JPH11303621A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine

Info

Publication number
JPH11303621A
JPH11303621A JP10128081A JP12808198A JPH11303621A JP H11303621 A JPH11303621 A JP H11303621A JP 10128081 A JP10128081 A JP 10128081A JP 12808198 A JP12808198 A JP 12808198A JP H11303621 A JPH11303621 A JP H11303621A
Authority
JP
Japan
Prior art keywords
exhaust gas
nox
air
fuel ratio
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10128081A
Other languages
Japanese (ja)
Other versions
JP3624689B2 (en
Inventor
Toshikatsu Takahashi
年克 鷹嘴
Hiroshi Ono
弘志 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP12808198A priority Critical patent/JP3624689B2/en
Publication of JPH11303621A publication Critical patent/JPH11303621A/en
Application granted granted Critical
Publication of JP3624689B2 publication Critical patent/JP3624689B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/03Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To decide the deterioration of an NOx absorbent accurately even when a three-dimensional catalyst is arranged at the upstream side of the NOx absorbent. SOLUTION: This device carries out a feedback control to control the air-fuel ratio to a theoretical air-fuel ratio, according to the output of an O2 sensor, at the downstream side of an NOx absorbent, and measures the deciding time TCHK (S22). And when the reduction rich operation of the NOx absorbent is carried out during a lean operation, a rich transfer time TNOx from the time when the air-fuel ratio is converted to the rich side to the time that the O2 sensor output exceeds a standard value SVREF is measured (S25). The deciding time TCHK and the rich transfer time TNOx are converted to deciding parameters OSCIDX and NSCIDX respectively (S23, S26), and the deterioration of the NOx absorbent is decided depending on the parameters (S27 to S30).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の排気ガ
ス浄化装置に関し、特に排気系にNOx(窒素酸化物)
吸収剤を備え、該NOx吸収剤の劣化を判定する機能を
有する排気ガス浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine, and more particularly, to an exhaust system having NOx (nitrogen oxide).
The present invention relates to an exhaust gas purifying apparatus having an absorbent and having a function of determining deterioration of the NOx absorbent.

【0002】[0002]

【従来の技術】内燃機関に供給する混合気の空燃比を理
論空燃比よりリーン側に設定するリーン運転を実行する
と、NOxの排出量が増加する傾向があるため、機関の
排気通路内にNOxを吸収するNOx吸収剤を配置し、
排気ガスの浄化を行う技術が従来より知られている。こ
のNOx吸収剤は、空燃比が理論空燃比よりリーン側に
設定され、排気ガス中の酸素濃度が比較的高い(NOx
が多い)状態(以下「排気ガスリーン状態」という)に
おいては、NOxを吸収する一方、逆に空燃比が理論空
燃比よりリッチ側に設定され、排気ガス中の酸素濃度が
低く、HC、CO成分が多い状態(以下「排気ガスリッ
チ状態」という)においては、吸収したNOxを放出す
る特性を有する。このNOx吸収剤を内蔵する排気ガス
浄化装置は、排気ガスリッチ状態においては、NOx吸
収剤から放出されるNOxはHC、COにより還元され
て、窒素ガスとして排出され、またHC、COは酸化さ
れて水蒸気及び二酸化炭素として排出されるように構成
されている。
2. Description of the Related Art When a lean operation is performed in which the air-fuel ratio of an air-fuel mixture supplied to an internal combustion engine is set leaner than the stoichiometric air-fuel ratio, the amount of NOx emission tends to increase. A NOx absorbent that absorbs
A technique for purifying exhaust gas has been conventionally known. In this NOx absorbent, the air-fuel ratio is set leaner than the stoichiometric air-fuel ratio, and the oxygen concentration in the exhaust gas is relatively high (NOx
(Hereinafter referred to as “exhaust gas lean state”), while absorbing NOx, the air-fuel ratio is set to be richer than the stoichiometric air-fuel ratio, the oxygen concentration in the exhaust gas is low, and the HC and CO components are low. In a state with a large amount of NOx (hereinafter, referred to as an "exhaust gas rich state"), it has a characteristic of releasing the absorbed NOx. In an exhaust gas purifying apparatus incorporating this NOx absorbent, in an exhaust gas rich state, NOx released from the NOx absorbent is reduced by HC and CO and discharged as nitrogen gas, and HC and CO are oxidized. It is configured to be discharged as water vapor and carbon dioxide.

【0003】上記NOx吸収剤が、吸収できるNOx量
には当然限界があり、この限界値は、NOx吸収剤が劣
化すると小さくなる傾向を示す。そのため、NOx吸収
剤の下流側に空燃比センサを配置し、NOx吸収剤に吸
収されたNOxを放出させるための空燃比リッチ化(以
下「還元リッチ化」という)を実行し、該還元リッチ化
開始時点から、前記空燃比センサの出力がリッチ空燃比
を示す値に変化する時点までの時間により、NOx吸収
剤の劣化度合を判定する手法が、従来より知られている
(特開平8−232644号公報)。
[0003] The amount of NOx that can be absorbed by the NOx absorbent naturally has a limit, and this limit value tends to decrease as the NOx absorbent deteriorates. For this reason, an air-fuel ratio sensor is arranged downstream of the NOx absorbent, and the air-fuel ratio enrichment (hereinafter referred to as “reduction enrichment”) for releasing the NOx absorbed by the NOx absorbent is executed. A method of determining the degree of deterioration of the NOx absorbent based on the time from the start to the time when the output of the air-fuel ratio sensor changes to a value indicating the rich air-fuel ratio has been conventionally known (Japanese Patent Laid-Open No. 8-232644). No.).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、機関の
排気通路内にNOx吸収剤とともにその上流側に三元触
媒も配置する場合には、上記還元リッチ化を開始して
も、三元触媒により排気ガス中のHC、COが酸化され
るため、NOx吸収剤にHC,CO成分の多い排気ガス
が実際に流入するまでに遅れが生じる。そのため、上記
従来の手法をそのまま適用したのでは、NOx吸収剤の
劣化判定を正確に行うことができなかった。
However, in the case where a three-way catalyst is arranged upstream of the NOx absorbent in the exhaust passage of the engine together with the NOx absorbent, even if the above-mentioned reduction enrichment is started, the exhaust gas is exhausted by the three-way catalyst. Since HC and CO in the gas are oxidized, a delay occurs before the exhaust gas containing a large amount of HC and CO components actually flows into the NOx absorbent. Therefore, if the above-described conventional method is applied as it is, it is not possible to accurately determine the deterioration of the NOx absorbent.

