JPH11302895A - Plating method of inner surface of cylindrical body and cylindrical body with its inner surface plated - Google Patents
Plating method of inner surface of cylindrical body and cylindrical body with its inner surface platedInfo
- Publication number
- JPH11302895A JPH11302895A JP10992198A JP10992198A JPH11302895A JP H11302895 A JPH11302895 A JP H11302895A JP 10992198 A JP10992198 A JP 10992198A JP 10992198 A JP10992198 A JP 10992198A JP H11302895 A JPH11302895 A JP H11302895A
- Authority
- JP
- Japan
- Prior art keywords
- plating
- cylinder
- anode
- diameter
- film thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Electroplating Methods And Accessories (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】 本発明は、兵器砲身、筒状
エンジン部品又は反応筒等の筒体内面に保護層としてめ
っきを施工する筒体内面めっき方法及び内面をめっき施
工された筒体に関するものであり、特に、筒体の軸方向
に膜厚が変化するめっき層を形成するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for plating inside a cylinder, such as a weapon barrel, a cylindrical engine component, or a reaction cylinder, as a protective layer on a cylinder inner surface, and a cylinder having an inner surface plated. In particular, a plating layer whose film thickness changes in the axial direction of the cylindrical body is formed.
【0002】[0002]
【従来の技術】一般に、兵器砲身等では、大きな熱的負
荷や弾丸の弾帯との摺動摩擦に加え、腐食や摩耗等が生
じるので、兵器砲身等の筒体の寿命を長期化するため
に、筒体内面に保護層が設けられる。この場合に、保護
層としては、電解クロムめっきが好適であることが知ら
れている。2. Description of the Related Art In general, in a weapon barrel, etc., in addition to a large thermal load and sliding friction with a bullet band of a bullet, corrosion and wear occur, so that the life of a cylinder such as a weapon barrel is extended. A protective layer is provided on the inner surface of the cylinder. In this case, it is known that electrolytic chromium plating is suitable as the protective layer.
【0003】例えば、特開平7−167590号公報に
開示されている大口径の兵器砲身では、砲身の砲弾を充
填する箇所である装填室と装填室に連通し、熱的に大き
な負荷を受ける砲口径部の領域に100〜200μmの
クロムめっき層が設けられている。しかしながら、かか
る方法では、熱的に大きな負荷を受ける砲口径部のみに
クロムめっき層が設られているが、機械的に大きな衝撃
を受ける兵器砲身の前部の領域である砲口部には、保護
層を設けていないために、弾丸との摺動摩擦、摩耗及び
使用環境による腐食に対して、砲身寿命が短いという問
題点がある。For example, in a large-diameter weapon barrel disclosed in Japanese Patent Application Laid-Open No. 7-167590, a loading chamber, which is a place where the barrel of the barrel is filled, is connected to the loading chamber, and a gun which receives a large thermal load. A chromium plating layer having a thickness of 100 to 200 μm is provided in a region of the diameter portion. However, in this method, the chrome plating layer is provided only on the caliber portion of the muzzle that receives a large thermal load, but the muzzle portion, which is the front region of the weapon barrel that receives a large mechanical shock, Since the protective layer is not provided, there is a problem that the barrel life is short against sliding friction with a bullet, abrasion, and corrosion due to use environment.
【0004】このため、熱的に大きな負荷を受ける砲口
径部のみでなく、砲口部についても弾丸の弾帯との摺動
摩擦、摩耗及び使用環境による腐食等より保護する必要
から砲身内面の全域に渡ってクロムめっき層を設ける必
要がある。このとき、砲身内面の全域に渡って、一様に
100〜200μmのクロムめっき層を設けると、砲口
部側において、しばしば保護層の剥離が生じる。図10
に示す剥離試験によれば、その結果を図11に示すよう
に、めっき膜厚を薄くした方が膜の剥離抵抗性は大きく
なるために、機械的衝撃を受ける砲口部側のクロムめっ
き層を薄くする必要がある。このため、大きな熱的負荷
を受ける砲口径部ではクロムめっき層を厚くし、機械的
衝撃を受ける砲口部ではクロムめっき層を薄くする必要
がある。For this reason, not only the gun barrel portion which receives a large thermal load but also the muzzle portion needs to be protected from sliding friction with the bullet band of the bullet, abrasion, corrosion due to the use environment, etc. It is necessary to provide a chromium plating layer over the entire area. At this time, if a chromium plating layer having a thickness of 100 to 200 μm is uniformly provided over the entire inner surface of the barrel, the protective layer often peels off at the muzzle side. FIG.
According to the peel test shown in FIG. 11, the results show that the thinner the plating film, the greater the peel resistance of the film, as shown in FIG. Need to be thinner. For this reason, it is necessary to increase the thickness of the chromium plating layer in the muzzle portion receiving a large thermal load, and to reduce the thickness of the chrome plating layer in the muzzle portion receiving a mechanical impact.
【0005】図12及び図13に示すような、砲身の円
筒内面において軸方向にめっき膜厚を変化するめっき方
法がある。まず、図12に示すように、装填室及び装填
室に連続する砲口径部に厚いクロムめっき層5を形成
し、次に、図13に示すように、全域に渡って薄いクロ
ムめっき層9を形成する。As shown in FIGS. 12 and 13, there is a plating method in which a plating film thickness is changed in an axial direction on the inner surface of a cylinder of a barrel. First, as shown in FIG. 12, a thick chromium plating layer 5 is formed on the loading chamber and a muzzle diameter portion continuous with the loading chamber, and then, as shown in FIG. Form.
【0006】しかしながら、かかる円筒内面めっき方法
では、めっき陽極6,10を2本用意してめっきを2回
施工するため、段取り替え作業が通常のめっき作業の2
倍かかるという問題点がある。また、厚いクロムめっき
層5から薄いクロムめっき層9への変化する領域におい
ては、陽極6の形状が大きな径から小さな径にかけて、
例えば、直線テーパ状であるような場合には、施工され
ためっき層が砲身の内径が一様とならないため、めっき
施工後に、機械加工により平坦化する工程が、さらに必
要となる。However, in such a cylindrical inner surface plating method, since two plating anodes 6 and 10 are prepared and plating is performed twice, the setup change operation is the same as the ordinary plating operation.
There is a problem that it takes twice as long. In a region where the thickness of the chrome plating layer 5 changes from the thickness of the chrome plating layer 5 to the thickness of the thin chrome plating layer 9, the shape of the anode 6 is changed from a large diameter to a small diameter.
For example, in the case of a straight tapered shape, the applied plating layer does not have a uniform inner diameter of the gun barrel, so that a step of flattening by machining after plating is further required.
