JPH11300840A - Production of deformed thermoplastic resin foam - Google Patents

Production of deformed thermoplastic resin foam

Info

Publication number
JPH11300840A
JPH11300840A JP10115324A JP11532498A JPH11300840A JP H11300840 A JPH11300840 A JP H11300840A JP 10115324 A JP10115324 A JP 10115324A JP 11532498 A JP11532498 A JP 11532498A JP H11300840 A JPH11300840 A JP H11300840A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
foam
resin
weight
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10115324A
Other languages
Japanese (ja)
Inventor
Kenji Iuchi
謙治 居内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP10115324A priority Critical patent/JPH11300840A/en
Publication of JPH11300840A publication Critical patent/JPH11300840A/en
Pending legal-status Critical Current

Links

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for simply producing a deformed thermoplastic resin foam having grooves of which the depth is 30% or more of the width thereof formed thereto in good productivity without requiring a large-sized expensive device. SOLUTION: A foamable thermoplastic resin sheet material obtained by supplying a compsn. containing high density polyethylene, polypropylene, crosslinkable silane modified polypropylene and azodicarbonamide to an extruder is foamed to obtain a thermoplastic resin foam 4 and a groove forming jig (made of aluminum, W=10 mm, h=15 mm, a depth of a cross-sectional parallel part is 10 mm and the cross section of the deepest part is a semicircular shape R of 10 ϕ) heated to 180 deg.C is pressed to the foam to obtain a deformed thermoplastic resin foam A having clear grooves of which the depth is 30% or more of the width thereof formed to the surface thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、凹溝を有する、暖
房用床材として好適に供し得る異形熱可塑性樹脂発泡体
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a deformed thermoplastic resin foam having a groove and suitable for use as a flooring material for heating.

【0002】[0002]

【従来の技術】近年、床暖房の需要の増加により、温水
パイプの敷設の為の凹溝が形成された熱可塑性樹脂発泡
体への需要が高まっている。一般に、凹溝が形成された
熱可塑性樹脂発泡体の製造方法としては、樹脂を密閉型
に導入して加熱賦型発泡する方法や一旦所定形状の発泡
体を得た後に機械的切削加工により凹溝を設ける方法等
が知られている。
2. Description of the Related Art In recent years, due to an increase in demand for floor heating, a demand for a thermoplastic resin foam having a concave groove for laying a hot water pipe has been increasing. In general, as a method for producing a thermoplastic resin foam having a groove formed therein, a method of introducing a resin into a closed mold and subjecting the resin to heat molding and foaming, or a method of temporarily obtaining a foam having a predetermined shape, and then performing mechanical cutting to form the concave. A method of providing a groove and the like are known.

【0003】しかし、例えば、発泡ポリスチレンに代表
される上記密閉型を使用する方法では、目的とする形状
が変わる毎に、形状に応じた大がかりな成形型を用意し
なければならず、成形型のコストが非常に高くつくとい
う問題があり、加えて、密閉型を使用するので当然のこ
とながら、凹溝を有する発泡体を連続的に生産すること
はできないという問題があった。また、上記切削加工法
では生産性に問題があった。
However, in the method using the above-mentioned closed mold typified by expanded polystyrene, for example, every time the desired shape is changed, a large-scale molding die corresponding to the shape must be prepared, and the molding die There is a problem that the cost is very high, and in addition, there is a problem that it is impossible to continuously produce a foam having a concave groove because a closed mold is used. In addition, the above cutting method has a problem in productivity.

【0004】そこで、上記の問題点を改善するために、
図5に示すように、凹溝を付与するための突条11a,
11bが外面に設けられた第1の無端ベルト11と、第
2の無端ベルト12とを所定の間隙Dを隔てて対向させ
た状態で搬送しつつ、間隙D内に熱可塑性樹脂と熱分解
型発泡剤とを含む発泡性樹脂粒状体イを供給し、加熱装
置15中の上記間隙D内において熱分解型発泡剤の分解
温度以上に加熱して発泡させる、凹溝を有する発泡体の
製造方法が提案されている(特開平8−281680号
公報参照)。
Therefore, in order to improve the above problem,
As shown in FIG. 5, ridges 11a for providing a concave groove,
11b, a first endless belt 11 provided on the outer surface and a second endless belt 12 are conveyed in a state where they face each other with a predetermined gap D therebetween. A method for producing a foam having a concave groove, comprising supplying a foamable resin granule A containing a foaming agent and heating the foamed resin granules in the gap D in the heating device 15 to a temperature equal to or higher than the decomposition temperature of the pyrolytic foaming agent. Has been proposed (see JP-A-8-281680).

【0005】しかし、上記の発泡体の製造方法では、や
はり大がかりな装置を必要とすると共に、第1の無端ベ
ルト11に突条を付与するため、粒状体イを供給する際
に粒状体の突条11a,11b近辺における分布が乱
れ、均一な発泡体を得ることは困難であるという問題が
あった。
However, the above-described method for producing a foam also requires a large-scale apparatus, and the first endless belt 11 is provided with a ridge. There is a problem that the distribution in the vicinity of the ridges 11a and 11b is disturbed, and it is difficult to obtain a uniform foam.

【0006】[0006]

【発明が解決しようとする課題】本発明者は、上記従来
技術に鑑み、凹溝を有する発泡体の簡便な製造方法を見
い出すべく、熱可塑性樹脂発泡体そのものを加熱した後
に、冷却治具を押圧して凹溝を形成させようとしたこ
ろ、以外にも深い凹溝は形成されず、また、発泡体自体
の反り等が生じて実際上の採用は困難であった。本発明
の目的は、大がかりな高価な装置を必要とせずに、幅の
30%以上の深さの凹溝が形成された異形熱可塑性樹脂
発泡体の生産性の良好な簡便な製造方法を提供すること
にある。
SUMMARY OF THE INVENTION In view of the above prior art, the present inventor has found that in order to find a simple method of producing a foam having a concave groove, the thermoplastic resin foam itself is heated, and then a cooling jig is mounted. A deep groove was not formed except when the groove was pressed to form the groove, and the foam itself warped and the like, so that practical use was difficult. SUMMARY OF THE INVENTION An object of the present invention is to provide a simple and convenient method for producing a deformed thermoplastic resin foam having a groove having a depth of 30% or more of its width without requiring a large-scale expensive apparatus. Is to do.

【0007】[0007]

【課題を解決するための手段】本発明1(請求項1記載
の発明)の異形熱可塑性樹脂発泡体の製造方法は、熱可
塑性樹脂の発泡体に、前記熱可塑性樹脂の融点を越える
温度に加熱された凹溝形成用治具を押圧することによ
り、前記発泡体表面に凹溝幅の30%以上の深さの凹溝
を形成することを特徴とする。本発明2(請求項2記載
の発明)の製造方法は、本発明1の製造方法において、
熱可塑性樹脂が、無架橋ポリエチレン系樹脂と無架橋ポ
リプロピレン系樹脂との重量比が2:8〜8:2であっ
てその合計量100重量部と架橋性シラン変性ポリプロ
ピレン系樹脂1〜50重量部とが含有されてなることを
特徴とする。
According to the first aspect of the present invention, there is provided a method for producing a deformed thermoplastic resin foam, wherein the thermoplastic resin foam is heated to a temperature exceeding the melting point of the thermoplastic resin. A groove having a depth of 30% or more of the groove width is formed on the surface of the foam by pressing the heated groove forming jig. The manufacturing method according to the second aspect of the present invention (the invention according to the second aspect) is the same as the manufacturing method according to the first aspect, except that
The thermoplastic resin has a weight ratio of the non-crosslinked polyethylene resin to the non-crosslinked polypropylene resin of 2: 8 to 8: 2, the total amount of which is 100 parts by weight, and the crosslinkable silane-modified polypropylene-based resin is 1 to 50 parts by weight. And is characterized by containing.

