JPH11302302A - Starch for gel cast molding and molding using the same - Google Patents

Starch for gel cast molding and molding using the same

Info

Publication number
JPH11302302A
JPH11302302A JP10109947A JP10994798A JPH11302302A JP H11302302 A JPH11302302 A JP H11302302A JP 10109947 A JP10109947 A JP 10109947A JP 10994798 A JP10994798 A JP 10994798A JP H11302302 A JPH11302302 A JP H11302302A
Authority
JP
Japan
Prior art keywords
starch
molding
slurry
average particle
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10109947A
Other languages
Japanese (ja)
Inventor
Shinzo Hayashi
伸三 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP10109947A priority Critical patent/JPH11302302A/en
Publication of JPH11302302A publication Critical patent/JPH11302302A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject starch dispersible into cold water, being gelatinized by heating, capable of lessening a foamy defect remaining after drying and baking of a molded starch than a conventional one by adjusting its average particle diameter to a specific value or smaller. SOLUTION: This starch is dispersible into cold water, is gelatinized by heating and has <=3 μm, preferably <=1 μm average particle diameter. Such a starch is obtained, for example, by a method for classifying only fine starch by a cyclone so as to make the average particle diameter <=3 μm. In a method for molding powder into a fixed shape, comprising dispersing the powder into water to give a slurry, casting the slurry into a forming mold and hardening the molded material, this starch is added to the slurry and used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、セラミックス、
金属等をいわゆるゲルキャスト成形により成形する際に
スラリー中に添加して使用されるでん粉と、そのでん粉
を用いたゲルキャスト成形に関するものである。
TECHNICAL FIELD The present invention relates to ceramics,
The present invention relates to starch used by adding a metal or the like to a slurry when forming the metal by so-called gel cast molding, and gel cast molding using the starch.

【0002】[0002]

【従来の技術】 セラミックスや金属の成形法として、
従来、プレス成形、射出成形、鋳込成形など各種方法が
知られているが、このような成形法の1つとして、近
年、ゲルキャスト成形(ゲルキャスティング法)と呼ば
れる成形法が注目されている。この成形法は、セラミッ
クス等の粉体を水等の気散性液体に分散してスラリー状
とし、それを成形型内に流し込んで硬化させることによ
り、粉体を所定の形状に成形する方法であり、複雑形状
の成形体を比較的容易に作製できるという利点がある。
[Prior art] As a molding method of ceramics and metals,
Conventionally, various methods such as press molding, injection molding, and casting are known. As one of such molding methods, a molding method called gel cast molding (gel casting method) has recently attracted attention. . This molding method is a method in which powder such as ceramics is dispersed in a gas-dispersible liquid such as water to form a slurry, which is poured into a mold and cured to form the powder into a predetermined shape. There is an advantage that a molded article having a complicated shape can be produced relatively easily.

【0003】 ゲルキャスト成形では、スラリーを硬化
させるための添加物として、寒天やゼラチンが広く使用
され、また、特公平7−22931号公報記載の成形法
のように、エポキシ樹脂等の硬化性樹脂を添加して、そ
の自硬硬化を利用することもある。しかしながら、上記
寒天、ゼラチン及び樹脂は水中で粘性が高いため、高濃
度、高流動性のスラリーを作ることが難しいという問題
があった。
In gel cast molding, agar and gelatin are widely used as additives for hardening a slurry, and a curable resin such as an epoxy resin is used as in the molding method described in Japanese Patent Publication No. 7-22931. May be added to utilize its self-hardening. However, since the agar, gelatin and resin have high viscosity in water, there is a problem that it is difficult to prepare a slurry having high concentration and high fluidity.

【0004】 そこで、ゲルキャスト成形においてスラ
リーを硬化させるための添加物として、例えば特開平3
−45574号公報に開示されているように、でん粉を
用いる方法が案出された。ここで言うでん粉は冷水に溶
けず、加熱により溶解、分解、膨潤することによって粘
性を示すでん粉(いわゆるベータでん粉)である。この
でん粉は冷水に溶けず、分散するのみであるから、粘性
を示さず、流動性の高いスラリーを作製することができ
る。
Therefore, as an additive for hardening a slurry in gel cast molding, for example, Japanese Patent Application Laid-Open
As disclosed in Japanese Patent No. 45574, a method using starch has been devised. The starch referred to here is a starch (so-called beta starch) which does not dissolve in cold water but exhibits viscosity by being dissolved, decomposed, and swelled by heating. Since this starch does not dissolve in cold water but only disperses, a slurry having no viscosity and high fluidity can be produced.

