural analysis software using the finite element method etc. It is also effective as one of the aspects of the present invention to simply find the stress generated in each microelement in this case.

【0021】ステップ5では図6に示すように溶着部分
のみを微小要素に分割し、振動溶着条件を入力し、有限
要素法などの数値解析手法により振動溶着の進行ととも
に発生する溶着エネルギーを求める。溶着エネルギーの
算出手法を以下に示す。
In step 5, as shown in FIG. 6, only the welded portion is divided into minute elements, vibration welding conditions are input, and welding energy generated with the progress of vibration welding is obtained by a numerical analysis method such as a finite element method. The method for calculating the welding energy is shown below.

【0022】(1) 振動溶着条件として、加圧荷重F
(N)、振幅X(mm)、溶着深さD*(mm)を設定する。
(1) As the vibration welding condition, a pressing load F
(N), amplitude X (mm), and welding depth D * (mm) are set.

【0023】(2)図6に示す微小要素に分割された溶
着部分601の形状に加圧荷重fを付加した際の、微小
要素部分i(i=1,2, N)(Nは本ステップで用いる
全微小要素数)について溶着面に対し垂直に印加される
圧力Ps(MPa)を求める。Psの算出方法としては、有限要
素法などによる数値解析手法を用いて算出する方法や、
あるいは簡易的に式1を用いて算出する方法が考えられ
る。
(2) When a pressing load f is applied to the shape of the welded portion 601 divided into minute elements shown in FIG. 6, a minute element portion i (i = 1, 2, N) (N is Pressure Ps (MPa) applied perpendicularly to the welding surface is obtained for the total number of microelements used in. As a method of calculating Ps, a method of calculating using a numerical analysis method such as a finite element method,
Alternatively, a simple calculation method using Expression 1 is conceivable.

【0024】Ps=f×sin(θi)/S 式1 ここで、S(mm2)は溶着部分の面積、θiは微小要素
部分iの溶着面が加圧荷重fの方向となす角度(ラジア
ン)である。この様子を図7に示す。
Ps = f × sin (θi) / S (1) where S (mm 2) is the area of the welded portion, and θi is the angle (radian) between the welded surface of the microelement portion i and the direction of the pressing load f. It is. This is shown in FIG.

【0025】(3) 振動溶着時に微小要素部分iに発
生する熱量Qi(J)を式2より求める。
(3) The amount of heat Qi (J) generated in the minute element portion i at the time of vibration welding is obtained from the equation (2).

【0026】Qi=F(Ps,X,Si) 式2 ここで、Fは実験より定められる関数であり、Si(m
m2)は微小要素部分iの溶着面積である。Fの関数形は
例えば図8に示すような単純形状の試験片について振動
溶着実験を行うことで決定でき、本発明者は実験により
Fの好ましい形態として式3を見いだした。
Qi = F (Ps, X, Si) Equation 2 Here, F is a function determined by experiment, and Si (m
m 2 ) is the welding area of the minute element portion i. The function form of F can be determined, for example, by performing a vibration welding experiment on a test piece having a simple shape as shown in FIG. 8, and the inventor has found Expression 3 as a preferred form of F through experiments.

【0027】Qi=(A×Ps+B/Si)×Xn×h 式3 ここで、h(J/mm3)は単位体積あたりの融解エネルギ
ーであり、A,B,nは実験より求められる係数であり、例
えばナイロン6ガラス繊維強化樹脂の1例では、h=3.8
×10-9、 A=2×10-5〜3×10-5、B=25.0〜30.0、n=1.6を
用いることが好ましい。A,Bおよび,nの決定方法は、ま
ず例えば図8に示すような溶着部分802が30mm×
10mmの試験片を付き当て溶着する実験を行い、80
1の方向への加圧による溶着圧力を3点以上の点、例え
ば5、10、15MPaと変更し、振幅を3点以上の
点、例えば1mm、1.2mm、1.5mmに変更した
場合に、各条件について一定溶着深さまで溶融するのに
要する溶着時間を求める。次に上記A,B,nを仮定して
(4)(5)に述べる温度分布と溶出の解析を各溶着条
件に対して行い、溶着時間が実測と一致するよう最小自
乗法等のフィッティングを行うことによりA,B,nを決定
することができる。
Qi = (A × Ps + B / Si) × Xn × h Formula 3 where h (J / mm 3 ) is the melting energy per unit volume, and A, B, and n are obtained from experiments. H = 3.8 in one example of nylon 6 glass fiber reinforced resin.
It is preferable to use × 10-9, A = 2 × 10-5 to 3 × 10-5, B = 25.0 to 30.0, and n = 1.6. The method of determining A, B, and n is as follows. First, for example, as shown in FIG.
An experiment was conducted in which a 10 mm test piece was applied and welded.
When the welding pressure by pressing in the direction 1 is changed to three or more points, for example, 5, 10, 15 MPa, and the amplitude is changed to three or more points, for example, 1 mm, 1.2 mm, 1.5 mm. For each condition, the welding time required for melting to a certain welding depth is determined. Next, assuming A, B, and n, analysis of the temperature distribution and elution described in (4) and (5) is performed for each welding condition, and fitting such as the least square method is performed so that the welding time matches the actual measurement. By doing so, A, B, and n can be determined.

