JPH11300271A - Method for forming multilayer powder coating film - Google Patents

Method for forming multilayer powder coating film

Info

Publication number
JPH11300271A
JPH11300271A JP11449998A JP11449998A JPH11300271A JP H11300271 A JPH11300271 A JP H11300271A JP 11449998 A JP11449998 A JP 11449998A JP 11449998 A JP11449998 A JP 11449998A JP H11300271 A JPH11300271 A JP H11300271A
Authority
JP
Japan
Prior art keywords
powder coating
coating
powder
coating film
undercoat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11449998A
Other languages
Japanese (ja)
Inventor
Kazuhiko Onishi
和彦 大西
Isamu Takabayashi
勇 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP11449998A priority Critical patent/JPH11300271A/en
Publication of JPH11300271A publication Critical patent/JPH11300271A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a pollution-free coating film excellent in finishing appearance and coating film properties by a method in which a primer powder coating is applied on a substrate, the obtained coating film is heated or not heated, and a finishing powder coating, after being applied on the surface of the coating film, is heated. SOLUTION: When a multilayer powder coating film excellent in finishing appearance and coating film properties is formed on an automobile and others, first, a primer powder coating (powder coating A) is applied on a substrate. next, with the obtained primer powder coating film heated or not heated, a finishing powder coating (powder coating B) is applied on the surface of the coating film, and heated to form a required multilayer powder coating film. As each powder coating A, B, substances whose resin components are incompatible or poorly compatible with each other are used preferably, and equivalent or a substance in which the surface tension of the resin of the powder coating B is smaller by, for example, at least 0.1 dyne/cm than that of the resin of the powder coating A is preferably used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、仕上がり外観、塗
膜性能に優れた複層粉体塗膜を提供し得る複層塗膜形成
用粉体塗料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a powder coating for forming a multilayer coating film capable of providing a multilayer powder coating film having excellent finished appearance and coating film performance.

【0002】[0002]

【従来技術】粉体塗料は溶剤型塗料と比較して無公害で
あること、ライン管理が容易であること、塗料の回収が
容易であること等の多くの特徴を有している。これらの
特徴をもつことから自動車分野で特に注目されている。
一般的に自動車外板の塗装は自動車外板にプライマーを
電着塗装し、次いで中塗り塗装し、次いで上塗り塗装に
より行われている。この様な塗装方法において、中塗り
塗料としては、メラミン硬化型ポリエステル系の水性も
しくは溶剤系塗料が多く使用されており、このものを単
に熱硬化型粉体塗料に置き換えたとしても架橋密度の大
きい塗膜を得ることができないので加工性、耐チッピン
グ性、付着性等の性能が十分でなく、また、同じ膜厚で
は粉体塗料は塗膜を形成するためには焼き付け工程によ
り溶融フローを行う必要があるので、溶剤型や水性塗料
と比較して塗膜の仕上がり外観が劣るといった問題点あ
る。有機溶剤型や水性塗料によって形成された中塗り塗
膜表面に上塗りとして粉体塗料を使用した場合には、中
塗り塗膜とのなじみが悪いので仕上がり外観や付着性が
劣るといった問題点がある。
2. Description of the Related Art Powder coatings have many features, such as being less polluting than solvent-based coatings, easier line management, and easier collection of coatings. Because of these features, they have received particular attention in the automotive field.
Generally, coating of an automobile outer panel is performed by electrodepositing a primer on the automobile outer panel, applying a middle coat, and then a top coat. In such a coating method, a melamine-curable polyester-based water-based or solvent-based paint is often used as an intermediate coating, and even if this is simply replaced with a thermosetting powder-based paint, the crosslink density is large. Since a coating film cannot be obtained, the workability, chipping resistance, adhesion, etc., are not sufficient, and the powder coating is melted by a baking process to form a coating film with the same film thickness. Since it is necessary, there is a problem that the finished appearance of the coating film is inferior to that of the solvent type or water-based paint. When a powder coating is used as a top coat on the surface of an intermediate coating film formed by an organic solvent type or water-based coating, there is a problem that the finished appearance and adhesion are inferior because the affinity with the intermediate coating film is poor. .

【0003】また、自動車外板用の塗装として電着塗膜
を焼き付けないで中塗り塗料を塗装し次いで両塗膜を同
時に焼き付ける方法や中塗り塗膜の溶媒を揮発させた
後、上塗り塗料を塗装し両塗膜を同時に焼き付けて硬化
させる、いわゆる2コート1ベーク方式が一般的に採用
されている。この2コート1ベーク方式において、中塗
り塗料として粉体塗料を採用した場合には粉体塗膜にワ
キを生じたり、中塗り粉体塗膜と電着塗膜及び上塗り塗
膜との付着性や塗膜性能とのバランスを取ることが困難
であり、また、上塗り塗料として粉体塗料を採用した場
合には粉体塗膜にワキを生じたり、中塗り塗膜と上塗り
粉体塗膜との濡れ性や付着性が悪いといった問題点が残
されていた。
[0003] Further, as a coating for an automobile outer panel, a method of applying an intermediate coating without baking an electrodeposition coating film and then baking both coating films simultaneously, or after evaporating a solvent of the intermediate coating film, and then applying a top coating material. A so-called two-coat one-bake system, in which a coating is applied and both coating films are baked and cured at the same time, is generally employed. In this two-coat, one-bake method, when a powder coating is used as the intermediate coating, the powder coating has cracks and the adhesion between the intermediate coating powder and the electrodeposition coating and the top coating. And it is difficult to balance with the coating film performance. However, problems such as poor wettability and adhesion are left.

【0004】[0004]

【発明が解決しようとする課題】本発明は、仕上がり外
観、塗膜性能に優れた複層粉体塗膜を提供することを目
的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a multilayer powder coating film having excellent finished appearance and coating film performance.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意検討した結果、基材に塗装する塗
料として2種類の粉体塗料を組み合わせることにより、
即ち下塗りとして機能する粉体塗料を塗装した後、上塗
りとして機能する粉体塗料を塗装して両者の機能を効率
良く分担することにより、仕上がり外観、塗膜性能に優
れた無公害の塗膜が形成できることを見出し、本発明を
完成した。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, by combining two types of powder coatings as coatings to be applied to a substrate,
That is, after coating the powder coating functioning as the undercoat, the powder coating functioning as the top coating is applied and the two functions are efficiently shared, so that a pollution-free coating film with excellent finished appearance and coating film performance can be obtained. They found that they could be formed and completed the present invention.

【0006】即ち、本発明は、基材に下塗り粉体塗料
(以下、「粉体塗料A」と略すことがある。)を塗装
し、次いで得られた下塗り粉体塗膜を加熱したのちもし
くは加熱をおこなわないで、該塗膜表面に上塗り粉体塗
料(以下、「粉体塗料B」と略すことがある。)を塗装
し、次いで加熱することを特徴とする複層粉体塗膜の形
成方法に関するものである。
That is, according to the present invention, an undercoat powder coating (hereinafter sometimes abbreviated as “powder coating A”) is applied to a substrate, and then the obtained undercoat powder coating is heated or A top coat powder coating (hereinafter sometimes abbreviated as "powder coating B") is applied to the surface of the coating without heating, and the coating is heated. It relates to a forming method.

【0007】本発明で使用する基材としては、例えば、
静電粉体塗装が可能で加熱により基材が変形を起こさな
い従来から粉体塗装用に使用されているものを使用する
ことができる。具体的には、例えば、鉄鋼、銅、ステン
レス、合金鋼、アルミニウム及びその合金、亜鉛、亜鉛
メッキ鋼材、亜鉛合金、スズメッキ鋼材、燐酸亜鉛又は
燐酸鉄処理鋼材などの金属類が挙げられる。該基材とし
ては、板状であってもパイプ状、箱状、線状、フレーム
状、ホイール、車両等に成型されたものであっても構わ
ない。また、該基材の表面には必要に応じてカチオン電
着塗装のようなプライマー塗装を施しても構わない。こ
れらの基材の中でも、特に下塗り塗装及び上塗り塗装が
必要とされる用途、例えば、自動車ボデー等の車両、車
両の部品、家電等の基材に適用することが好ましい。
The substrate used in the present invention includes, for example,
What has been conventionally used for powder coating, which can perform electrostatic powder coating and does not cause deformation of the substrate by heating, can be used. Specific examples include metals such as steel, copper, stainless steel, alloy steel, aluminum and its alloys, zinc, galvanized steel, zinc alloy, tin-plated steel, zinc phosphate or iron phosphate-treated steel. The substrate may be a plate, a pipe, a box, a line, a frame, a wheel, a vehicle, or the like. Further, a primer coating such as cationic electrodeposition coating may be applied to the surface of the base material, if necessary. Among these base materials, it is particularly preferable to apply to applications requiring undercoating and topcoating, for example, base materials for vehicles such as automobile bodies, parts of vehicles, and home appliances.