【0008】本発明3(請求項3記載の発明)の製造方
法は、本発明1又は2の製造方法において、熱可塑性樹
脂中にポリオレフィン系樹脂が80重量%以上含有され
ており、かつ全体のゲル分率が3%〜45%であること
を特徴とする。
According to a third aspect of the present invention, there is provided the method according to the first or second aspect, wherein the polyolefin resin is contained in the thermoplastic resin in an amount of 80% by weight or more, and The gel fraction is 3% to 45%.

【0009】熱可塑性樹脂 本発明1の異形熱可塑性樹脂発泡体の製造方法において
は、熱可塑性樹脂発泡体を構成する樹脂としては、発泡
可能な熱可塑性樹脂であれば特に限定されるものではな
い。このような熱可塑性樹脂としては、例えば、低密度
ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリ
エチレン(以下、「ポリエチレン」とは、低密度ポリエ
チレン、高密度ポリエチレン、直鎖状低密度ポリエチレ
ン、またはこれらの混合物をいう場合がある)、ランダ
ムポリプロピレン、ホモポリプロピレン、ブロック状ポ
リプロピレン(以下、「ポリプロピレン」とは、ランダ
ムポリプロピレン、ホモポリプロピレン、ブロック状ポ
リプロピレン、またはこれらの混合物をいう場合があ
る)等のオレフィン系樹脂、及びエチレン酢酸ビニル樹
脂等のオレフィン系共重合体;ABS樹脂、ポリスチレ
ン、及びこれらのモノマーをコモノマーとする共重合体
等が挙げられ、これらは、単独で用いられても、併用さ
れてもよい。
Thermoplastic Resin In the method for producing a deformed thermoplastic resin foam of the present invention 1, the resin constituting the thermoplastic resin foam is not particularly limited as long as it is a foamable thermoplastic resin. . As such a thermoplastic resin, for example, low-density polyethylene, high-density polyethylene, linear low-density polyethylene (hereinafter, “polyethylene” refers to low-density polyethylene, high-density polyethylene, linear low-density polyethylene, or These may be referred to as a mixture thereof), random polypropylene, homopolypropylene, block polypropylene (hereinafter, "polypropylene" may refer to random polypropylene, homopolypropylene, block polypropylene, or a mixture thereof) and the like. Olefin-based resins, and olefin-based copolymers such as ethylene-vinyl acetate resin; ABS resins, polystyrene, and copolymers using these monomers as comonomers; and the like, even when used alone or in combination. You may.

【0010】本発明1において用いられる熱可塑性樹脂
の発泡体は、後述の如く架橋されていることが好まし
く、架橋方法としては、例えば、架橋性シラン変性樹脂
(シラングラフト重合体)を熱可塑性樹脂に溶融混練
後、水処理を行って架橋する方法、熱可塑性樹脂に有機
過酸化物を該過酸化物の分解温度より低い温度で溶融混
練後、過酸化物の分解温度以上に加熱して架橋する方
法、α線、β線、γ線、電子線等の電離性放射線を照射
して架橋する方法等が挙げられ、各成分の混合後の架橋
が容易なことから、シラングラフト重合体を水架橋する
方法が最も好ましい。尚、有機過酸化物の添加量は通
常、樹脂100重量部に対して0.5〜5重量部であ
り、電離性放射線の照射量は、通常、1〜10Mrad
である。この場合、適宜の架橋助剤を併用してもよい。
The foam of the thermoplastic resin used in the present invention 1 is preferably crosslinked as described later. As a crosslinking method, for example, a crosslinkable silane-modified resin (silane-grafted polymer) may be used. After melting and kneading, a method of crosslinking by performing a water treatment, melting and kneading an organic peroxide to a thermoplastic resin at a temperature lower than the decomposition temperature of the peroxide, and then heating to a temperature equal to or higher than the decomposition temperature of the peroxide to crosslink. And a method of cross-linking by irradiating ionizing radiation such as α-ray, β-ray, γ-ray, electron beam, and the like.Since the cross-linking after mixing of each component is easy, the silane graft polymer is treated with water. The method of crosslinking is most preferred. The amount of the organic peroxide is usually 0.5 to 5 parts by weight based on 100 parts by weight of the resin, and the amount of the ionizing radiation is usually 1 to 10 Mrad.
It is. In this case, an appropriate crosslinking aid may be used in combination.

【0011】具体的には、部分的無架橋ポリエチレン部
分に架橋ポリプロピレンが分散したミクロ構造を有する
こととなり、加熱した凹溝形成用治具による発泡体の流
動賦形性が良好となる点で、本発明2の如く、上記熱可
塑性樹脂が、無架橋ポリエチレン系樹脂と無架橋ポリプ
ロピレン系樹脂との重量比が2:8〜8:2であってそ
の合計量100重量部と架橋性シラン変性ポリプロピレ
ン系樹脂1〜50重量部とが含有されてなることが好ま
しい。
[0011] More specifically, it has a microstructure in which crosslinked polypropylene is dispersed in a partially non-crosslinked polyethylene portion, and the flow shapeability of the foam by the heated groove forming jig is improved. As in the second aspect of the present invention, the thermoplastic resin has a weight ratio of a non-crosslinked polyethylene resin to a non-crosslinked polypropylene resin of 2: 8 to 8: 2, and a total amount of 100 parts by weight and a crosslinkable silane-modified polypropylene. It is preferable that 1 to 50 parts by weight of the system resin is contained.

【0012】更に、無架橋ポリエチレン系樹脂と無架橋
ポリプロピレン系樹脂とが、よりミクロで均一な海島構
造を形成し得る点で、両者のメルトインデックス(以下
MIと記す)の差は、好ましくは5〜13g/10分、
より好ましくは7〜11g/10分であり、両者の重量
比は4:6〜6:4が更に好ましく、架橋性シラン変性
ポリプロピレン系樹脂と無架橋ポリプロピレン系樹脂と
のMIの差は、1g/10分以下であるのが好ましい。
架橋性シラン変性ポリプロピレン系樹脂と無架橋ポリプ
ロピレン系樹脂とのMIの差が1g/10分より大きい
と、架橋性シラン変性ポリプロピレン系樹脂を、無架橋
ポリエチレン系樹脂と無架橋ポリプロピレン系樹脂との
混合物中の無架橋ポリプロピレン系樹脂に優先的に溶け
込ませることが出来ない場合があるからである。なお、
本明細書におけるMIは、JIS K7210に従っ
て、測定された値である。
Further, the difference between the melt index (hereinafter referred to as MI) of the non-crosslinked polyethylene resin and the non-crosslinked polypropylene resin is preferably 5 in that a more microscopic and uniform sea-island structure can be formed. ~ 13g / 10min,
More preferably, the weight ratio is 7 to 11 g / 10 min, and the weight ratio of both is still more preferably 4: 6 to 6: 4. The difference in MI between the crosslinkable silane-modified polypropylene-based resin and the non-crosslinked polypropylene-based resin is 1 g / g. It is preferably 10 minutes or less.
If the MI difference between the crosslinkable silane-modified polypropylene resin and the non-crosslinkable polypropylene resin is greater than 1 g / 10 minutes, the crosslinkable silane-modified polypropylene resin is mixed with a non-crosslinked polyethylene resin and a non-crosslinked polypropylene resin. This is because it may not be possible to preferentially dissolve in the non-crosslinked polypropylene resin therein. In addition,
MI in the present specification is a value measured according to JIS K7210.