【0028】(4)次に有限要素法、差分法、境界要素
法などの数値解析手法を用い、Qiを発熱量とした場合
の微小要素i内部で時間dt(sec)間に変化する温度分布
をコンピュータで解析する。このとき、微小要素i内部
のうち、材料の融点Tm以上に達した部分は溶出するもの
とし、微小要素寸法を小さくし、あるいは削除すること
により微小要素の形状を変化させ、溶出による微小要素
の形状変化に伴い、(2)で求める圧力値Psを時間と
共に変更する。
(4) Next, using a numerical analysis method such as the finite element method, the difference method, or the boundary element method, the temperature distribution that changes during the time dt (sec) inside the minute element i when Qi is the heat generation amount Is analyzed by computer. At this time, a part of the inside of the microelement i that has reached the melting point Tm or higher of the material is eluted, and the shape of the microelement is changed by reducing or deleting the microelement size, and the elution of the microelement by elution is performed. With the shape change, the pressure value Ps obtained in (2) is changed with time.

【0029】(5) (4)の解析と同時に次式に示す
溶着エネルギーEiを各微小要素ごとに算出し、振動溶着
終了まで積算する。
(5) Simultaneously with the analysis of (4), the welding energy Ei shown in the following equation is calculated for each minute element, and integrated until the end of vibration welding.

【0030】 Ei=Σ{0.13×Psm1×(0.4X×frc)m2・dt} 式4 式4にて定義される溶着エネルギーEiとは、溶着部分に
付与されるエネルギー[J]に一対一に対応する量(エネ
ルギーそのものであってもよいし、これに比例する量で
あってもよいし、本実施態様例のようにエネルギーに比
例しない関数のようなものであってもよい)であり、後
述する溶着強度に変換するための指標として算出するも
のである。
Ei = {{0.13 × Ps m1 × (0.4X × frc) m2 · dt} Equation 4 The welding energy Ei defined by Equation 4 is one-to-one with the energy [J] applied to the welded portion. (An energy itself, an amount proportional to the energy itself, or a function not proportional to the energy as in the present embodiment). Is calculated as an index for converting into a welding strength described later.

【0031】ここでfrcは振動数(Hz)である。Ps、X、
dtの単位としては、それぞれ[Mpa]、[mm]、[sec]を用い
る。またm1,m2は実験より定まるパラメータであり、発
明者によればナイロン6ガラス繊維強化樹脂の1例では
m1=0.1、m2=1.6とすることが望ましい。m1,m2の決定方
法としては、例えば図8の802に示す溶着部分の寸法
30mm×10mmの試験片にて溶着実験を行い、例えば
1.5mm程度の溶着深さに対して801の方向への加
圧による圧力Pを、例えば5MPa、10MPa、15
MPaに変更し、さらに振幅Xを3点以上の点、例えば
1mm、1.2mm、1.5mmに変更した際の溶着時
間tを求め、Xを一定としてln(P)に対するln(1/t)の
傾きよりm1を、Pを一定としてln(X)に対するln(1/t)
の傾きよりm2を定める。
Here, frc is the frequency (Hz). Ps, X,
[Mpa], [mm], and [sec] are used as units of dt. Further, m1 and m2 are parameters determined by experiments. According to the present inventors, in one example of nylon 6 glass fiber reinforced resin,
It is desirable that m1 = 0.1 and m2 = 1.6. As a method of determining m1 and m2, for example, a welding experiment is performed on a test piece having a size of 30 mm × 10 mm of a welded portion shown at 802 in FIG. The pressure P by pressurizing is, for example, 5 MPa, 10 MPa, 15
MPa, and the welding time t when the amplitude X is changed to three or more points, for example, 1 mm, 1.2 mm, and 1.5 mm, is obtained. ), Ln (1 / t) with respect to ln (X), where
M2 is determined from the slope of.