【0008】本発明で使用する粉体塗料の塗装は、例え
ば、コロナ静電塗装、摩擦帯電粉体塗装等により塗装す
ることができる。粉体膜厚は約20〜80ミクロン、好
ましくは約30〜70ミクロンの範囲が好ましい。
The powder coating used in the present invention can be applied by, for example, corona electrostatic coating, triboelectric powder coating, or the like. The powder thickness is preferably in the range of about 20-80 microns, preferably about 30-70 microns.

【0009】本発明で使用する粉体塗料A及び粉体塗料
Bは、お互いに熱硬化型であって下塗り又は上塗りとし
て機能を発揮するものであれば従来から公知のものを使
用することができるが、特に下記した(1)〜(7)の
少なくとも一個の要件を満たすものを使用することが好
ましい。
As the powder coating material A and the powder coating material B used in the present invention, conventionally known coating materials can be used as long as they are thermosetting types and exhibit a function as an undercoat or an overcoat. However, it is particularly preferable to use one satisfying at least one of the following requirements (1) to (7).

【0010】(1)粉体塗料A及び粉体塗料Bは樹脂成
分同士が不相溶もしくは難相溶のものを使用することが
好ましい。この不相溶(P>0.5)及び難相溶(0<
P≦0.5)は特開昭51ー122137号公報に記載
される相溶性パラメーターで測定することができる。こ
の様な条件を満たす場合には、両者の塗膜を同時に焼き
付けた際に、粉体塗料Aと粉体塗料Bとが界面で混ざり
難くなって塗膜の仕上がり外観が良くなる。
(1) As the powder coating A and the powder coating B, it is preferable to use one in which resin components are incompatible or hardly compatible. This incompatibility (P> 0.5) and poor compatibility (0 <
P ≦ 0.5) can be measured by the compatibility parameter described in JP-A-51-122137. When such a condition is satisfied, when both the coating films are baked simultaneously, the powder coating material A and the powder coating material B are hardly mixed at the interface, and the finished appearance of the coating film is improved.

【0011】(2)粉体塗料A及び粉体塗料Bは、同等
もしくは粉体塗料Bの樹脂の表面張力が粉体塗料Aの樹
脂の表面張力よりも0.1dyne/cm以上、好まし
くは0.2dyne/cm以上小さいものを使用するこ
とが好ましい。この表面張力は特開昭51ー12213
7号公報に記載される方法測定することができる。この
様な条件を満たす場合には、両者の塗膜を同時に焼き付
けた際に、粉体塗料Bが粉体塗料Aとの界面で広がり易
くなって塗膜の仕上がり外観が良くなる。
(2) The powder coating material A and the powder coating material B are equivalent or the surface tension of the resin of the powder coating material B is 0.1 dyne / cm or more, preferably 0, or more than the surface tension of the resin of the powder coating material A. It is preferable to use a material smaller than 0.2 dyne / cm. This surface tension is as disclosed in JP-A-51-12213.
No. 7 can be measured. When such a condition is satisfied, the powder coating B easily spreads at the interface with the powder coating A when both coating films are baked simultaneously, and the finished appearance of the coating film is improved.

【0012】(3)粉体塗料Aの軟化温度が同等もしく
は粉体塗料Bよりも高いもの(好ましくは約1〜40
℃、更には約1〜20℃)が好ましい。これにより粉体
塗料Bが粉体塗料Aとの界面で広がり易くなって塗膜の
仕上がり外観が良くなる。粉体塗料Aの軟化温度は、通
常、約20〜100℃、好ましくは約30〜80℃の範
囲である。
(3) The powder coating A has a softening temperature equal to or higher than that of the powder coating B (preferably about 1 to 40).
C., more preferably about 1 to 20 C.). As a result, the powder coating B easily spreads at the interface with the powder coating A, and the finished appearance of the coating film is improved. The softening temperature of the powder coating A is usually in the range of about 20 to 100C, preferably about 30 to 80C.

【0013】(4)粉体塗料A及び粉体塗料Bは、粉体
塗料A及び粉体塗料Bがそれぞれ好ましくは粒子径5μ
m〜45μm、特に10μm〜40μmの粒子の占める
割合が90重量%以上、特に95重量%以上のものが好
ましい。これにより塗装した粉体塗料がコンパクトに充
填されるので粉体塗料Aの一部が粉体塗料Bの表面に浮
き出す恐れがないので塗膜外観や塗膜性能が良くなる。
また、粉体塗料A表面に静電反発や塗装作業性などが低
下せずに粉体塗料Bを静電粉体塗装することができる。
(4) The powder coating A and the powder coating B are preferably powder coating A and powder coating B, each having a particle size of 5 μm.
Particles having a size of m to 45 µm, particularly 10 µm to 40 µm, preferably account for 90% by weight or more, particularly 95% by weight or more. As a result, the coated powder coating is compactly filled, so that there is no possibility that a portion of the powder coating A will emerge on the surface of the powder coating B, thereby improving the appearance and performance of the coating.
Also, the powder coating B can be electrostatically powder coated on the surface of the powder coating A without deteriorating electrostatic repulsion, coating workability and the like.

【0014】(5)粉体塗料Aに下記オニウム塩を含有
するものを使用することが好ましい。
(5) It is preferable to use the powder coating A containing the following onium salt.

【0015】上記オニウム塩化合物としては、一般式
[(R)4 Y]+ X− 又は[(R)3 S]+ X− で
表されるものが好ましい。式中、Rは同一もしくは異な
って水素原子、低級アルキル基(例えば、メチル、エチ
ル、プロピル、ブチル、ヘキシル等)、ヒドロキシ低級
アルキル基(例えば、ヒドロキシメチル、ヒドロキシエ
チル、ヒドロキシプロピル、ヒドロキシブチル、ヒドロ
キシヘキシル等)、ハロ低級アルキル基(例えば、臭素
化メチル、臭素化エチル等)、低級アルコキシ低級アル
キル基( 例えば、メトキシメチル、メトキシエチル、
メトキシプロピル、メトキシブチル、メトキシヘキシル
等)、シクロアルキル基(例えば、シクロヘキシル、シ
クロヘキシルメチル、シクロペンチル等)、アリール基
(例えば、フェニル、トルイル、キシリル等)又はアラ
ルキル基(例えば、ベンジル基等)などの有機基が挙げ
られる。Yは窒素原子又は燐原子である。Xは負イオン
を示すものであって、例えば、ハロゲンイオン(例え
ば、塩素、臭素、フッ素、ヨウ素等)、無機酸根(例え
ば、硫酸根、燐酸根等)、有機酸根(例えば、酢酸根、
ベンジルスルホン酸根、水酸根等)等が挙げられる。上
記した低級なる意味は炭素数6以下のものを示す。上記
した一般式において、特にRが低級アルキル基、フェニ
ル基、ベンジル基のものXがハロゲンイオンのアンモニ
ウム又はホスホニウム塩化合物が好ましい。
The onium salt compound has a general formula
What is represented by [(R) 4Y] + X- or [(R) 3S] + X- is preferable. In the formula, R is the same or different and is a hydrogen atom, a lower alkyl group (eg, methyl, ethyl, propyl, butyl, hexyl, etc.), a hydroxy lower alkyl group (eg, hydroxymethyl, hydroxyethyl, hydroxypropyl, hydroxybutyl, hydroxybutyl) Hexyl, etc.), halo-lower alkyl groups (eg, methyl bromide, ethyl bromide, etc.), lower alkoxy lower alkyl groups (eg, methoxymethyl, methoxyethyl,
Methoxypropyl, methoxybutyl, methoxyhexyl, etc.), cycloalkyl group (eg, cyclohexyl, cyclohexylmethyl, cyclopentyl, etc.), aryl group (eg, phenyl, toluyl, xylyl, etc.) or aralkyl group (eg, benzyl group, etc.) Organic groups are mentioned. Y is a nitrogen atom or a phosphorus atom. X represents a negative ion, for example, a halogen ion (eg, chlorine, bromine, fluorine, iodine, etc.), an inorganic acid group (eg, a sulfate group, a phosphate group, etc.), an organic acid group (eg, an acetate group,
Benzylsulfonic acid radicals, hydroxyl radicals, etc.). The above lower meaning means those having 6 or less carbon atoms. In the above-mentioned general formula, an ammonium or phosphonium salt compound in which R is a lower alkyl group, a phenyl group or a benzyl group and X is a halogen ion is particularly preferred.

