JPH11298443A - Radio receiver - Google Patents

Radio receiver

Info

Publication number
JPH11298443A
JPH11298443A JP10101464A JP10146498A JPH11298443A JP H11298443 A JPH11298443 A JP H11298443A JP 10101464 A JP10101464 A JP 10101464A JP 10146498 A JP10146498 A JP 10146498A JP H11298443 A JPH11298443 A JP H11298443A
Authority
JP
Japan
Prior art keywords
signal
transmission rate
rate
received
correlation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10101464A
Other languages
Japanese (ja)
Inventor
Toyoki Kami
豊樹 上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10101464A priority Critical patent/JPH11298443A/en
Publication of JPH11298443A publication Critical patent/JPH11298443A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To quickly and also surely determine a transmission rate, also to reduce a circuit scale and to increase the number of storable uses by performing maximum ratio synthesis (RAKE synthesis) of a received signal of plural paths and determining a transmission rate by using a signal after the synthesis. SOLUTION: A received signal of plural paths is inputted to an inverse spreading means 101 and a wide baseband signal is converted into an original narrow band signal. A channel estimating means 102 performs channel estimation by using a pilot symbol that is currently received and pilot symbols received in the past. A rake synthesizing means 103 synthesizes a desired signal which is temporally separated according to a spread code from outputs of the means 101 and of the means 102 and converts it into one signal. A rate decision means 104 determines the transmission rate of a received signal by using an output signal of the means 103.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、CDMA(Cod
e Division Multiple Acces
s)方式に適用可能な無線受信装置に関する。
The present invention relates to CDMA (Cod)
e Division Multiple Accesses
s) The present invention relates to a wireless receiver applicable to the system.

【0002】[0002]

【従来の技術】従来の無線受信装置の可変レート伝送に
おける伝送レートの判定は、各アンテナブランチの各パ
スの受信信号を最大比合成(RAKE合成)する前段階
でレート判定に用いる尤度関数を計算し、それぞれ得ら
れた値の二乗値を加算(電力加算)することにより尤度
の信頼性を高めている。この従来の無線受信装置の伝送
レート判定方法について、図面を参照して説明する。
2. Description of the Related Art A conventional radio receiving apparatus determines a transmission rate in variable rate transmission by using a likelihood function used for rate determination before a maximum ratio combining (RAKE combining) of received signals of each path of each antenna branch. The reliability of the likelihood is increased by adding (power addition) the square values of the calculated values and the obtained values. This conventional method of determining the transmission rate of a wireless receiver will be described with reference to the drawings.

【0003】図2は、従来の無線受信装置の全体構成を
示すブロック図である。従来の無線受信装置は、アンテ
ナ200が空間から取り込んだ無線信号を電気信号に変
換し、逆拡散手段201が周波数軸上で拡散された広帯
域ベースバンド信号を元の狭帯域信号に変換する。この
逆拡散手段201の出力に対して繰り返しシンボル加算
手段202が複数回連続送信された同一のデータシンボ
ルを加算して一つのデータシンボルに変換する。
FIG. 2 is a block diagram showing an overall configuration of a conventional radio receiving apparatus. In the conventional radio receiving apparatus, a radio signal taken from space by an antenna 200 is converted into an electric signal, and a despreading means 201 converts a wideband baseband signal spread on a frequency axis into an original narrowband signal. To the output of the despreading means 201, the repetitive symbol adding means 202 adds the same data symbol transmitted continuously plural times and converts it into one data symbol.

【0004】繰り返しシンボル加算手段202の出力に
対し、RAKE合成手段203が拡散コードにより時間
的に分離した所望信号を合成し一つの信号に変換する。
QPSK復調手段204は、QPSK変調された並列デ
ータ(シンボル)を直列データ(ビット)に変換し、復号手
段205が符号化されているデータビットを符号化前の
信号に変換し、受信データを得る。
The output of the repetitive symbol adding means 202 is combined with a desired signal temporally separated by a spreading code by a RAKE combining means 203 and converted into one signal.
The QPSK demodulation unit 204 converts the QPSK-modulated parallel data (symbol) into serial data (bits), and the decoding unit 205 converts the coded data bits into a signal before coding to obtain received data. .