【0032】(6)すべての溶着部分微小要素について
溶出により微小要素寸法が減少した長さを溶着深さDi(m
m)として算出し、その平均値あるいは最小値が設定値D
*に達した時点をもって振動溶着が終了したものとし、
解析を終了する。
(6) The length at which the size of the microelements is reduced by elution for all the welded microelements is determined by the welding depth Di (m
m), and the average or minimum value is the set value D
* It is assumed that vibration welding has been completed when
End the analysis.

【0033】ステップ6では式5を用いて溶着エネルギ
ーEiを溶着強度Sw(Mpa)に変換し、溶着部分の各微小
要素iにおける溶着強度を求める。
In step 6, the welding energy Ei is converted into the welding strength Sw (Mpa) using equation 5, and the welding strength at each minute element i of the welded portion is determined.

【0034】Sw = α×Ei2+β×Ei+γ 式5 α、β、γは実験より求めたパラメータであり、使用す
る樹脂材料により変化する。α、β、γは例えば図8に
示す802の溶着部分寸法30mm×10mmの試験片の
振動溶着実験を、801の方向への加圧による加圧力
を、3点以上の点、例えば5MPa、10MPa、15
MPaに変更し、さらに振幅を、3点以上の点、例えば
1mm、1.2mm、1.5mmに変更して行い、式4
で求めた溶着エネルギーと測定された強度との相関曲線
を求めることにより決定される。例えばナイロン6ガラ
ス繊維強化樹脂材料の場合、A=-5×10-5〜-1×10-4、B=
0.07〜0.09、C=20〜25程度となる。
Sw = α × Ei 2 + β × Ei + γ Equation 5 α, β, and γ are parameters obtained by experiments and vary depending on the resin material used. α, β, and γ are, for example, a vibration welding experiment of a test piece having a welded part size of 30 mm × 10 mm of 802 shown in FIG. 8 and a pressing force in the direction of 801 applied to three or more points, for example, 5 MPa, 10 MPa. , 15
MPa, and the amplitude is changed to three or more points, for example, 1 mm, 1.2 mm, and 1.5 mm.
Is determined by obtaining a correlation curve between the welding energy obtained in the above and the measured strength. For example, in the case of nylon 6 glass fiber reinforced resin material, A = −5 × 10−5 to −1 × 10−4, B =
0.07 to 0.09, C = about 20 to 25.

【0035】ステップ7ではステップ6で求めた溶着強
度とステップ4で求めた発生応力より各微小要素におけ
る安全度を求める。安全度としては、例えば溶着強度を
発生応力にて除すことにより得られる強度安全率を用い
ることができる。あるいは安全度として、溶着強度と発
生応力より定まる別の指標を用いることも可能である。
ここでは強度安全率が例えば2.0などの規定値以下の
場合、溶着条件変更で対応する場合はステップ5、設計
変更で対応する場合はステップ1へ戻り、以降のステッ
プを繰り返して安全度が既定値以上となる条件を探索す
る。
In step 7, the degree of safety of each microelement is determined from the welding strength determined in step 6 and the generated stress determined in step 4. As the degree of safety, for example, a strength safety factor obtained by dividing the welding strength by the generated stress can be used. Alternatively, another index determined from the welding strength and the generated stress can be used as the degree of safety.
Here, when the strength safety factor is equal to or less than a specified value such as 2.0, for example, the process returns to step 5 when the welding condition is changed, and returns to step 1 when the design condition is changed. Search for a condition that is equal to or greater than the default value.

【0036】[0036]

【実施例】次に本発明の実施態様例を説明する。Next, an embodiment of the present invention will be described.

【0037】屈曲したナイロン6ガラス繊維強化樹脂製
の中空製品について、有限要素法のプリプロセッサを用
いて4角形の微小要素に分割した解析モデルを図9に示
す。プリプロセッサを用いることにより、パイプ型の製
品形状を入力し、該製品形状より各微小要素の頂点座標
値および各微小要素を構成する頂点番号よりなる要素形
状データが生成された。(ステップ1) 次に射出成形CAEソフトウェアに対して上記要素形状
データを溶着前の上下2パーツに分割してそれぞれを入
力した。さらに射出成形条件と使用する樹脂の物性値を
入力することにより、図10に示すように射出成形した
上下パーツのそり変形状態を求めた。(ステップ2)な
お図10ではそり変形量を計算値の10倍に拡大して表
示してある。
FIG. 9 shows an analytical model obtained by dividing a bent hollow product made of nylon 6 glass fiber reinforced resin into square minute elements using a finite element method preprocessor. By using a preprocessor, a pipe-shaped product shape is input, and element shape data including vertex coordinate values of each minute element and vertex numbers constituting each minute element are generated from the product shape. (Step 1) Next, the above-mentioned element shape data was divided into upper and lower two parts before welding and input to the injection molding CAE software. Further, by inputting the injection molding conditions and the physical properties of the resin used, the warped state of the upper and lower parts injection-molded as shown in FIG. 10 was obtained. (Step 2) In FIG. 10, the amount of warpage deformation is enlarged to ten times the calculated value and displayed.