【0016】上記オニウム塩化合物としては、例えば、
塩化テトラメチルホスホニウム、塩化テトラエチルホス
ホニウム、塩化テトラブチルホスホニウム、塩化トリメ
チルエチルホスホニウム、塩化トリフェニルベンジルホ
スホニウム、臭素化テトラメチルホスホニウム、臭素化
トリフェニルベンジルホスホニウム等の如きホスホニウ
ム塩化合物類;塩化テトラメチルアンモニウム、塩化テ
トラエチルアンモニウム、塩化テトラブチルアンモニウ
ム、塩化トリメチルエチルアンモニウム、塩化トリフェ
ニルベンジルアンモニウム、臭素化テトラメチルアンモ
ニウム、臭素化トリフェニルベンジルアンモニウム等の
如きアンモニウム塩化合物類;塩化トリメチルスルホニ
ウム、塩化テトラエチルスルホニウム、塩化テトラブチ
ルスルホニウム、塩化トリメチルエチルスルホニウム、
塩化トリフェニルベンジルスルホニウム等の如きスルホ
ニウム塩化合物類が挙げられる。オニウム塩化合物の配
合割合は、粉体塗料Aに0.01〜10重量%、特に
0.01〜5重量%の範囲が好ましい。該オニウム塩を
配合することにより粉体塗膜Bの仕上がり外観が向上す
る。
The above onium salt compounds include, for example,
Phosphonium salt compounds such as tetramethylphosphonium chloride, tetraethylphosphonium chloride, tetrabutylphosphonium chloride, trimethylethylphosphonium chloride, triphenylbenzylphosphonium chloride, tetramethylphosphonium bromide and triphenylbenzylphosphonium bromide; tetramethylammonium chloride; Ammonium salt compounds such as tetraethylammonium chloride, tetrabutylammonium chloride, trimethylethylammonium chloride, triphenylbenzylammonium chloride, tetramethylammonium bromide, triphenylbenzylammonium bromide; trimethylsulfonium chloride, tetraethylsulfonium chloride, tetrachloride Butylsulfonium, trimethylethylsulfonium chloride,
And sulfonium salt compounds such as triphenylbenzylsulfonium chloride. The compounding ratio of the onium salt compound in the powder coating A is preferably in the range of 0.01 to 10% by weight, particularly preferably 0.01 to 5% by weight. By blending the onium salt, the finished appearance of the powder coating film B is improved.

【0017】(6)粉体塗料Aとしては、分離性、耐食
性、基材に対する密着性に優れた効果を発揮するエポキ
シ樹脂系粉体塗料Aを使用することが好ましい。エポキ
シ樹脂系粉体塗料Aとしては、それ自体で静電粉体塗
装、流動浸漬塗装が可能で加熱により硬化する従来から
公知の粉体塗料、例えば、ビスフェノール・エピクロル
ヒドリン型エポキシ基体樹脂(例えば、油化シェル株式
会社製、商品名エピコート1004、エピコート100
7)、ノボラック型エポキシ基体樹脂等のエポキシ樹脂
に、例えばアジピン酸、(無水)トリメリット酸等のポ
リカルボン酸化合、ベンジル−4−ヒドロキシフェニル
メチルスルホニウムヘキサフルオロアンチモネ−ト等の
芳香族スルホニウム塩のカチオン重合触媒、ジシアンジ
アミド等のアミド化合物、アジピン酸ジヒドラジド等の
カルボン酸ジヒドラジド化合物、イミダゾリン類化合
物、イミダゾール類化合物、フェノール樹脂、高酸価ポ
リエステル系樹脂等のエポキシ用架橋剤を配合した公知
の粉体塗料を使用することができる。基体樹脂と硬化剤
との配合割合は、基体樹脂100重量部当たりカチオン
重合触媒の場合には約0.01〜10重量部、好ましく
は約0.1〜5重量部の範囲、カチオン重合触媒以外の
場合には約10〜100重量部、好ましくは約15〜8
0重量部の範囲が好適である。粉体塗料Aには必要に応
じて着色剤、充填剤、防錆剤、硬化触媒、流動性調整
剤、ハジキ防止剤、紫外線安定剤、紫外線吸収剤(ベン
ゾトリアゾール化合物等)等の塗料用添加剤が配合でき
る。
(6) As the powder coating A, it is preferable to use an epoxy resin-based powder coating A which exhibits excellent effects on separability, corrosion resistance and adhesion to a substrate. As the epoxy resin-based powder coating A, a conventionally known powder coating which can be subjected to electrostatic powder coating or fluid immersion coating itself and is cured by heating, for example, a bisphenol / epichlorohydrin type epoxy base resin (for example, oil) Shell Co., Ltd., trade name: Epicoat 1004, Epicoat 100
7) an epoxy resin such as a novolak type epoxy base resin or the like; a polycarboxylic acid compound such as adipic acid and (trimellitic anhydride); an aromatic sulfonium such as benzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate; Cationic polymerization catalysts for salts, amide compounds such as dicyandiamide, carboxylic acid dihydrazide compounds such as adipic dihydrazide, imidazoline compounds, imidazole compounds, phenolic resins, and known epoxy resin-containing high-acid-value polyester-based resin-containing crosslinking agents for epoxy. Powder coatings can be used. The mixing ratio of the base resin and the curing agent is in the range of about 0.01 to 10 parts by weight, preferably about 0.1 to 5 parts by weight in the case of the cationic polymerization catalyst per 100 parts by weight of the base resin. About 10-100 parts by weight, preferably about 15-8
A range of 0 parts by weight is preferred. Addition of paints such as coloring agents, fillers, rust inhibitors, curing catalysts, fluidity regulators, repelling inhibitors, ultraviolet stabilizers, ultraviolet absorbers (benzotriazole compounds, etc.) to powder coating A as required An agent can be compounded.

【0018】(7)粉体塗料Bとしては、耐候性、加工
性等の塗膜性能がすぐれる熱硬化性アクリル樹脂系粉体
塗料(B1)、ポリエステル樹脂系粉体塗料(B2)、
フッ素樹脂系粉体塗料(B3)を使用することが好まし
い。
(7) As the powder coating B, thermosetting acrylic resin powder coating (B1), polyester resin powder coating (B2), and the like having excellent coating properties such as weather resistance and workability.
It is preferable to use a fluororesin-based powder coating (B3).

【0019】熱硬化型アクリル樹脂系粉体塗料(B1)
としては、それ自体で静電粉体塗装が可能で加熱により
硬化する従来から公知の粉体塗料、例えば酸エポキシ硬
化型アクリル樹脂系粉体塗料(a)、ブロックイソシア
ネート硬化型アクリル樹脂系粉体塗料(b)等が挙げら
れる。
Thermosetting acrylic resin powder coating (B1)
Conventionally known powder coatings which can be electrostatic powder coated by themselves and are cured by heating, such as acid epoxy curing type acrylic resin type powder coating (a), block isocyanate curing type acrylic resin type powder Paint (b) and the like.

【0020】上記粉体塗料(a)としては、エポキシ基
含有ラジカル重合性不飽和モノマー(例えばグリシジル
(メタ)アクリレート、メチルグリシジル(メタ)アク
リレート等)、ガラス転移温度が40℃以上の硬質アク
リルモノマー(例えば、メチルメタクリレート、エチル
メタクリレート、iso-ブチルメタクリレート、te
r-ブチルメタクリレート、ter-ブチルアクリレート
等)及び必要に応じてガラス転移温度が40℃以未満の
軟質アクリルモノマー(例えば、メチルアクリレート、
エチルアクリレート、n-ブチルメタクリレート、is
o-ブチルアクリレート、2エチルヘキシル(メタ)ア
クリレート、ステアリルメタクリレート等)、アクリル
モノマー以外のラジカル重合性不飽和モノマー(例え
ば、スチレン、ビニルトルエン、α-メチルスチレン、
(メタ)アクリルニトリル、(メタ)アクリルアミド
等)、上記エポキシ基以外の官能基含有ラジカル重合性
不飽和モノマー(例えばヒドロキシエチル(メタ)アク
リレート、ヒドロキシプロピル(メタ)アクリレート
等)をラジカル共重合反応させて得られるエポキシ基含
有アクリル基体樹脂にポリカルボン酸架橋剤(例えば、
アジピン酸、アゼライン酸、ドデカン二酸、無水アジピ
ン酸、無水トリメリット酸等)を配合してなるものであ
る。
Examples of the powder coating (a) include a radical polymerizable unsaturated monomer containing an epoxy group (eg, glycidyl (meth) acrylate, methyl glycidyl (meth) acrylate), and a hard acrylic monomer having a glass transition temperature of 40 ° C. or higher. (Eg, methyl methacrylate, ethyl methacrylate, iso-butyl methacrylate, te
r-butyl methacrylate, ter-butyl acrylate, etc.) and, if necessary, a soft acrylic monomer having a glass transition temperature of less than 40 ° C. (eg, methyl acrylate,
Ethyl acrylate, n-butyl methacrylate, is
o-butyl acrylate, 2ethylhexyl (meth) acrylate, stearyl methacrylate, etc.), radical polymerizable unsaturated monomers other than acrylic monomers (eg, styrene, vinyltoluene, α-methylstyrene,
Radical copolymerization reaction of (meth) acrylonitrile, (meth) acrylamide, etc.) and a functional group-containing radically polymerizable unsaturated monomer other than the above epoxy group (eg, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, etc.) A polycarboxylic acid crosslinking agent (for example,
Adipic acid, azelaic acid, dodecanedioic acid, adipic anhydride, trimellitic anhydride, etc.).