【0013】また、本発明1又は2においては、本発明
3の如く、上記熱可塑性樹脂中にポリオレフィン系樹脂
が80重量%以上含有されており、かつ熱可塑性樹脂全
体のゲル分率が3%〜45%であることが好ましい。ポ
リオレフィン系樹脂が80重量%未満の場合は、熱可塑
性樹脂発泡体に形成した凹溝の形状が不良になったり、
発泡体全体に反りが生じることがあり、かつ、ゲル分率
が3%未満では、耐熱性、強度が低過ぎ、45%を越え
ると発泡体の加熱時の流動賦形性が不足し、何れの場合
も本発明による凹溝の形成には好ましくないからであ
る。なお、本明細書におけるゲル分率とは、架橋樹脂成
分を120℃のキシレン中に24時間浸漬した後の残渣
重量のキシレン浸漬前の架橋樹脂成分の重量に対する重
量百分率をいい、熱可塑性樹脂中の架橋割合を推定する
指標となるものである。上記架橋性シラン変性ポリプロ
ピレン系樹脂等のシラングラフト重合体は、例えば、重
合体を不飽和シラン化合物でグラフト変性することによ
り得ることができる。
Further, in the present invention 1 or 2, as in the present invention 3, the thermoplastic resin contains at least 80% by weight of a polyolefin resin, and the gel fraction of the entire thermoplastic resin is 3%. It is preferably about 45%. When the polyolefin resin is less than 80% by weight, the shape of the groove formed in the thermoplastic resin foam becomes defective,
If the entire foam is warped, and if the gel fraction is less than 3%, the heat resistance and strength are too low, and if it exceeds 45%, the fluid shaping property of the foam during heating is insufficient. This is also not preferable for the formation of the concave groove according to the present invention. The gel fraction in this specification refers to the weight percentage of the weight of the residue after immersing the crosslinked resin component in xylene at 120 ° C. for 24 hours with respect to the weight of the crosslinked resin component before immersion in xylene. Is an index for estimating the crosslinking ratio of The silane-grafted polymer such as the crosslinkable silane-modified polypropylene resin can be obtained by, for example, graft-modifying the polymer with an unsaturated silane compound.

【0014】上記不飽和シラン化合物とは、一般式R1
SiR2mY3-mで表される化合物をいう。但し、mは
0、1、又は2である。式中、上記R1はビニル基、ア
リル基、プロペニル基、シクロヘキセニル基等のアルケ
ニル基;グリシジル基;アミノ基;メタクリル基;γ−
クロロエチル基、γ−ブロモエチル基等のハロゲン化ア
ルキル基等の有機官能基である。
The unsaturated silane compound is represented by the general formula R1
Refers to a compound represented by SiR2mY3-m. Here, m is 0, 1, or 2. In the formula, R1 represents an alkenyl group such as a vinyl group, an allyl group, a propenyl group, a cyclohexenyl group; a glycidyl group; an amino group; a methacryl group;
Organic functional groups such as halogenated alkyl groups such as chloroethyl group and γ-bromoethyl group.

【0015】式中、R2は脂肪族飽和炭化水素基又は芳
香族炭化水素基を示し、例えば、メチル基、エチル基、
プロピル基、デシル基、フェニル基等が挙げられる。式
中、Yは加水分解可能な有機官能基を示し、例えば、メ
トキシ基、エトキシ基、ホルミルオキシ基、アセトキシ
基、プロピオノキシアリールアミノ基等が挙げられ、m
が0又は1のとき、Y同士は同一であっても、異なって
いてもよい。
In the formula, R2 represents an aliphatic saturated hydrocarbon group or an aromatic hydrocarbon group, for example, a methyl group, an ethyl group,
Examples thereof include a propyl group, a decyl group, and a phenyl group. In the formula, Y represents a hydrolyzable organic functional group, for example, a methoxy group, an ethoxy group, a formyloxy group, an acetoxy group, a propionoxyarylamino group, and the like.
Is 0 or 1, Y may be the same or different.

【0016】架橋反応速度向上のためには、上記不飽和
シラン化合物としては、一般式CH2=CHSi(O
A)3で表されるものが好ましい。式中、Aは好ましく
は、炭素数1〜8、さらに好ましくは炭素数1〜4の脂
肪族飽和炭化水素基である。CH2=CHSi(OA)3
で表される好ましい不飽和シラン化合物としては、例え
ば、ビニルトリメトキシシラン、ビニルトリエトキシシ
ラン、ビニルトリアセトキシシラン等が挙げられる。
In order to increase the rate of the crosslinking reaction, the unsaturated silane compound may be represented by the general formula CH 2 2CHSi (O
A) Those represented by 3 are preferred. In the formula, A is preferably an aliphatic saturated hydrocarbon group having 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms. CH2 = CHSi (OA) 3
Preferred unsaturated silane compounds represented by are, for example, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane and the like.

【0017】シラン架橋性ポリプロピレン系樹脂を製造
する場合は、特に限定されることなく、例えば、ポリプ
ロピレン系樹脂に、上記R1SiR2Y3-mで表わされる
不飽和シラン化合物及び有機過酸化物を反応させ、シラ
ン変性ポリプロピレン等を得る方法が挙げられる。
When the silane-crosslinkable polypropylene resin is produced, there is no particular limitation. For example, an unsaturated silane compound represented by R1SiR2Y3-m and an organic peroxide are reacted with the polypropylene resin to obtain a silane-crosslinkable polypropylene resin. A method of obtaining a modified polypropylene or the like can be given.

【0018】シリル基を有する上記シラングラフト重合
体は、例えば、Yがメトキシ基である場合には、これが
水と接触することにより、加水分解して水酸基となり、
異なる分子の水酸基同士が反応し、Si−O−Si結合
を形成して、シラングラフト重合体同士が架橋する。
The silane graft polymer having a silyl group, for example, when Y is a methoxy group, is hydrolyzed to a hydroxyl group by contact with water when Y is a methoxy group.
Hydroxyl groups of different molecules react with each other to form a Si—O—Si bond, and the silane graft polymers are crosslinked.

【0019】前述の水処理方法は、水中に浸漬する方法
のほか、水蒸気にさらす方法も含まれ、かかる場合、1
00℃より高い温度で処理する場合には、加圧下におい
て行えばよい。この際の温度が高過ぎると発泡性熱可塑
性樹脂が溶融付着する不具合が生じ、低過ぎると架橋反
応速度が低下するので、50〜130℃が好ましく、9
0〜120℃がより好ましい。
The above-mentioned water treatment methods include a method of immersion in water and a method of exposure to water vapor.
When the treatment is performed at a temperature higher than 00 ° C., the treatment may be performed under pressure. If the temperature at this time is too high, a problem occurs in which the foamable thermoplastic resin melts and adheres. If the temperature is too low, the crosslinking reaction speed decreases.
0-120 degreeC is more preferable.