【0038】次に上記そり変形後の上下パーツについ
て、対応する溶着部分の微小要素頂点間に上下パーツの
10倍以上の高剛性を有する棒要素を定義し、該棒要素
が長さ0に収縮した際に上下パーツの微小要素に発生す
る応力を有限要素法による構造解析により求めた。図1
1に溶着部分の微小要素に発生する応力分布を示す。こ
の応力値はそり変形した上下パーツを強制的に接合した
際に発生する応力値を示す。(ステップ3) 次に上記強制接合した上下パーツに対し、使用時に想定
される荷重として内圧10kg/cm2を負荷した際の変形と
発生応力を有限要素法にて解析した。図12は荷重負荷
時の溶着部分への発生応力を1202に、ステップ4で
求めた強制接合時の発生応力を1203に表示してい
る。このとき、振動溶着部分の各微小要素に発生する応
力値σiを記憶装置に保存した。(ステップ4) 次に図13に示すように溶着部分のみを微小要素に分割
し、振動溶着時の加圧荷重100kg、振幅1.5mm、溶
着深さ1.5mmと設定した後、式4の溶着エネルギー算
出方法に基づいて、パラメータm1=0.1,m2=
1.6として各微小要素に発生する溶着エネルギーEiを
求めた。(ステップ5) 次に式5を用いて溶着エネルギーEiを溶着強度Swに変換
した。このとき、パラメータ値はA=-7×10-5、B=
0.08、C=22とした。図14は5点における溶着
強度を示している。(ステップ6) 次に前記溶着強度Swを荷重負荷時の発生応力σiで除
し、各微小要素の強度安全率Aiを図15のように算出し
た。該製品の場合、設計仕様において強度安全率1.5
以上が必要とされていたが、C部の強度安全率が1.5
以下となることが判明した。そこで振動溶着時の加圧荷
重を80kgに変更して再度ステップ5以降を行った結
果、図16のようにすべての振動溶着部分で強度安全率
が1.5以上となり、設計仕様を満足することが判明し
た。本実施例では振動溶着時の加圧荷重を変更して安全
率の改善を図ったが、その他の振動溶着条件を変更する
ことや、さらに例えば振動溶着部分の形状を変更し振動
溶着時の加圧方向に対する溶着部分の投影面積を大きく
することや、使用する樹脂材料を変更する等の修正方法
も考えられる。(ステップ7)
Next, with respect to the upper and lower parts after the warp deformation, a bar element having a rigidity at least 10 times higher than that of the upper and lower parts is defined between the vertices of the corresponding minute elements of the welded part, and the bar element shrinks to zero length. The stress generated in the microelements of the upper and lower parts when doing this was obtained by structural analysis using the finite element method. FIG.
FIG. 1 shows the distribution of stress generated in the minute element at the welded portion. This stress value indicates a stress value generated when the warped and deformed upper and lower parts are forcibly joined. (Step 3) Next, deformation and generated stress when an internal pressure of 10 kg / cm2 was applied as a load assumed during use to the upper and lower parts that were forcibly joined were analyzed by a finite element method. FIG. 12 shows the stress generated at the welded portion when a load is applied at 1202, and the stress generated at the time of forced joining obtained at step 4 is shown at 1203. At this time, the stress value σi generated in each minute element of the vibration welding portion was stored in the storage device. (Step 4) Next, as shown in FIG. 13, only the welded portion is divided into minute elements, and the pressure load during vibration welding is set to 100 kg, the amplitude is set to 1.5 mm, and the welding depth is set to 1.5 mm. Based on the welding energy calculation method, parameters m1 = 0.1, m2 =
As 1.6, the welding energy Ei generated in each microelement was determined. (Step 5) Next, the welding energy Ei was converted into the welding strength Sw using Expression 5. At this time, the parameter values are A = -7 × 10-5, B =
0.08 and C = 22. FIG. 14 shows the welding strength at five points. (Step 6) Next, the welding strength Sw was divided by the generated stress σi when a load was applied, and the strength safety factor Ai of each microelement was calculated as shown in FIG. In the case of this product, the strength safety factor is 1.5 in the design specification.
Although the above was required, the strength safety factor of the part C was 1.5
It has been found that: Therefore, the pressure load at the time of vibration welding was changed to 80 kg, and step 5 and the subsequent steps were performed again. As a result, as shown in FIG. There was found. In this embodiment, the safety factor is improved by changing the pressure load at the time of vibration welding. Modification methods such as increasing the projection area of the welded portion in the pressure direction and changing the resin material used are also conceivable. (Step 7)