【0021】また上記粉体塗料(b)としては、水酸基
含有ラジカル重合性不飽和モノマー(例えば、ヒドロキ
シエチル(メタ)アクリレート、ヒドロキシプロピル
(メタ)アクリレート等)、ガラス転移温度が40℃以
上の硬質アクリルモノマー(例えばメチルメタクリレー
ト、エチルメタクリレート、iso-ブチルメタクリレ
ート、ter-ブチルメタクリレート、ter-ブチルア
クリレート等)及び必要に応じてガラス転移温度が40
℃以未満の軟質アクリルモノマー(例えば、メチルアク
リレート、エチルアクリレート、n-ブチルメタクリレ
ート、iso-ブチルアクリレート、2エチルヘキシル
(メタ)アクリレート、ステアリルメタクリレート
等)、アクリルモノマー以外のラジカル重合性不飽和モ
ノマー(例えば、スチレン、ビニルトルエン、α-メチ
ルスチレン、(メタ)アクリルニトリル、(メタ)アク
リルアミド等)、上記水酸基以外の官能基含有ラジカル
重合性不飽和モノマー(例えば、グリシジル(メタ)ア
クリレート、メチルグリシジル(メタ)アクリレート
等)をラジカル共重合反応させて得られる水酸基含有ア
クリル基体樹脂にブロックポリイソシアネート架橋剤
(例えば、ヘキサメチレンジイソシアネート、トリメチ
レンジイソシアネート、イソホロンジイソシアネート、
水素添加キシリレンジイソシアネート等の脂肪族又は脂
環族ポリイソシアネート化合物をフェノール類、ラクタ
ム類、アルコール類、オキシム類等の化合物によりイソ
シアネート基をブロック化したもの)を配合してなるも
のである。上記基体樹脂と架橋剤の配合割合は、基体樹
脂100重量部に対して架橋剤が10〜100重量部の
範囲で配合される。
The powder coating (b) may be a hydroxyl-containing radically polymerizable unsaturated monomer (for example, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, etc.), a hard resin having a glass transition temperature of 40 ° C. or higher. Acrylic monomers (eg, methyl methacrylate, ethyl methacrylate, iso-butyl methacrylate, ter-butyl methacrylate, ter-butyl acrylate, etc.) and optionally a glass transition temperature of 40
Soft acrylic monomers (e.g., methyl acrylate, ethyl acrylate, n-butyl methacrylate, iso-butyl acrylate, 2-ethylhexyl (meth) acrylate, stearyl methacrylate, and the like) having a temperature of less than or equal to or lower than C, and radical polymerizable unsaturated monomers other than acrylic monomers (e.g., Styrene, vinyltoluene, α-methylstyrene, (meth) acrylonitrile, (meth) acrylamide, etc.), and functional group-containing radically polymerizable unsaturated monomers other than the above-mentioned hydroxyl group (for example, glycidyl (meth) acrylate, methylglycidyl (meth) ) Acrylate
And the like, and a hydroxyl group-containing acrylic base resin obtained by a radical copolymerization reaction with a blocked polyisocyanate crosslinking agent (for example, hexamethylene diisocyanate, trimethylene diisocyanate, isophorone diisocyanate,
An aliphatic or alicyclic polyisocyanate compound such as hydrogenated xylylene diisocyanate is blended with an isocyanate group blocked with a compound such as a phenol, lactam, alcohol, or oxime). The mixing ratio of the base resin and the crosslinking agent is such that the crosslinking agent is mixed in the range of 10 to 100 parts by weight with respect to 100 parts by weight of the base resin.

【0022】また、熱硬化型ポリエステル樹脂系粉体塗
料(B2)としては、それ自体で静電粉体塗装が可能で
加熱により硬化する従来から公知の粉体塗料、例えば、
ブロックイソシアネート硬化型ポリエステル樹脂系粉体
塗料(c)、エポキシ硬化型ポリエステル樹脂系粉体塗
料(d)等が挙げられる。
As the thermosetting polyester resin powder coating (B2), a conventionally known powder coating which is capable of electrostatic powder coating by itself and is cured by heating, for example,
Blocked isocyanate-curable polyester resin-based powder coating (c), epoxy-curable polyester resin-based powder coating (d) and the like.

【0023】該粉体塗料(c)としては、例えば、(無
水)フタル酸、イソフタル酸、テレフタル酸、イソフタ
ル酸ジメチル、テレフタル酸ジメチル、ヘキサヒドロ
(無水)フタル酸、テトラヒドロ(無水)フタル酸等の
芳香族又は脂環族ジカルボン酸と(ポリ)エチレングリ
コール、(ポリ)プロピレングリコール、ブチレングリ
コール、ブチレングリコール、ネオペンチルグリコー
ル、1,6−ヘキサンジオール、ジメチルプロピオン酸
等の2価アルコール、必要に応じて安息香酸等のモノカ
ルボン酸、(無水)トリメリット酸等の3価以上のカル
ボン酸、トリメチロールエタン、トリメチロールプロパ
ン、グリセリン、ペンタエリスリットール等の3価以上
のアルコールとを反応させて得られる水酸基価約20〜
300mgKOH/gの水酸基含有ポリエステル樹脂に
上記ブロックポリイソシアネート架橋剤を配合してなる
塗料を使用することができる。基体樹脂と硬化剤との配
合割合は、基体樹脂100重量部当たり約10〜100
重量部、好ましくは約15〜80重量部の範囲が好適で
ある。
Examples of the powder coating (c) include phthalic acid (anhydride), isophthalic acid, terephthalic acid, dimethyl isophthalate, dimethyl terephthalate, hexahydro (anhydride) phthalic acid, and tetrahydro (anhydrous) phthalic acid. Aromatic or alicyclic dicarboxylic acids and dihydric alcohols such as (poly) ethylene glycol, (poly) propylene glycol, butylene glycol, butylene glycol, neopentyl glycol, 1,6-hexanediol, dimethylpropionic acid, etc., if necessary To react with a monocarboxylic acid such as benzoic acid, a trivalent or more carboxylic acid such as (anhydride) trimellitic acid, and a trivalent or more alcohol such as trimethylolethane, trimethylolpropane, glycerin, and pentaerythritol. Obtained hydroxyl value of about 20 to
A paint obtained by blending the above blocked polyisocyanate crosslinking agent with a hydroxyl group-containing polyester resin of 300 mgKOH / g can be used. The mixing ratio of the base resin and the curing agent is about 10 to 100 per 100 parts by weight of the base resin.
Parts by weight, preferably in the range of about 15 to 80 parts by weight, are suitable.

【0024】該粉体塗料(d)としては、例えば、上記
粉体塗料(c)に記載したポリエステル原料を反応させ
て得られる酸価約20〜300mgKOH/gとポリエ
ポキシドを配合してなる塗料を使用することができる。
基体樹脂と硬化剤との配合割合は、基体樹脂100重量
部当たり約10〜100重量部、好ましくは約15〜8
0重量部の範囲が好適である。
As the powder coating (d), for example, a coating obtained by reacting the polyester raw material described in the above powder coating (c) with an acid value of about 20 to 300 mg KOH / g and a polyepoxide is blended. Can be used.
The mixing ratio of the base resin and the curing agent is about 10 to 100 parts by weight, preferably about 15 to 8 parts by weight, per 100 parts by weight of the base resin.
A range of 0 parts by weight is preferred.

【0025】また、粉体塗料(B3)としては、それ自
体で静電粉体塗装が可能で加熱により硬化する従来から
公知の粉体塗料、例えば、ブロックイソシアネート硬化
型フッ素樹脂系粉体塗料(e)等が挙げられる。このも
のとしては、例えば、主鎖のフッ素を含有する水酸基含
有重合体又は側鎖にフッ素を含有する水酸基含有重合体
に前記したブロックイソシアネート架橋剤を配合したも
のが挙げられる。
As the powder coating (B3), a conventionally known powder coating which can be electrostatic powder coated by itself and is cured by heating, for example, a block isocyanate-curable fluororesin powder coating ( e) and the like. Examples thereof include those obtained by blending the above-mentioned blocked isocyanate crosslinking agent with a hydroxyl group-containing polymer containing fluorine in the main chain or a hydroxyl group-containing polymer containing fluorine in the side chain.