【0005】また、レート判定手段206は、送信され
た信号の伝送レートを受信信号から推定し判定する。チ
ャネル推定手段207は、あらかじめ定められた信号を
受信し、伝搬路の特性を推定する。
[0005] Rate determining means 206 estimates and determines the transmission rate of the transmitted signal from the received signal. Channel estimating means 207 receives a predetermined signal and estimates the characteristics of the propagation path.

【0006】図3は、レート判定手段206において、
可変レート伝送のスロット構成を示す図である。図3
(a)は、フルレート時のスロット構成を示し、図3
(b)、(c)は、それぞれ、1/2レート時、1/4
レート時のスロット構成を示している。送信側では、パ
イロットシンボル1、11、21を除く送信電力制御信
号2、12、22及び送信データ3、13、23を繰り
返し伝送する。設定可能な伝送レートのうち最高伝送レ
ート(フルレート)を用いる場合には、図3(a)に示
すように、シンボルは2度繰り返され、1/2レート及
び1/4レート時にはそれぞれ4度及び8度繰り返し伝
送される。ここで、繰り返しシンボルのうち後半部分に
関しては、反転させたシンボルが伝送される。
FIG. 3 shows that the rate determining means 206
FIG. 3 is a diagram illustrating a slot configuration of variable rate transmission. FIG.
FIG. 3A shows a slot configuration at a full rate, and FIG.
(B) and (c) are 1/4 at 1/2 rate, respectively.
The slot configuration at the time of rate is shown. On the transmitting side, transmission power control signals 2, 12, and 22 and transmission data 3, 13, and 23 excluding pilot symbols 1, 11, and 21 are repeatedly transmitted. When the highest transmission rate (full rate) among the settable transmission rates is used, as shown in FIG. 3A, the symbol is repeated twice, and at the 1/2 rate and the 1/4 rate, the symbol is repeated 4 times and It is repeatedly transmitted eight times. Here, an inverted symbol is transmitted for the latter half of the repetition symbol.

【0007】無線受信装置では、逆拡散処理を行った
後、受信信号の伝送レート判定をするため、パイロット
シンボルを除くシンボルに対し、相関・二乗演算手段
6、16、26において、相関・二乗演算を行う。例え
ば、相関・二乗演算手段6については、まず相関器4を
用いて2シンボル相関をとり、次に二乗演算手段5を用
いて二乗演算を行う。相関・二乗演算手段16、26も
同様である。
In the radio receiving apparatus, after performing the despreading processing, the correlation / square calculation means 6, 16, 26 performs correlation / square calculation on symbols other than pilot symbols in order to determine the transmission rate of the received signal. I do. For example, the correlation / square operation means 6 first performs two-symbol correlation using the correlator 4 and then performs the square operation using the square operation means 5. The same applies to the correlation / square calculation means 16 and 26.

【0008】ここで、2シンボル相関においては受信信
号と(1、−1)との相関を計算する。得られた二乗値
(尤度関数)は、スロット内で得られた分だけ加算器7
により累積加算される。
Here, in the two-symbol correlation, the correlation between the received signal and (1, -1) is calculated. The obtained square value (likelihood function) is added to the adder 7 by the amount obtained in the slot.
Are cumulatively added.

【0009】同様に4シンボル、8シンボルに対しても
相関手段14、24及び二乗演算手段15、25を行
い、加算器17、27により累積加算する。ここで、4
シンボル相関においては受信信号と(1、1、−1、−
1)、8シンボル相関においては受信信号と(1、1、
1、1、−1、−1、−1、−1)との相関を計算す
る。
Similarly, correlation means 14 and 24 and squaring means 15 and 25 are performed on 4 and 8 symbols, and adders 17 and 27 perform cumulative addition. Where 4
In the symbol correlation, the received signal and (1, 1, −1, −
1), the received signal and (1, 1,.
1, 1, -1, -1, -1, -1) are calculated.