【0039】[0039]

【発明の効果】本発明による接合強度の解析方法および
解析装置によれば、製品形状や樹脂、成形加工条件など
個々の製品に応じた振動溶着強度の予測および強度改善
の検討をコンピュータ上で効率的に行うことが可能とな
り、個々の振動溶着製品等の接合品に対して最適な形状
や樹脂、成形加工条件を設定することにより製品開発期
間短縮、コスト低減、溶着強度の向上を実現することが
できる。
According to the method and the apparatus for analyzing the bonding strength according to the present invention, it is possible to predict the vibration welding strength according to each product such as the shape of the product, the resin and the molding processing conditions, and to study the improvement of the strength on a computer. It is possible to shorten the product development period, reduce costs, and improve welding strength by setting the optimal shape, resin, and molding processing conditions for each joined product such as vibration welding products. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施態様例の構成を示すブロック図で
ある。
FIG. 1 is a block diagram showing a configuration of an embodiment of the present invention.

【図2】本発明の実施態様例の接合強度の解析方法を示
すフローチャートである。
FIG. 2 is a flowchart illustrating a method of analyzing a bonding strength according to an embodiment of the present invention.

【図3】中空成形品を4角形微小要素に分割した例を示
す図である。
FIG. 3 is a diagram showing an example in which a hollow molded product is divided into rectangular microelements.

【図4】図3に示す中空成形品の微小要素分割モデルを
上下パーツに分割表示した図である。
FIG. 4 is a view showing a fine element division model of the hollow molded product shown in FIG. 3 divided into upper and lower parts.

【図5】図4に示す上下パーツのそり変形形状に対し、
対応する溶着部分の一部を、棒要素で結合した状態を示
す図である。
FIG. 5 shows the warped shape of the upper and lower parts shown in FIG.
It is a figure which shows the state which part of the corresponding welding part was connected with the rod element.

【図6】図3に示す中空成形品の溶着部分のみを微小要
素に分割した状態を示す図である。
6 is a view showing a state where only a welded portion of the hollow molded article shown in FIG. 3 is divided into minute elements.

【図7】溶着部分にかかる圧力の方向と溶着面の角度の
定義を示す図である。
FIG. 7 is a diagram showing a definition of a direction of a pressure applied to a welding portion and an angle of a welding surface.

【図8】溶着実験に用いる試験片形状の一例を示す図で
ある。
FIG. 8 is a diagram showing an example of a test piece shape used for a welding experiment.

【図9】中空成形品を4角形微小要素に分割した例を示
す図である。
FIG. 9 is a diagram showing an example in which a hollow molded product is divided into quadrangular microelements.

【図10】図9に示す中空成形品の上下パーツを射出成
形した際に発生したそり変形を解析した結果を示す図で
ある。
10 is a diagram showing a result of analyzing warpage deformation generated when upper and lower parts of the hollow molded article shown in FIG. 9 are injection-molded.

【図11】図10に示すそり変形形状を強制的に接合し
た際に発生する応力値を示す図である。
11 is a diagram showing stress values generated when the warped shape shown in FIG. 10 is forcibly joined.

【図12】図10に示すそり変形形状を強制的に接合し
た後、内圧を負荷した際に発生する応力値を示す図であ
る。
12 is a diagram showing stress values generated when an internal pressure is applied after forcibly joining the warped shape shown in FIG. 10;

【図13】図9に示す中空成形品の溶着部分のみを微小
要素に分割した状態を示す図である。
13 is a view showing a state in which only a welded portion of the hollow molded article shown in FIG. 9 is divided into minute elements.

【図14】図13に示す溶着部分の溶着強度を解析した
結果を示す図である。
FIG. 14 is a view showing the result of analyzing the welding strength of the welded portion shown in FIG.

【図15】図12に示す発生応力と図14に示す強度よ
り安全率を求めた結果を示す図である。
FIG. 15 is a diagram showing a result of obtaining a safety factor from the generated stress shown in FIG. 12 and the strength shown in FIG.

【図16】図9に示す中空成形品の溶着条件を修正し、
溶着部分強度の安全率を求めた結果を示す図である。
FIG. 16 corrects the welding conditions of the hollow molded article shown in FIG. 9,
It is a figure which shows the result of having calculated | required the safety factor of the welding part intensity | strength.