【0007】このため、図14に示すように、大きさの
異なる2つの陽極13,14を組み合わせて、めっき施
工を一度にする方法がある。しかしながら、陽極13,
14は、各々導線7,11により接続するようにしてい
るため、陽極構造及び電流回路が複雑となり、コストが
かかるという問題点がある。また、厚いクロムめっき層
から薄いめっき層に変化する領域において、陽極形状が
大きな径から小さな径に直線的にテーパ状である場合に
は、砲身の内径が一様とならず、めっき施工後に機械加
工により平坦化する工程が必要となるという問題点があ
る。For this reason, as shown in FIG. 14, there is a method of combining two anodes 13 and 14 having different sizes to perform plating at one time. However, the anode 13,
14 has a problem in that the anode structure and the current circuit are complicated and the cost is high, since they are connected by the conducting wires 7 and 11, respectively. If the anode shape is linearly tapered from a large diameter to a small diameter in a region where the thickness changes from a thick chromium plating layer to a thin plating layer, the inner diameter of the gun barrel will not be uniform, and the machine will not be machined after plating. There is a problem that a step of flattening by processing is required.
【0008】[0008]
【発明が解決しようとする課題】本発明は、筒体内面の
めっき膜厚を変化させる場合に、一度のめっき施工によ
り、めっき層を施工した筒体内面が同径となる筒体内面
のめっき方法及び内面をめっき施工された筒体を提供す
ることを目的としている。また、本発明は、めっき施工
後に機械加工等をすることなく、めっき作業を簡易化で
きる筒体内面のめっき方法及び内面をめっき施工された
筒体を提供することを目的としている。更に、本発明
は、めっき膜の剥離が生じ難い筒体内面のめっき方法及
び内面をめっき施工された筒体を提供することを目的と
している。SUMMARY OF THE INVENTION According to the present invention, when the plating film thickness on the inner surface of the cylinder is changed, the plating on the inner surface of the cylinder in which the plating layer is applied has the same diameter by a single plating operation. It is an object of the present invention to provide a method and a cylindrical body whose inner surface is plated. It is another object of the present invention to provide a plating method for the inner surface of a cylinder, which can simplify the plating operation without performing machining or the like after plating, and to provide a cylinder having an inner surface plated. Still another object of the present invention is to provide a plating method for an inner surface of a cylinder in which a plating film is unlikely to be peeled off, and a cylinder having an inner surface plated.
【0009】[0009]
【課題を解決するための手段】本発明のうち、請求項1
記載の発明は、筒体(22)の軸方向に延びる陽極(2
4,25)を配置し、その陽極(24,25)及び筒体
(22)をめっき液中に浸して、陽極(24,25)及
び筒体(22)間を通電することにより、筒体(22)
内面に軸方向に膜厚の異なるめっきを施工する筒体内面
のめっき方法であって、有限要素法により求められた電
流密度計算値により、めっき膜厚予測値を算出して最適
な陽極形状を決定するようにしたことを特徴とする。Means for Solving the Problems In the present invention, claim 1 is provided.
The described invention provides an anode (2) extending in the axial direction of the cylindrical body (22).
4, 25), the anodes (24, 25) and the cylinder (22) are immersed in a plating solution, and a current is passed between the anodes (24, 25) and the cylinder (22). (22)
This is a plating method for the inner surface of a cylinder in which plating with different film thicknesses is performed in the axial direction on the inner surface, and by calculating the current density calculation value obtained by the finite element method, the predicted coating film thickness is calculated to determine the optimal anode shape. It is characterized in that it is determined.
【0010】請求項2記載の発明は、筒体(22)の軸
方向に延びる陽極(24,25)を配置し、その陽極
(24,25)及び上記筒体(22)をめっき液中に浸
して、陽極(24,25)及び筒体(22)間を通電す
ることにより、上記筒体内面に軸方向に膜厚の異なるめ
っきを施工する筒体内面のめっき方法であって、有限要
素法により筒体(22)の電流密度計算値を求めるステ
ップと、筒体(22)の軸方向各位置において、上記電
流密度計算値及びめっき膜厚の実験値より電流効率を計
算するステップと、上記電流密度計算値及び電流効率計
算値の関係から、めっき膜厚予測値を求めるステップ
と、上記めっき膜厚予測値から、内径が軸方向各位置に
おいて一様となる陽極形状を決定するステップと、から
なることを特徴とする。According to a second aspect of the present invention, an anode (24, 25) extending in the axial direction of the cylinder (22) is arranged, and the anode (24, 25) and the cylinder (22) are placed in a plating solution. A plating method for the inner surface of a cylinder for applying plating having different film thicknesses in the axial direction on the inner surface of the cylinder by immersing and applying a current between the anodes (24, 25) and the cylinder (22). Calculating a current density calculation value of the cylinder (22) by a method; and calculating current efficiency from the current density calculation value and an experimental value of the plating film thickness at each axial position of the cylinder (22). A step of obtaining a plating thickness prediction value from the relationship between the current density calculation value and the current efficiency calculation value, and a step of determining an anode shape whose inner diameter is uniform at each axial position from the plating thickness prediction value. Is characterized by consisting of
【0011】請求項3記載の発明は、請求項2記載の筒
体内面のめっき方法であって、筒体(22)の厚いめっ
き層側陽極径及び薄いめっき層側陽極径を決定した後、
厚いめっき層から薄いめっき層に変化する領域を軸方向
にn分割(n:整数)し、分割した各位置の陽極径を種
々変化させて、有限要素法解析モデルを作成して、めっ
き膜厚を計算し、めっき膜厚予測値が設定された円筒内
径となるような陽極径を決定するようにしたことを特徴
とする。According to a third aspect of the present invention, there is provided the method for plating the inner surface of the cylinder according to the second aspect, wherein after determining the diameter of the anode on the thick plating layer side and the diameter of the anode on the thin plating layer side of the cylinder (22),
A region where the thickness changes from a thick plating layer to a thin plating layer is divided into n parts (n: an integer) in the axial direction, and the anode diameter at each of the divided positions is variously changed to create a finite element method analysis model. Is calculated, and the anode diameter is determined so that the predicted value of the plating film thickness becomes the set cylinder inner diameter.
【0012】請求項4記載の発明は、請求項1〜請求項
3のいずれかに記載の筒体内面のめっき方法であって、
上記めっき膜厚予測値を求めるステップは、(1)実際
の境界条件である陰極、陽極に仮の電位を与えるステッ
プと、(2)有限要素法により電流密度(i=−κ・∂
φ/∂n)を求めるステップと、(3)実際のめっき施
工条件である総電流量より、陰極面での平均電流密度
(総電流量/陰極面面積)を求めるステップと、(4)
有限要素法による電流密度iがこの平均電流密度となる
ように、陰極及び陽極の電位を調整するステップと、
(5)陰極面の電流密度分布を求めるステップと、
(6)調整された電位において、電流密度計算値及びめ
っき膜厚実験値が得られている場合に、電流効率を求め
るステップと、(7)筒体(22)の軸方向各位置に対
応する電流密度と上記電流効率との関係より、軸方向各
位置における電流効率を求め、軸方向各位置のめっき膜
厚予測値を計算するステップとからなることを特徴とす
る。According to a fourth aspect of the present invention, there is provided the method for plating the inner surface of a cylinder according to any one of the first to third aspects,
The step of obtaining the estimated plating film thickness includes: (1) applying a temporary potential to the cathode and anode, which are actual boundary conditions; and (2) current density (i = −κ · ∂) by the finite element method.