【0026】主鎖のフッ素を含有する水酸基含有重合体
としては、例えば、水酸基含有不飽和モノマー(例え
ば、 ヒドロキシ(シクロ)アルキルビニルエーテル、
ビニルアルコール等)、含フッ素重合性不飽和モノマー
(例えば、テトラフルオロエチレン、トリフルオロクロ
ルエチレン、ジフルオロジクロロエチレン、フルオロト
リクロロエチレン等)、その他の重合性モノマー(例え
ば、ビニルエーテル及びアリルエーテル、例えば、エチ
ルビニルエーテル、n−プロピルビニルエーテル、イソ
プロピルビニルエーテル、ブチルビニルエーテル、tert
−ブチルビニルエーテル、ペンチルビニルエーテル、ヘ
キシルビニルエーテル、オクチルビニルエーテル等の鎖
状アルキルビニルエーテル類;シクロペンチルビニルエ
ーテル、シクロヘキシルビニルエーテル等のシクロアル
キルビニルエーテル類;フェニルビニルエーテル、トリ
ビニルフェニルエーテル等のアリールビニルエーテル
類;ベンジルビニルエーテル、フェネチルビニルエーテ
ル等のアラルキルビニルエーテル類;アリルグリシジル
エーテル、アリルエチルエーテル等のアリルエーテル類
等、 ビニルエステル及びプロペニルエステル、例え
ば、酢酸ビニル、プロピオン酸ビニル、乳酸ビニル、オ
レフィン系化合物、例えば、エチレン、プロピレン、ブ
チレン、塩化ビニル等)とのラジカル共重合体が挙げら
れる。
Examples of the hydroxyl group-containing polymer containing a main chain fluorine include, for example, hydroxyl group-containing unsaturated monomers (for example, hydroxy (cyclo) alkyl vinyl ether,
Vinyl alcohol and the like), fluorine-containing polymerizable unsaturated monomers (for example, tetrafluoroethylene, trifluorochloroethylene, difluorodichloroethylene, fluorotrichloroethylene and the like), and other polymerizable monomers (for example, vinyl ether and allyl ether, for example, ethyl vinyl ether). n-propyl vinyl ether, isopropyl vinyl ether, butyl vinyl ether, tert
-Chain alkyl vinyl ethers such as butyl vinyl ether, pentyl vinyl ether, hexyl vinyl ether and octyl vinyl ether; cycloalkyl vinyl ethers such as cyclopentyl vinyl ether and cyclohexyl vinyl ether; aryl vinyl ethers such as phenyl vinyl ether and trivinyl phenyl ether; benzyl vinyl ether and phenethyl vinyl ether Aralkyl vinyl ethers such as; allyl ethers such as allyl glycidyl ether and allyl ethyl ether; vinyl esters and propenyl esters such as vinyl acetate, vinyl propionate, vinyl lactate, and olefinic compounds such as ethylene, propylene and butylene; And vinyl chloride).

【0027】側鎖にフッ素を含有する重合体としては、
例えば、前記粉体塗料(a)、(b)に記載した水酸基
含有ラジカル重合性不飽和モノマー、フッ素モノマー
(例えば、パーフルオロブチルエチル(メタ)アクリレ
ート、パーフルオロイソノニルエチル(メタ)アクリレ
−ト、パーフルオロオクチルエチル(メタ)アクリレー
ト等)、、前記粉体塗料(a)、(b)に記載した硬
質、軟質アクリルモノマー等とのラジカル共重合体が挙
げられる。
Examples of the polymer containing fluorine in the side chain include:
For example, hydroxyl-containing radically polymerizable unsaturated monomers and fluorine monomers described in the powder coatings (a) and (b) (for example, perfluorobutylethyl (meth) acrylate, perfluoroisononylethyl (meth) acrylate) , Perfluorooctylethyl (meth) acrylate, etc.), and radical copolymers with the hard and soft acrylic monomers described in the powder coatings (a) and (b).

【0028】粉体塗料(e)は上記の水酸基含有フッ素
系共重合体(水酸基価約20〜300mgKOH/g)
に前記のブロックポリイソシアネート架橋剤を配合して
なるものが挙げられる。基体樹脂と硬化剤との配合割合
は、基体樹脂100重量部当たり約10〜100重量
部、好ましくは約15〜80重量部の範囲が好適であ
る。
The powder coating (e) is the above-mentioned hydroxyl-containing fluorine-containing copolymer (hydroxyl value: about 20 to 300 mgKOH / g).
And the above-mentioned blocked polyisocyanate crosslinking agent. The mixing ratio of the base resin and the curing agent is preferably about 10 to 100 parts by weight, and more preferably about 15 to 80 parts by weight, per 100 parts by weight of the base resin.

【0029】粉体塗料Bには必要に応じて着色剤、充填
剤、硬化触媒、流動性調整剤、ハジキ防止剤、紫外線安
定剤、紫外線吸収剤(ベンゾトリアゾール化合物等)等
の塗料用添加剤が配合できる。
In the powder coating material B, paint additives such as a coloring agent, a filler, a curing catalyst, a fluidity adjusting agent, a repelling inhibitor, an ultraviolet stabilizer, and an ultraviolet absorber (benzotriazole compound, etc.) if necessary. Can be blended.

【0030】また、上記した以外に130℃で測定した
粉体塗料Aの溶融粘度(Pa・s)が同温度で測定した
粉体塗料Bの溶融粘度(Pa・s)よりも大きい(好ま
しくは1.5以上、更に2倍以上大きい)こと、そして
粉体塗料Aの溶融粘度(Pa・s)が、1〜100(P
a・s)であり粉体塗料Bの溶融粘度(Pa・s)が、
0.1〜10(Pa・s)であることが好ましい。これ
により粉体塗料Bが粉体塗料Aとの界面で広がり易くな
って塗膜の仕上がり外観が良くなる。
In addition to the above, the melt viscosity (Pa · s) of powder coating A measured at 130 ° C. is larger than the melt viscosity (Pa · s) of powder coating B measured at the same temperature (preferably). 1.5 or more, more than twice or more), and the melt viscosity (Pa · s) of the powder coating A is 1 to 100 (P
a · s) and the melt viscosity (Pa · s) of the powder coating B is
It is preferably 0.1 to 10 (Pa · s). As a result, the powder coating B easily spreads at the interface with the powder coating A, and the finished appearance of the coating film is improved.

【0031】本発明方法は、基材に粉体塗料Aを塗装
し、次いで得られた粉体塗膜を加熱を行ったのちもしく
は加熱をおこなわないで、該塗膜表面に粉体塗料Bを塗
装し、次いで加熱することを特徴とする複層粉体塗膜の
形成方法である。この好ましい具体例について下記す
る。
In the method of the present invention, a powder coating A is applied to a substrate, and then the powder coating obtained is heated or not heated, and then the powder coating B is applied to the surface of the coating. This is a method for forming a multilayer powder coating film, which is characterized by coating and then heating. This preferred embodiment will be described below.

【0032】(1)金属もしくは金属にカチオン電着塗
装を施した基材(好ましくは金属基材)に熱硬化型粉体
塗料Aを静電粉体塗装し、次いで熱硬化型粉体塗料Bを
静電粉体塗装したのち焼き付けを行って両者の粉体塗膜
を硬化させ、更に必要に応じて水性、有機溶剤型又は1
00%固形分の液状塗料を塗装する。
(1) A thermosetting powder coating A is applied to a metal or a base material (preferably a metal base) on which metal is subjected to cationic electrodeposition coating, and then a thermosetting powder coating B is applied. And then baking to cure both powder coatings, and if necessary, aqueous or organic solvent type or 1 type.
Apply a liquid paint of 00% solids.

【0033】(2)金属もしくは金属にカチオン電着塗
装を施した基材(好ましくは金属基材)に熱硬化型粉体
塗料Aを静電粉体塗装し、得られた粉体塗膜を予備加熱
(粉体粒子が融着して縦面にしても落下しない程度に加
熱、粉体粒子が融着、フローして塗膜を形成するが硬化
は生じていない程度に加熱、前記の硬化が一部硬化して
いるが完全には硬化しておらず後加熱によりフローする
程度の加熱を意味する。以下同様の意味を示す。)し、
次いで熱硬化型粉体塗料Bを静電粉体塗装したのち焼き
付けを行って両者の粉体塗膜を硬化させ、更に必要に応
じて水性、有機溶剤型又は100%固形分の液状塗料を
塗装する。
(2) A thermosetting powder coating material A is electrostatically coated on a metal or a base material (preferably a metal base material) on which a metal is subjected to cationic electrodeposition coating. Preheating (heating to such an extent that the powder particles do not fall even when they are fused and vertical surfaces, heating to such an extent that the powder particles are fused and flow to form a coating film, but no curing occurs. Is partially cured but not completely cured, meaning that it is heated to the extent that it flows by post-heating. The same meaning is given below.)
Then, the thermosetting powder coating B is applied with electrostatic powder and then baked to cure both powder coatings, and then, if necessary, an aqueous, organic solvent type or 100% solid liquid coating is applied. I do.

【0034】(3)金属基材に熱硬化型粉体塗料Aを静
電粉体塗装し、得られた粉体塗膜を予備加熱(粉体粒子
が融着して縦面にしても落下しない程度に加熱、粉体粒
子が融着、フローして塗膜を形成するが硬化は生じてい
ない程度に加熱、前記の硬化が一部硬化しているが完全
には硬化しておらず後加熱によりフローする程度の加熱
を意味する。以下同様の意味を示す。)し、未塗装部分
にカチオン電着塗装し、焼き付けた後、次いで粉体塗膜
又は粉体塗膜及び電着塗膜表面に熱硬化型粉体塗料Bを
静電粉体塗装したのち焼き付けを行って両者の粉体塗膜
を硬化させ、更に必要に応じて水性、有機溶剤型又は1
00%固形分の液状塗料を塗装する。
(3) A thermosetting powder coating A is applied to a metal substrate by electrostatic powder coating, and the obtained powder coating is preheated (powder particles are fused and dropped even on a vertical surface). Heating to the extent not to cause the powder particles to fuse and flow to form a coating film, but to the extent that hardening does not occur, the above hardening is partially hardened but not completely hardened. Heating to the extent that it flows by heating. The same meaning applies hereinafter.) Cationic electrodeposition coating on the unpainted part, baking, then powder coating or powder coating and electrodeposition coating The surface is coated with a thermosetting powder coating material B by electrostatic powder coating and then baked to harden both powder coating films, and if necessary, an aqueous or organic solvent type or 1 type.
Apply a liquid paint of 00% solids.