【0010】受信信号と相関をとるこれら3つの符号系
列は互いに直交しているため、繰り返しシンボル数とは
異なる符号系列長に対する相関値は0となる。また正し
い符号系列長に対する相関値は1となる。これらの相関
・二乗・加算操作は受信機の各アンテナブランチ及び各
フィンガで行われ、尤度関数の信頼性を高めることを目
的としてそれぞれ累積加算される。さらに信頼性を高め
るため複数スロット分を累積加算する。
[0010] Since these three code sequences correlated with the received signal are orthogonal to each other, the correlation value for a code sequence length different from the number of repetition symbols is zero. The correlation value for the correct code sequence length is 1. These correlation, square, and addition operations are performed at each antenna branch and each finger of the receiver, and are cumulatively added for the purpose of increasing the reliability of the likelihood function. In order to further increase the reliability, cumulative addition for a plurality of slots is performed.

【0011】最終的に得られた尤度のうち最大値を与え
る符号系列長に相当する伝送レートを受信信号の伝送レ
ートとして、繰り返しシンボル加算手段202が加算を
行う。そして、パイロットシンボルを用いてチャネル推
定手段207がチャネル推定を行った後、RAKE合成
手段203がRAKE合成を、QPSK復調手段204
がQPSK復調を、そして復号手段205が復調を行
う。
[0011] The repetition symbol addition means 202 adds the transmission rate corresponding to the code sequence length giving the maximum value among the finally obtained likelihoods as the transmission rate of the received signal. Then, after channel estimation means 207 performs channel estimation using pilot symbols, RAKE combining means 203 performs RAKE combining and QPSK demodulating means 204
Perform QPSK demodulation, and the decoding means 205 performs demodulation.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、上記従
来の無線受信装置では、十分な精度で伝送レートの判定
を行うには、多くのスロットに渡って累積加算しなくて
はならず、伝送レートが判定されるまでの処理時間が長
くなる。その結果、伝送レート判定が行われるまでの
間、伝送レートが最大であるとみなしてデータを蓄積し
ておかなければならないため、必要なメモリが大きくな
る等、回路規模が大型化してしまうという問題点があ
る。
However, in the above-mentioned conventional radio receiving apparatus, in order to determine the transmission rate with sufficient accuracy, cumulative addition must be performed over many slots. The processing time until the determination is made longer. As a result, until the transmission rate is determined, the transmission rate must be considered to be the maximum and the data must be stored, so that the required memory becomes large and the circuit scale becomes large. There is a point.

【0013】また、伝送レートが不明である間は送信電
力制御を行うことができないため、送信電力制御の伝搬
路変動への追従性が悪くなり、結果として容量増大を望
むことができず、収容可能なユーザ数の増加を図ること
ができなくなるという問題点がある。
Further, since transmission power control cannot be performed while the transmission rate is unknown, the ability of the transmission power control to follow the propagation path fluctuations deteriorates. There is a problem that the number of possible users cannot be increased.

【0014】本発明は、上記のような問題点に鑑みてな
されたものであり、伝送レートの判定を迅速かつ確実に
行うと共に、回路規模の縮小化と収容可能なユーザ数の
増加を図ることができる無線受信装置を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and aims to quickly and reliably determine a transmission rate, to reduce the circuit scale, and to increase the number of users that can be accommodated. It is an object of the present invention to provide a wireless receiving device capable of performing the following.

【0015】[0015]

【課題を解決するための手段】本発明者は、無線受信装
置において、最大比合成を行う前に伝送レートの判定を
行うことによる時間的ロスに着目し、複数パスの受信信
号を最大比合成した後の信号を用いて伝送レートの判定
を行うことにより、処理時間の短縮化を図ることができ
ることを見出し、本発明をするに至った。
The inventor of the present invention pays attention to the time loss caused by determining the transmission rate before performing the maximum ratio combining in the radio receiving apparatus, and combines the received signals of a plurality of paths with the maximum ratio combining. It has been found that by determining the transmission rate using the signal after the above, the processing time can be reduced, and the present invention has been made.