(3) obtaining an average current density on the cathode surface (total current amount / cathode surface area) from the total current amount which is an actual plating application condition; and (4)
Adjusting the potentials of the cathode and the anode such that the current density i by the finite element method becomes the average current density;
(5) obtaining a current density distribution on the cathode surface;
(6) a step of obtaining a current efficiency when a current density calculation value and a plating film thickness experimental value are obtained at the adjusted potential; and (7) a step corresponding to each axial position of the cylindrical body (22). Calculating a current efficiency at each position in the axial direction from the relationship between the current density and the current efficiency and calculating a predicted value of the plating film thickness at each position in the axial direction.
【0013】請求項5記載の発明は、請求項4記載の筒
体内面のめっき方法であって、上記めっきされた内径が
軸方向各位置において同径となるような陽極形状を決定
するステップは、(1)陽極形状の外径を厚いめっき層
側の陽極径を固定値として設定するステップと、(2)
薄いめっき層側の陽極径を種々変化させたモデルを作成
するステップと、(3)上記各陽極について、有限要素
法解析モデルを作成するステップと、(4)各モデルに
ついて、めっき膜厚予測値を計算し、厚いめっき層から
薄いめっき層に変化する領域を軸方向にn分割(n:整
数)するステップと、(5)分割した各位置のめっき膜
厚が設定された円筒内径となるような陽極径を選択する
ステップと、(6)各nについて、円筒内径となる陽極
径を選択することにより、陽極形状を決定するステップ
と、からなることを特徴とする。According to a fifth aspect of the present invention, there is provided the method for plating the inner surface of the cylinder according to the fourth aspect, wherein the step of determining an anode shape such that the plated inner diameter has the same diameter at each axial position. (1) setting the outer diameter of the anode shape to a fixed value for the anode diameter on the side of the thick plating layer; and (2)
(3) creating a finite element method analysis model for each of the anodes; and (4) plating film thickness prediction values for each model. Calculating the area from the thick plating layer to the thin plating layer by dividing the area into n parts (n: integer) in the axial direction, and (5) making the plating film thickness at each of the divided positions equal to the set cylindrical inner diameter. And (6) determining the anode shape by selecting an anode diameter that is a cylindrical inner diameter for each n.
【0014】請求項6記載の発明は、請求項1〜5のい
ずれかに記載の筒体内面のめっき方法であって、上記筒
体(22)は、円筒であることを特徴とする。請求項7
記載の発明は、請求項1〜6のいずれかに記載の筒体内
面のめっき方法において、めっきは、クロムめっきであ
ることを特徴とする。請求項8記載の発明は、請求項1
〜7のいずれかに記載の筒体内面のめっき方法によりめ
っき施工されたことを特徴とする。請求項9記載の発明
は、請求項8記載の内面をめっき施工された筒体であっ
て、上記筒体(22)は、円筒状の兵器砲身であること
を特徴とする。According to a sixth aspect of the present invention, there is provided the method for plating the inner surface of a cylinder according to any one of the first to fifth aspects, wherein the cylinder (22) is a cylinder. Claim 7
According to a preferred embodiment of the present invention, in the method for plating the inner surface of a cylinder according to any one of claims 1 to 6, the plating is chrome plating. The invention according to claim 8 is the first invention.
The plating is performed by the plating method for the inner surface of the cylinder according to any one of the above-mentioned items. According to a ninth aspect of the present invention, there is provided a cylindrical body whose inner surface is plated according to the eighth aspect, wherein the cylindrical body (22) is a cylindrical weapon barrel.
【0015】(作用)めっき膜厚実験値及び有限要素法
により求められた電流密度計算値から、めっき膜厚予測
値を求めて、最適な陽極形状を決定することにより、筒
体内面に所望の形状にめっき施工することが可能とな
る。具体的には、有限要素法により電流密度計算値を求
めるステップと、電流密度計算値及びめっき膜厚の実験
値より電流効率を計算するステップと、電流密度計算値
及び電流効率計算値の関係から、めっき膜厚予測値を求
めるステップと、軸方向各位置において筒体内面が同径
となる陽極形状を決定するステップとにより、最適な陽
極形状を決定する。このように、めっき膜厚を、電流効
率及び電流密度との関係式を適用して、有限要素法によ
り電流密度を計算することにより、最適なめっき膜厚を
求めるので、一度のめっき施工で所望の形状のめっき層
を得ることができる。(Function) From the experimental value of the plating film thickness and the current density calculated value obtained by the finite element method, a predicted value of the plating film thickness is determined, and the optimum anode shape is determined. Plating can be applied to the shape. Specifically, a step of obtaining a current density calculation value by a finite element method, a step of calculating a current efficiency from a current density calculation value and an experimental value of a plating film thickness, and a relationship between the current density calculation value and the current efficiency calculation value An optimum anode shape is determined by a step of obtaining a predicted plating film thickness value and a step of determining an anode shape in which the inner surface of the cylinder has the same diameter at each position in the axial direction. As described above, the optimum thickness of the plating film is obtained by calculating the current density by the finite element method by applying the relational expression between the current efficiency and the current density by applying the plating film thickness. Can be obtained.
【0016】[0016]
【発明の実施の形態】本発明の実施の形態について、図
を参照して以下に詳細に説明する。図1は、本発明の実
施の形態を示すクロムめっき方法であって、陽極径を直
線的に変化させた直線的なテーパ状の陽極を示す断面
図、図2は、陽極径を多段階的に変化させた多段階的な
テーパ状の陽極を示す断面図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing a chromium plating method according to an embodiment of the present invention, showing a linear tapered anode in which the anode diameter is changed linearly. FIG. FIG. 6 is a cross-sectional view showing a multi-step tapered anode changed to a negative electrode.