【0020】シラングラフトポリプロピレン等のシラン
グラフト重合体の配合量が多すぎると、架橋がかかりす
ぎ、得られる発泡体の賦形性が低下し、また、少なすぎ
ると、セルが破泡し、均一な発泡セルが得られなくなる
ので、シラングラフト重合体の配合量は、通常、全熱可
塑性樹脂中5〜55重量%、好ましくは20〜35重量
%である。また、シラングラフトポリプロピレン等のシ
ラングラフト重合体自体の架橋度は、到達ゲル分率で、
60〜85%が好ましく、全熱可塑性樹脂中に占めるゲ
ル分率では、3〜45%が好ましい。
If the amount of the silane-grafted polymer such as silane-grafted polypropylene is too large, crosslinking is excessively performed, and the shapeability of the obtained foam is deteriorated. Since a suitable foam cell cannot be obtained, the blending amount of the silane graft polymer is usually 5 to 55% by weight, preferably 20 to 35% by weight based on the total thermoplastic resin. Also, the degree of crosslinking of the silane graft polymer itself such as silane graft polypropylene is the ultimate gel fraction,
It is preferably from 60 to 85%, and the gel fraction in the entire thermoplastic resin is preferably from 3 to 45%.

【0021】また、シラングラフト重合体を用いてシラ
ン架橋する場合に、必要に応じて用いられるシラン架橋
触媒としては、シラングラフト重合体同士の架橋反応を
促進するものであれば、特に限定されず、例えば、ジブ
チル錫ジアセテート、ジブチル錫ジラウレート、ジオク
チル錫ジラウレート、オクタン酸錫、オレイン酸錫、オ
クタン錫鉛、2−エチルヘキサン酸亜鉛、オクタン酸コ
バルト、ナフテン酸鉛、カブリル酸亜鉛、ステアリン酸
亜鉛等が挙げられ、通常、樹脂100重量部に対して
0.01〜1重量部用いられる。
When silane crosslinking is performed using a silane graft polymer, the silane crosslinking catalyst used as necessary is not particularly limited as long as it promotes a crosslinking reaction between the silane graft polymers. For example, dibutyltin diacetate, dibutyltin dilaurate, dioctyltin dilaurate, tin octoate, tin oleate, lead octane, zinc 2-ethylhexanoate, cobalt octoate, lead naphthenate, zinc cabrate, zinc stearate And the like, and usually 0.01 to 1 part by weight based on 100 parts by weight of the resin.

【0022】シラングラフト重合体を混合する方法は、
均一に混合し得る方法であれば、特に限定されない。例
えば、熱可塑性樹脂及びシラングラフト重合体を1軸又
は2軸押出機に供給し、溶融混練する方法、ロールを用
いて溶融混練する方法、ニーダーを用いて溶融混練する
方法等が挙げられる。
The method of mixing the silane graft polymer is as follows:
There is no particular limitation on the method as long as it can be uniformly mixed. For example, a method in which a thermoplastic resin and a silane graft polymer are supplied to a single-screw or twin-screw extruder and melt-kneaded, a method of melt-kneading using a roll, a method of melt-kneading using a kneader, and the like are exemplified.

【0023】熱可塑性樹脂の発泡体 本発明の異形熱可塑性樹脂発泡体の製造方法において
は、熱可塑性樹脂の発泡体及びその製造方法について
は、何ら限定されるものではないが、以下に説明する発
泡性熱可塑性樹脂シート状体を一旦作成してから加熱発
泡させると、圧縮強度が高く、暖房用床材として好適に
供し得る異形熱可塑性樹脂発泡体が得られる。
[0023] In the production method of the modified thermoplastic resin foam of the foam present invention the thermoplastic resin, for foam and its manufacturing method of the thermoplastic resin, but are not limited in any way, are described below When a foamable thermoplastic resin sheet is once formed and then heated and foamed, a deformed thermoplastic resin foam having high compressive strength and suitable for use as a flooring material for heating is obtained.

【0024】先ず発泡性熱可塑性樹脂シート状体の製造
方法の一例を説明する。上述の熱可塑性樹脂に、例え
ば、アゾジカルボンアミド等に代表される熱分解型発泡
剤を添加した発泡性熱可塑性樹脂組成物を、図1に示す
押出機5に供給し、熱分解型発泡剤の分解温度より低い
温度で溶融混練した後、軟化状態のシート状発泡性熱可
塑性樹脂を、Tダイ6より吐出し、更に、該シート状発
泡性熱可塑性樹脂の厚みより狭いクリアランスを有し、
外周面に多数の凹部7aが均一に配設された賦形ロール
7とこれと異方向に回転する外周面が平滑な賦形ロール
8とからなる一対のロールに導入し、前記凹部7aに軟
化状態のシート状発泡性熱可塑性樹脂の一部を圧入した
後、冷却、離型するのである。
First, an example of a method for producing a foamable thermoplastic resin sheet will be described. A foamable thermoplastic resin composition obtained by adding a pyrolytic foaming agent represented by, for example, azodicarbonamide to the above thermoplastic resin is supplied to an extruder 5 shown in FIG. After melt-kneading at a temperature lower than the decomposition temperature of, the sheet-like foamable thermoplastic resin in a softened state is discharged from the T-die 6, and further has a clearance smaller than the thickness of the sheet-like foamable thermoplastic resin,
It is introduced into a pair of rolls including a shaping roll 7 in which a large number of recesses 7a are uniformly arranged on the outer circumferential surface and a shaping roll 8 whose outer circumferential surface rotates in a different direction from the shaping roll 7 and is softened into the recesses 7a. After press-fitting a part of the sheet-like foamable thermoplastic resin in the state, cooling and release are performed.

【0025】懸かる発泡性熱可塑性樹脂シート状体1
は、発泡性熱可塑性樹脂粒状体2が平面的に略均一に配
置しており、上記発泡性熱可塑性樹脂粒状体が発泡性熱
可塑性樹脂薄膜3を介して一体的に連結されている。上
記発泡性熱可塑性樹脂粒状体の形状は特に限定され無い
が、円柱状に形成してこれを千鳥状に配置させると、発
泡が均一に行われと共に、個々の発泡性熱可塑性樹脂粒
状体が発泡して得られる発泡体部が六角柱の形状とな
り、擬似的なハニカム構造を構成することになるので、
圧縮強度が向上した発泡体が得られる点で好ましい。
Suspended foamable thermoplastic resin sheet 1
The foamable thermoplastic resin granules 2 are arranged substantially uniformly in a plane, and the foamable thermoplastic resin granules are integrally connected via a foamable thermoplastic resin thin film 3. The shape of the foamable thermoplastic resin granules is not particularly limited, but when formed in a columnar shape and arranged in a staggered manner, foaming is performed uniformly, and individual foamable thermoplastic resin granules are formed. Since the foam part obtained by foaming becomes a hexagonal column shape and constitutes a pseudo honeycomb structure,
This is preferable in that a foam having improved compressive strength can be obtained.

【0026】発泡性熱可塑性樹脂粒状体2が円柱の場
合、その径は、1mm〜30mmが好ましく、より好ま
しくは2mm〜20mmの範囲であり、その高さは、1
mm〜30mmが好ましく、より好ましくは2mm〜2
0mmの範囲である。発泡性熱可塑性樹脂粒状体間の中
心間距離は、2mm〜50mmが好ましく、3mm〜3
0mmが特に好ましい。
When the expandable thermoplastic resin particles 2 are cylindrical, the diameter is preferably 1 mm to 30 mm, more preferably 2 mm to 20 mm, and the height is 1 mm.
mm to 30 mm is preferable, and more preferably 2 mm to 2 mm.
The range is 0 mm. The center-to-center distance between the foamable thermoplastic resin particles is preferably 2 mm to 50 mm, and 3 mm to 3 mm.
0 mm is particularly preferred.