【0016】すなわち、本発明は、複数パスの受信信号
を最大比合成し、この合成後の信号を用いて伝送レート
の判定を行うことを特徴とする。
That is, the present invention is characterized in that the received signals of a plurality of paths are subjected to maximum ratio combining and the transmission rate is determined using the combined signals.

【0017】これにより、伝送レートの判定処理時間の
短縮化、回路規模の縮小化を図ることができる。
As a result, it is possible to shorten the processing time for determining the transmission rate and to reduce the circuit scale.

【0018】すなわち、本発明者は、上記の課題を解決
すると共に、送信電力制御における伝搬路変動への追従
性を向上させ、ひいては収容可能なユーザ数を増加させ
ることを可能とした。
That is, the present inventor has solved the above-mentioned problem, and has improved the ability to follow the propagation path fluctuation in the transmission power control, thereby increasing the number of users that can be accommodated.

【0019】[0019]

【発明の実施の形態】請求項1記載の無線受信装置の発
明は、複数パスの受信信号を最大比合成するRAKE合
成手段と、このRAKE合成手段の出力信号を用いて伝
送レートの判定を行うレート判定手段とを備える構成を
採る。また、請求項4記載の無線受信方法の発明は、複
数パスの受信信号を最大比合成し、この合成後の信号を
用いて伝送レートの判定を行う構成を採る。
1 is a block diagram showing a configuration of a radio receiving apparatus according to a first embodiment of the present invention; FIG. 2 is a block diagram showing a configuration of a radio receiving apparatus according to a first embodiment of the present invention; A configuration including a rate determination unit is adopted. Further, the invention of the wireless receiving method according to claim 4 employs a configuration in which received signals of a plurality of paths are subjected to maximum ratio combining and a transmission rate is determined using the combined signals.

【0020】これらの構成により、各アンテナブランチ
及び各フィンガを最大比合成した後に伝送レートの判定
を行うことができるため、十分なレート判定精度を得る
までに要する時間を短縮できる。また、従来のように各
パスごとに相関・二乗演算をする必要がなくなるため処
理時間の短縮化を図れるとともに、必要なメモリや相関
器等が少なくなり、回路規模を縮小化させることがで
き、製造コストの低下を図ることができる。さらに、従
来方式より短い時間でレート判定を行えるため、送信電
力制御が早く開始できる。特に、移動局装置の移動速度
が大きい場合等、伝搬路の変動に対する送信電力制御の
追従性を向上させることができ、収容可能なユーザ数を
増加させることが可能となる。
According to these configurations, since the transmission rate can be determined after the maximum ratio combining of each antenna branch and each finger, the time required for obtaining sufficient rate determination accuracy can be reduced. Also, unlike the conventional case, it is not necessary to perform the correlation / square operation for each path, so that the processing time can be reduced, and the required memory and correlator are reduced, and the circuit scale can be reduced. Manufacturing costs can be reduced. Further, since the rate determination can be performed in a shorter time than in the conventional method, the transmission power control can be started earlier. In particular, when the moving speed of the mobile station device is high, the ability of the transmission power control to follow the fluctuation of the propagation path can be improved, and the number of users that can be accommodated can be increased.

【0021】また、請求項2記載の移動局装置の発明
は、請求項1記載の無線受信装置を備える構成を採る。
また、請求項3記載の基地局装置の発明は、請求項1記
載の無線受信装置を備える構成を採る。
According to a second aspect of the present invention, there is provided a mobile station apparatus having a configuration including the wireless receiving apparatus according to the first aspect.
The invention of a base station device according to claim 3 employs a configuration including the wireless receiving device according to claim 1.

【0022】これらの構成により、各アンテナブランチ
及び各フィンガを最大比合成した後に伝送レートの判定
を行うことができるため、処理時間の短縮化を図ること
ができる。また、従来方式より短い時間でレート判定を
行えるため、送信電力制御が早く開始でき、伝搬路の変
動に対する送信電力制御の追従性が向上し、収容可能な
ユーザ数を増加させることが可能となる。
According to these configurations, since the transmission rate can be determined after the maximum ratio combining of each antenna branch and each finger, the processing time can be reduced. In addition, since the rate determination can be performed in a shorter time than in the conventional method, transmission power control can be started earlier, the follow-up of transmission power control with respect to fluctuations in the propagation path is improved, and the number of users that can be accommodated can be increased. .