【0017】図1に示すように、めっきを施工する筒体
は円筒22であり、円筒22の内面23は、先端側に小
径部23aが配設され、また、後端側に大径部23cが
配設されており、小径部23aから大径部23cへと径
が滑らかに変化する径変化部23bをその中間に配設し
ている。小径部23aは、薄いクロムめっき層21を形
成する部分であり、大径部23cは厚いクロムめっき層
20を形成する部分である。このような円筒22の軸心
に、その円筒22の軸方向に延びる陽極24が配設さ
れ、円筒22及び陽極24をめっき液中に浸して、円筒
22及び陽極24間を通電することにより、円筒22内
面にめっきを施工する。As shown in FIG. 1, the cylinder on which the plating is performed is a cylinder 22. The inner surface 23 of the cylinder 22 has a small-diameter portion 23a disposed at the front end and a large-diameter portion 23c disposed at the rear end. Is provided, and a diameter changing portion 23b whose diameter changes smoothly from the small diameter portion 23a to the large diameter portion 23c is provided in the middle. The small diameter portion 23a is a portion where the thin chrome plating layer 21 is formed, and the large diameter portion 23c is a portion where the thick chrome plating layer 20 is formed. An anode 24 extending in the axial direction of the cylinder 22 is disposed on the axis of the cylinder 22, and the cylinder 22 and the anode 24 are immersed in a plating solution, and a current is passed between the cylinder 22 and the anode 24, Plating is applied to the inner surface of the cylinder 22.
【0018】図1及び図2では、円筒内面23の内径が
異なる円筒22内において、厚いクロムめっき層20か
ら薄いクロムめっき層21へ変化する領域A(以下、領
域A)に対応した陽極形状が示されている。図1に示す
ように、陽極24には、領域Aに対応して、直線テーパ
部24aが設けられている。図2に示すように、陽極2
5には、領域Aに対応して、連続して多段階的に変化す
る連続多段階部25aが設けられている。連続多段階部
25aは、厚いクロムめっき層20から薄いクロムめっ
き層21にかけて、陽極25の径が外側に湾曲変化する
ように形成されている。陽極24,25は、図示しない
電気的導線を介して電流源と接続されている。また、円
筒22も同様に、図示しない電気的導線により電流源と
接続されて、めっき施工の際には陰極として作用する。
なお、本実施の形態では、図1では、直線テーパ状に陽
極形状が変化する陽極24,図2では、連続して多段階
的に陽極形状が変化する陽極25を開示しているが、領
域Aに対応する形状は、これに限定されるものではな
く、連続的でなく、ステップ状に変化させたり、又は、
凹状又は凸状の放物線、円状、楕円等の円弧部分のよう
に変化させたりすることも可能である。In FIGS. 1 and 2, the shape of the anode corresponding to the region A (hereinafter, region A) where the thick chromium plating layer 20 changes to the thin chromium plating layer 21 in the cylinder 22 having different inner diameters of the inner surface 23 of the cylinder. It is shown. As shown in FIG. 1, the anode 24 is provided with a linear tapered portion 24a corresponding to the region A. As shown in FIG.
5 is provided with a continuous multi-step portion 25a that continuously changes in multiple steps corresponding to the region A. The continuous multi-step portion 25a is formed such that the diameter of the anode 25 changes from the thick chromium plating layer 20 to the thin chromium plating layer 21 outwardly. The anodes 24 and 25 are connected to a current source via an electric lead (not shown). Similarly, the cylinder 22 is also connected to a current source by an electric conductor (not shown), and functions as a cathode during plating.
In this embodiment, the anode 24 whose anode shape changes in a linear taper shape is shown in FIG. 1, and the anode 25 whose anode shape changes continuously and in multiple steps is disclosed in FIG. The shape corresponding to A is not limited to this, is not continuous, and is changed stepwise, or
It is also possible to change the shape like an arc portion such as a concave or convex parabola, a circle, or an ellipse.
【0019】次に、めっき膜厚予測値を求める方法につ
いて、以下に詳述する。めっき膜厚は、電流密度及び電
流効率と次式に示す関係がある。Next, a method for obtaining the predicted value of the plating film thickness will be described in detail below. The plating film thickness has a relationship represented by the following equation with the current density and the current efficiency.
【0020】[0020]
【数1】 めっき膜厚=電流効率x電流密度x通電時間 …(1)式## EQU1 ## Plating film thickness = Current efficiency × Current density × Electrification time (1)
【0021】まず、実際のめっき施工と同じ条件で、め
っき浴組成、めっき浴温度、前処理条件で実験を行い、
めっき膜厚実験値を求める。このめっき膜厚実験値とそ
の形状に基づき計算した電流密度計算値により、(1)
式を変形した次式により、電流効率を求める。First, an experiment was performed under the same conditions as in the actual plating operation, with the plating bath composition, plating bath temperature, and pretreatment conditions.
Obtain the experimental value of plating film thickness. From the experimental value of the plating film thickness and the current density calculation value calculated based on the shape, (1)
The current efficiency is obtained by the following equation obtained by modifying the equation.
【0022】[0022]
【数2】 (電流効率)=(めっき膜厚)/{(電流密度)x(通電時間)}…(2)式[Equation 2] (Current efficiency) = (Plating film thickness) / {(Current density) × (Electrification time)} (2)
【0023】また、電流密度は、陽極と陰極となる円筒
内面23とに囲まれためっき浴26の部分を解析領域と
して下記のラプラス方程式に境界条件を与えることによ
り解くことができる。The current density can be solved by giving a boundary condition to the following Laplace equation using the portion of the plating bath 26 surrounded by the anode 23 and the inner cylindrical surface 23 serving as the cathode as an analysis region.
【0024】[0024]
【数3】 ∇2φ =0(ラプラス方程式、φ:電位)…(3)式 φ =Va,Vc(境界条件、Va:陽極電位、Vc:
陰極電位) i=−κ・∂φ/∂n (i:陰極での電流密度、κ:電気伝導度(電気抵抗の
逆数)、n:陰極面の単位法線、∂φ/∂n:陰極面で
の電解の強さ)3 2 φ = 0 (Laplace equation, φ: potential) Equation (3) φ = Va, Vc (boundary condition, Va: anode potential, Vc:
Cathode potential) i = −κ∂φ / ∂n (i: current density at cathode, κ: electrical conductivity (reciprocal of electrical resistance), n: unit normal of cathode surface, ∂φ / ∂n: cathode Strength of the surface)
【0025】上式は、有限要素法により解くことができ
る。有限要素法の境界条件により電流密度iを求める方
法を、図6のフローチャートに示す。実際の境界条件で
ある陰極(例えば、0V)、陽極(例えば、3V)に適
当な電位Vc,Vaを与えて(S1)、有限要素法によ
り電流密度(i=−κ・∂φ/∂n)を求める(S
2)。The above equation can be solved by the finite element method. A method for obtaining the current density i based on the boundary conditions of the finite element method is shown in the flowchart of FIG. Appropriate potentials Vc and Va are given to a cathode (for example, 0 V) and an anode (for example, 3 V) which are actual boundary conditions (S1), and a current density (i = -κκφ / ∂n) is obtained by a finite element method. ) (S
2).