【0005】本発明はこの点に着目してなされたもので
あり、NOx吸収剤の上流側に三元触媒を配置した場合
にも、NOx吸収剤の劣化を正確に判定できるようにし
た排気ガス浄化装置を提供することを目的とする。
The present invention has been made with a focus on this point. Even when a three-way catalyst is arranged upstream of the NOx absorbent, the exhaust gas is designed to accurately determine the deterioration of the NOx absorbent. It is intended to provide a purification device.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
本発明は、内燃機関の排気系に設けられ、排気ガスリー
ン状態において排気ガス中のNOxを吸収するNOx吸
収剤を内蔵し、排気ガスリッチ状態において吸収したN
Oxを還元するNOx浄化手段と、該NOx浄化手段の
上流側に設けられ、酸素貯蔵能力を有する三元触媒と、
前記NOx浄化手段の下流側に設けられ、排気ガス中の
特定成分の濃度を検出する排気濃度センサとを備えた内
燃機関の排気ガス浄化装置において、前記機関に供給す
る混合気の空燃比を理論空燃比よりリッチ側からリーン
側へ若しくはその逆に切り換えたときの前記排気濃度セ
ンサ出力の反転時間を検出する第1の検出手段と、前記
混合気の空燃比を所定時間に亘って理論空燃比よりリー
ン側に維持した後にリッチ側に変化させたときの前記排
気濃度センサ出力が理論空燃比付近に停滞する時間を検
出する第2の検出手段と、前記第1及び第2の検出手段
による検出結果に基づいて前記NOx吸収剤の劣化を判
定する劣化判定手段とを有することを特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides an exhaust system for an internal combustion engine, which includes a NOx absorbent for absorbing NOx in exhaust gas in an exhaust gas lean state, N absorbed in
NOx purification means for reducing Ox, a three-way catalyst provided upstream of the NOx purification means and having an oxygen storage capacity,
In an exhaust gas purifying apparatus for an internal combustion engine, which is provided downstream of the NOx purifying means and includes an exhaust concentration sensor for detecting a concentration of a specific component in exhaust gas, an air-fuel ratio of an air-fuel mixture supplied to the engine is theoretically determined. First detection means for detecting a reversal time of the output of the exhaust gas concentration sensor when the air-fuel ratio is switched from rich to lean or vice versa; and Second detection means for detecting a time when the output of the exhaust concentration sensor stagnates near the stoichiometric air-fuel ratio when the output is changed to the rich side after maintaining the lean side, and detection by the first and second detection means A deterioration determining means for determining deterioration of the NOx absorbent based on the result.

【0007】ここで「所定時間」は、NOx吸収剤が、
そのNOx吸収能力の限界までNOxを吸収するのに要
する時間、若しくはそれより若干短い時間であり、例え
ばエンジン運転状態に応じて算出される単位時間当たり
の推定NOx排出量を積算し、その積算値が所定許容値
に達するまでの時間とする。
Here, the "predetermined time" is when the NOx absorbent is
The time required to absorb NOx up to the limit of the NOx absorption capacity, or a slightly shorter time. For example, the estimated NOx emission per unit time calculated according to the engine operating state is integrated, and the integrated value is calculated. Is the time required until reaches a predetermined allowable value.

【0008】この構成によれば、機関に供給する混合気
の空燃比を理論空燃比よりリッチ側からリーン側へ若し
くはその逆に切り換えたときの排気濃度センサ出力の反
転時間により三元触媒の浄化能力が検出され、混合気の
空燃比を所定時間に亘って理論空燃比よりリーン側に維
持した後にリッチ側に変化させたときの排気濃度センサ
の出力が理論空燃比付近に停滞する時間により三元触媒
とNOx吸収剤とをあわせた浄化能力が検出され、2つ
の検出結果に基づいて、NOx吸収剤の劣化が判定され
る。したがって、三元触媒の影響を除いてNOx吸収剤
の劣化を正確に判定することができる。
According to this configuration, the three-way catalyst is purified by the inversion time of the output of the exhaust gas concentration sensor when the air-fuel ratio of the air-fuel mixture supplied to the engine is switched from rich to lean from the stoichiometric air-fuel ratio or vice versa. The output of the exhaust concentration sensor when the air-fuel ratio of the air-fuel mixture is changed to the rich side after maintaining the air-fuel ratio of the air-fuel mixture leaner than the stoichiometric air-fuel ratio for a predetermined period of time is determined by the time when the output stagnates near the stoichiometric air-fuel ratio. The purification capability of the source catalyst and the NOx absorbent is detected, and the deterioration of the NOx absorbent is determined based on the two detection results. Therefore, it is possible to accurately determine the deterioration of the NOx absorbent except for the influence of the three-way catalyst.

【0009】[0009]

【発明の実施の形態】以下本発明の実施の形態を図面を
参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】図1は、本発明の実施の一形態に係る排気
ガス浄化装置を含む、内燃機関(以下「エンジン」とい
う)の制御装置の全体構成図であり、例えば4気筒のエ
ンジン1の吸気管2の途中にはスロットル弁3が配され
ている。スロットル弁3にはスロットル弁開度(θT
H)センサ4が連結されており、当該スロットル弁3の
開度に応じた電気信号を出力してエンジン制御用電子コ
ントロールユニット(以下「ECU」という)5に供給
する。
FIG. 1 is an overall configuration diagram of a control device for an internal combustion engine (hereinafter referred to as an “engine”) including an exhaust gas purifying device according to an embodiment of the present invention. A throttle valve 3 is disposed in the middle of the pipe 2. The throttle valve 3 has a throttle valve opening (θT
H) The sensor 4 is connected, and outputs an electric signal corresponding to the opening degree of the throttle valve 3 and supplies it to an engine control electronic control unit (hereinafter referred to as “ECU”) 5.

【0011】燃料噴射弁6はエンジン1とスロットル弁
3との間かつ吸気管2の図示しない吸気弁の少し上流側
に各気筒毎に設けられており、各噴射弁は図示しない燃
料ポンプに接続されていると共にECU5に電気的に接
続されて当該ECU5からの信号により燃料噴射弁6の
開弁時間が制御される。
A fuel injection valve 6 is provided for each cylinder between the engine 1 and the throttle valve 3 and slightly upstream of an intake valve (not shown) of the intake pipe 2, and each injection valve is connected to a fuel pump (not shown). The ECU 5 is electrically connected to the ECU 5 and controls a valve opening time of the fuel injection valve 6 based on a signal from the ECU 5.

【0012】一方、スロットル弁3の直ぐ下流には吸気
管内絶対圧(PBA)センサ7が設けられており、この
絶対圧センサ7により電気信号に変換された絶対圧信号
は前記ECU5に供給される。また、その下流には吸気
温(TA)センサ8が取付けられており、吸気温TAを
検出して対応する電気信号を出力してECU5に供給す
る。
On the other hand, an intake pipe absolute pressure (PBA) sensor 7 is provided immediately downstream of the throttle valve 3, and the absolute pressure signal converted into an electric signal by the absolute pressure sensor 7 is supplied to the ECU 5. . Further, an intake air temperature (TA) sensor 8 is mounted downstream thereof, detects the intake air temperature TA, outputs a corresponding electric signal, and supplies the electric signal to the ECU 5.

【0013】エンジン1の本体に装着されたエンジン水
温(TW)センサ9はサーミスタ等から成り、エンジン
水温(冷却水温)TWを検出して対応する温度信号を出
力してECU5に供給する。
The engine water temperature (TW) sensor 9 mounted on the main body of the engine 1 is composed of a thermistor or the like, detects the engine water temperature (cooling water temperature) TW, outputs a corresponding temperature signal, and supplies it to the ECU 5.

【0014】エンジン1の図示しないカム軸周囲又はク
ランク軸周囲には、エンジン回転数(NE)センサ10
及び気筒判別(CYL)センサ11が取り付けられてい
る。エンジン回転数センサ10は、エンジン1の各気筒
の吸入行程開始時の上死点(TDC)に関し所定クラン
ク角度前のクランク角度位置で(4気筒エンジンではク
ランク角180゜毎に)TDC信号パルスを出力し、気
筒判別センサ11は、特定の気筒の所定クランク角度位
置で気筒判別信号パルスを出力するものであり、これら
の各信号パルスはECU5に供給される。
An engine speed (NE) sensor 10 is provided around a camshaft or a crankshaft (not shown) of the engine 1.
And a cylinder discrimination (CYL) sensor 11. The engine speed sensor 10 outputs a TDC signal pulse at a crank angle position before a predetermined crank angle with respect to the top dead center (TDC) at the start of the intake stroke of each cylinder of the engine 1 (every 180 ° crank angle in a four-cylinder engine). The cylinder discriminating sensor 11 outputs a cylinder discriminating signal pulse at a predetermined crank angle position of a specific cylinder. These signal pulses are supplied to the ECU 5.