【0027】上記発泡性熱可塑性樹脂シート状体を、発
泡剤の分解温度以上に加熱して発泡させ、適宜冷却する
ことにより、本発明に好適に用いられる熱可塑性樹脂発
泡体が得られる。
The foamable thermoplastic resin sheet is heated to a temperature equal to or higher than the decomposition temperature of the foaming agent, foamed, and cooled appropriately to obtain a thermoplastic resin foam suitably used in the present invention.

【0028】凹溝の形成 本発明1の異形熱可塑性樹脂発泡体の製造方法は、上述
の熱可塑性樹脂の発泡体に、発泡体を構成する熱可塑性
樹脂の融点を越える温度に加熱された凹溝形成用治具を
押圧するのであるが、本明細書における融点とは、示差
熱量分析計(DSCと略称される)にて測定した吸熱ピ
ークの値を意味し、複数の樹脂を混合して用いた場合に
は、少なくとも70重量%が融解する温度を言うものと
する。例えば図2に示す凹溝形成用治具10は、形成し
ようとする凹溝に対応した突条9aが基板9より立設し
た構成とされている。凹溝形成用治具の材質は、アルミ
ニウム、銅、鉄、亜鉛、ステンレス等の金属または合金
が好ましい。
Forming a Concave Groove The method for producing a deformed thermoplastic resin foam according to the first aspect of the present invention is characterized in that the above-mentioned thermoplastic resin foam is provided with a concave heated to a temperature exceeding the melting point of the thermoplastic resin constituting the foam. Although the groove forming jig is pressed, the melting point in the present specification means a value of an endothermic peak measured by a differential calorimeter (abbreviated as DSC), and is obtained by mixing a plurality of resins. When used, it refers to the temperature at which at least 70% by weight melts. For example, the groove forming jig 10 shown in FIG. 2 has a configuration in which a ridge 9 a corresponding to the groove to be formed is erected from the substrate 9. The material of the groove forming jig is preferably a metal or alloy such as aluminum, copper, iron, zinc, and stainless steel.

【0029】凹溝形成用治具は、熱可塑性樹脂の融点を
越える温度、好ましくは融点より10℃以上高い温度に
まで加熱してから、熱可塑性樹脂の発泡体、例えば図3
に示す4に押し付けて、例えば暖房用配管のための凹溝
9bを形成し、異形熱可塑性樹脂発泡体Aを得る。但し
余り高温に加熱すると樹脂の劣化・変質を引き起こすの
で、通常250℃以下、加工性の熱効率等の面から好ま
しくは220℃以下とする。尚、凹溝9bの深さは、最
深部の深さhを基準として、凹溝幅Wの30%以上の深
い凹溝を形成する。本発明2もしくは3の異形熱可塑性
樹脂発泡体の製造方法においても、熱可塑性樹脂の発泡
体に用いられる樹脂の種類もしくはゲル分率等が異なる
点を除けば、凹溝の形成については本発明1と同様であ
る。
The jig for forming the groove is heated to a temperature exceeding the melting point of the thermoplastic resin, preferably to a temperature higher than the melting point by 10 ° C. or more.
To form a concave groove 9b for heating piping, for example, to obtain a deformed thermoplastic resin foam A. However, heating to an excessively high temperature causes deterioration and deterioration of the resin. Therefore, the temperature is usually set to 250 ° C. or lower, and preferably 220 ° C. or lower in terms of workability and thermal efficiency. The depth of the concave groove 9b is such that a deep groove having a depth of 30% or more of the concave groove width W is formed based on the depth h of the deepest portion. In the method for producing a deformed thermoplastic resin foam according to the second or third aspect of the present invention, the formation of the concave groove is the same as that of the present invention except that the type of resin used in the thermoplastic resin foam or the gel fraction is different. Same as 1.

【0030】[0030]

【実施例】(実施例1)高密度ポリエチレン(三菱化学
社製、商品名「HY340」、融点133℃,MI=
1.5g/10分,比重0.952)25重量部、高密
度ポリエチレン(三菱化学社製、商品名「HJ381
P」、MI=9.0g/10分,融点132℃,比重
0.951)25重量部、ポリプロピレン(三菱化学社
製、商品名「MA3」、融点151℃,MI=11g/
10分、比重0.900)29重量部、架橋性シラン変
性ポリプロピレン(三菱化学社製、商品名「XPM80
0HM」、MI=11g/10分、架橋後のゲル分率8
0重量%)21重量部、アゾジカルボンアミド(大塚化
学社製、品番「SO−20」、分解温度201℃)9重
量部、及びシラン架橋触媒としてのジブチル錫ジラウレ
ート(三菱化学社製、商品名PZ−10S、マスターバ
ッチ1重量部)を含有する組成物を、図1に示した2軸
押出機5に供給した。2軸押出機5としては、径44m
mのものを用いた。2軸押出機5において、上記組成物
を180℃で溶融混練し、面長300mm、リップ1.
5mmのTダイ6により軟化状態のシート状発泡性熱可
塑性樹脂を押し出した。
(Example 1) High-density polyethylene (manufactured by Mitsubishi Chemical Corporation, trade name "HY340", melting point 133 ° C, MI =
25 parts by weight of 1.5 g / 10 min, specific gravity 0.952), high-density polyethylene (manufactured by Mitsubishi Chemical Corporation, trade name "HJ381")
P ", MI = 9.0 g / 10 min, melting point 132 ° C., specific gravity 0.951) 25 parts by weight, polypropylene (manufactured by Mitsubishi Chemical Corporation, trade name“ MA3 ”, melting point 151 ° C., MI = 11 g /
29 minutes by weight, 10 minutes, specific gravity 0.900) crosslinkable silane-modified polypropylene (manufactured by Mitsubishi Chemical Corporation, trade name "XPM80")
0HM ", MI = 11 g / 10 min, gel fraction after crosslinking 8
0 parts by weight) 21 parts by weight, azodicarbonamide (manufactured by Otsuka Chemical Co., Ltd., product number "SO-20", decomposition temperature 201 ° C) 9 parts by weight, and dibutyltin dilaurate as a silane crosslinking catalyst (manufactured by Mitsubishi Chemical Corporation, trade name) A composition containing PZ-10S, 1 part by weight of a master batch) was supplied to the twin-screw extruder 5 shown in FIG. The twin screw extruder 5 has a diameter of 44 m.
m. In a twin-screw extruder 5, the composition is melt-kneaded at 180 ° C., and the lip length is 300 mm.
A sheet-shaped foamable thermoplastic resin in a softened state was extruded by a 5 mm T-die 6.

【0031】さらに、高さ5mm、直径4mmの凹部7
aが千鳥状に配置された、径250mm及び面長300
mmのロール7、8間で該発泡性熱可塑性樹脂シート状
体を賦形しつつ冷却し、さらに発泡性熱可塑性シート状
体を98℃の水中に2時間浸漬した後乾燥することによ
り、発泡性熱可塑性樹脂シート状体1を得た。このシー
ト状体1の、上述の測定法によるゲル分率は15%であ
った。
Further, a recess 7 having a height of 5 mm and a diameter of 4 mm
a is arranged in a staggered manner, with a diameter of 250 mm and a surface length of 300
The foamable thermoplastic resin sheet is cooled while shaping it between the rolls 7 and 8 mm, and the foamable thermoplastic sheet is immersed in water at 98 ° C. for 2 hours and then dried to form a foam. The thermoplastic resin sheet 1 was obtained. The gel fraction of the sheet 1 was 15% according to the above-described measurement method.