【0005】[0005]

【発明が解決しようとする課題】 ところで、ゲルキャ
スト成形に使用されるでん粉は、芋類、穀類から分離、
精製されて得られるが、その粒子径は原料の種類によっ
て決まり、一般に馬鈴薯で平均粒子径が50〜100μ
m、サツマイモで20〜50μm、トウモロコシで5〜
20μm、米で最も細かく4〜10μm程度であり、こ
れ以上粒子の細かいでん粉は存在しない。
The starch used for gel casting is separated from potatoes and cereals.
It is obtained by purification, and its particle size is determined by the type of raw material, and generally has an average particle size of 50-100 μm in potato.
m, 20 to 50 μm for sweet potato, 5 to corn
It is 20 μm, the finest in rice, about 4 to 10 μm, and there is no finer starch.

【0006】 これらのでん粉を利用したゲルキャスト
成形では、冷水中ででん粉をセラミック等の粉体と混合
してスラリー化し、これを成形型内に流し込んで加熱し
ゲル化させることにより成形体を得ることができるが、
この成形体を乾燥、焼成した後、でん粉の存在した部分
には気泡状の欠陥が残存する。そして、上記従来のでん
粉を用いたゲルキャスト成形では、でん粉の粒子径が大
きすぎるため、残存する欠陥も大きくなり、その結果、
低密度、低強度で信頼性の低い製品しか得ることができ
ないという問題があった。
In the gel cast molding using these starches, starch is mixed with powders such as ceramics in cold water to form a slurry, which is poured into a mold and heated to gel to obtain a molded body. Can be
After drying and firing this molded body, a bubble-like defect remains in the portion where the starch was present. And, in the gel cast molding using the above-mentioned conventional starch, because the particle diameter of the starch is too large, the remaining defects also become large, and as a result,
There is a problem that only low-density, low-strength and low-reliability products can be obtained.

【0007】 本発明は、このような従来の事情に鑑み
てなされたものであり、その目的とするところは、ゲル
キャスト成形に使用するでん粉であって、成形体の乾
燥、焼成後に残存する気泡状の欠陥を従来より小さくで
きるような平均粒子径の小さいでん粉とそれを用いた成
形方法を提供することにある。
The present invention has been made in view of such a conventional situation, and an object of the present invention is to provide a starch used for gel cast molding, which has air bubbles remaining after drying and firing of a molded article. It is an object of the present invention to provide a starch having a small average particle diameter capable of reducing the shape defect, and a molding method using the same.

【0008】[0008]

【課題を解決するための手段】 本発明によれば、冷水
に分散し、加熱によりゲル化するでん粉であって、平均
粒子径が3μm以下であることを特徴とするでん粉、が
提供される。
According to the present invention, there is provided starch which is dispersed in cold water and gelled by heating, wherein the starch has an average particle diameter of 3 μm or less.

【0009】 また、本発明によれば、水に粉体を分散
したスラリーを成形型内に流し込んで硬化させることに
より、粉体を所定形状に成形する成形方法において、前
記スラリー中に、冷水に分散し、加熱によりゲル化する
でん粉であって、平均粒子径が3μm以下であるものを
添加したことを特徴とする成形方法、が提供される。
Further, according to the present invention, in a molding method for molding a powder into a predetermined shape by pouring a slurry in which the powder is dispersed in water into a molding die and curing the slurry, the slurry contains cold water. A molding method characterized by adding starch which is dispersed and gelled by heating and having an average particle diameter of 3 μm or less is provided.