【0015】排気管12には排気ガス浄化装置を構成す
る三元触媒16及びNOx浄化手段17が設けられてい
る。NOx浄化手段17は、三元触媒16の下流側に配
置されている。
The exhaust pipe 12 is provided with a three-way catalyst 16 and a NOx purifying means 17 constituting an exhaust gas purifying device. The NOx purifying means 17 is arranged downstream of the three-way catalyst 16.

【0016】三元触媒16は、酸素蓄積能力を有し、エ
ンジン1に供給される混合気の空燃比が理論空燃比より
リーン側に設定され、排気ガス中の酸素濃度が比較的高
い排気ガスリーン状態では、排気ガス中の酸素を蓄積
し、逆にエンジン1に供給される混合気の空燃比が理論
空燃比よりリッチ側に設定され、排気ガス中の酸素濃度
が低く、HC、CO成分が多い排気ガスリッチ状態で
は、蓄積した酸素により排気ガス中のHC,COを酸化
する機能を有する。
The three-way catalyst 16 has an oxygen storage capacity, the air-fuel ratio of the air-fuel mixture supplied to the engine 1 is set leaner than the stoichiometric air-fuel ratio, and the exhaust gas lean has a relatively high oxygen concentration in the exhaust gas. In this state, oxygen in the exhaust gas is accumulated, and conversely, the air-fuel ratio of the air-fuel mixture supplied to the engine 1 is set to a richer side than the stoichiometric air-fuel ratio, the oxygen concentration in the exhaust gas is low, and the HC and CO components are low. When the exhaust gas is rich, the accumulated oxygen has a function of oxidizing HC and CO in the exhaust gas.

【0017】NOx浄化手段17は、NOxを吸収する
NOx吸収剤及び酸化、還元を促進するための触媒を内
蔵する。NOx吸収剤としては、エンジン1に供給され
る混合気の空燃比が理論空燃比よりリーン側に設定さ
れ、排気ガス中の酸素濃度が比較的高い(NOxが多
い)状態(排気ガスリーン状態)においては、NOxを
吸蔵する一方、逆にエンジン1に供給される空燃比が理
論空燃比よりリッチ側に設定され、排気ガス中の酸素濃
度が低く、HC、CO成分が多い状態(排気ガスリッチ
状態)においては、吸蔵したNOxを放出する特性を有
する吸蔵式のもの、あるいは排気ガスリーン状態におい
てNOxを吸着し、排気ガスリッチ状態においてNOx
を還元する吸着式のものを使用する。NOx浄化手段1
7は、排気ガスリーン状態においては、NOx吸収剤に
NOxを吸収させる一方、排気ガスリッチ状態において
は、NOx吸収剤に吸収されたNOxがHC、COによ
り還元されて、窒素ガスとして排出され、またHC、C
Oは酸化されて水蒸気及び二酸化炭素として排出される
ように構成されている。吸蔵式のNOx吸収剤として
は、例えば酸化バリウム(Ba0)が使用され、吸着式
のNOx吸収剤としては、例えばナトリウム(Na)と
チタン(Ti)またはストロンチウム(Sr)とチタン
(Ti)が使用され、触媒としては吸蔵式及び吸着式の
いずれにおいても例えば白金(Pt)が使用される。こ
のNOx吸収剤は、一般にその温度が高くなるほど、吸
収したNOxを放出しやすくなる特性を有する。
The NOx purifying means 17 contains a NOx absorbent for absorbing NOx and a catalyst for promoting oxidation and reduction. As the NOx absorbent, the air-fuel ratio of the air-fuel mixture supplied to the engine 1 is set leaner than the stoichiometric air-fuel ratio, and the oxygen concentration in the exhaust gas is relatively high (NOx is large) (exhaust gas lean state). Means that while storing NOx, the air-fuel ratio supplied to the engine 1 is set to be richer than the stoichiometric air-fuel ratio, the oxygen concentration in the exhaust gas is low, and the HC and CO components are high (exhaust gas rich state). Is a storage type having a characteristic of releasing stored NOx, or adsorbing NOx in an exhaust gas lean state and NOx in an exhaust gas rich state.
Use an adsorption type that reduces NOx purification means 1
In the exhaust gas lean state, NOx is absorbed by the NOx absorbent, while in the exhaust gas rich state, NOx absorbed by the NOx absorbent is reduced by HC and CO to be discharged as nitrogen gas. , C
O is configured to be oxidized and discharged as water vapor and carbon dioxide. As the storage type NOx absorbent, for example, barium oxide (Ba0) is used, and as the adsorption type NOx absorbent, for example, sodium (Na) and titanium (Ti) or strontium (Sr) and titanium (Ti) are used. For example, platinum (Pt) is used as a catalyst in both the storage type and the adsorption type. This NOx absorbent generally has a characteristic that the higher the temperature, the easier it is to release the absorbed NOx.

【0018】NOx吸収剤のNOx吸収能力の限界、す
なわち最大NOx吸収量まで、NOxを吸収すると、そ
れ以上NOxを吸収できなくなるので、適時NOxを放
出させて還元するために空燃比のリッチ化、すなわちN
Ox還元リッチ化を実行する。
If NOx is absorbed up to the limit of the NOx absorbing capacity of the NOx absorbent, that is, up to the maximum NOx absorption amount, it becomes impossible to absorb NOx any more, so that the air-fuel ratio is enriched to release and reduce NOx in a timely manner. That is, N
Perform Ox reduction enrichment.

【0019】三元触媒16の上流位置には、比例型空燃
比センサ14(以下「LAFセンサ14」という)が装
着されており、このLAFセンサ14は排気ガス中の酸
素濃度(空燃比)にほぼ比例した電気信号を出力し、E
CU5に供給する。NOx浄化手段17の下流位置に
は、二値型酸素濃度センサ15(以下「O2センサ1
5」という)が装着されており、その検出信号はECU
5に供給される。このO2センサ15は、その出力VO
2が理論空燃比の前後において急激に変化する特性を有
し、その出力VO2は理論空燃比よりリッチ側で高レベ
ルとなり、リーン側で低レベルとなる。
At a position upstream of the three-way catalyst 16, a proportional type air-fuel ratio sensor 14 (hereinafter referred to as "LAF sensor 14") is mounted. The LAF sensor 14 detects the oxygen concentration (air-fuel ratio) in the exhaust gas. An electric signal that is approximately proportional is output, and E
Supply to CU5. A binary oxygen concentration sensor 15 (hereinafter “O2 sensor 1”)
5 ") and its detection signal is
5 is supplied. This O2 sensor 15 has its output VO
2 has a characteristic that changes abruptly before and after the stoichiometric air-fuel ratio, and its output VO2 becomes higher on the rich side and lower on the lean side than the stoichiometric air-fuel ratio.