【0026】ここで、実際のめっき施工条件である総電
流量より、陰極面での平均電流密度(総電流量/陰極面
面積)を求め(S3)、有限要素法による電流密度iが
この平均電流密度となるように、陰極及び陽極の電位を
調整する(S4)。電位の調整は、厚いクロムめっき層
側の電流密度計算値と施工時の平均電流密度が同じにな
るように設定する。厚いクロムめっき層側は、電流密度
iを均一とし、すなわち、施工上は、この厚いクロムめ
っき層側における電流密度iが一定となるように、総電
流量を計算したものを、めっき施工条件としている。Here, the average current density on the cathode surface (total current amount / cathode surface area) is determined from the total current amount, which is the actual plating application condition (S3), and the current density i by the finite element method is The potentials of the cathode and the anode are adjusted so as to obtain the current density (S4). The potential is adjusted so that the calculated value of the current density on the side of the thick chromium plating layer is equal to the average current density during construction. On the thick chrome plating layer side, the current density i was made uniform, that is, on the construction, the total current amount was calculated so that the current density i on the thick chrome plating layer side was constant. I have.
【0027】図3に図1のめっき浴26部分を解析領域
とする軸対称2次元モデルの有限要素法メッシュ分割図
を示す。かかる計算を種々の陽極形状について実施し
て、図4に示すように、円筒内面の径が一様になるよう
な形状を探索する。FIG. 3 is a finite element mesh division diagram of an axisymmetric two-dimensional model having the plating bath 26 in FIG. 1 as an analysis region. Such calculation is performed for various anode shapes to search for a shape in which the diameter of the inner surface of the cylinder becomes uniform as shown in FIG.
【0028】図8及び図9により、電流密度を求める方
法を説明する。図8に、有限要素法による電流密度計算
値iと実際の実験によるめっき膜厚実験値tが得られて
いる場合に、円筒の軸方向各位置xについての関係を示
す。図9は、軸方向各位置xに対応する電流密度計算値
i及びめっき膜厚実験値tを上記(2)式に代入して得
られる電流効率ηとの関係を示したものである。さら
に、サンプル数を多くして、電流密度iと電流効率ηの
関係を示したものが図5である。このように、電流密度
計算値i及びめっき膜厚実験値tを(2)式に代入する
ことにより、電流効率ηを求めて、多数のサンプルによ
り適切な電流密度i−電流効率ηの勾配を求め(S
6)、図5で得られた電流密度値i及び電流効率ηを再
度(2)式に代入して、めっき膜厚予測値を計算する
(S7)。このようにして、めっき膜厚予測値を求め
て、陽極形状を決定する。A method for determining the current density will be described with reference to FIGS. FIG. 8 shows the relationship between the axial position x of the cylinder when the current density calculation value i by the finite element method and the plating film thickness experiment value t by the actual experiment are obtained. FIG. 9 shows the relationship between the current density calculated value i and the plated film thickness experimental value t corresponding to each position x in the axial direction and the current efficiency η obtained by substituting the calculated value into the above equation (2). FIG. 5 shows the relationship between the current density i and the current efficiency η by increasing the number of samples. As described above, the current efficiency η is obtained by substituting the current density calculation value i and the plating film thickness experimental value t into the equation (2), and the gradient of the appropriate current density i−current efficiency η is determined by a large number of samples. Ask (S
6) Substituting the current density value i and the current efficiency η obtained in FIG. 5 into the equation (2) again, and calculating a plating film thickness predicted value (S7). In this way, the anode film shape is determined by obtaining the plating film thickness prediction value.
【0029】円筒内面を設定された一様な内径とするに
は、具体的に、以下のように陽極形状を決定する。ま
ず、厚いクロムめっき層側と薄いクロムめっき層側に必
要とするめっき膜厚となるような陽極形状の外径を図7
に示すフローチャートにより決定する。ステップf1で
は、厚いクロムめっき層側の径をこれまでの実験に基づ
いて、固定された値に設定する。In order to make the inner surface of the cylinder a uniform inner diameter, the anode shape is specifically determined as follows. First, the outer diameter of the anode shape is set so that the plating film thickness required for the thick chromium plating layer side and the thin chromium plating layer side is as shown in FIG.
Are determined according to the flowchart shown in FIG. In step f1, the diameter on the side of the thick chromium plating layer is set to a fixed value based on the experiments so far.
【0030】ステップf2では、薄いクロムめっき層側
の陽極径を種々に変化させることにより、有限要素法解
析モデルを作成する。このとき、厚いクロムめっき層か
ら薄いクロムめっき層に変化する領域Aは、厚いクロム
めっき層側の陽極径と薄いクロムめっき層側の陽極径を
直線的に結んだ直線テーパ状とする。ステップf3にお
いて、各モデルについて、図3に示すような解析メッシ
ュを作成する。In step f2, a finite element method analysis model is created by variously changing the anode diameter on the thin chromium plating layer side. At this time, the region A where the thick chromium plating layer changes to the thin chromium plating layer has a linear taper shape in which the anode diameter of the thick chromium plating layer side and the anode diameter of the thin chrome plating layer side are linearly connected. In step f3, an analysis mesh as shown in FIG. 3 is created for each model.
【0031】ステップf4では、各モデルについて、厚
いクロムめっき層側の陽極径と薄いクロムめっき層側の
陽極径を決定する。ステップ5では、厚いクロムめっき
層から薄いクロムめっき層に変化する領域を軸方向にn
分割(n:整数)する。分割した各位置の陽極径を種々
変化させて有限要素法解析モデルを作成して、めっき膜
厚を計算し、めっき膜厚予測値が設定された円筒内径と
なるような陽極径を選択する(図4)。n分割する分割
数nは、円筒内径の寸法公差に応じて膜厚予測値に基づ
き、軸方向の内径のばらつきを検討して決定する。In step f4, for each model, the anode diameter on the thick chrome plating layer side and the anode diameter on the thin chrome plating layer side are determined. In step 5, the region changing from the thick chromium plating layer to the thin chromium plating layer is n
Divide (n: integer). A finite element method analysis model is created by variously changing the anode diameter at each of the divided positions, the plating film thickness is calculated, and the anode diameter is selected so that the estimated plating film thickness becomes the set cylinder inner diameter ( (Fig. 4). The number of divisions n for n division is determined by examining the variation of the inner diameter in the axial direction based on the film thickness prediction value according to the dimensional tolerance of the inner diameter of the cylinder.
【0032】図4に示すように、例えば、軸方向に領域
Aを5分割して、その1分割目の陽極径を選択した例を
示す。下地の線即ち円筒内面23を点線Bとすると、陽
極径を直径107,108,109,110,111m
mと変化させた場合のA領域での変化の様子から、一番
厚いクロムめっき層から薄いクロムめっき層にかけて膜
厚の変化の少ない円筒内面が同径に近い陽極径を選択す
ることにより、最適径を求める。この例では、1分割目
においては、陽極径が、直径109mmのものが最適径
となる。(ステップf6) なお、本実施の形態では、筒体は、円筒22のみを説明
しているが、本発明は、円筒に限定されず、筒体であれ
ば良く、楕円体、矩形断面を有する筒体であっても、有
限要素法の適用により、最適な形状の陽極を求めること
ができる。また、めっきは、クロムめっきに限定される
ものではなく、用途により、ニッケル等のクロム以外の
めっきにより保護層を形成するようにしても良い。As shown in FIG. 4, for example, an example is shown in which the area A is divided into five in the axial direction and the anode diameter of the first division is selected. Assuming that the line of the base, that is, the cylindrical inner surface 23 is a dotted line B, the anode diameter is 107, 108, 109, 110, 111 m.