【符号の説明】[Explanation of symbols]

101・・・条件入力装置 102・・・微小要素分割装置 103・・・データ保存装置1 104・・・そり変形解析装置 105・・・残留応力解析装置 106・・・負荷応力解析装置 107・・・溶着強度解析装置 108・・・データ保存装置2 109・・・安全率解析装置 110・・・データ保存装置3 111・・・出力装置 301・・・微小要素 302・・・溶着部分 401・・・上パーツ 402・・・下パーツ 403・・・溶着部分 501・・・上パーツ 502・・・下パーツ 503・・・棒要素 601・・・微小要素 701・・・加圧方向 702・・・溶着面 703・・・加圧方向と溶着面のなす角度 801・・・加圧方向 802・・・溶着面 901・・・微小要素 902・・・溶着部分 1001・・・上パーツ 1002・・・下パーツ 1201・・・応力出力位置 1202・・・内圧負荷による発生応力 1203・・・強制接合による発生応力 1301・・・微小要素 1501・・・設計仕様の安全率下限 1601・・・設計仕様の安全率下限 101 ... condition input device 102 ... minute element dividing device 103 ... data storage device 1 104 ... warpage deformation analysis device 105 ... residual stress analysis device 106 ... load stress analysis device 107 ...・ Welding strength analyzer 108 ・ ・ ・ Data storage device 2 109 ・ ・ ・ Safety factor analyzer 110 ・ ・ ・ Data storage device 3 111 ・ ・ ・ Output device 301 ・ ・ ・ Microelement 302 ・ ・ ・ Welding part 401 ・ ・-Upper part 402 ... Lower part 403 ... Welding part 501 ... Upper part 502 ... Lower part 503 ... Bar element 601 ... Micro element 701 ... Pressing direction 702 ... Welding surface 703: angle between pressing direction and welding surface 801: pressing direction 802: welding surface 901: minute element 902: welding part 1001: upper part 1002: Lower part 1201: Stress output position 1202: Stress generated by internal pressure load 1203: Stress generated by forced joining 1301: Small element 1501: Safety factor lower limit of design specification 1601 ...・ Lower safety factor of design specification

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】複数の部材が溶着により接合されてなる接
合品の強度解析方法であって、前記複数の部材の接合部
位の少なくとも一部に印加される溶着エネルギーを計算
によりもとめ、得られた溶着エネルギーを前記接合部位
の接合強度に変換し、前記接合品の強度を求めることを
特徴とする接合品強度の解析方法。
1. A method of analyzing the strength of a joined product in which a plurality of members are joined by welding, wherein a welding energy applied to at least a part of a joint portion of the plurality of members is obtained by calculation. A method for analyzing the strength of a joined product, wherein welding energy is converted into the joining strength of the joining portion, and the strength of the joined product is obtained.
【請求項2】複数の部材が溶着により接合されてなる接
合品の強度解析方法であって、前記複数の部材の接合部
位の少なくとも一部の接合強度を求め、前記接合品の負
荷時における発生応力を計算により求め、得られた前記
接合部位の接合強度と負荷応力とに基づいて前記接合部
位の強度安全度を求めることを特徴とする接合品強度の
解析方法。
2. A method for analyzing the strength of a joined product in which a plurality of members are joined by welding, wherein a joint strength of at least a part of a joining portion of the plurality of members is obtained, and the joint strength is generated when the joined product is loaded. A method for analyzing the strength of a joined product, wherein a stress is obtained by calculation, and a strength safety level of the joint is obtained based on the obtained joint strength and load stress of the joint.
【請求項3】複数の部材が溶着により接合されてなる接
合品の強度解析方法であって、前記接合部位の少なくと
も一部の接合強度を求め、前記複数の部材の成形時のそ
り変形形状を計算により求め、前記そり変形を受けた前
記複数の部材を強制的に接合した際の残留応力を計算に
より求め、前記接合品の負荷時における発生応力を計算
により求め、得られた前記接合部位の接合強度と残留応
力と負荷応力とに基づいて前記接合部位の強度安全度を
求めることを特徴とする接合品強度の解析方法。
3. A method for analyzing the strength of a joined product in which a plurality of members are joined by welding, wherein a joining strength of at least a part of the joining portion is obtained, and a warp deformation shape at the time of molding of the plurality of members is determined. Obtained by calculation, the residual stress at the time of forcibly joining the plurality of members subjected to the warp deformation is obtained by calculation, the stress generated at the time of loading of the joined product is obtained by calculation, and the obtained joint part is obtained. A method for analyzing the strength of a joint product, wherein a strength safety of the joint portion is obtained based on a joint strength, a residual stress, and a load stress.
【請求項4】複数の部材が溶着により接合されてなる接
合品の強度解析装置であって、前記複数の部材の接合部
位の少なくとも一部に印加される溶着エネルギーを計算
により求める手段と、得られた溶着エネルギーを前記接
合部位の接合強度に変換し、前記接合品の強度を求める
手段を有することを特徴とする接合品強度の解析装置。
4. An apparatus for analyzing the strength of a joined product in which a plurality of members are joined by welding, comprising: means for calculating welding energy applied to at least a part of a joint portion of the plurality of members; An apparatus for analyzing the strength of a bonded product, comprising means for converting the obtained welding energy into the bonding strength at the bonding site and determining the strength of the bonded product.
【請求項5】複数の部材が溶着により接合されてなる接
合品の強度解析装置であって、前記複数の部材の接合部
位の少なくとも一部の接合強度を求める手段と、前記接
合品の負荷時における発生応力を計算により求める手段
と、得られた前記接合部位の接合強度と負荷応力とに基
づいて前記接合部位の強度安全度を求める手段を有する
ことを特徴とする接合品強度の解析装置。
5. An apparatus for analyzing the strength of a joined product in which a plurality of members are joined by welding, comprising: means for determining a joining strength of at least a part of a joining portion of the plurality of members; And a means for calculating the strength safety of the joint based on the obtained joint strength and load stress of the joint.
【請求項6】複数の部材が溶着により接合されてなる接
合品の強度解析装置であって、前記接合部位の少なくと
も一部の接合強度を求める手段と、前記複数の部材の成
形時のそり変形形状を計算により求める手段と、前記そ
り変形を受けた前記複数の部材を強制的に接合した際の
残留応力を計算により求める手段と、前記接合品の負荷
時における発生応力を計算により求める手段と、得られ
た前記接合部位の接合強度と残留応力と負荷応力とに基
づいて前記接合部位の強度安全度を求める手段を有する
ことを特徴とする接合品強度の解析装置。
6. An apparatus for analyzing the strength of a joined product in which a plurality of members are joined by welding, wherein a means for determining the joining strength of at least a part of the joining portion, and a warp deformation during molding of the plurality of members. Means for calculating a shape, means for calculating a residual stress when the plurality of members subjected to the warp deformation are forcibly joined, and means for calculating a stress generated when a load is applied to the joined product. And a means for determining the strength safety of the joint portion based on the obtained joint strength, residual stress, and load stress of the joint portion.
【請求項7】溶着エネルギーの計算に、多数の微小要素
を含むモデルを用いることを特徴とする請求項1に記載
の接合品強度の解析方法。
7. The method according to claim 1, wherein a model including a large number of minute elements is used for calculating the welding energy.
【請求項8】溶着が振動時摩擦熱によるものであること
を特徴とする請求項1に記載の接合品強度の解析方法。
8. The method according to claim 1, wherein the welding is based on frictional heat during vibration.
【請求項9】溶着エネルギーの接合強度への変換に際し
てこう正曲線を用いることを特徴とする請求項1に記載
の接合品強度の解析方法。
9. The method for analyzing joint strength according to claim 1, wherein a positive curve is used when converting welding energy into joint strength.
【請求項10】こう正曲線として、溶着エネルギーを変
数とする2次曲線を用いることを特徴とする請求項9に
記載の接合品強度の解析方法。
10. The method according to claim 9, wherein a quadratic curve using welding energy as a variable is used as the positive curve.
【請求項11】請求項1または2または3の解析方法に
より接合品強度または強度安全度を予測し、強度仕様を
満足する接合条件を決定し、該条件にもとづいて接合加
工を行うことを特徴とする、接合品の製造方法。
11. The method according to claim 1, wherein the strength of the joint product or the strength safety is predicted, the joining condition satisfying the strength specification is determined, and the joining process is performed based on the condition. The manufacturing method of the joined article.
【請求項12】請求項1または2または3のいずれかの
接合強度の解析方法の各手順をコンピュータを用いて実
施できるようにコンピュータを動作させるソフトウェア
を記憶した記憶媒体。
12. A storage medium storing software for operating a computer so that each procedure of the method for analyzing joint strength according to claim 1, 2 or 3 can be performed using the computer.
JP11516598A 1998-04-24 1998-04-24 Method and device for analyzing strength of joined product Pending JPH11304677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11516598A JPH11304677A (en) 1998-04-24 1998-04-24 Method and device for analyzing strength of joined product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11516598A JPH11304677A (en) 1998-04-24 1998-04-24 Method and device for analyzing strength of joined product