【0035】[0035]

【実施例】以下、実施例により本発明を具体的に説明す
る。尚、部及び%はそれぞれ重量部及び重量%を示す。
The present invention will be described below in detail with reference to examples. Parts and% indicate parts by weight and% by weight, respectively.

【0036】熱硬化型粉体塗料A1の製造例 エピコ−ト1004(油化シェル株式会社製、商品名、
軟化点97〜103℃、平均分子量約1400、エポキ
シ樹脂、以下同様の意味を示す)1000部、アジピン
酸ジヒドラジド500部、弁柄300部を2軸エクスト
ル−ダ−で溶融混練した後、冷却、粉砕、分級して粉体
塗料A1を得た。粉体塗料A1は、130℃での溶融粘
度は約40Pa・s、粒子径約5〜25μmのものが9
5%<、表面張力31dyne/cmであった。
Production Example of Thermosetting Powder Coating A1 Epicoat 1004 (trade name, manufactured by Yuka Shell Co., Ltd.)
Melting and kneading a softening point of 97 to 103 ° C., an average molecular weight of about 1400, an epoxy resin, and the same meaning as described below) 1000 parts, adipic dihydrazide 500 parts, and a red stem 300 parts with a biaxial extruder, followed by cooling. The mixture was pulverized and classified to obtain a powder coating A1. The powder coating A1 has a melt viscosity at 130 ° C. of about 40 Pa · s and a particle size of about 5 to 25 μm.
5% <, and the surface tension was 31 dyne / cm.

【0037】熱硬化型粉体塗料A2 熱硬化型粉体塗料A1の製造例において、原料として塩
化ベンジルテトラフェニルホスホニウム塩10部配合し
た以外は粉体塗料A1と同様にして製造した。
Thermosetting powder coating material A2 Powder thermosetting powder coating material A2 was prepared in the same manner as powder coating material A1 except that 10 parts of benzyltetraphenylphosphonium chloride were used as a raw material in the production example of thermosetting powder coating material A1.

【0038】熱硬化型粉体塗料A3、A4 熱硬化型粉体塗料A1の製造例において、弁柄の配合量
を0部、100部とした以外は塗料A1と同様にして製
造して順次粉体塗料A3、A4を得た。
Thermosetting Powder Coatings A3, A4 The same procedure was followed as in coating A1 except that the blending amount of the petal was changed to 0 parts and 100 parts in the production example of the thermosetting powder coating A1. Body paints A3 and A4 were obtained.

【0039】熱硬化型粉体塗料A5、A6 熱硬化型粉体塗料A1の製造例において、分級条件を代
えて表1に記載の粒度をもつ粉体塗料を得た。
Thermosetting Powder Coatings A5, A6 Powder coatings having the particle sizes shown in Table 1 were obtained by changing the classification conditions in the production examples of the thermosetting powder coatings A1.

【0040】熱硬化型粉体塗料B1 グリシジル基含有アクリル系樹脂(グリシジルメタクリ
レ−ト/スチレン/メチルメタクリレ−ト/n−ブチル
アクリレ−ト=40/10/20/30“重量比”平均
分子量8000、軟化点85℃)800重量部、ドデカ
ン二酸200重量部及び二酸化チタン顔料を80重量部
配合したものを2軸エクストル−ダ−で溶融混練した
後、冷却、粉砕、分級して粉体塗料B1を製造した。粉
体塗料A1は、130℃での溶融粘度は約4Pa・s、
粒子径約5〜25μmのものが96%<、表面張力28
dyne/cmであった。
Thermosetting powder coating material B1 Glycidyl group-containing acrylic resin (glycidyl methacrylate / styrene / methyl methacrylate / n-butyl acrylate = 40/10/20/30 "weight ratio" average molecular weight 8000, softening point 85 ° C) 800 parts by weight, 200 parts by weight of dodecanedioic acid and 80 parts by weight of titanium dioxide pigment are melt-kneaded with a twin-screw extruder, and then cooled, pulverized and classified to obtain a powder. Paint B1 was produced. The powder coating A1 has a melt viscosity at 130 ° C. of about 4 Pa · s,
96% <with a particle size of about 5 to 25 μm, surface tension 28
dyne / cm.

【0041】熱硬化型粉体塗料B2〜B4 熱硬化型粉体塗料B1の製造例において、二酸化チタン
顔料の配合量を0部、500部、1000部とした以外
は塗料A1と同様にして製造して順次粉体塗料B2、B
3、B4を得た。
Thermosetting Powder Coatings B2 to B4 Manufacture in the same manner as for coating A1 except that the blending amount of titanium dioxide pigment was changed to 0, 500 and 1000 parts in the production example of thermosetting powder coating B1. And then sequentially paint B2, B
3. B4 was obtained.

【0042】熱硬化型粉体塗料B5 粉体塗料として、水酸基含有フッ素樹脂(テトラフルオ
ロエチレン/ヒドロキシブチルビニルエーテル/シクロ
ヘキシルビニルエーテル=40/30/30重量比)/
ε−カプロラクタム変性イソホロンジイソシアネート=
80/20重量比のものを使用した。
Thermosetting Powder Coating B5 As a powder coating, a hydroxyl group-containing fluororesin (tetrafluoroethylene / hydroxybutyl vinyl ether / cyclohexyl vinyl ether = 40/30/30 weight ratio) /
ε-caprolactam-modified isophorone diisocyanate =
An 80/20 weight ratio was used.

【0043】上記の粉体塗料を使用して表1の如く組み
合わせて塗料を製造した。
Using the above powder coatings, coatings were prepared in combination as shown in Table 1.

【0044】実施例1〜9及び比較例1〜2の塗膜性能
試験結果を表1に示す。
Table 1 shows the coating film performance test results of Examples 1 to 9 and Comparative Examples 1 and 2.

【0045】[0045]

【表1】 [Table 1]

【0046】表1において試験は次の様にして行った。In Table 1, the test was performed as follows.

【0047】塗膜性能試験 塗装板Aの調整:燐酸亜鉛処理した鋼板に焼き付け膜厚
が約40μmになるように粉体塗料Aを静電粉体塗装
し、次いでこのものの表面から粉体塗料Bを静電粉体塗
装し180℃で30分間焼付けを行った。
Test of coating film performance Adjustment of coated plate A: Powder coating A was electrostatically powder-coated on a zinc phosphate-treated steel sheet so that the baked film thickness was about 40 μm. Was subjected to electrostatic powder coating and baked at 180 ° C. for 30 minutes.

【0048】塗装板Bの調整:燐酸亜鉛処理した鋼板に
焼き付け膜厚が約40μmになるように粉体塗料Aを静
電粉体塗装し、次いで100℃で5分間予備加熱した
後、室温に冷却し、続いてこのものの表面から粉体塗料
Bを静電粉体塗装し180℃で30分間焼付けを行っ
た。
Preparation of coated plate B: Powder coating A was electrostatically powder-coated on a zinc phosphate-treated steel plate so that the baked film thickness was about 40 μm, then pre-heated at 100 ° C. for 5 minutes, and then cooled to room temperature. After cooling, the powder coating material B was electrostatically powder-coated from the surface thereof and baked at 180 ° C. for 30 minutes.

【0049】塗装板Cの調整:燐酸亜鉛処理した鋼板に
焼き付け膜厚が約40μmになるように粉体塗料Aを静
電粉体塗装し、次いで180℃で30分間加熱硬化させ
た後、室温に冷却し、続いてこのものの表面から粉体塗
料Bを静電粉体塗装し180℃で30分間焼付けを行っ
た。
Preparation of coated plate C: A powder coating A was electrostatically powder-coated on a zinc phosphate-treated steel plate so as to have a baked film thickness of about 40 μm, and then was cured by heating at 180 ° C. for 30 minutes and then at room temperature. Then, the powder coating material B was electrostatically powder-coated from the surface thereof and baked at 180 ° C. for 30 minutes.

【0050】塗装板Dの調整:燐酸亜鉛処理した鋼板の
一部に焼き付け膜厚が約40μmになるように粉体塗料
Aを静電粉体塗装し、次いで100℃で5分間予備加熱
した後、室温に冷却し、続いてエポキシ樹脂系カチオン
電着塗料(エレクロン9600グレー、関西ペイント
(株)社製、商品名)をカチオン電着塗装して20μm
電着塗膜を形成し、140℃で30分間焼き付けた後、
冷却後、このものの表面から粉体塗料Bを静電粉体塗装
し180℃で30分間焼付けを行った。
Preparation of coated plate D: A powder coating A was electrostatically powder-coated on a part of the steel plate treated with zinc phosphate to a baked film thickness of about 40 μm, and then preheated at 100 ° C. for 5 minutes. After cooling to room temperature, an epoxy resin-based cationic electrodeposition paint (Electron 9600 gray, manufactured by Kansai Paint Co., Ltd., trade name) was applied by cationic electrodeposition to 20 μm.
After forming an electrodeposition coating and baking at 140 ° C for 30 minutes,
After cooling, the powder coating B was electrostatically powder-coated from the surface of the coating and baked at 180 ° C. for 30 minutes.