【0020】エンジン1は、吸気弁及び排気弁のバルブ
タイミングを、エンジンの高速回転領域に適した高速バ
ルブタイミングと、低速回転領域に適した低速バルブタ
イミングとの2段階に切換可能なバルブタイミング切換
機構30を有する。このバルブタイミングの切換は、弁
リフト量の切換も含み、さらに低速バルブタイミング選
択時は2つに吸気弁のうちの一方を休止させて、空燃比
を理論空燃比よりリーン化する場合においても安定した
燃焼を確保するようにしている。
In the engine 1, the valve timing of the intake valve and the exhaust valve can be switched between a high-speed valve timing suitable for a high-speed rotation region of the engine and a low-speed valve timing suitable for a low-speed rotation region of the engine. It has a mechanism 30. The switching of the valve timing includes the switching of the valve lift amount. Further, when the low-speed valve timing is selected, one of the two intake valves is stopped to stabilize the air-fuel ratio even when the air-fuel ratio becomes leaner than the stoichiometric air-fuel ratio. We have tried to ensure the combustion that we did.

【0021】バルブタイミング切換機構30は、バルブ
タイミングの切換を油圧を介して行うものであり、この
油圧切換を行う電磁弁及び油圧センサがECU5接続さ
れている。油圧センサの検出信号はECU5に供給さ
れ、ECU5は電磁弁を制御してエンジン1の運転状態
に応じたバルブタイミングの切換制御を行う。
The valve timing switching mechanism 30 switches the valve timing via a hydraulic pressure. An electromagnetic valve and a hydraulic pressure sensor for switching the hydraulic pressure are connected to the ECU 5. The detection signal of the oil pressure sensor is supplied to the ECU 5, and the ECU 5 controls the solenoid valve to control the switching of the valve timing according to the operating state of the engine 1.

【0022】ECU5は、各種センサからの入力信号波
形を整形し、電圧レベルを所定レベルに修正し、アナロ
グ信号値をデジタル信号値に変換する等の機能を有する
入力回路5a、中央演算処理回路(以下「CPU」とい
う)5b、CPU5bで実行される各種演算プログラム
及び演算結果等を記憶する記憶手段5c、前記燃料噴射
弁6に駆動信号を供給する出力回路5d等から構成され
る。
The ECU 5 has an input circuit 5a having functions of shaping input signal waveforms from various sensors, correcting a voltage level to a predetermined level, converting an analog signal value to a digital signal value, and a central processing circuit ( The CPU 5b includes a storage unit 5c for storing various calculation programs executed by the CPU 5b, calculation results, and the like, an output circuit 5d for supplying a drive signal to the fuel injection valve 6, and the like.

【0023】CPU5bは、上述の各種エンジンパラメ
ータ信号に基づいて、種々のエンジン運転状態を判別す
るとともに、該判別されたエンジン運転状態に応じて、
次式(1)に基づき、前記TDC信号パルスに同期する
燃料噴射弁6の燃料噴射時間TOUTを演算する。
The CPU 5b determines various engine operating states based on the various engine parameter signals described above, and according to the determined engine operating states,
Based on the following equation (1), a fuel injection time TOUT of the fuel injection valve 6 synchronized with the TDC signal pulse is calculated.

【0024】 TOUT=TI×KCMD×KLAF×K1+K2…(1) ここに、TIは燃料噴射弁6の基本燃料噴射時間であ
り、エンジン回転数NE及び吸気管内絶対圧PBAに応
じて設定されたTIマップを検索して決定される。TI
マップは、エンジン回転数NE及び吸気管内絶対圧PB
Aに対応する運転状態において、エンジンに供給する混
合気の空燃比がほぼ理論空燃比になるように設定されて
いる。すなわち、基本燃料噴射時間TIは、エンジンの
吸入空気量(重量流量)にほぼ比例する値を有する。し
たがって、この基本燃料噴射時間TIをある期間TSU
Mに亘って積算することにより、その期間内に排出され
る排気ガス流量の積算値に対応するパラメータを得るこ
とができる。
TOUT = TI × KCMD × KLAF × K1 + K2 (1) Here, TI is a basic fuel injection time of the fuel injection valve 6, and TI is set according to the engine speed NE and the intake pipe absolute pressure PBA. Determined by searching the map. TI
The map shows the engine speed NE and the absolute pressure PB in the intake pipe.
In the operating state corresponding to A, the air-fuel ratio of the air-fuel mixture supplied to the engine is set to be substantially equal to the stoichiometric air-fuel ratio. That is, the basic fuel injection time TI has a value that is substantially proportional to the intake air amount (weight flow rate) of the engine. Therefore, the basic fuel injection time TI is set to a certain period TSU.
By integrating over M, a parameter corresponding to the integrated value of the exhaust gas flow rate discharged during that period can be obtained.

【0025】KCMDは目標空燃比係数であり、エンジ
ン回転数NE、吸気管内絶対圧PBA、エンジン水温T
W等のエンジン運転パラメータに応じて設定される。目
標空燃比係数KCMDは、空燃比A/Fの逆数、すなわ
ち燃空比F/Aに比例し、理論空燃比のとき値1.0を
とる。
KCMD is a target air-fuel ratio coefficient. The engine speed NE, the intake pipe absolute pressure PBA, and the engine coolant temperature T
It is set according to the engine operating parameters such as W. The target air-fuel ratio coefficient KCMD is proportional to the reciprocal of the air-fuel ratio A / F, that is, the fuel-air ratio F / A, and takes a value of 1.0 at the stoichiometric air-fuel ratio.

【0026】KLAFは、LAFセンサ14の検出値か
ら算出される検出当量比KACTが目標当量比KCMD
に一致するようにPID制御により算出される空燃比補
正係数である。空燃比補正係数KLAFは、三元触媒1
6の酸素蓄積能力の判定を行うときは、後述するように
O2センサ15の出力の応じたフィードバック制御によ
り設定される。
The detected equivalent ratio KACT calculated from the detected value of the LAF sensor 14 is equal to the target equivalent ratio KCMD.
Is an air-fuel ratio correction coefficient calculated by PID control so as to coincide with The air-fuel ratio correction coefficient KLAF is determined by the three-way catalyst 1
The determination of the oxygen storage capacity of No. 6 is performed by feedback control according to the output of the O2 sensor 15 as described later.

【0027】K1及びK2は夫々各種エンジンパラメー
タ信号に応じて演算される他の補正係数および補正変数
であり、エンジン運転状態に応じた燃費特性、エンジン
加速特性等の諸特性の最適化が図れるような所定値に決
定される。
K1 and K2 are other correction coefficients and correction variables calculated according to various engine parameter signals, respectively, so that various characteristics such as fuel consumption characteristics and engine acceleration characteristics can be optimized according to the engine operating condition. Is determined to be a predetermined value.

【0028】CPU5bは上述のようにして求めた燃料
噴射時間TOUTに基づいて燃料噴射弁6を開弁させる
駆動信号を出力回路5dを介して燃料噴射弁6に供給す
る。
The CPU 5b supplies a drive signal for opening the fuel injection valve 6 to the fuel injection valve 6 via the output circuit 5d based on the fuel injection time TOUT obtained as described above.

【0029】図2は燃料噴射時間TOUTを算出し、エ
ンジン1の燃料供給制御を行う処理のフローチャートで
あり、本処理は一定時間ごとに実行される。
FIG. 2 is a flowchart of a process for calculating the fuel injection time TOUT and controlling the fuel supply of the engine 1. This process is executed at regular intervals.