【0032】上記のようにして得た発泡性熱可塑性樹脂
シート状体では、上記賦形ロール7の凹部7aに対応す
る部分において発泡性熱可塑性樹脂粒状体2(後述の薄
膜3を含まない高さ5mm)が形成されており、該発泡
性熱可塑性樹脂粒状体2がその端部にて厚み0.4mm
の発泡性熱可塑性樹脂薄膜3により連結されて、全体と
して発泡性熱可塑性樹脂シート状体1が構成されてい
た。
In the foamable thermoplastic resin sheet obtained as described above, the foamable thermoplastic resin granules 2 (a high-temperature film not including a thin film 3 described later) are formed at a portion corresponding to the concave portion 7a of the shaping roll 7. 5 mm), and the expandable thermoplastic resin granular material 2 has a thickness of 0.4 mm at its end.
Are connected by the expandable thermoplastic resin thin film 3 to form the expandable thermoplastic resin sheet 1 as a whole.

【0033】得られた発泡性熱可塑性樹脂シート状体1
を、ポリテトラフルオロエチレンシート上に配置し、図
4記載の製造装置の離型性に優れた材料からなる無端ベ
ルト11、12に供給し、シート状体1中の発泡剤の分
解温度以上に加熱し発泡させて発泡体4を得た。
The obtained foamable thermoplastic resin sheet 1
Is placed on a polytetrafluoroethylene sheet and supplied to endless belts 11 and 12 made of a material having excellent releasability in the production apparatus shown in FIG. The foam was heated and foamed to obtain a foam 4.

【0034】尚、図4において、無端ベルト11と無端
ベルト12とが図示の矢印X方向に搬送されていて、無
端ベルト11は、ローラー13a〜13d間に架け渡さ
れて、ローラー13a〜13dの何れかが、図示しない
モーターなどの回転駆動源に連結されており、無端ベル
ト11は、該回転駆動源を回転させることにより、図示
の矢印X方向に搬送されている。他方、無端ベルト12
は、ローラー14a〜14d間に架け渡されて、ローラ
ー14a〜14dの少なくとも1つがモーターなどの回
転駆動源に連結されている。上記回転駆動源を駆動する
ことにより、無端ベルト12が図示の矢印X方向に搬送
されている。
In FIG. 4, an endless belt 11 and an endless belt 12 are conveyed in the direction indicated by arrow X, and the endless belt 11 is stretched between rollers 13a to 13d to form rollers 13a to 13d. Either of them is connected to a rotary drive source such as a motor (not shown), and the endless belt 11 is conveyed in the arrow X direction shown by rotating the rotary drive source. On the other hand, the endless belt 12
Is wound between the rollers 14a to 14d, and at least one of the rollers 14a to 14d is connected to a rotary drive source such as a motor. By driving the rotary drive source, the endless belt 12 is conveyed in the direction indicated by the arrow X in the figure.

【0035】無端ベルト11と12とは、ローラー14
bが設けられている位置からローラー13c,14cが
設けられている位置までの間で、所定の間隙Dを隔てて
対向されていて、このローラー14bと、ローラー13
c,14cとが設けられている間の領域で、加熱・冷却
され発泡体が成形される。
The endless belts 11 and 12 are
b from the position where the roller 13b is provided to the position where the rollers 13c and 14c are provided with a predetermined gap D therebetween.
Heating and cooling are performed in a region between the positions c and 14c to form a foam.

【0036】また、発泡性熱可塑性樹脂シート状体1の
送り速度は0.5mm/分、加熱装置15は長さ5m
m、温度210℃であり、冷却装置16は長さ5mm、
温度30℃であった。得られた発泡体は厚さ17mm,
発泡倍率20倍であり、これに180℃に加熱した図2
に示した凹溝形成用治具(アルミニウム製、W=10m
m,h=15mm,断面平行部の深さ10mm,最深部
断面は半円状でRは10φ)10を押し付けて凹溝を形
成した。
The feed rate of the foamable thermoplastic resin sheet 1 is 0.5 mm / min, and the heating device 15 is 5 m long.
m, temperature 210 ° C., cooling device 16 is 5 mm long,
The temperature was 30 ° C. The resulting foam is 17mm thick,
FIG. 2 shows an expansion ratio of 20 times and heating to 180 ° C.
Jig (aluminum, W = 10m)
m, h = 15 mm, the depth of the cross-section parallel portion was 10 mm, the cross-section of the deepest portion was semicircular, and R was 10φ) 10 to press the groove.

【0037】この様にして得た異形熱可塑性樹脂発泡体
は、治具寸法に対応した凹溝が明確に形成されており、
発泡体自身の反り、湾曲等は認められなかった。また、
凹溝を形成した発泡体を、100℃オーブンで24時間
放置する耐熱試験にかけたところ、凹溝の変形等は認め
られず、耐熱性が良好であることが確認された。
The deformed thermoplastic resin foam thus obtained has a clearly defined groove corresponding to the jig dimensions.
No warpage or curvature of the foam itself was observed. Also,
When the foam having the grooves was subjected to a heat resistance test in which the foam was left in an oven at 100 ° C. for 24 hours, no deformation of the grooves was observed, and it was confirmed that the heat resistance was good.

【0038】(実施例2)各樹脂の配合を、高密度ポリ
エチレン(三菱化学社製、商品名「HY340」)20
重量部、高密度ポリエチレン(三菱化学社製、商品名
「HJ381P」)15重量部、ポリプロピレン(三菱
化学社製、商品名「MA3」)40重量部及び架橋性シ
ラン変性ポリプロピレン(三菱化学社製、商品名「XP
M800HM」)25重量部とした以外は実施例1と同
様の組成物を用い、実施例1と同様にして、軟化状態の
シート状発泡性熱可塑性樹脂を押し出し、発泡性熱可塑
性樹脂シート状体1を得た。このシート状体1のゲル分
率は20%であった。このシート状体1を、実施例1と
同様にして図4記載の発泡体の製造装置に供給し加熱発
泡させて、厚さ13mm、発泡倍率12倍の発泡体4を
得た。
Example 2 Each resin was mixed with high-density polyethylene (trade name “HY340”, manufactured by Mitsubishi Chemical Corporation) 20
Parts by weight, 15 parts by weight of high density polyethylene (manufactured by Mitsubishi Chemical Corporation, trade name "HJ381P"), 40 parts by weight of polypropylene (manufactured by Mitsubishi Chemical Corporation, trade name "MA3"), and crosslinkable silane-modified polypropylene (manufactured by Mitsubishi Chemical Corporation, Product name "XP
M800HM ”) A softened sheet-like foamable thermoplastic resin was extruded in the same manner as in Example 1 except that the composition was changed to 25 parts by weight, and a foamable thermoplastic resin sheet was obtained. 1 was obtained. The gel fraction of the sheet 1 was 20%. The sheet 1 was supplied to the foam manufacturing apparatus shown in FIG. 4 and heated and foamed in the same manner as in Example 1 to obtain a foam 4 having a thickness of 13 mm and an expansion ratio of 12 times.

【0039】これに、180℃に加熱した図2に示した
凹溝形成用治具(アルミニウム製、W=10mm,但
し、断面平行部の深さを5mmに変更し,最深部断面は
半円状でR10φはそのままとした結果、h=10m
m)10を押し付けて、凹溝を形成した。
A jig for forming a concave groove (aluminum, W = 10 mm, shown in FIG. 2) heated to 180 ° C. The depth of the parallel portion was changed to 5 mm, and the deepest portion was a semicircle. As a result, h = 10 m
m) 10 was pressed to form a concave groove.