【0051】塗装板Eの調整:燐酸亜鉛処理した鋼板に
粉体塗料A又はBを静電粉体塗装し180℃で30分間
焼付けを行った。
Preparation of coated plate E: A powder coating A or B was applied to a zinc phosphate treated steel plate by electrostatic powder coating and baked at 180 ° C. for 30 minutes.

【0052】表1において塗膜の仕上がり性及び塗膜性
能は下記の方法で試験した。
In Table 1, the finish of the coating film and the coating film performance were tested by the following methods.

【0053】塗膜外観:塗膜表面を目視で観察し評価し
た。◎は平滑性、チヂミ等の異常が全くないもの、○は
平滑性、チヂミ等が若干劣るもの、△は平滑性、チヂミ
等の異常が認められるもの、×は平滑性、チヂミ等の異
常が著しく認められるもの。
Coating appearance: The coating surface was visually observed and evaluated. ◎ indicates that there is no abnormality such as smoothness, shrinkage, etc., ○ indicates that the smoothness, shrinkage, etc. are slightly inferior, Δ indicates that abnormality such as smoothness, shrinkage, etc. is recognized, and X indicates that abnormality such as smoothness, shrinkage, etc. is observed. Significantly recognized.

【0054】鏡面反射率:JIS K−5400の60
度の鏡面光沢度を測定した。
Specular reflectance: 60 according to JIS K-5400
The degree of specular gloss was measured.

【0055】促進耐候性:サンシャインウエザオメータ
ーを用いて、500時間試験後の光沢保持率を調べた。
塗膜外観(◎は初期と比較してほとんど変化がなく良好
なもの、○は初期と比較して若干ツヤボケが認められる
もの、△初期と比較してツヤボケが認められるもの、×
初期と比較してツヤボケが著しいもの)、光沢保持率
[(試験後の光沢(60度)/初期の光沢(60度))
×100] 防食性:塗板を150×70mmに切断し、塗膜を素地に
達するようにクロスカットした後、塩水噴霧試験装置に
入れる。3週間後に試料を取り出し、カット部からの片
側の錆発生巾を測定した。◎は0〜1mm未満、○は1〜
2mm未満、△は2〜6mm未満、×は6mm以上のものを示
す。
Accelerated weather resistance: Using a sunshine weatherometer, the gloss retention after the test for 500 hours was examined.
Appearance of coating film (◎ is good with little change compared to the initial stage, ○ is slightly glossy compared to the initial stage, Δ is glossy compared to the initial stage, ×
Glossiness is remarkable compared to the initial stage), gloss retention
[(Gloss after test (60 degrees) / initial gloss (60 degrees))
× 100] Anticorrosion: The coated plate was cut into 150 × 70 mm, and the coated film was cross-cut so as to reach the substrate, and then placed in a salt spray test apparatus. Three weeks later, the sample was taken out, and the rust generation width on one side from the cut portion was measured. ◎ indicates 0 to less than 1 mm, ○ indicates 1 to
Less than 2 mm, Δ indicates less than 2 to 6 mm, and X indicates 6 mm or more.

【0056】[0056]

【発明の効果】 本発明によれば、上記した構成を有す
ることから仕上がり性、性能に優れた複層粉体塗膜を形
成することができる。
According to the present invention, it is possible to form a multilayer powder coating film having excellent finishability and performance due to having the above-described configuration.

フロントページの続き (51)Int.Cl.6 識別記号 FI C09D 163/00 C09D 163/00 Continued on the front page (51) Int.Cl. 6 Identification code FI C09D 163/00 C09D 163/00

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 基材に下塗り粉体塗料を塗装し、次いで
得られた下塗り粉体塗膜を加熱したのちもしくは加熱を
おこなわないで、該塗膜表面に上塗り粉体塗料を塗装
し、次いで加熱することを特徴とする複層粉体塗膜の形
成方法。
An undercoat powder coating is applied to a substrate, and after heating the obtained undercoat powder coating or without heating, an overcoat powder coating is applied to the coating film surface, A method for forming a multilayer powder coating film, comprising heating.
【請求項2】 基材が金属であることを特徴とする請求
項1に記載の複層粉体塗膜の形成方法。
2. The method according to claim 1, wherein the substrate is a metal.
【請求項3】 基材が電着塗膜であることを特徴とする
請求項1に記載の複層粉体塗膜の形成方法。
3. The method according to claim 1, wherein the substrate is an electrodeposition coating film.
【請求項4】 基材が車両もしくはその部品であること
を特徴とする請求項1に記載の複層粉体塗膜の形成方
法。
4. The method according to claim 1, wherein the substrate is a vehicle or a part thereof.
【請求項5】 下塗り粉体塗料が、上塗り粉体塗料と実
質的に相溶性がないことを特徴とする請求項1に記載の
複層粉体塗膜の形成方法。
5. The method according to claim 1, wherein the undercoat powder coating is substantially incompatible with the overcoat powder coating.
【請求項6】 下塗り粉体塗料が、上塗り粉体塗料と同
等もしくは上塗り粉体塗料よりも表面張力が大きいこと
を特徴とする請求項1に記載の複層粉体塗膜の形成方
法。
6. The method according to claim 1, wherein the undercoat powder coating has a surface tension equal to or higher than that of the overcoat powder coating.
【請求項7】 下塗り粉体塗料が、熱硬化型エポキシ樹
脂系粉体塗料であることを特徴とする請求項1に記載の
複層粉体塗膜の形成方法。
7. The method according to claim 1, wherein the undercoat powder coating is a thermosetting epoxy resin powder coating.
【請求項8】 上塗り粉体塗料が、熱硬化型アクリル樹
脂系粉体塗料、熱硬化型ポリエステル樹脂系粉体塗料及
び熱硬化型フッ素樹脂系粉体塗料から選ばれる少なくと
も1種の熱硬化型粉体塗料であることを特徴とする請求
項1に記載の複層粉体塗膜の形成方法。
8. The thermosetting acrylic resin-based powder coating, the thermosetting polyester resin-based powder coating, and the thermosetting fluororesin-based powder coating, wherein the top-coating powder coating is at least one thermosetting type. The method for forming a multilayer powder coating film according to claim 1, wherein the method is a powder coating.
【請求項9】 下塗り粉体塗料が、上塗り粉体塗料と同
等もしくは上塗り粉体塗料よりも軟化温度が高いことを
特徴とする請求項1に記載の複層粉体塗膜の形成方法。
9. The method according to claim 1, wherein the undercoat powder coating has a softening temperature equal to or higher than that of the topcoat powder coating.
【請求項10】 下塗り粉体塗料又は上塗り粉体塗料
が、それぞれ粒子径45μm以下の粒子の占める割合が
90重量%以上であることを特徴とする請求項1に記載
の複層粉体塗膜の形成方法。
10. The multilayer powder coating film according to claim 1, wherein the proportion of particles having a particle diameter of 45 μm or less in the undercoat powder coating or the top coating powder coating is 90% by weight or more. Formation method.
【請求項11】 下塗り粉体塗料がオニウム塩化合物を
含むことを特徴とする請求項1に記載の複層粉体塗膜の
形成方法。
11. The method according to claim 1, wherein the undercoat powder coating contains an onium salt compound.
【請求項12】 基材に下塗り熱硬化型粉体塗料を塗装
し、次いで得られた下塗り熱硬化型粉体塗料を焼き付け
を行って未硬化粉体塗膜を形成し、次いで未塗着塗装部
分にカチオン電着塗料を塗装して電着塗膜を形成し、続
いて未硬化粉体塗膜表面又は未硬化粉体塗膜表面及び電
着塗膜表面に上塗り粉体塗料を塗装することを特徴とす
る複層粉体塗膜の形成方法。
12. An undercoat thermosetting powder coating is applied to a base material, and then the obtained undercoat thermosetting powder coating is baked to form an uncured powder coating, and then uncoated coating Apply a cationic electrodeposition coating to the part to form an electrodeposition coating, and then apply a top coating powder coating on the uncured powder coating surface or the uncured powder coating surface and the electrodeposition coating surface A method for forming a multilayer powder coating film, characterized by the following.
JP11449998A 1998-04-24 1998-04-24 Method for forming multilayer powder coating film Pending JPH11300271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11449998A JPH11300271A (en) 1998-04-24 1998-04-24 Method for forming multilayer powder coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11449998A JPH11300271A (en) 1998-04-24 1998-04-24 Method for forming multilayer powder coating film

Publications (1)

Publication Number Publication Date
JPH11300271A true JPH11300271A (en) 1999-11-02

Family

ID=14639292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11449998A Pending JPH11300271A (en) 1998-04-24 1998-04-24 Method for forming multilayer powder coating film

Country Status (1)