【0030】ステップS11では、リーン運転中か否
か、すなわちNOx還元リッチ化を実行しない通常制御
時に後述するステップS19で記憶された、目標空燃比
係数KCMDの記憶値KCMDBが「1.0」より小さ
いか否かを判別し、KCMDB≧1.0であってリーン
運転中でないときは、直ちにステップS18に進み、エ
ンジン運転状態に応じた目標空燃比係数KCMD等の設
定を行い、上記式(1)を用いた通常の燃料供給制御を
行う。次いで、目標空燃比係数KCMDを記憶値KCM
DBとして記憶し(ステップS19)、本処理を終了す
る。
In step S11, it is determined whether or not the engine is in the lean operation, that is, the stored value KCMDB of the target air-fuel ratio coefficient KCMD stored in step S19 described later during the normal control in which the NOx reduction enrichment is not performed becomes "1.0". It is determined whether KCMDB is smaller than 1.0, and if KCMDB ≧ 1.0 and the engine is not performing the lean operation, the process immediately proceeds to step S18, where the target air-fuel ratio coefficient KCMD and the like according to the engine operating state are set. ) Is performed. Next, the target air-fuel ratio coefficient KCMD is stored in the stored value KCM.
The data is stored as a DB (step S19), and the process ends.

【0031】ステップS11でKCMDB<1.0であ
ってリーン運転中であるときは、エンジン回転数NE及
び吸気管内絶対圧PBAに応じて、次のステップS13
で使用する増分値ADDNOxを決定する(ステップS
12)。増分値ADDNOxは、リーン運転中に単位時
間当たりに排出されるNOx量に対応するパラメータで
あり、エンジン回転数NEが増加するほど、また吸気管
内絶対圧PBAが増加するほど、増加するように設定さ
れている。
If KCMDB <1.0 in step S11 and the engine is operating lean, the next step S13 is performed according to the engine speed NE and the intake pipe absolute pressure PBA.
(Step S)
12). The increment value ADDNOx is a parameter corresponding to the amount of NOx discharged per unit time during the lean operation, and is set to increase as the engine speed NE increases and the intake pipe absolute pressure PBA increases. Have been.

【0032】ステップS13では、下記式にステップS
12で決定した増分値ADDNOxを適用し、NOx量
カウンタCNOxをインクリメントする。これによりN
Ox排出量に相当するカウント値が得られる。
In step S13, step S
The increment value ADDNOx determined in step 12 is applied, and the NOx amount counter CNOx is incremented. This gives N
A count value corresponding to the Ox emission amount is obtained.

【0033】CNOx=CNOx+ADDNOx 続くステップS14では、NOx量カウンタCNOxの
値が、許容値CNOxREFを越えたか否かを判別す
る。この答が否定(NO)であるときは、前記ステップ
S18に進み、通常の燃料供給制御を行う。許容値CN
Oxは、NOx吸収剤の最大NOx吸収量より若干小さ
いNOx量に対応する値に設定される。
CNOx = CNOx + ADDNOx In the following step S14, it is determined whether or not the value of the NOx amount counter CNOx has exceeded an allowable value CNOxREF. If the answer is negative (NO), the routine proceeds to step S18, where normal fuel supply control is performed. Allowable value CN
Ox is set to a value corresponding to the NOx amount slightly smaller than the maximum NOx absorption amount of the NOx absorbent.

【0034】ステップS14で、CNOx>CNOxR
EFとなると、目標空燃比係数KCMDを空燃比14.
0相当程度の値に設定するNOx還元リッチ化を実行す
る(ステップS15)。このNOx還元リッチ化は、比
較的短時間、例えば1,2秒間程度実行する。ステップ
S16では、NOx還元リッチ化が終了したか否かを判
別し、NOx還元リッチ化が終了していないときは直ち
に本処理を終了し、NOx還元リッチ化が終了するとN
Ox量カウンタCNOxのカウント値を「0」にリセッ
トする(ステップS17)。したがって、NOx還元リ
ッチ化が終了するまでは、ステップS14からS15、
S16の処理が繰り返し実行され、終了するとステップ
S14からS18に進む。
In step S14, CNOx> CNOxR
When EF is reached, the target air-fuel ratio coefficient KCMD is set to 14.
The NOx reduction enrichment is set to a value equivalent to about 0 (step S15). This NOx reduction enrichment is performed for a relatively short time, for example, about 1 or 2 seconds. In step S16, it is determined whether or not the NOx reduction enrichment has been completed. If the NOx reduction enrichment has not been completed, the present process is immediately terminated.
The count value of the Ox amount counter CNOx is reset to "0" (step S17). Therefore, until the NOx reduction enrichment ends, steps S14 to S15,
The process of S16 is repeatedly executed, and when the process is completed, the process proceeds from step S14 to S18.

【0035】図2の処理によれば、リーン運転中は、N
Ox量カウンタCNOxの値が許容値CNOxREFに
達するごとにNOx還元リッチ化が実行され、NOx吸
収剤に吸収されたNOxの放出が行われる。
According to the processing of FIG. 2, during lean operation, N
Each time the value of the Ox amount counter CNOx reaches the allowable value CNOxREF, the NOx reduction enrichment is performed, and the NOx absorbed by the NOx absorbent is released.

【0036】図3は、NOx吸収剤の劣化判定を行う処
理のフローチャートであり、本処理は、一定時間毎にC
PU5bで実行される。なお、この劣化判定処理は、エ
ンジン回転数NE、吸気管内絶対圧PBA、エンジン水
温TW、吸気温TA等が、所定の範囲内にあり、比較的
安定したエンジン運転状態にあるときに、実行される。
FIG. 3 is a flowchart of a process for judging the deterioration of the NOx absorbent.
This is executed by the PU 5b. The deterioration determination process is executed when the engine speed NE, the intake pipe absolute pressure PBA, the engine coolant temperature TW, the intake air temperature TA, and the like are within predetermined ranges and the engine is in a relatively stable operating state. You.