【0010】[0010]

【発明の実施の形態】 前記のように、本発明のでん粉
は、冷水に分散し、加熱によりゲル化するでん粉であっ
て、その平均粒子径が3μm以下、好ましくは1μm以
下のものである。このような微細なでん粉を用いてゲル
キャスト成形を行うと、得られた成形体(硬化体)の乾
燥、焼成後に、でん粉粒の存在した部分に残存する気泡
状の欠陥を小さくすることができ、この結果、従来より
高密度、高強度で信頼性の高い製品を得ることができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, the starch of the present invention is a starch that is dispersed in cold water and gels by heating, and has an average particle size of 3 μm or less, preferably 1 μm or less. When gel cast molding is performed using such a fine starch, after drying and firing of the obtained molded body (cured body), it is possible to reduce bubbles-like defects remaining in the portion where the starch granules existed. As a result, a product having higher density, higher strength and higher reliability than before can be obtained.

【0011】 この平均粒子径3μm以下という微細な
でん粉は、一般には存在せず、特殊な方法で作製する必
要がある。代表的な作製方法としては、例えば、平均粒
子径が3μm以下となるように、細かいでん粉のみをサ
イクロンで分級する方法が挙げられる。
The fine starch having an average particle diameter of 3 μm or less does not generally exist and needs to be prepared by a special method. A typical production method is, for example, a method of classifying only fine starch with a cyclone so that the average particle diameter is 3 μm or less.

【0012】 ところで、でん粉を単に細かくするので
あれば、粉砕という方法も考えられるが、粉砕によって
微細化されたでん粉は、冷水に分散せず、吸水、増粘す
る性質を示すため、ゲルキャスト成形には適さない。こ
れは、でん粉を構成する分子は、その化学的な構造によ
り熱ゲル化するのではなく、分子の配列、物理的構造が
変化することにより熱ゲル化を起こすと考えられている
からである。ゆえに、粉砕した場合、この物理的な構造
が破壊されてしまい、冷水に対し吸水、増粘することに
なる。逆に言えば、でん粉を構成する分子を冷水に溶け
ない構造に配列させた粒子であって、平均粒子径が3μ
m以下の粒子である人工的に作られたでん粉も、本発明
のでん粉としてゲルキャスト成形に使用することができ
る。
[0012] By the way, if the starch is simply made finer, a method of pulverization may be considered. However, the starch refined by the pulverization does not disperse in cold water but exhibits a property of absorbing water and increasing viscosity. Not suitable for This is because it is considered that molecules constituting starch do not gel due to their chemical structure, but to gel due to a change in molecular arrangement and physical structure. Therefore, when pulverized, this physical structure is destroyed, and water is absorbed and thickened in cold water. Conversely, it is a particle in which the molecules constituting the starch are arranged in a structure that is insoluble in cold water, and has an average particle diameter of 3 μm.
Artificially produced starch, particles of less than or equal to m, can also be used for gel cast molding as the starch of the present invention.

【0013】 本発明の成形方法は、上述のような、冷
水に分散し、加熱によりゲル化するでん粉であって、そ
の平均粒子径が3μm以下、好ましくは1μm以下のも
のを用いる以外は、従来のゲルキャスト成形と同様であ
る。すなわち、水にセラミックスや金属等の粉体を分散
したスラリーに、前記でん粉を添加し、これを成形型内
に流し込む。そして、これを加熱して硬化(ゲル化)さ
せることにより、粉体を所定形状に成形した成形体(硬
化体)を得る。この成形方法で得られた成形体は、前記
のように乾燥、焼成後に残存する欠陥が小さいので、最
終的に得れる製品は、従来に比べ高密度、高強度で信頼
性の高いものとなる。
[0013] The molding method of the present invention is the same as the conventional method except that starch, which is dispersed in cold water and gelled by heating and has an average particle size of 3 µm or less, preferably 1 µm or less, is used. It is the same as the gel cast molding. That is, the starch is added to a slurry in which a powder of ceramics, metal, or the like is dispersed in water, and the resultant is poured into a mold. Then, by heating and curing (gelling), a molded body (cured body) in which the powder is molded into a predetermined shape is obtained. Since the molded body obtained by this molding method has few defects remaining after drying and firing as described above, the finally obtained product has high density, high strength and high reliability compared to the conventional one. .