【0023】以下、本発明の一実施の形態について図面
を参照して具体的に説明する。図1は、本発明の一実施
の形態に係るデータ受信装置の全体構成を示すブロック
図である。
Hereinafter, an embodiment of the present invention will be specifically described with reference to the drawings. FIG. 1 is a block diagram showing an overall configuration of a data receiving device according to one embodiment of the present invention.

【0024】図示しない無線送信装置側では、従来の無
線送信装置と同様に、パイロットシンボルを除く送信電
力制御信号及びデータを繰り返し伝送する。
[0024] The radio transmission apparatus (not shown) repeatedly transmits a transmission power control signal and data excluding pilot symbols, similarly to the conventional radio transmission apparatus.

【0025】一方、無線受信装置側では、アンテナ10
0で空間から取得した無線信号を電気信号に変換し、こ
のアンテナ100の出力に対し逆拡散手段101が逆拡
散処理、すなわち、周波数軸上で拡散された広帯域ベー
スバンド信号を元の狭帯域信号に変換する。チャネル推
定手段102は、現在受信したパイロットシンボル及び
過去に受信したパイロットシンボルを用いてチャネル推
定を行う。RAKE合成手段103は、逆拡散手段10
1の出力とチャネル推定手段102の出力とから、拡散
コードにより時間的に分離した所望信号を合成し、一つ
の信号に変換する。
On the other hand, on the radio receiving apparatus side, the antenna 10
0, the radio signal obtained from the space is converted into an electric signal, and the output of the antenna 100 is subjected to despreading processing by the despreading means 101, that is, the wideband baseband signal spread on the frequency axis is converted into the original narrowband signal. Convert to Channel estimating means 102 performs channel estimation using currently received pilot symbols and previously received pilot symbols. The RAKE combining means 103 includes the despreading means 10
1 and the output of the channel estimating means 102, a desired signal temporally separated by a spreading code is synthesized and converted into one signal.

【0026】次に、レート判定手段104では、受信信
号の伝送レート判定をするため、パイロットシンボルを
除くシンボルに対し、図3に示した相関・二乗演算を行
う。例えば、相関・二乗演算手段6においては、まず相
関器4を用いて2シンボル相関をとり、次に二乗演算手
段5が二乗演算を行う。ここで、2シンボル相関におい
てはRAKE合成された受信信号と(1、−1)との相
関を計算する。
Next, in order to determine the transmission rate of the received signal, the rate determining means 104 performs the correlation / square operation shown in FIG. 3 on the symbols excluding the pilot symbols. For example, in the correlation / square operation means 6, first, a two-symbol correlation is obtained using the correlator 4, and then the square operation means 5 performs a square operation. Here, in the two-symbol correlation, the correlation between the RAKE-combined received signal and (1, -1) is calculated.

【0027】得られた二乗値(尤度関数)は、スロット
内で得られた分だけ加算器7により累積加算される。同
様に4シンボル、8シンボルに対しても相関器14、2
4及び二乗演算手段15、25がそれぞれ相関、二乗演
算を行い、加算器17、27がこれらを累積加算する。
ここで、4シンボル相関においては、受信信号と(1、
1、−1、−1)、8シンボル相関においては受信信号
と(1、1、1、1、−1、−1、−1、−1)との相
関を計算する。
The obtained square value (likelihood function) is cumulatively added by the adder 7 by the amount obtained in the slot. Similarly, for the 4 symbols and 8 symbols, the correlators 14, 2
Fourth and square calculation means 15 and 25 respectively perform correlation and square calculation, and adders 17 and 27 accumulate these.
Here, in the 4-symbol correlation, the received signal and (1,
In (1, -1, -1) and 8-symbol correlation, the correlation between the received signal and (1, 1, 1, 1, -1, -1, -1, -1, -1) is calculated.