【0037】ステップS20では、劣化判定が終了した
ことを「1」で示す終了フラグFDONEが「1」か否
かを判別し、FDONE=1であるときは、直ちに本処
理を終了する。FDONE=0であるときは、目標空燃
比係数KCMDを「1.0」に設定するストイキ運転中
か否かを判別し(ステップS21)、ストイキ運転中で
あるときは、TCHK計測処理を実行する(ステップS
22)。TCHK計測処理では、O2センサ15の出力
SVO2に応じて空燃比の比例積分制御を行い、センサ
出力SVO2が所定の基準電圧SVREFに対してリー
ン側からリッチ側へ反転し、空燃比補正係数KLAFを
比例項PLによりリーン方向へ変化させた時点から出力
SVO2が逆方向に反転する時点までの反転時間TL、
及び出力SVO2が基準電圧SVREFに対してリッチ
側からリーン側へ反転し、空燃比補正係数KLAFを比
例項PRによりリッチ方向へ変化させた時点から出力S
VO2が逆方向に反転する時点までの反転時間TRが計
測され、これらの反転時間TL,TRの平均値として判
定時間TCHKが算出される。すなわち、図4に示すよ
うにO2センサ出力SVO2が所定の基準電圧SVRE
Fに対してリーン側からリッチ側へ反転した時点(t
1,t3)において、空燃比補正係数KLAFを比例項
PLによりステップ状に減少させ、その後O2センサ出
力SVO2が基準電圧SVREFより高い間は、徐々に
空燃比補正係数KLAFを減少させ、O2センサ出力S
VO2が基準電圧SVREFに対してリッチ側からリー
ン側へ反転した時点(t2,t4)において、空燃比補
正係数KLAFを比例項PRによりステップ状に増加さ
せ、その後O2センサ出力SVO2が基準電圧SVRE
Fより低い高い間は、徐々に空燃比補正係数KLAFを
増加させる制御を実行し、そのときの反転時間TL,T
Rを計測し、これらの反転時間TL,TRの平均値とし
て判定時間TCHKを算出する。判定時間TCHKの計
測は複数回行われ、計測する毎にそれまでに得られた計
測値とともに平均化される。判定時間TCHKは、三元
触媒16の酸素蓄積能力が低下するほど短くなるので、
これにより三元触媒16の蓄積能力を表すパラメータを
得ることができる。
In step S20, it is determined whether or not an end flag FDONE indicating "1" indicating that the deterioration determination has been completed is "1". If FDONE = 1, the present process is immediately terminated. If FDONE = 0, it is determined whether or not the stoichiometric operation is being performed to set the target air-fuel ratio coefficient KCMD to "1.0" (step S21). If the stoichiometric operation is being performed, TCHK measurement processing is executed. (Step S
22). In the TCHK measurement process, proportional integration control of the air-fuel ratio is performed according to the output SVO2 of the O2 sensor 15, and the sensor output SVO2 is inverted from the lean side to the rich side with respect to the predetermined reference voltage SVREF, and the air-fuel ratio correction coefficient KLAF is calculated. The inversion time TL from the time when the output is changed in the lean direction by the proportional term PL to the time when the output SVO2 is inverted in the reverse direction,
And the output SVO2 is inverted from the rich side to the lean side with respect to the reference voltage SVREF, and the output SVO2 is changed from the time when the air-fuel ratio correction coefficient KLAF is changed in the rich direction by the proportional term PR.
The inversion time TR until the VO2 is inverted in the reverse direction is measured, and the determination time TCHK is calculated as the average value of these inversion times TL and TR. That is, as shown in FIG. 4, the O2 sensor output SVO2 is changed to a predetermined reference voltage SVRE.
F at the time when the lean side is reversed from the lean side to the rich side (t
At (1, t3), the air-fuel ratio correction coefficient KLAF is reduced stepwise by the proportional term PL, and thereafter, while the O2 sensor output SVO2 is higher than the reference voltage SVREF, the air-fuel ratio correction coefficient KLAF is gradually reduced, and the O2 sensor output is reduced. S
At the time (t2, t4) at which VO2 is inverted from the rich side to the lean side with respect to the reference voltage SVREF, the air-fuel ratio correction coefficient KLAF is increased stepwise by the proportional term PR, and thereafter, the O2 sensor output SVO2 is changed to the reference voltage SVREF.
While the temperature is lower than F, control for gradually increasing the air-fuel ratio correction coefficient KLAF is executed, and the inversion times TL, T
R is measured, and a determination time TCHK is calculated as an average value of these inversion times TL and TR. The measurement of the determination time TCHK is performed a plurality of times, and each measurement is averaged together with the measurement values obtained so far. Since the determination time TCHK decreases as the oxygen storage capacity of the three-way catalyst 16 decreases,
As a result, a parameter indicating the storage capacity of the three-way catalyst 16 can be obtained.

【0038】判定時間TCHKは、三元触媒16の酸素
蓄積能力だけでなく排気ガス流量によっても変化するの
で、ステップS23では、判定時間TCHKを下記式
(2)に適用して三元触媒判定パラメータOSCIDX
を算出することにより、排気ガス流量の影響を補正す
る。
Since the determination time TCHK varies not only with the oxygen storage capacity of the three-way catalyst 16 but also with the exhaust gas flow rate, in step S23, the determination time TCHK is applied to the following equation (2) to determine the three-way catalyst determination parameter. OSCIDX
, The influence of the exhaust gas flow rate is corrected.

【0039】 OSCIDX=TCHK×GAIRSUM (2) ここで、GAIRSUMは、排気ガス流量を代表するパ
ラメータの、TCHK計測処理実行期間TMSR中の積
算値(以下「流量積算値」という)であり、より具体的
には基本燃料噴射時間TIの積算値である。基本燃料噴
射時間TIは、前述したようにエンジンの吸入空気量
(重量流量)にほぼ比例する値を有するので、この基本
燃料噴射時間TIを計測処理実行期間TMSRに亘って
積算することにより、その期間内に排出される排気ガス
流量の積算値に対応するパラメータを得ることができ
る。
OSCIDX = TCHK × GAIRSUM (2) Here, GAIRSUM is an integrated value (hereinafter referred to as “flow rate integrated value”) of a parameter representing the exhaust gas flow rate during the TCHK measurement processing execution period TMSR. Specifically, it is an integrated value of the basic fuel injection time TI. Since the basic fuel injection time TI has a value that is substantially proportional to the intake air amount (weight flow rate) of the engine as described above, the basic fuel injection time TI is calculated by integrating the basic fuel injection time TI over the measurement processing execution period TMSR. A parameter corresponding to the integrated value of the flow rate of exhaust gas discharged during the period can be obtained.

【0040】上記式(2)を用いて算出される三元触媒
判定パラメータOSCIDXを用いて三元触媒の酸素蓄
積能力を判定することより、エンジン運転状態の影響を
受け難くなり、エンジン運転状態の広い範囲に亘って正
確な判定を行うことが可能となる。
By determining the oxygen storage capacity of the three-way catalyst using the three-way catalyst determination parameter OSCIDX calculated by using the above equation (2), the three-way catalyst is less affected by the operating state of the engine. Accurate determination can be performed over a wide range.

【0041】一方ステップS21でストイキ運転中でな
いときは、リーン運転中(KCMDB<1.0)か否か
を判別し(ステップS24)、リーン運転中であるとき
は、TNOx計測処理を実行する。
On the other hand, if it is determined in step S21 that the stoichiometric operation is not being performed, it is determined whether or not the lean operation is being performed (KCMDB <1.0) (step S24). If the lean operation is being performed, a TNOx measurement process is performed.

【0042】TNOx計測処理は、NOx吸収剤にNO
xが吸収された状態で還元リッチ化を実行し、そのとき
のO2センサ出力SVO2が理論空燃比に対応する値の
付近に停滞する時間TNOxを計測する処理である。よ
り具体的には、リーン運転中においてNOx還元リッチ
を実行するときに、図5に示すように、目標空燃比係数
KCMDを1.0より大きい値に変更した時点t11の
後、O2センサ出力SVO2が所定電圧SV1を越えた
時点t13から、O2センサ出力SVO2が基準電圧S
VREFに達する時点t12までのリッチ移行時間TN
Oxを計測する。この計測は複数回行われ、計測する毎
にそれまでに得られた計測値とともに平均化される。所
定電圧SV1は、理論空燃比相当の基準電圧SVREF
(例えば0.5V)より若干小さい値(例えば0.4V
程度)に設定される。
In the TNOx measurement process, NOx is added to the NOx absorbent.
This is a process of executing reduction enrichment in a state where x is absorbed and measuring a time TNOx during which the O2 sensor output SVO2 stagnates near a value corresponding to the stoichiometric air-fuel ratio at that time. More specifically, when executing the NOx reduction rich during the lean operation, as shown in FIG. 5, after the time point t11 when the target air-fuel ratio coefficient KCMD is changed to a value larger than 1.0, the O2 sensor output SVO2 From the time t13 when the voltage exceeds the predetermined voltage SV1, the O2 sensor output SVO2 changes to the reference voltage S
Rich transition time TN until time t12 when VREF is reached
Measure Ox. This measurement is performed a plurality of times, and each measurement is averaged together with the measurement values obtained so far. The predetermined voltage SV1 is a reference voltage SVREF corresponding to the stoichiometric air-fuel ratio.
(For example, 0.4 V)
Degree).