Country Link
JP (1) JPH11300271A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361170A (en) * 2001-04-02 2002-12-17 Nippon Paint Co Ltd Method for forming multilayer coating film excellent in stain resistance
JP2003165951A (en) * 2001-11-29 2003-06-10 Nippon Paint Co Ltd Powder coating material composition having excellent resistance to staining and coating film-forming method using the same
JP2003211083A (en) * 2002-01-25 2003-07-29 Dainippon Toryo Co Ltd Deposition method for double-layered coating film by powder coating material
KR20040065939A (en) * 2003-01-16 2004-07-23 건설화학공업주식회사 Composite of Multi Colour Dot-Patterned Powder Coatings
JP2006169331A (en) * 2004-12-15 2006-06-29 Nissan Motor Co Ltd Undercoat coating composition and undercoat coating film
JP2008521604A (en) * 2004-12-04 2008-06-26 ビー・エイ・エス・エフ、コーポレーション Primerless integrated multilayer coating
JP2008155212A (en) * 2001-04-02 2008-07-10 Nippon Paint Co Ltd Method for forming double-layered coating film with excellent stain resistance
US7550176B2 (en) 2002-12-20 2009-06-23 Kansai Paint Co., Ltd. Method of forming coating film on aluminum substrate
JP2011510147A (en) * 2008-01-25 2011-03-31 アクゾ ノーベル コーティングス インターナショナル ビー ヴィ Powder coating composition having a primer substantially free of zinc
CN103571294A (en) * 2013-11-25 2014-02-12 漳州鑫展旺化工有限公司 Pollution-free environment-friendly corrugated paint and preparation method thereof
JP2016010740A (en) * 2014-06-27 2016-01-21 日本ペイント・インダストリアルコ−ティングス株式会社 Method of forming multi-layer coating film
JP2016516119A (en) * 2013-04-10 2016-06-02 ヴァルスパー・ソーシング・インコーポレーテッド Sour gas resistant coating
US9751107B2 (en) 2012-03-21 2017-09-05 Valspar Sourcing, Inc. Two-coat single cure powder coating
WO2018021384A1 (en) * 2016-07-26 2018-02-01 旭硝子株式会社 Method for producing coated article
US10280314B2 (en) 2012-03-21 2019-05-07 The Sherwin-Williams Company Application package for powder coatings
JP2020099904A (en) * 2012-03-21 2020-07-02 ヴァルスパー・ソーシング・インコーポレーテッド Double coating single cured powder coating
WO2022246120A1 (en) * 2021-05-19 2022-11-24 Swimc Llc Methods of coating metal substrates and making metal packaging, coated metal substrates, metal packaging, and powder coating composition systems
US11834585B2 (en) 2019-11-14 2023-12-05 Swimc Llc Metal packaging powder coating compositions, coated metal substrates, and methods

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361170A (en) * 2001-04-02 2002-12-17 Nippon Paint Co Ltd Method for forming multilayer coating film excellent in stain resistance
JP2008155212A (en) * 2001-04-02 2008-07-10 Nippon Paint Co Ltd Method for forming double-layered coating film with excellent stain resistance
JP2003165951A (en) * 2001-11-29 2003-06-10 Nippon Paint Co Ltd Powder coating material composition having excellent resistance to staining and coating film-forming method using the same
JP2003211083A (en) * 2002-01-25 2003-07-29 Dainippon Toryo Co Ltd Deposition method for double-layered coating film by powder coating material
US7550176B2 (en) 2002-12-20 2009-06-23 Kansai Paint Co., Ltd. Method of forming coating film on aluminum substrate
KR20040065939A (en) * 2003-01-16 2004-07-23 건설화학공업주식회사 Composite of Multi Colour Dot-Patterned Powder Coatings
JP2008521604A (en) * 2004-12-04 2008-06-26 ビー・エイ・エス・エフ、コーポレーション Primerless integrated multilayer coating
JP2006169331A (en) * 2004-12-15 2006-06-29 Nissan Motor Co Ltd Undercoat coating composition and undercoat coating film
JP4674793B2 (en) * 2004-12-15 2011-04-20 日産自動車株式会社 Undercoat paint composition and undercoat coating film
JP2011510147A (en) * 2008-01-25 2011-03-31 アクゾ ノーベル コーティングス インターナショナル ビー ヴィ Powder coating composition having a primer substantially free of zinc
US11098202B2 (en) 2012-03-21 2021-08-24 The Sherwin-Williams Company Two-coat single cure powder coating
US11904355B2 (en) 2012-03-21 2024-02-20 The Sherwin-Williams Company Two-coat single cure powder coating
US10940505B2 (en) 2012-03-21 2021-03-09 The Sherwin-Williams Company Two-coat single cure powder coating
EP2828418B1 (en) 2012-03-21 2022-03-09 Swimc Llc Two-coat single cure powder coating
US9751107B2 (en) 2012-03-21 2017-09-05 Valspar Sourcing, Inc. Two-coat single cure powder coating
US12064789B2 (en) 2012-03-21 2024-08-20 The Sherwin-Williams Company Two-coat single cure powder coating
JP2020099904A (en) * 2012-03-21 2020-07-02 ヴァルスパー・ソーシング・インコーポレーテッド Double coating single cured powder coating
US11925957B2 (en) 2012-03-21 2024-03-12 The Sherwin-Williams Company Two-coat single cure powder coating
US10280314B2 (en) 2012-03-21 2019-05-07 The Sherwin-Williams Company Application package for powder coatings
JP2019056119A (en) * 2013-04-10 2019-04-11 ヴァルスパー・ソーシング・インコーポレーテッド Sour gas resistant coating
JP2016516119A (en) * 2013-04-10 2016-06-02 ヴァルスパー・ソーシング・インコーポレーテッド Sour gas resistant coating
CN103571294A (en) * 2013-11-25 2014-02-12 漳州鑫展旺化工有限公司 Pollution-free environment-friendly corrugated paint and preparation method thereof
CN103571294B (en) * 2013-11-25 2016-04-13 漳州鑫展旺化工有限公司 Pollution-free environmental protection wrinkle varnish and preparation method thereof
JP2016010740A (en) * 2014-06-27 2016-01-21 日本ペイント・インダストリアルコ−ティングス株式会社 Method of forming multi-layer coating film
CN109496167A (en) * 2016-07-26 2019-03-19 Agc株式会社 The manufacturing method of coated article
CN109496167B (en) * 2016-07-26 2021-09-10 Agc株式会社 Method for producing coated article
US11135615B2 (en) 2016-07-26 2021-10-05 AGC Inc. Process for producing coated article
EP3492182A4 (en) * 2016-07-26 2020-07-22 Agc Inc. Method for producing coated article
US20190193112A1 (en) * 2016-07-26 2019-06-27 AGC Inc. Process for producing coated article
JPWO2018021384A1 (en) * 2016-07-26 2019-05-16 Agc株式会社 Method of manufacturing painted articles
WO2018021384A1 (en) * 2016-07-26 2018-02-01 旭硝子株式会社 Method for producing coated article
US11834585B2 (en) 2019-11-14 2023-12-05 Swimc Llc Metal packaging powder coating compositions, coated metal substrates, and methods
WO2022246120A1 (en) * 2021-05-19 2022-11-24 Swimc Llc Methods of coating metal substrates and making metal packaging, coated metal substrates, metal packaging, and powder coating composition systems

Similar Documents

Publication Publication Date Title
JPH11300271A (en) Method for forming multilayer powder coating film
JP5148480B2 (en) Method for forming glittering multilayer coating film
US7399533B2 (en) Polyvinylidene fluoride coating for metal substrates
JP6567783B1 (en) Powder coating composition and coating film forming method
JP2003532778A (en) Conductive organic paint
US5824424A (en) Cationic electrodepositable coating composition and coating method using the same
JP6527469B2 (en) Ultra low curing powder coating
JPH06293867A (en) Matte powdery coating composition, method for coating and film made therefrom
JP2006219731A (en) Coating material composition for rear surface of precoated metal and precoated metal obtained by using the same
US6426147B1 (en) Substrate having a multilayer coat and method for its production
JP2007283271A (en) Method for forming multilayer coating film
JPH10324824A (en) Thermosetting double-layer powder coating material and method for forming coating film therefrom
JPH06254482A (en) Printing method
JPH11207252A (en) Multiple-layer coating
US6624229B1 (en) Powder paints and the use thereof for producing low-noise powder paint coatings
US6770694B2 (en) Powder coating composition for forming multilayer film
JP5476831B2 (en) Electrodeposition coating film forming method and multilayer coating film forming method
JP2001152083A (en) Thermosetting epoxy powder coating for metal tube and coated metal tube using the same
WO1999007795A1 (en) Powder coating composition for forming multilayer film
JPH09206663A (en) Coating method
JP2003026989A (en) Thermosetting powder coating composition
JP2002194273A (en) Powder primer for aluminum wheel
JP2002138246A (en) Powder primer for aluminum foil
JP2016010740A (en) Method of forming multi-layer coating film
JP2883699B2 (en) Waterborne intermediate coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016