【0028】これらの相関・二乗・加算操作は、各アン
テナブランチ及び各フィンガを最大比(RAKE)合成
した後に行っているため、良好な相関特性が得られ、結
果として良好な尤度関数が得られる。また、各アンテナ
ブブランチ、各フィンガにこれらの操作を行う必要がな
いため、相関器等の装置数を大幅に減少させることがで
き、装置全体の小型化を図ることが可能となる。
Since these correlation / square / addition operations are performed after the maximum ratio (RAKE) synthesis of each antenna branch and each finger, a good correlation characteristic is obtained, and as a result, a good likelihood function is obtained. Can be Further, since it is not necessary to perform these operations on each antenna branch and each finger, the number of devices such as correlators can be significantly reduced, and the size of the entire device can be reduced.

【0029】最終的に得られた尤度のうち、最大値を与
える符号系列長に相当する伝送レートを受信信号の伝送
レートとして、繰り返しシンボル加算手段105が繰り
返しシンボルの加算を行う。その後、QPSK復調手段
106がQPSK変調された並列データ(シンボル)を
直列データ(ビット)に変換し、復号手段207が符号
化されているデータビットを符号化前の信号に変換し、
受信データを得る。
Of the finally obtained likelihoods, the repetition symbol addition means 105 adds repetition symbols using the transmission rate corresponding to the code sequence length giving the maximum value as the transmission rate of the received signal. After that, the QPSK demodulation means 106 converts the parallel data (symbol) QPSK-modulated into serial data (bits), and the decoding means 207 converts the coded data bits into a signal before coding.
Get received data.

【0030】[0030]

【発明の効果】以上の説明から明らかなように、本発明
によれば、各アンテナブランチ及び各フィンガを最大比
合成した後に伝送レートの判定を行うことができるた
め、十分なレート判定精度を得るまでに要する時間を短
縮できる。また、従来のように各パスごとに相関・二乗
演算をする必要がなくなるため処理時間の短縮化を図れ
るとともに、必要なメモリや相関器等が少なくなり、回
路規模を縮小化させることができ、製造コストの低下を
図ることができる。さらに、従来方式より短い時間でレ
ート判定を行えるため、送信電力制御が早く開始でき
る。特に、移動局装置の移動速度が大きい場合等、伝搬
路の変動に対する送信電力制御の追従性を向上させるこ
とができ、収容可能なユーザ数を増加させることが可能
となる。
As is apparent from the above description, according to the present invention, since the transmission rate can be determined after the maximum ratio combining of each antenna branch and each finger, sufficient rate determination accuracy can be obtained. The time required for the process can be reduced. Also, unlike the conventional case, it is not necessary to perform the correlation / square operation for each path, so that the processing time can be reduced, and the required memory and correlator are reduced, and the circuit scale can be reduced. Manufacturing costs can be reduced. Further, since the rate determination can be performed in a shorter time than in the conventional method, the transmission power control can be started earlier. In particular, when the moving speed of the mobile station device is high, the ability of the transmission power control to follow the fluctuation of the propagation path can be improved, and the number of users that can be accommodated can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係る無線受信装置の全
体構成を示すブロック図
FIG. 1 is a block diagram showing an overall configuration of a wireless reception device according to an embodiment of the present invention.

【図2】従来の無線受信装置の全体構成を示すブロック
FIG. 2 is a block diagram showing an overall configuration of a conventional wireless receiving apparatus.

【図3】可変レート伝送のスロット構成及び伝送レート
判定に必要な機能ブロックを示す図
FIG. 3 is a diagram showing a slot configuration of variable rate transmission and functional blocks necessary for determining a transmission rate.