From the state of change in the A region when it is changed to m, it is optimal to select the anode diameter whose inner surface of the cylinder whose film thickness changes little from the thickest chrome plating layer to the thin chrome plating layer is almost the same diameter. Find the diameter. In this example, in the first division, the diameter of the anode is 109 mm, which is the optimum diameter. (Step f6) In the present embodiment, only the cylinder 22 is described as the cylinder, but the present invention is not limited to the cylinder, and any cylinder may be used. Even in the case of a cylindrical body, an anode having an optimal shape can be obtained by applying the finite element method. Further, the plating is not limited to chromium plating, and the protection layer may be formed by plating other than chromium such as nickel depending on the use.
【0033】(具体例)次に、本実施の形態である筒体
内面のクロムめっき方法を兵器砲身に適用する場合につ
いて説明する。図1において、円筒22右側が兵器砲身
の装填室側部分であり、めっき浴26部分が装填室とな
り、兵器砲身の装填室に連続する砲口径部が領域Aで示
されている。クロムめっき施工の前には、必ず、円筒2
2の脱脂が行われる。脱脂後に、下記の条件で、円筒2
2及び陽極24に通電することにより、膜厚の異なるク
ロムめっき層が円筒内面23に形成される。クロムめっ
きの施工条件は、以下の通りである。 浴温度:55〜68℃(実際は、62℃、68℃等に
温度調節して一定温度になるように温度管理する。) 電流密度:20A/dm2(dm=0.1m) めっき液:CrO3/H2SO4(CrO3:クロム酸濃度
200g/l、H2SO4:硫酸濃度 5g/l) 電流効率:めっき時間と膜厚のデータにより条件を決
定する。(Specific Example) Next, a case where the chrome plating method for the inner surface of the cylinder according to the present embodiment is applied to a weapon barrel will be described. In FIG. 1, the right side of the cylinder 22 is a portion on the loading chamber side of the weapon barrel, the plating bath 26 portion is a loading chamber, and a gun caliber portion continuous to the loading chamber of the weapon barrel is indicated by an area A. Before chrome plating, be sure to use cylinder 2
2 is performed. After degreasing, under the following conditions, cylinder 2
2 and the anode 24, a chromium plating layer having a different thickness is formed on the inner surface 23 of the cylinder. The working conditions of the chrome plating are as follows. Bath temperature: 55-68 ° C (actually temperature is controlled to be constant by adjusting the temperature to 62 ° C, 68 ° C, etc.) Current density: 20 A / dm 2 (dm = 0.1 m) Plating solution: CrO 3 / H 2 SO 4 (CrO 3 : chromic acid concentration 200 g / l, H 2 SO 4 : sulfuric acid concentration 5 g / l) Current efficiency: Conditions are determined based on plating time and film thickness data.
【0034】[0034]
【発明の効果】以上のように、本発明によれば、有限要
素法により求められた電流密度計算値により、めっき膜
厚予測値を算出して最適な陽極形状を決定するようにし
ているので、軸方向に膜厚が異なるめっき層を一度のめ
っき施工により形成することができる。これにより、従
来のように、めっき処理後の機械加工等が不要となるた
めに、その処理作業を大幅に簡易軽減化できる。また、
一度で、膜厚の異なるめっき層が形成できるために、め
っき層を重ね合わせる必要がないため、従来のようにめ
っきが剥離することもなく、保護層として十分な耐久性
を有する。As described above, according to the present invention, an optimum anode shape is determined by calculating a plating film thickness prediction value based on a current density calculation value obtained by the finite element method. A plating layer having a different thickness in the axial direction can be formed by a single plating operation. This eliminates the need for machining or the like after the plating process as in the related art, so that the processing operation can be greatly simplified and reduced. Also,
Since a plating layer having a different film thickness can be formed at one time, there is no need to overlap the plating layers, so that the plating does not peel off as in the related art, and has sufficient durability as a protective layer.
【図1】本発明の実施の形態を示すクロムめっき方法に
おいて、陽極径を直線的に変化させた直線的なテーパ状
の陽極を示す断面図である。FIG. 1 is a cross-sectional view showing a linear tapered anode in which a diameter of an anode is linearly changed in a chromium plating method according to an embodiment of the present invention.
【図2】本発明の実施の形態を示すクロムめっき方法に
おいて、陽極径を多段階的に変化させた多段階的なテー
パ状の陽極を示す断面図である。FIG. 2 is a cross-sectional view showing a multi-step tapered anode in which the diameter of the anode is changed in multiple steps in the chromium plating method according to the embodiment of the present invention.
【図3】図1のめっき浴部分を解析領域とする軸対称2
次元モデルの有限要素法メッシュ分割図である。3 is an axially symmetric 2 in which a plating bath portion of FIG. 1 is an analysis region.
FIG. 3 is a finite element method mesh division diagram of a dimensional model.
【図4】円筒内の軸方向位置及び円筒内径における最適
径を予測するための関係図である。FIG. 4 is a relationship diagram for estimating an axial position in a cylinder and an optimum diameter at an inner diameter of the cylinder.
【図5】電流密度と電流効率の関係を示す図である。FIG. 5 is a diagram showing a relationship between current density and current efficiency.
【図6】電流密度計算値より膜厚予測値を計算するフロ
ーチャートを示す図である。FIG. 6 is a diagram showing a flowchart for calculating a film thickness prediction value from a current density calculation value.
【図7】軸方向各位置において陽極径を選択することに
より陽極形状を決定するフローチャートを示す図であ
る。FIG. 7 is a diagram showing a flowchart for determining an anode shape by selecting an anode diameter at each position in the axial direction.
【図8】軸方向各位置における電流密度計算値とめっき
膜厚実験値の関係を示す図である。FIG. 8 is a diagram showing a relationship between a calculated value of current density and an experimental value of plating film thickness at each position in the axial direction.
【図9】電流密度と計算により求められた電流効率との
関係を示す図である。FIG. 9 is a diagram showing a relationship between current density and current efficiency obtained by calculation.
【図10】クロムめっき膜剥離試験方法を示す図であ
る。FIG. 10 is a view showing a chromium plating film peeling test method.
【図11】クロムめっき膜厚と剥離面積との関係を示す
図である。FIG. 11 is a diagram showing a relationship between a chromium plating film thickness and a peeled area.