【0043】リッチ移行時間TNOxは、NOx吸収剤
の吸収能力が大きいほど長くなるので、これによりNO
x吸収剤のNOx吸収能力を判定するパラメータを得る
ことができる。ただし、リッチ移行時間TNOxも上記
判定時間TCHKと同様に排気ガス流量が大きいほど短
くなるので、この影響を補正するために、ステップS2
5の処理で計測されたリッチ移行時間TNOxを下記式
(3)に適用してNOx吸収剤判定パラメータNSCI
DXを算出する(ステップS26)。
The rich transition time TNOx becomes longer as the absorption capacity of the NOx absorbent becomes larger.
A parameter for determining the NOx absorption capacity of the x absorbent can be obtained. However, the rich transition time TNOx also becomes shorter as the exhaust gas flow rate becomes larger, similarly to the above-mentioned determination time TCHK.
5 is applied to the following equation (3) to determine the NOx absorbent determination parameter NSCI.
DX is calculated (step S26).

【0044】 NSCIDX=TNOx×GAIRSUM (3) 次いで、判定時間TCHKの計測回数nTCHK及びリ
ッチ移行時間TNOxの計測回数nTNOxがともに所
定回数n0(例えば5回)に達したか否かを判別し(ス
テップS27)、nTCHK<n0またはnTNOx<
n0であるときは、本処理を終了し、nTCK≧n0か
つnTNOx≧n0となったとき、NOx吸収剤判定パ
ラメータNSCIDXから三元触媒判定パラメータOC
SIDXを減算した値が基準値IDXREFより小さい
か否かを判別する(ステップS28)。そして、NSC
IDX−OSCIDX≧IDXREFであるときは、N
Ox吸収剤は正常と判定し(ステップS30)、NSC
IDX−OSCIDX<IDXREFとなると、NOx
吸収剤は劣化したと判定する(ステップS29)。ステ
ップS29またはS30実行後に、終了フラグFDON
Eを「1」に設定し(ステップS31)、本処理を終了
する。ここで、基準値IDXREFは、例えばNOx吸
収剤のNOx吸収能力が新品の50%程度となったもの
対応する値に設定する。
NSCIDX = TNOX × GAIRSUM (3) Then, it is determined whether or not both the number of times nTCHK for measuring the determination time TCHK and the number of times nTNOX for measuring the rich transition time TNOx have reached a predetermined number n0 (for example, five times) (step). S27), nTCHK <n0 or nTNOX <
If n0, the process ends. If nTCK ≧ n0 and nTNOx ≧ n0, the three-way catalyst determination parameter OC from the NOx absorbent determination parameter NSCIDX is used.
It is determined whether the value obtained by subtracting SIDX is smaller than the reference value IDXREF (step S28). And NSC
If IDX-OSCIDX ≧ IDXREF, N
The Ox absorbent is determined to be normal (step S30), and NSC
If IDX-OSCIDX <IDXREF, NOx
It is determined that the absorbent has deteriorated (step S29). After execution of step S29 or S30, the end flag FDON
E is set to "1" (step S31), and this processing ends. Here, the reference value IDXREF is set to a value corresponding to, for example, the NOx absorbent having a NOx absorption capacity of about 50% of a new product.

【0045】リッチ移行時間TNOxは、上述したよう
にNOx吸収剤のNOx吸収能力及び排気ガス流量によ
って変化するが、さらに上流側に三元触媒16が設けら
れている場合には、三元触媒16の酸素蓄積能力によっ
ても変化する。すなわち、エンジン1に供給する混合気
の空燃比を理論空燃比よりリッチ側に変更しても、排気
ガス(フィードガス)中のHC、COは、三元触媒16
で酸化され、NOx吸収剤に達するHC,COの量が減
少するため、三元触媒16の酸素蓄積能力が大きいほ
ど、リッチ移行時間TNOxは長くなる傾向を示す。そ
こで、本実施形態では、NOx吸収剤判定パラメータN
SCIDXから三元触媒判定パラメータOSCIDXを
減算することにより、三元触媒16の酸素蓄積能力の影
響を排除して、NOx吸収剤の劣化を判定するようにし
ている。これより、NOx吸収剤の劣化を正確に判定す
ることが可能となる。
As described above, the rich transition time TNOx varies depending on the NOx absorption capacity of the NOx absorbent and the exhaust gas flow rate. However, when the three-way catalyst 16 is provided further upstream, the three-way catalyst 16 It also depends on the oxygen storage capacity of That is, even if the air-fuel ratio of the air-fuel mixture supplied to the engine 1 is changed to a richer side than the stoichiometric air-fuel ratio, HC and CO in the exhaust gas (feed gas) are reduced by the three-way catalyst 16.
Since the amount of HC and CO that are oxidized at the NOx absorbent and reach the NOx absorbent decreases, the rich transition time TNOx tends to be longer as the three-way catalyst 16 has a larger oxygen storage capacity. Therefore, in the present embodiment, the NOx absorbent determination parameter N
By subtracting the three-way catalyst determination parameter OSCIDX from the SCIDX, the influence of the oxygen storage capacity of the three-way catalyst 16 is eliminated, and the deterioration of the NOx absorbent is determined. This makes it possible to accurately determine the deterioration of the NOx absorbent.

【0046】本実施形態では、O2センサ15が排気濃
度センサに相当し、図3のステップS22におけるTC
HK計測処理が第1の検出手段に相当し、同図のステッ
プS25におけるTNOx計測処理が第2の検出手段に
相当し、同図のステップS23,S26〜S30が劣化
判定手段に相当する。
In this embodiment, the O2 sensor 15 corresponds to an exhaust gas concentration sensor, and the TC2 in step S22 in FIG.
The HK measurement processing corresponds to the first detection means, the TNOx measurement processing in step S25 in the figure corresponds to the second detection means, and steps S23 and S26 to S30 in the figure correspond to the deterioration determination means.

【0047】なお、本発明は上述した実施形態に限るも
のではなく、種々の変形が可能である。例えば、燃料噴
射弁6は吸気管2ではなく、エンジン1の燃焼室に直接
燃料を噴射するように各気筒に設けるようにしてもよ
い。
The present invention is not limited to the above-described embodiment, and various modifications are possible. For example, the fuel injection valve 6 may be provided in each cylinder so as to inject fuel directly into the combustion chamber of the engine 1 instead of the intake pipe 2.

【0048】また排気濃度センサとしては、酸素濃度セ
ンサに限るものでは、排気ガス中のNOx濃度を検出す
るNOx濃度センサを用いてもよい。
The exhaust gas concentration sensor is not limited to the oxygen concentration sensor, but may be a NOx concentration sensor for detecting the concentration of NOx in the exhaust gas.