Publications (1)

Publication Number Publication Date
JPH11304677A true JPH11304677A (en) 1999-11-05

Family

ID=14655954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11516598A Pending JPH11304677A (en) 1998-04-24 1998-04-24 Method and device for analyzing strength of joined product

Country Status (1)

Country Link
JP (1) JPH11304677A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288499A (en) * 2011-08-31 2011-12-21 湖南大学 Detection method for identifying static mechanical performance parameters of materials in different regions of weld joint
CN102313676A (en) * 2011-08-31 2012-01-11 湖南大学 Detection method for identifying material static mechanical property parameters in different areas of solder joints
JP2012006303A (en) * 2010-06-25 2012-01-12 Polyplastics Co Method for determining welding condition
CN102435514A (en) * 2011-08-31 2012-05-02 湖南大学 Detecting method for identifying dynamic mechanical property parameters of materials in different zones of welding spot
CN102589993A (en) * 2012-02-09 2012-07-18 东南大学 Method for monitoring overall welded joint fatigue damage of steel bridge deck of highway
US20160033452A1 (en) * 2012-11-29 2016-02-04 Beijing Institute Of Technology Fixed Value Residual Stress Test Block And Manufacturing And Preservation Method Thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006303A (en) * 2010-06-25 2012-01-12 Polyplastics Co Method for determining welding condition
CN102288499A (en) * 2011-08-31 2011-12-21 湖南大学 Detection method for identifying static mechanical performance parameters of materials in different regions of weld joint
CN102313676A (en) * 2011-08-31 2012-01-11 湖南大学 Detection method for identifying material static mechanical property parameters in different areas of solder joints
CN102435514A (en) * 2011-08-31 2012-05-02 湖南大学 Detecting method for identifying dynamic mechanical property parameters of materials in different zones of welding spot
CN102589993A (en) * 2012-02-09 2012-07-18 东南大学 Method for monitoring overall welded joint fatigue damage of steel bridge deck of highway
US20160033452A1 (en) * 2012-11-29 2016-02-04 Beijing Institute Of Technology Fixed Value Residual Stress Test Block And Manufacturing And Preservation Method Thereof
US9989496B2 (en) * 2012-11-29 2018-06-05 Beijing Institute Of Technology Fixed value residual stress test block and manufacturing and preservation method thereof

Similar Documents

Publication Publication Date Title
US5811133A (en) Injection molding apparatus for predicting deformation amount in injection-molded article
US6816820B1 (en) Method and apparatus for modeling injection of a fluid in a mold cavity
Ratchev et al. Force and deflection modelling in milling of low-rigidity complex parts
US9573307B1 (en) Method for preparing a fiber-reinforced composite article by using computer-aided engineering
US9283695B1 (en) Computer-implemented simulation method and non-transitory computer medium capable of predicting fiber orientation for use in a molding process
Walbran et al. Prediction and experimental verification of normal stress distributions on mould tools during Liquid Composite Moulding
CN101685475A (en) Analytical model preparation method, and simulation system method for predicting molding failure
JPH11304677A (en) Method and device for analyzing strength of joined product
Wang et al. Three‐dimensional viscoplastic FEM simulation of a stretch blow molding process
Romanenko et al. Advanced process simulation of compression molded carbon fiber sheet molding compound (C-SMC) parts in automotive series applications
US10427344B1 (en) Molding system for preparing an injection molded fiber reinforced composite article
CN108629110A (en) The method that quick obtaining corrects metal powder compression moulding DPC Parameters of constitutive model
Wanne PFC3D simulation procedure for compressive strength testing of anisotropic hard rock
JP4574880B2 (en) Method and apparatus for structural strength simulation of injection molded product
JPH0622840B2 (en) Molding process simulation system
JP6639899B2 (en) Molded article design support method, molded article design support apparatus, computer software, storage medium
JP2001191336A (en) Mold design apparatus and method for designing mold shape
JP2023535348A (en) Scaling method and system based on point-by-point superposition procedure
JP2955509B2 (en) Mold design method and apparatus
JP2002052560A (en) System for supporting determination of injection-molded article production parameter
JP2003011199A (en) Device for simulating injection molding process and method for predicting shape precision
JP2001165823A (en) Method and apparatus for analyzing warp of joined article
JP2018039165A (en) Warpage deformation preventing designing method of resin molded article, program, recording medium and warpage deformation preventing designing device of resin molded article
JP2003320577A (en) Numeral value analyzing method and device for blow- molding material behavior
Haddad et al. A study of blow moulding simulation and structural analysis for PET bottles