【図12】従来の軸方向のめっき膜厚を変化させる方法
において、第1段階で円筒の一部にクロムめっき層を設
ける場合を示す断面図である。FIG. 12 is a cross-sectional view showing a case where a chromium plating layer is provided on a part of a cylinder in a first stage in a conventional method for changing a plating film thickness in an axial direction.
【図13】図10の方法において、円筒の一部にクロム
めっき層を設けた後に、第2段階で円筒全面にクロムめ
っき層を設ける場合を示す断面図である。13 is a cross-sectional view showing a case where a chromium plating layer is provided on a part of the cylinder and then a chromium plating layer is provided on the entire surface of the cylinder in the second stage in the method of FIG.
【図14】従来の軸方向のめっき膜厚を変化させる他の
方法において、一度でクロムめっき層を施工できる方法
を説明するための断面図である。FIG. 14 is a cross-sectional view for explaining a method in which a chromium plating layer can be applied at one time in another conventional method for changing the plating film thickness in the axial direction.
20 厚いクロムめっき層 21 薄いクロムめっき層 22 円筒(筒体) 23 円筒内面 23a 小径部 23b 径変化部 23c 大径部 24 陽極 24a 直線テーパ部 25 陽極 25a 連続多段階部 26 めっき浴 A 厚いめっき層から薄いめっき層に変化する領域 Reference Signs List 20 thick chrome plating layer 21 thin chrome plating layer 22 cylinder (cylindrical body) 23 inner surface of cylinder 23a small diameter portion 23b diameter change portion 23c large diameter portion 24 anode 24a linear taper portion 25 anode 25a continuous multi-step portion 26 plating bath A thick plating layer Area changing from thin to thin plating layer
Claims (9)
(24,25)を配置し、その陽極(24,25)及び
筒体(22)をめっき液中に浸して、陽極(24,2
5)及び筒体(22)間を通電することにより、筒体
(22)内面に軸方向に膜厚の異なるめっきを施工する
筒体内面のめっき方法であって、 有限要素法により求められた電流密度計算値により、め
っき膜厚予測値を算出して最適な陽極形状を決定するよ
うにしたことを特徴とする筒体内面のめっき方法。An anode (24, 25) extending in the axial direction of a cylinder (22) is arranged, and the anode (24, 25) and the cylinder (22) are immersed in a plating solution to form an anode (24, 25). 2
5) A plating method for the inner surface of a cylinder in which plating with different film thicknesses is performed in the axial direction on the inner surface of the cylinder (22) by applying a current between the cylinder and the cylinder (22), which is obtained by a finite element method. A plating method for an inner surface of a cylinder, wherein an optimum anode shape is determined by calculating a plating film thickness prediction value based on a current density calculation value.
(24,25)を配置し、その陽極(24,25)及び
上記筒体(22)をめっき液中に浸して、陽極(24,
25)及び筒体(22)間を通電することにより、上記
筒体内面に軸方向に膜厚の異なるめっきを施工する筒体
内面のめっき方法であって、 有限要素法により筒体(22)の電流密度計算値を求め
るステップと、 筒体(22)の軸方向各位置において、上記電流密度計
算値及びめっき膜厚の実験値より電流効率を計算するス
テップと、 上記電流密度計算値及び電流効率計算値の関係から、め
っき膜厚予測値を求めるステップと、 上記めっき膜厚予測値から、内径が軸方向各位置におい
て一様となる陽極形状を決定するステップと、からなる
ことを特徴とする筒体内面のめっき方法。2. An anode (24, 25) extending in the axial direction of the cylinder (22) is arranged, and the anode (24, 25) and the cylinder (22) are immersed in a plating solution to form an anode (24). ,
25) A plating method for an inner surface of a cylinder, in which plating between the inner surface of the cylinder and a film having a different thickness is applied to the inner surface of the cylinder by applying a current between the cylinder (22) and the cylinder (22) by a finite element method. Calculating a current density calculated from the calculated current density and an experimental value of the plating film thickness at each axial position of the cylindrical body (22); From the relationship between the calculated efficiency values, a step of obtaining a plating film thickness prediction value; and, from the plating film thickness prediction value, a step of determining an anode shape whose inner diameter is uniform at each position in the axial direction. The plating method for the inner surface of the cylinder.
あって、 筒体(22)の厚いめっき層側陽極径及び薄いめっき層
側陽極径を決定した後、厚いめっき層から薄いめっき層
に変化する領域を軸方向にn分割(n:整数)し、 分割した各位置の陽極径を種々変化させて、有限要素法
解析モデルを作成して、めっき膜厚を計算し、 めっき膜厚予測値が設定された円筒内径となるような陽
極径を決定するようにしたことを特徴とする筒体内面の
めっき方法。3. The method for plating the inner surface of a cylinder according to claim 2, wherein a thicker plating layer side anode diameter and a thinner plating layer side anode diameter of the cylinder (22) are determined, and then the thicker plating layer is thinned. A region changing into a layer is divided into n parts (n: integer) in the axial direction, an anode diameter at each of the divided positions is variously changed, a finite element method analysis model is created, a plating film thickness is calculated, and a plating film is formed. A plating method for an inner surface of a cylinder, wherein an anode diameter is determined such that a predicted thickness value becomes a set cylinder inner diameter.
筒体内面のめっき方法であって、 上記めっき膜厚予測
値を求めるステップは、(1)実際の境界条件である陰
極、陽極に仮の電位を与えるステップと、(2)有限要
素法により電流密度(i=−κ・∂φ/∂n)を求める
ステップと、(3)実際のめっき施工条件である総電流
量より、陰極面での平均電流密度(総電流量/陰極面面
積)を求めるステップと、(4)有限要素法による電流
密度iがこの平均電流密度となるように、陰極及び陽極
の電位を調整するステップと、(5)陰極面の電流密度
分布を求めるステップと、(6)調整された電位におけ
る電流密度計算値及びめっき膜厚実験値から、電流効率
を求めるステップと、(7) 軸方向各位置における電
流効率を求め、軸方向各位置のめっき膜厚予測値を計算
するステップと、からなることを特徴とする筒体内面の
めっき方法。4. The plating method for an inner surface of a cylinder according to any one of claims 1 to 3, wherein the step of obtaining the predicted value of the plating film thickness comprises: (1) a cathode, which is an actual boundary condition; Applying a temporary potential to the anode; (2) obtaining a current density (i = -κ∂φ / ∂n) by the finite element method; and (3) obtaining a total current amount which is an actual plating condition. Calculating the average current density on the cathode surface (total current amount / cathode surface area); and (4) adjusting the potentials of the cathode and anode such that the current density i by the finite element method becomes the average current density. (5) calculating the current density distribution on the cathode surface; (6) calculating the current efficiency from the calculated current density value and the plating film thickness experimental value at the adjusted potential; Find the current efficiency at the position Calculating a predicted plating film thickness at a position.