【0014】 本発明の成形方法が適用されるセラミッ
クス、金属等の粉体としては、特にその種類が限定され
るものではない。例えばセラミックスの粉体としては、
アルミナ、窒化珪素、炭化珪素、ジルコニア、サイアロ
ン等の粉体が使用できる。また、必要に応じ、分散剤、
消泡剤、界面活性剤等の添加物を加えたものや、前記粉
体の焼結体特性を改良するために、種々の助剤を加えた
ものも使用できる。
The types of powders of ceramics, metals, etc. to which the molding method of the present invention is applied are not particularly limited. For example, as ceramic powder,
Powders such as alumina, silicon nitride, silicon carbide, zirconia, and sialon can be used. Also, if necessary, a dispersant,
Those to which additives such as an antifoaming agent and a surfactant are added, and those to which various auxiliaries are added in order to improve the characteristics of the sintered body of the powder can be used.

【0015】[0015]

【実施例】 以下、本発明を実施例に基づいて更に詳細
に説明するが、本発明はこれらの実施例に限定されるも
のではない。
EXAMPLES Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

【0016】(実施例及び比較例)下記表1に示すよう
な7種類のでん粉を使用し、アルミナ(平均粒子径0.
5μm)60vol%、水及び分散剤35vol%、でん粉5
vol%を攪拌機で混合してスラリーを得た。得られたス
ラリーを脱泡後、500ccのポリエチレン製容器に流
し込み蓋をした。これを70℃の湯バス中に入れて6時
間放置し、スラリーを硬化させた。こうして得られた硬
化体をポリエチレン製容器から取り出した後に、水分を
乾燥し、焼成炉にて1600℃で焼成した。得られた焼
結体について水中アルキメデス法で密度を求めた。ま
た、焼結体から曲げ試験片を切り出して曲げ強度を測定
した(測定方法は、JIS R1610に準ずる)。結
果は表1に示すとおりであり、平均粒子径が3μm以下
の微細なでん粉を使用した実施例1及び2は、平均粒子
径が大きい従来のでん粉を使用した比較例に比して、最
終的に得られた焼結体の密度及び強度が高かった。
(Examples and Comparative Examples) Seven types of starch as shown in Table 1 below were used, and alumina (average particle diameter of 0.1%) was used.
5 μm) 60 vol%, water and dispersant 35 vol%, starch 5
vol% was mixed with a stirrer to obtain a slurry. After the obtained slurry was defoamed, it was poured into a 500 cc polyethylene container and capped. This was placed in a hot water bath at 70 ° C. and left for 6 hours to harden the slurry. After the thus obtained cured product was taken out of the polyethylene container, the moisture was dried and fired at 1600 ° C. in a firing furnace. The density of the obtained sintered body was determined by an underwater Archimedes method. Further, a bending test piece was cut out from the sintered body and the bending strength was measured (the measuring method was in accordance with JIS R1610). The results are as shown in Table 1. In Examples 1 and 2 using fine starch having an average particle diameter of 3 μm or less, final results were smaller than Comparative Examples using a conventional starch having a large average particle diameter. The density and strength of the obtained sintered body were high.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【発明の効果】 以上説明したように、本発明のでん粉
を使用してゲルキャスト成形を行うと、得られた成形体
を乾燥、焼成した後に、でん粉粒の存在した部分に残存
する気泡状の欠陥を小さくすることができる。そして、
この結果、従来より高密度、高強度で信頼性の高い製品
を得ることができる。
As described above, when gel casting is performed using the starch of the present invention, after the obtained molded body is dried and calcined, the bubble-like particles remaining in the portion where the starch particles are present are obtained. Defects can be reduced. And
As a result, it is possible to obtain a product having higher density, higher strength and higher reliability than before.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷水に分散し、加熱によりゲル化するで
ん粉であって、平均粒子径が3μm以下であることを特
徴とするでん粉。
1. A starch which is dispersed in cold water and gels by heating, wherein the starch has an average particle size of 3 μm or less.
【請求項2】 水に粉体を分散したスラリーを成形型内
に流し込んで硬化させることにより、粉体を所定形状に
成形する成形方法において、前記スラリー中に、冷水に
分散し、加熱によりゲル化するでん粉であって、平均粒
子径が3μm以下であるものを添加したことを特徴とす
る成形方法。
2. A molding method for molding a powder into a predetermined shape by pouring a slurry in which the powder is dispersed in water into a molding die and curing the slurry, dispersing the powder into cold water, and heating the gel by heating. Molding method, wherein starch having an average particle diameter of 3 μm or less is added.
【請求項3】 前記でん粉の平均粒子径が1μm以下で
ある請求項2記載の成形方法。
3. The molding method according to claim 2, wherein the average particle size of the starch is 1 μm or less.
JP10109947A 1998-04-20 1998-04-20 Starch for gel cast molding and molding using the same Withdrawn JPH11302302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10109947A JPH11302302A (en) 1998-04-20 1998-04-20 Starch for gel cast molding and molding using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10109947A JPH11302302A (en) 1998-04-20 1998-04-20 Starch for gel cast molding and molding using the same