【0040】この様にして得た異形熱可塑性樹脂発泡体
は、治具寸法に対応した凹溝が明確に形成されており、
発泡体自身の反り、湾曲等は認められなかった。また、
凹溝を形成した発泡体を、100℃オーブンで24時間
放置する耐熱試験にかけたところ、凹溝の変形等は認め
られず、耐熱性が良好であることが確認された。 (比較例1)低密度ポリエチレン(三菱化学社製、商品
名「LE520H」、融点115℃、比重0.923、
MI=4.0g/10分)100重量部、アゾジカルボ
ンアミド(大塚化学社製、品番「SO−20」、分解温
度201℃)10重量部、2,6ジ−t−ブチル−p−
クレゾール(酸化防止剤)0.3重量部、ジラウリルチ
オプロピオネート(酸化防止剤)0.3重量部及びメチ
ルベンゾトリアゾール(金属害防止剤)0.5重量部
を、温度を190℃とした以外は実施例1と同様にして
溶融混練し、厚さ2.5mmの連続シートを得た。
The deformed thermoplastic resin foam thus obtained has clear grooves corresponding to the jig dimensions.
No warpage or curvature of the foam itself was observed. Also,
When the foam having the grooves was subjected to a heat resistance test in which the foam was left in an oven at 100 ° C. for 24 hours, no deformation of the grooves was observed, and it was confirmed that the heat resistance was good. (Comparative Example 1) Low-density polyethylene (manufactured by Mitsubishi Chemical Corporation, trade name "LE520H", melting point 115 ° C, specific gravity 0.923,
MI = 4.0 g / 10 min) 100 parts by weight, azodicarbonamide (manufactured by Otsuka Chemical Co., Ltd., product number “SO-20”, decomposition temperature 201 ° C.) 10 parts by weight, 2,6-di-t-butyl-p-
Cresol (antioxidant) 0.3 part by weight, dilauryl thiopropionate (antioxidant) 0.3 part by weight and methylbenzotriazole (metal harm inhibitor) 0.5 part by weight, the temperature was 190 ° C. The kneading was carried out in the same manner as in Example 1 except that the kneading was performed to obtain a continuous sheet having a thickness of 2.5 mm.

【0041】このシートに、1000kV、3Mrad
の電離性放射を照射し、架橋シートを得た。この架橋シ
ートを縦型熱風発泡炉で連続的に発泡させた。発泡は熱
風及び赤外線ヒーターにより250℃に保たれた発泡炉
内で行った。得られた発泡体(発泡倍率25倍、ゲル分
率38%)に、100℃に加熱した実施例1で用いた凹
溝形成用治具10を押し付けて凹溝を形成したところ、
凹溝の形状が不良(断面半円状部の深さが3mmしかな
かった)であり、また発泡体に反り、湾曲等が生じた。
[0041] This sheet is provided with 1000 kV and 3 Mrad.
Was irradiated to obtain a crosslinked sheet. This crosslinked sheet was continuously foamed in a vertical hot-air foaming furnace. Foaming was performed in a foaming furnace maintained at 250 ° C. by hot air and an infrared heater. When the groove forming jig 10 used in Example 1 heated to 100 ° C. was pressed against the obtained foam (expansion ratio 25 times, gel fraction 38%) to form a groove,
The shape of the concave groove was poor (the cross-sectional semicircular portion had a depth of only 3 mm), and the foam was warped or curved.

【0042】(比較例2)発泡体として、ポリスチレン
製発泡体(ダウ化工社製、商品名「スタイロフォームR
B−GK、樹脂の融点約240℃、発泡倍率30倍、厚
み12mm)を使用し、100℃に加熱した実施例1で
用いた凹溝形成用治具10を押し付けて凹溝を形成した
ところ、凹溝の形状が不良(断面半円状部の幅が13m
mと広がり、また深さが3mmしかなかった)であり、
また発泡体に反り、湾曲等が生じた。
(Comparative Example 2) As a foam, a polystyrene foam (manufactured by Dow Chemical Co., Ltd., trade name: Styrofoam R)
B-GK, using a resin melting point of about 240 ° C., an expansion ratio of 30 times, and a thickness of 12 mm) and pressing the groove forming jig 10 used in Example 1 heated to 100 ° C. to form a groove. , Groove shape is poor (semicircular section width is 13m
m and the depth was only 3 mm)
In addition, the foam was warped and curved.

【0043】[0043]

【発明の効果】本発明1の異形熱可塑性樹脂発泡体の製
造方法は、熱可塑性樹脂の発泡体に、前記熱可塑性樹脂
の融点を越える温度に加熱された凹溝形成用治具を押圧
することにより、前記発泡体表面に凹溝幅の30%以上
の深さの凹溝を形成するものであるから、本発明1によ
れば、大がかりな高価な装置を用いることなく、簡便
に、生産性良く、深い凹溝が形成された異形熱可塑性樹
脂発泡体を提供し得る。本発明2の異形熱可塑性樹脂発
泡体の製造方法は、熱可塑性樹脂が、無架橋ポリエチレ
ン系樹脂と無架橋ポリプロピレン系樹脂との重量比が
2:8〜8:2であってその合計量100重量部と架橋
性シラン変性ポリプロピレン系樹脂1〜50重量部とが
含有されてなる本発明1の製造方法であるから、熱可塑
性樹脂が、部分的無架橋ポリエチレン部分に架橋ポリプ
ロピレンが分散したミクロ構造を有することとなり、加
熱した凹溝形成用治具による発泡体の流動賦形性が良好
となり、より良好な形状の凹溝が形成された異形熱可塑
性樹脂発泡体が得られる。
According to the method for producing a deformed thermoplastic resin foam of the present invention 1, a groove forming jig heated to a temperature exceeding the melting point of the thermoplastic resin is pressed against the thermoplastic resin foam. Thus, a groove having a depth of 30% or more of the groove width is formed on the surface of the foam. Therefore, according to the first aspect of the present invention, the production can be easily performed without using a large-scale expensive apparatus. It is possible to provide a deformed thermoplastic resin foam having a well-formed, deep concave groove. In the method for producing a deformed thermoplastic resin foam according to the second aspect of the present invention, the thermoplastic resin has a weight ratio of a non-crosslinked polyethylene resin to a non-crosslinked polypropylene resin of 2: 8 to 8: 2, and the total amount is 100. 1 part by weight and 1 to 50 parts by weight of a crosslinkable silane-modified polypropylene-based resin, so that the thermoplastic resin has a microstructure in which a crosslinked polypropylene is dispersed in a partially non-crosslinked polyethylene portion. Thus, the flow shapeability of the foam by the heated groove forming jig is improved, and a deformed thermoplastic resin foam in which a groove having a better shape is formed can be obtained.

【0044】本発明3の異形熱可塑性樹脂発泡体の製造
方法は、熱可塑性樹脂中にポリオレフィン系樹脂が80
重量%以上含有されており、かつ全体のゲル分率が3%
〜45%であるから、熱可塑性樹脂の流動性が適宜であ
り、やはり凹溝の形状が不良になったり、発泡体全体に
反り、湾曲が生じることがなく、良好な異形熱可塑性樹
脂発泡体が得られる。
The method for producing a deformed thermoplastic resin foam according to the third aspect of the present invention is characterized in that a polyolefin resin is contained in the thermoplastic resin.
At least 3% by weight
Since it is about 45%, the fluidity of the thermoplastic resin is appropriate, the shape of the concave groove does not become defective, and the entire foam does not warp or curve. Is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で用いた発泡性熱可塑性樹脂シート状
体を製造する工程を説明するための部分的模式的断面図
である。
FIG. 1 is a partial schematic cross-sectional view for explaining a step of manufacturing a foamable thermoplastic resin sheet used in Example 1.