あって、 上記めっき膜厚予測値から、筒体内面が軸方向各位置に
おいて同径となる陽極形状を決定するステップを有して
なり、(1)厚いめっき層側の陽極径を固定値として設
定するステップと、(2)薄いめっき層側の陽極径を種
々変化させたモデルを作成するステップと、(3)上記
各陽極について、有限要素法解析モデルを作成するステ
ップと、(4)各モデルについて、めっき膜厚予測値を
計算し、厚いめっき層から薄いめっき層に変化する領域
を軸方向にn分割(n:整数)するステップと、(5)
分割した各位置のめっき膜厚が設定された円筒内径とな
る陽極径を選択するステップと、(6)各nについて、
円筒内径となる陽極径を選択することにより、陽極形状
を決定するステップと、からなることを特徴とする筒体
内面のめっき方法。5. The plating method for an inner surface of a cylinder according to claim 4, comprising a step of determining an anode shape in which the inner surface of the cylinder has the same diameter at each position in the axial direction from the predicted plating film thickness. (1) setting the anode diameter on the thick plating layer side as a fixed value; (2) creating models with variously varying anode diameters on the thin plating layer side; Creating a finite element method analysis model, and (4) calculating a plating film thickness prediction value for each model, and dividing an area where a thick plating layer changes into a thin plating layer into n parts in the axial direction (n: integer) ) And (5)
A step of selecting an anode diameter which becomes a cylindrical inner diameter in which a plating film thickness at each of the divided positions is set; and (6) for each n,
Determining the shape of the anode by selecting the diameter of the anode as the inner diameter of the cylinder.
面のめっき方法であって、 上記筒体(22)は、円筒であることを特徴とする筒体
内面のめっき方法。6. The plating method for an inner surface of a cylinder according to claim 1, wherein the cylinder (22) is a cylinder.
面のめっき方法において、 めっきは、クロムめっきであることを特徴とする筒体内
面のめっき方法。7. The plating method for an inner surface of a cylinder according to claim 1, wherein the plating is chrome plating.
面のめっき方法によりめっき施工されたことを特徴とす
る内面をめっき施工された筒体。8. A tubular body whose inner surface is plated by the plating method according to any one of claims 1 to 7.
筒体であって、 上記筒体(22)は、円筒状の兵器砲身であることを特
徴とする内面をめっき施工された筒体。9. The cylindrical body whose inner surface is plated according to claim 8, wherein the cylindrical body (22) is a cylindrical weapon barrel. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10992198A JPH11302895A (en) | 1998-04-20 | 1998-04-20 | Plating method of inner surface of cylindrical body and cylindrical body with its inner surface plated |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10992198A JPH11302895A (en) | 1998-04-20 | 1998-04-20 | Plating method of inner surface of cylindrical body and cylindrical body with its inner surface plated |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11302895A true JPH11302895A (en) | 1999-11-02 |
Family
ID=14522512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10992198A Withdrawn JPH11302895A (en) | 1998-04-20 | 1998-04-20 | Plating method of inner surface of cylindrical body and cylindrical body with its inner surface plated |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11302895A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8551351B2 (en) | 2007-06-12 | 2013-10-08 | Brother Kogyo Kabushiki Kaisha | Method of manufacturing nozzle plate |
CN103849922A (en) * | 2013-12-24 | 2014-06-11 | 三星高新电机(天津)有限公司 | Method for evaluating rotating electroplated cathode-current density distribution based on CAE (Computer Aided Engineering) analysis |
CN105543941A (en) * | 2016-02-29 | 2016-05-04 | 隆鑫通用动力股份有限公司 | Anode for outside groove electroplating of engine cylinder body |
CN114381771A (en) * | 2022-01-25 | 2022-04-22 | 中航飞机起落架有限责任公司 | Inner hole electroplating processing device |
-
1998
- 1998-04-20 JP JP10992198A patent/JPH11302895A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8551351B2 (en) | 2007-06-12 | 2013-10-08 | Brother Kogyo Kabushiki Kaisha | Method of manufacturing nozzle plate |
CN103849922A (en) * | 2013-12-24 | 2014-06-11 | 三星高新电机(天津)有限公司 | Method for evaluating rotating electroplated cathode-current density distribution based on CAE (Computer Aided Engineering) analysis |
CN105543941A (en) * | 2016-02-29 | 2016-05-04 | 隆鑫通用动力股份有限公司 | Anode for outside groove electroplating of engine cylinder body |
CN114381771A (en) * | 2022-01-25 | 2022-04-22 | 中航飞机起落架有限责任公司 | Inner hole electroplating processing device |
CN114381771B (en) * | 2022-01-25 | 2023-03-24 | 中航飞机起落架有限责任公司 | Inner hole electroplating processing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6447666B1 (en) | Galvanic bath, method for producing structured hard chromium layers and use thereof | |
US5770837A (en) | Metal plate for electromagnetic heating | |
US5643434A (en) | Process for coating the face of a part made of aluminum or aluminum alloy | |
US3806139A (en) | Piston ring | |
CN106245028A (en) | TIO2application as the adhesive layer for cylinder-bore thermal spraying | |
JPH11302895A (en) | Plating method of inner surface of cylindrical body and cylindrical body with its inner surface plated | |
US4492615A (en) | Process for plating a long span of metal with a metal layer | |
JPH07167590A (en) | Manufacture of gun tube of weapon having inner coating resistant to abrasion | |
US20090255823A1 (en) | Method for electroplating a plastic substrate | |
Yin et al. | A study on the deposit uniformity of hard chromium plating on the interior of small-diameter tubes | |
Lin et al. | Elemental redistribution in coloured films on SUS304 stainless steel produced by current pulse method | |
US4632734A (en) | Process for electrochemically or chemically coating niobium | |
JP2002505379A (en) | Coating systems for corrosion-resistant coatings and substrates composed of light metals | |
JPH02185993A (en) | Covering of finishing metal layer on surface of anode-treating metal base | |
US2330943A (en) | Welding | |
US20200378028A1 (en) | Electrolytic Preparation Of A Metal Substrate For Subsequent Electrodeposition | |
JP3581507B2 (en) | Plating method for inner surface of cylinder | |
Pinner | TYPICAL PLATING SEQUENCES, CHAPTER 15 FROM COPPER AND COPPER ALLOY PLATING | |
WO2001048267A1 (en) | Sliding member | |
US4374002A (en) | Method for producing highly reflective metal surfaces | |
JP4300132B2 (en) | Alloy plating film having composition gradient structure and method for producing the same | |
Horner | Electroplating | |
JP2000017482A (en) | Laminated chromium plating film excellent in wear resistance and fatigue strength | |
US6360461B1 (en) | Electric pressing iron and method of manufacturing an electric pressing iron | |
JPH03277779A (en) | Production of composite coating film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050705 |