Publications (1)

Publication Number Publication Date
JPH11302302A true JPH11302302A (en) 1999-11-02

Family

ID=14523160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10109947A Withdrawn JPH11302302A (en) 1998-04-20 1998-04-20 Starch for gel cast molding and molding using the same

Country Status (1)

Country Link
JP (1) JPH11302302A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005071124A1 (en) * 2004-01-14 2005-08-04 React-Nti, Llc Powder metal mixture including micronized starch
WO2012108222A1 (en) 2011-02-10 2012-08-16 日本碍子株式会社 Production method for powder compact, and powder compact
WO2012114865A1 (en) 2011-02-21 2012-08-30 日本碍子株式会社 Method for manufacturing powder compact, and powder compact

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7261759B2 (en) 2001-05-21 2007-08-28 React-Nti, Llc Powder metal mixture including micronized starch
WO2005071124A1 (en) * 2004-01-14 2005-08-04 React-Nti, Llc Powder metal mixture including micronized starch
CN100436005C (en) * 2004-01-14 2008-11-26 里克特-恩提公司 Powder metal mixture including micronized starch
WO2012108222A1 (en) 2011-02-10 2012-08-16 日本碍子株式会社 Production method for powder compact, and powder compact
WO2012114865A1 (en) 2011-02-21 2012-08-30 日本碍子株式会社 Method for manufacturing powder compact, and powder compact
US9051220B2 (en) 2011-02-21 2015-06-09 Ngk Insulators, Ltd. Method for producing powder molded product and powder molded product

Similar Documents

Publication Publication Date Title
Yang et al. Preliminary 3D printing of large inclined-shaped alumina ceramic parts by direct ink writing
Gilissen et al. Gelcasting, a near net shape technique
SE515393C2 (en) Methods of forming bodies of a slurry of powder in water with an irreversible gel-forming protein
CN115894041B (en) Preparation method of powder extrusion 3D printing forming reaction sintering silicon carbide ceramic
Ndinisa et al. Fabrication of complex shaped alumina parts by gelcasting on 3D printed moulds
CN109534794A (en) A method of promoting increasing material manufacturing formed ceramic parts degreasing intensity
US20130109788A1 (en) Spherical alpha silicon carbide, the method for manufacturing the same, and a sintered body as well as an organic resin-based composite made from the silicon carbide
US5096865A (en) High density fused silica process and product
JPH11302302A (en) Starch for gel cast molding and molding using the same
JPH029777A (en) Fiber reinforced ceramic molded body and production thereof
JP4047956B2 (en) Method for forming silicon carbide powder
CN1436753A (en) In-situ starch solidifying formation process to prepare ceramic biscuit
JPH0663684A (en) Production of ceramic core for casting
Prabhakaran et al. Gelcasting of alumina using urea–formaldehyde III. Machinable green bodies by copolymerisation with acrylic acid
Sato et al. A new near net-shape forming process for alumina
JP2001278673A (en) Aqueous-solvent curable resin for wet molding
JPS62216959A (en) Manufacture of fused silica formed body
JP3036830B2 (en) Sialon casting method
JPH06227854A (en) Production of formed ceramic article
JP2510251B2 (en) Method for manufacturing silicon carbide sintered body
JPH04144952A (en) Formation of ceramics molding
JP3219112B2 (en) Method for producing calcium aluminate ceramic sintered body
JPH0312369A (en) Production of heat resistant inorganic fiber molding and heat resistant lightweight setter
JPH01167271A (en) Production of ceramic granule
CN114133252A (en) AlON transparent ceramic shape-preserving infrared hood and preparation method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050705