【図2】本発明に使用される凹溝形成用治具の一例を示
す要部断面図である。
FIG. 2 is a sectional view of a main part showing an example of a groove forming jig used in the present invention.

【図3】本発明により凹溝が形成された熱可塑性樹脂発
泡体を示すもので、(a)は平面図、(b)は(a)のIII、III
線矢視断面図である。
FIGS. 3A and 3B show a thermoplastic resin foam having a groove formed according to the present invention, wherein FIG. 3A is a plan view, and FIG.
FIG.

【図4】実施例1で用いた、凹溝形成前の、熱可塑性樹
脂発泡体の製造装置を示す概略斜視図である。
FIG. 4 is a schematic perspective view showing a thermoplastic resin foam manufacturing apparatus used in Example 1 before forming a concave groove.

【図5】従来使用されていた、凹溝を有する熱可塑性樹
脂発泡体の製造装置の一例を示す概略斜視図である。
FIG. 5 is a schematic perspective view showing an example of a conventionally used apparatus for manufacturing a thermoplastic resin foam having concave grooves.

【符号の説明】[Explanation of symbols]

A 異形熱可塑性樹脂発泡体 1 発泡性熱可塑性樹脂シート状体 2 発泡性熱可塑性樹脂粒状体 3 発泡性熱可塑性樹脂薄膜 4 熱可塑性樹脂の発泡体 9b 凹溝 10 凹溝形成用治具 11 無端ベルト 12 無端ベルト Reference Signs List A Amorphous thermoplastic resin foam 1 Foamable thermoplastic resin sheet 2 Foamable thermoplastic resin granule 3 Foamable thermoplastic resin thin film 4 Thermoplastic foam 9b Groove 10 Jig for groove formation 11 Endless Belt 12 Endless belt

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B29K 105:04 B29L 16:00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI B29K 105: 04 B29L 16:00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】熱可塑性樹脂の発泡体に、前記熱可塑性樹
脂の融点を越える温度に加熱された凹溝形成用治具を押
圧することにより、前記発泡体表面に凹溝幅の30%以
上の深さの凹溝を形成することを特徴とする異形熱可塑
性樹脂発泡体の製造方法。
1. A groove for forming a groove, which is heated to a temperature exceeding the melting point of the thermoplastic resin, is pressed against the foam of the thermoplastic resin by 30% or more of the width of the groove on the surface of the foam. A method for producing a deformed thermoplastic resin foam, comprising forming a concave groove having a depth of:
【請求項2】熱可塑性樹脂が、無架橋ポリエチレン系樹
脂と無架橋ポリプロピレン系樹脂との重量比が2:8〜
8:2であってその合計量100重量部と架橋性シラン
変性ポリプロピレン系樹脂1〜50重量部とが含有され
てなることを特徴とする請求項1記載の異形熱可塑性樹
脂発泡体の製造方法。
2. The thermoplastic resin according to claim 1, wherein the weight ratio of the non-crosslinked polyethylene resin to the non-crosslinked polypropylene resin is 2: 8 to
The method for producing an irregularly shaped thermoplastic resin foam according to claim 1, wherein the ratio is 8: 2 and the total amount is 100 parts by weight and 1 to 50 parts by weight of a crosslinkable silane-modified polypropylene resin is contained. .
【請求項3】熱可塑性樹脂中にポリオレフィン系樹脂が
80重量%以上含有されており、かつ全体のゲル分率が
3%〜45%であることを特徴とする請求項1又は2に
記載の異形熱可塑性樹脂発泡体の製造方法。
3. The thermoplastic resin according to claim 1, wherein the thermoplastic resin contains at least 80% by weight of a polyolefin resin, and the total gel fraction is 3% to 45%. A method for producing a deformed thermoplastic resin foam.
JP10115324A 1998-04-24 1998-04-24 Production of deformed thermoplastic resin foam Pending JPH11300840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10115324A JPH11300840A (en) 1998-04-24 1998-04-24 Production of deformed thermoplastic resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10115324A JPH11300840A (en) 1998-04-24 1998-04-24 Production of deformed thermoplastic resin foam

Publications (1)

Publication Number Publication Date
JPH11300840A true JPH11300840A (en) 1999-11-02

Family

ID=14659764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10115324A Pending JPH11300840A (en) 1998-04-24 1998-04-24 Production of deformed thermoplastic resin foam

Country Status (1)

Country Link
JP (1) JPH11300840A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9260577B2 (en) 2009-07-14 2016-02-16 Toray Plastics (America), Inc. Crosslinked polyolefin foam sheet with exceptional softness, haptics, moldability, thermal stability and shear strength

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9260577B2 (en) 2009-07-14 2016-02-16 Toray Plastics (America), Inc. Crosslinked polyolefin foam sheet with exceptional softness, haptics, moldability, thermal stability and shear strength
US10301447B2 (en) 2009-07-14 2019-05-28 Toray Plastics (America), Inc. Crosslinked polyolefin foam sheet with exceptional softness, haptics, moldability, thermal stability and shear strength

Similar Documents

Publication Publication Date Title
AU692167B2 (en) Plastic foam material composed of polyolefin based resin and silane-modified polymer and method for making same
WO1998029228A1 (en) Foamable thermoplastic sheet-like synthetic resin, thermoplastic foamed resin and their production method
JPS5861129A (en) Preparation of foam
JPWO2002016124A1 (en) Expandable thermoplastic resin molded article, method for producing expandable thermoplastic resin molded article, and thermoplastic resin foam
JP4299375B2 (en) Foamable thermoplastic resin sheet, thermoplastic resin foam, and methods for producing the same
EP0646622B1 (en) Plastic foam material composed of thermoplastic resin and silane-modified thermoplastic resin and method for making same
JPH11300840A (en) Production of deformed thermoplastic resin foam
JP3792371B2 (en) Method for producing polyolefin resin foam
JP3958811B2 (en) Continuous production method of foam
JP3848419B2 (en) Foamable thermoplastic resin sheet and method for producing foam
JP2001219467A (en) Method for manufacturing thermoplastic resin foam with recessed groove
JP3369091B2 (en) Thermoplastic resin foam and method for producing the same
JP3588545B2 (en) Method for producing polyolefin resin foam
JPH11138564A (en) Manufacture of foam and floor heating floor material
JPH09234756A (en) Manufacture of expandable thermoplastic resin sheet and expanded sheet
JP3267420B2 (en) Foamable resin composition
JPH10180886A (en) Manufacture of thermoplastic resin foamed body
JPH07237238A (en) Manufacture of composite foam
JPH1190951A (en) Manufacture of thermoplastic resin foam
JPH10100181A (en) Foamable thermoplastic resin sheet and production of foam
JPH111570A (en) Production of polyolefin resin foam
JPH0939016A (en) Thermoplastic resin foam and production thereof
JP3922786B2 (en) Method for producing highly cross-linked polyolefin resin foam
JP2000135721A (en) Method and device for manufacture of recessed and projected thermoplastic resin foamed body
JPH0994840A (en) Manufacture of foamed material