【符号の説明】[Explanation of symbols]

100 アンテナ 101 逆拡散手段 102 チャネル推定手段 103 RAKE合成手段 104 レート判定手段 105 繰り返しシンボル加算手段 106 QPSK復調手段 107 復号手段 REFERENCE SIGNS LIST 100 antenna 101 despreading means 102 channel estimating means 103 RAKE combining means 104 rate determining means 105 iterative symbol adding means 106 QPSK demodulating means 107 decoding means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数パスの受信信号を最大比合成するR
AKE合成手段と、このRAKE合成手段の出力信号を
用いて伝送レートの判定を行うレート判定手段とを備え
ることを特徴とする無線受信装置。
An R signal for maximum ratio combining of received signals of a plurality of paths.
A radio receiving apparatus comprising: AKE combining means; and rate determining means for determining a transmission rate using an output signal of the RAKE combining means.
【請求項2】 請求項1記載の無線受信装置を備える移
動局装置。
2. A mobile station device comprising the wireless receiving device according to claim 1.
【請求項3】 請求項1記載の無線受信装置を備える基
地局装置。
3. A base station device comprising the wireless receiving device according to claim 1.
【請求項4】 複数パスの受信信号を最大比合成し、こ
の合成後の信号を用いて伝送レートの判定を行うことを
特徴とする無線受信方法。
4. A radio receiving method comprising: combining received signals of a plurality of paths at a maximum ratio; and determining a transmission rate using the combined signal.
JP10101464A 1998-04-13 1998-04-13 Radio receiver Withdrawn JPH11298443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10101464A JPH11298443A (en) 1998-04-13 1998-04-13 Radio receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10101464A JPH11298443A (en) 1998-04-13 1998-04-13 Radio receiver

Publications (1)

Publication Number Publication Date
JPH11298443A true JPH11298443A (en) 1999-10-29

Family

ID=14301443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10101464A Withdrawn JPH11298443A (en) 1998-04-13 1998-04-13 Radio receiver

Country Status (1)

Country Link
JP (1) JPH11298443A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001054329A1 (en) * 2000-01-18 2001-07-26 Matsushita Electric Industrial Co., Ltd. Interference signal eliminating apparatus and method of eliminating interference signal
JP2007324704A (en) * 2006-05-30 2007-12-13 Kyoto Institute Of Technology Asynchronous code modulated signal receiver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001054329A1 (en) * 2000-01-18 2001-07-26 Matsushita Electric Industrial Co., Ltd. Interference signal eliminating apparatus and method of eliminating interference signal
JP2007324704A (en) * 2006-05-30 2007-12-13 Kyoto Institute Of Technology Asynchronous code modulated signal receiver

Similar Documents

Publication Publication Date Title
AU676973B2 (en) Decoder for a non-coherently demodulated signal
JP4369518B2 (en) Subscriber unit and method for use in a wireless communication system
US5768307A (en) Coherent demodulation with decision-directed channel estimation for digital communication
EP0916190B1 (en) Coherent signal processing for cdma communication system
US6680967B1 (en) Receiver
US6192040B1 (en) Method and apparatus for producing channel estimate of a communication channel in a CDMA communication system
JP2701761B2 (en) Transmission bit rate determination method and apparatus
KR100294173B1 (en) Apparatus and method for estimating coherent channels in communication systems
JP3003006B2 (en) Method and apparatus for signal demodulation and diversity combining of quadrature modulated signals
CN101119130A (en) Adaptive channel estimation in a wireless communication system
JP2004508766A (en) Method and apparatus for processing partial transfer format information
JP2001506096A (en) Phase-shift coded subchannel
US6587517B1 (en) Multi-stage receiver
CA2375031A1 (en) Radio communication apparatus and radio communication method
US6795508B1 (en) Method and apparatus for obtaining transmit diversity using switched antennas
US6295311B1 (en) Method and apparatus for compensating for phase differences in received signals
WO2002019577A1 (en) Rake receiver for cdma wireless communications
US6831956B1 (en) Wireless communications system with combining of multiple paths selected from sub-windows in response to the primary synchronization channel
US6829290B1 (en) Wireless communications system with combining of multiple paths selected from correlation to the primary synchronization channel
JP2661579B2 (en) Receiver
WO2002009304A1 (en) Interference estimation in a communications system
JPH11298443A (en) Radio receiver
JP2000278759A (en) Transmission timing controller
JP3290338B2 (en) Spatial diversity transceiver
WO2003005596A1 (en) Cdma reception apparatus and error correction code symbol soft decision method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050412

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060308