【0049】[0049]

【発明の効果】以上詳述したように本発明によれば、機
関に供給する混合気の空燃比を理論空燃比よりリッチ側
からリーン側へ若しくはその逆に切り換えたときの排気
濃度センサ出力の反転時間により三元触媒の浄化能力が
検出され、混合気の空燃比を所定時間に亘って理論空燃
比よりリーン側に維持した後にリッチ側に変化させたと
きの排気濃度センサ出力が理論空燃比付近に停滞する時
間により三元触媒とNOx吸収剤とをあわせた浄化能力
が検出され、2つの検出結果に基づいて、NOx吸収剤
の劣化が判定される。したがって、三元触媒の影響を除
いてNOx吸収剤の劣化を正確に判定することができ
る。
As described above in detail, according to the present invention, the output of the exhaust gas concentration sensor when the air-fuel ratio of the air-fuel mixture supplied to the engine is switched from rich to lean from the stoichiometric air-fuel ratio or vice versa. The purifying ability of the three-way catalyst is detected based on the inversion time, and the output of the exhaust gas concentration sensor when the air-fuel ratio of the air-fuel mixture is changed to the rich side after maintaining the air-fuel ratio on the lean side from the stoichiometric air-fuel ratio for a predetermined period of time is calculated. The purifying ability of the three-way catalyst and the NOx absorbent is detected based on the stagnant time, and the deterioration of the NOx absorbent is determined based on the two detection results. Therefore, it is possible to accurately determine the deterioration of the NOx absorbent except for the influence of the three-way catalyst.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態にかかる排気ガス浄化装
置を含む、内燃機関とその制御装置の構成を示す図であ
る。
FIG. 1 is a diagram showing a configuration of an internal combustion engine including an exhaust gas purification device according to an embodiment of the present invention and a control device thereof.

【図2】燃料供給制御を行う処理のフローチャートであ
る。
FIG. 2 is a flowchart of a process for performing fuel supply control.

【図3】NOx吸収剤の劣化判定を行う処理のフローチ
ャートである。
FIG. 3 is a flowchart of a process for determining deterioration of a NOx absorbent.

【図4】三元触媒の酸素蓄積能力を判定するためのパラ
メータ計測処理を説明するための図である。
FIG. 4 is a diagram illustrating a parameter measurement process for determining the oxygen storage capacity of the three-way catalyst.

【図5】NOx吸収剤のNOx吸収能力を判定するため
のパラメータ計測処理を説明するため図である。
FIG. 5 is a diagram for explaining a parameter measurement process for determining the NOx absorbing ability of the NOx absorbent.

【符号の説明】[Explanation of symbols]

1 内燃機関 5 電子コントロールユニット(第1の検出手段、第2
の検出手段、劣化判定手段) 12 排気管 15 酸素濃度センサ(排気濃度センサ) 16 三元触媒 17 NOx浄化手段
1 internal combustion engine 5 electronic control unit (first detecting means, second detecting means
12 exhaust pipe 15 oxygen concentration sensor (exhaust gas concentration sensor) 16 three-way catalyst 17 NOx purification means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02D 45/00 314 F02D 45/00 314Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F02D 45/00 314 F02D 45/00 314Z

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気系に設けられ、排気ガス
リーン状態において排気ガス中のNOxを吸収するNO
x吸収剤を内蔵し、排気ガスリッチ状態において吸収し
たNOxを還元するNOx浄化手段と、該NOx浄化手
段の上流側に設けられ、酸素貯蔵能力を有する三元触媒
と、前記NOx浄化手段の下流側に設けられ、排気ガス
中の特定成分の濃度を検出する排気濃度センサとを備え
た内燃機関の排気ガス浄化装置において、 前記機関に供給する混合気の空燃比を理論空燃比よりリ
ッチ側からリーン側へ若しくはその逆に切り換えたとき
の前記排気濃度センサ出力の反転時間を検出する第1の
検出手段と、前記混合気の空燃比を所定時間に亘って理
論空燃比よりリーン側に維持した後にリッチ側に変化さ
せたときの前記排気濃度センサ出力が理論空燃比付近に
停滞する時間を検出する第2の検出手段と、前記第1及
び第2の検出手段による検出結果に基づいて前記NOx
吸収剤の劣化を判定する劣化判定手段とを有することを
特徴とする内燃機関の排気ガス浄化装置。
1. An NO provided in an exhaust system of an internal combustion engine to absorb NOx in exhaust gas in an exhaust gas lean state.
a NOx purifying means which contains an x-absorbent and reduces NOx absorbed in an exhaust gas rich state; a three-way catalyst provided upstream of the NOx purifying means and having an oxygen storage capacity; and a downstream side of the NOx purifying means. And an exhaust gas purification device for an internal combustion engine, the exhaust gas purification device comprising: an exhaust gas concentration sensor for detecting the concentration of a specific component in the exhaust gas. First detecting means for detecting the reversal time of the output of the exhaust gas concentration sensor when the air-fuel ratio is switched to the side or vice versa, and after maintaining the air-fuel ratio of the air-fuel mixture leaner than the stoichiometric air-fuel ratio for a predetermined time. Second detection means for detecting a time when the output of the exhaust gas concentration sensor stagnates near the stoichiometric air-fuel ratio when the output is changed to the rich side; and detection detection by the first and second detection means. NOx based on the fruit
An exhaust gas purifying apparatus for an internal combustion engine, comprising: a deterioration determining means for determining deterioration of an absorbent.
JP12808198A 1998-04-23 1998-04-23 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP3624689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12808198A JP3624689B2 (en) 1998-04-23 1998-04-23 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12808198A JP3624689B2 (en) 1998-04-23 1998-04-23 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH11303621A true JPH11303621A (en) 1999-11-02
JP3624689B2 JP3624689B2 (en) 2005-03-02

Family

ID=14975953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12808198A Expired - Fee Related JP3624689B2 (en) 1998-04-23 1998-04-23 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3624689B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8763365B2 (en) 2009-08-26 2014-07-01 Nissan Motor Co., Ltd. Exhaust emission control device for internal combustion engine and NOx purification catalyst deterioration determination method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8763365B2 (en) 2009-08-26 2014-07-01 Nissan Motor Co., Ltd. Exhaust emission control device for internal combustion engine and NOx purification catalyst deterioration determination method

Also Published As

Publication number Publication date
JP3624689B2 (en) 2005-03-02

Similar Documents

Publication Publication Date Title
US6839637B2 (en) Exhaust emission control system for internal combustion engine
US6629408B1 (en) Exhaust emission control system for internal combustion engine
US6698187B2 (en) Exhaust gas purifying apparatus for an internal-combustion engine
US6338243B1 (en) Exhaust emission control system for internal combustion engine
JPH0726580B2 (en) Device for determining catalyst deterioration of internal combustion engine
US8763365B2 (en) Exhaust emission control device for internal combustion engine and NOx purification catalyst deterioration determination method
US6823658B2 (en) Exhaust gas purifying apparatus for an internal-combustion engine
JP3592579B2 (en) Exhaust gas purification device for internal combustion engine
JP3282660B2 (en) Exhaust gas purification device for internal combustion engine
US6467256B2 (en) Exhaust emission control system for internal combustion engine
JP3377404B2 (en) Exhaust gas purification device for internal combustion engine
JPH10288065A (en) Air-fuel ratio control device for internal combustion engine
JP4159656B2 (en) Air-fuel ratio control device for internal combustion engine
EP1081348B1 (en) Exhaust emission control system for an internal combustion engine
US6835357B2 (en) Exhaust emission control system for internal combustion engine
JP3624689B2 (en) Exhaust gas purification device for internal combustion engine
JP3542471B2 (en) Abnormality detection device for oxygen concentration sensor of internal combustion engine
JP2000110655A (en) Exhaust emission control device for internal combustion engine
JP3631062B2 (en) Exhaust gas purification device for internal combustion engine
JP3256670B2 (en) Exhaust gas purification device for internal combustion engine
JP3639442B2 (en) Exhaust gas purification device for internal combustion engine
JPH11294141A (en) Exhaust emission control device for internal combustion engine
JPH11241632A (en) Control system for internal combustion engine
JP3723323B2 (en) Air-fuel ratio control device for internal combustion engine
JPH11303663A (en) Fuel supply control device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees