JPH11298213A - Semicoaxial resonator and semicoaxial resonator filter - Google Patents

Semicoaxial resonator and semicoaxial resonator filter

Info

Publication number
JPH11298213A
JPH11298213A JP11427898A JP11427898A JPH11298213A JP H11298213 A JPH11298213 A JP H11298213A JP 11427898 A JP11427898 A JP 11427898A JP 11427898 A JP11427898 A JP 11427898A JP H11298213 A JPH11298213 A JP H11298213A
Authority
JP
Japan
Prior art keywords
semi
coaxial resonator
length
inner conductor
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11427898A
Other languages
Japanese (ja)
Other versions
JP3014044B2 (en
Inventor
Hitoshi Izu
仁 伊豆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Fukushima Ltd
Original Assignee
NEC Fukushima Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Fukushima Ltd filed Critical NEC Fukushima Ltd
Priority to JP10114278A priority Critical patent/JP3014044B2/en
Publication of JPH11298213A publication Critical patent/JPH11298213A/en
Application granted granted Critical
Publication of JP3014044B2 publication Critical patent/JP3014044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Non-Reversible Transmitting Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semicoaxial resonator and a semicoaxial resonator filter with which a resonance frequency and a central frequency can be stably maintained even when a temperature change occurs, and the temperature characteristics of an entire device can be improved when the device is integrated into a microwave device. SOLUTION: A resonance stick consisting of an inner conductor is composed of two kinds of components 2a and 2b. The respective components 2a and 2b are selected so that linear expansion coefficients can be different. One of two components 2a and 2b is made of brass and the other one is made of invar having a low linear expansion coefficient remarkably away from the linear expansion coefficient of brass. Two kinds of components 2a and 2b are partially screw-shaped so as to easily adjust a length L2 of the inner conductor and its rate (L2a/L2b).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロ波装置に
おいて用いられる半同軸共振器および半同軸共振器を用
いた半同軸共振器ろ波器に関する。
The present invention relates to a semi-coaxial resonator used in a microwave device and a semi-coaxial resonator filter using the semi-coaxial resonator.

【0002】[0002]

【従来の技術】半同軸共振器は、内導体の開放側の一端
と外導体をなす管壁との間に容量を形成し、容量を変化
させて共振波長を変える共振器である。容量変化は、内
導体を移動させることによって、または、内導体開放側
の対向面に設けられた調整部材の長さを変えることによ
って行われる。また、複数の半同軸共振器を結合させて
ろ波器を形成することができる。
2. Description of the Related Art A semi-coaxial resonator is a resonator in which a capacitance is formed between an open end of an inner conductor and a tube wall forming an outer conductor, and the resonance wavelength is changed by changing the capacitance. The capacitance is changed by moving the inner conductor or by changing the length of an adjusting member provided on the facing surface on the open side of the inner conductor. Also, a plurality of semi-coaxial resonators can be coupled to form a filter.

【0003】図4は、従来の半同軸共振器を3個用いて
形成されたろ波器を示す断面図である。図に示すよう
に、金属筐体1は、各半同軸共振器の外導体をなし、各
半同軸共振器を結合させるための結合窓7を有してい
る。各半同軸共振器の内部には、一端が金属筐体1にね
じ止めされ他端が開放している共振棒20が取り付けら
れている。共振棒20は半同軸共振器の内導体をなす。
各共振棒20の他端に対向している金属筐体1には周波
数調整ねじ3が設けられている。半同軸共振器ろ波器は
各半同軸共振器を結合することによって形成されるが、
このような半同軸共振器ろ波器は、例えば特公平4−3
8161号公報に記載されている。
FIG. 4 is a sectional view showing a filter formed by using three conventional semi-coaxial resonators. As shown in the figure, the metal housing 1 forms an outer conductor of each semi-coaxial resonator, and has a coupling window 7 for coupling each semi-coaxial resonator. Inside each semi-coaxial resonator, a resonance rod 20 having one end screwed to the metal housing 1 and the other end open is attached. The resonance rod 20 forms an inner conductor of the semi-coaxial resonator.
The metal casing 1 facing the other end of each resonance rod 20 is provided with a frequency adjusting screw 3. A semi-coaxial resonator filter is formed by combining each semi-coaxial resonator,
Such a semi-coaxial resonator filter is disclosed in, for example,
No. 8161.

【0004】マイクロ波無線装置において、入力信号を
各チャネル信号に分波するために帯域通過ろ波器が使用
される。そこで、帯域通過ろ波器は、使用装置の周波数
範囲内に中心周波数を調整することが求められる。図4
に示された半同軸共振器ろ波器を使用する場合には、周
波数調整ねじ3によって中心周波数が変更される。周波
数調整ねじ3は、共振棒20と金属筐体1との間の間隙
4の長さを調整して内導体開放端と管壁との間の容量を
変化させることによって半同軸共振器の共振周波数を変
化させ、その結果、ろ波器の中心周波数を変化させる。
[0004] In a microwave radio device, a band-pass filter is used to split an input signal into respective channel signals. Therefore, the band-pass filter is required to adjust the center frequency within the frequency range of the used device. FIG.
When the semi-coaxial resonator filter shown in (1) is used, the center frequency is changed by the frequency adjusting screw 3. The frequency adjusting screw 3 adjusts the length of the gap 4 between the resonance rod 20 and the metal housing 1 to change the capacitance between the open end of the inner conductor and the tube wall, thereby controlling the resonance of the semi-coaxial resonator. Changing the frequency, and consequently the center frequency of the filter.

【0005】図5は、図4に示された半同軸共振器の一
部を示す部分断面図である。図5には、外導体の長さが
L1、内導体の長さがL2、周波数調整ねじ挿入長がL
3、間隙長がL4として示されている。共振棒20は、
内導体の長さL2が1/4波長より短くなるように固定
されている。共振周波数は主として内導体の長さL2で
決まるのであるが、周囲温度が変化すると共振棒20の
線膨張によってL2が変化してしまい、その結果、共振
周波数が変化してしまう。そこで、共振棒20として、
インバー等の線膨張係数の小さい材質のものが使用され
る。
FIG. 5 is a partial sectional view showing a part of the semi-coaxial resonator shown in FIG. FIG. 5 shows that the length of the outer conductor is L1, the length of the inner conductor is L2, and the insertion length of the frequency adjusting screw is L.
3. The gap length is indicated as L4. The resonance rod 20
The length L2 of the inner conductor is fixed so as to be shorter than 1 / wavelength. The resonance frequency is determined mainly by the length L2 of the inner conductor. However, when the ambient temperature changes, L2 changes due to linear expansion of the resonance rod 20, and as a result, the resonance frequency changes. Therefore, as the resonance rod 20,
A material having a small linear expansion coefficient such as invar is used.

【0006】図6は、半同軸共振器における間隙長L4
(mm)と周波数感度(共振周波数の変化量ΔF(MH
z)/間隙長L4の変化量ΔL4(mm))との関係
を、内導体の長L2が12.5mmおよび13.5mm
の場合について示す説明図である。また、図7は、ねじ
挿入長L3(mm)および間隙長L4(mm)と共振周
波数の変化量ΔF(MHz)との関係を、内導体の長さ
L2が12.5mmおよび13.5mmの場合について
示す説明図である。なお、周波数変化量および周波数感
度測定時の半同軸共振器の外導体径は27mm、内導体
径は7mm、外導体の長さL1は23mmである。
FIG. 6 shows a gap length L4 in a semi-coaxial resonator.
(Mm) and the frequency sensitivity (resonance frequency variation ΔF (MH
z) / change amount ΔL4 (mm) of gap length L4, the length L2 of the inner conductor is 12.5 mm and 13.5 mm
It is explanatory drawing shown about the case of. FIG. 7 shows the relationship between the screw insertion length L3 (mm) and the gap length L4 (mm) and the amount of change ΔF (MHz) of the resonance frequency, when the length L2 of the inner conductor is 12.5 mm and 13.5 mm. It is explanatory drawing shown about a case. Note that the outer conductor diameter of the semi-coaxial resonator at the time of measuring the frequency variation and the frequency sensitivity is 27 mm, the inner conductor diameter is 7 mm, and the outer conductor length L1 is 23 mm.

【0007】図7からわかるように、共振周波数は、ね
じ挿入長L3が小さいときには余り変化しないが、ねじ
挿入長L3が大きくなると、すなわち、間隙長L4が小
さくなると大きく変化する。換言すれば、図6からわか
るように、共振周波数を低くするために間隙長L4を小
さく設定した場合には、間隙長L4の微小な変化量ΔL
4に応じて共振周波数が大きく変化してしまう。する
と、半同軸共振器を用いた帯域通過ろ波器(半同軸共振
器帯域通過ろ波器)においても、微小な間隙長L4の変
化に応じて中心周波数が大きく変化してしまう。
As can be seen from FIG. 7, the resonance frequency does not change much when the screw insertion length L3 is small, but changes greatly when the screw insertion length L3 increases, that is, when the gap length L4 decreases. In other words, as can be seen from FIG. 6, when the gap length L4 is set small in order to lower the resonance frequency, the small change amount ΔL of the gap length L4 is set.
4, the resonance frequency greatly changes. Then, even in a band-pass filter using a semi-coaxial resonator (semi-coaxial resonator band-pass filter), the center frequency greatly changes according to a minute change in the gap length L4.

【0008】[0008]

【発明が解決しようとする課題】以上のように従来の半
同軸共振器および半同軸共振器帯域通過ろ波器では、半
同軸共振器の間隙長L4が小さいときには、間隙長L4
が少し変動しただけで共振周波数および中心周波数が大
きく変化してしまう。よって、共振棒20の材質の線膨
張係数が小さくても、半同軸共振器の間隙長L4が小さ
い場合には、温度変化の影響による周波数変化量が無視
できなくなる。
As described above, in the conventional semi-coaxial resonator and the semi-coaxial resonator band-pass filter, when the gap length L4 of the semi-coaxial resonator is small, the gap length L4
The resonance frequency and the center frequency are greatly changed by only a small change in the resonance frequency. Therefore, even if the linear expansion coefficient of the material of the resonance rod 20 is small, if the gap length L4 of the semi-coaxial resonator is small, the amount of frequency change due to the effect of temperature change cannot be ignored.

【0009】特開昭57−48803号公報には、同軸
共振器ろ波器において、内導体の温度変化による伸縮を
補償するために、内導体とは線膨張係数が異なる金属に
よる温度補償機構を用いる技術が開示されている。な
お、その温度補償機構は、内導体に直接的に適用される
のではなく、外導体をなす筐体の外部に取り付けられて
いる。その同軸共振器ろ波器では、例えば内導体が温度
変化に応じて伸張すると、温度補償部材が外導体を圧縮
して外導体をなす筐体中の内導体の長さを一定に保つ。
しかし、その構成では、固定的な共振周波数に対して温
度補償を行うことはできるが、マイクロ波装置に使用さ
れる帯域通過ろ波器のような中心周波数を大きく変える
用途において適用することはできない。
Japanese Patent Application Laid-Open No. 57-48803 discloses a coaxial resonator filter, which includes a temperature compensation mechanism made of a metal having a different linear expansion coefficient from that of an inner conductor in order to compensate for expansion and contraction of the inner conductor due to a temperature change. The technology used is disclosed. The temperature compensating mechanism is not applied directly to the inner conductor, but is attached to the outside of the housing forming the outer conductor. In the coaxial resonator filter, for example, when the inner conductor expands in response to a temperature change, the temperature compensating member compresses the outer conductor and keeps the length of the inner conductor in the housing forming the outer conductor constant.
However, in such a configuration, temperature compensation can be performed for a fixed resonance frequency, but it cannot be applied to an application in which a center frequency is largely changed such as a band-pass filter used in a microwave device. .

【0010】本発明は、温度変化が生じても共振周波数
および中心周波数を安定して維持することができるとと
もに、マイクロ波装置に組み込んだ場合に装置全体の温
度特性をよくすることもできる半同軸共振器および半同
軸共振器ろ波器を提供することを目的とする。
According to the present invention, a semi-coaxial antenna capable of stably maintaining a resonance frequency and a center frequency even when a temperature change occurs and improving the temperature characteristics of the entire device when incorporated in a microwave device. It is an object to provide a resonator and a semi-coaxial resonator filter.

【0011】[0011]

【課題を解決するための手段】本発明による半同軸共振
器および半同軸共振器ろ波器は、内導体が線膨張係数の
異なる複数の金属で形成されているものである。そし
て、半同軸共振器および半同軸共振器ろ波器は、複数の
金属の外導体の内部での長さをそれぞれ変える調整機構
を備える。半同軸共振器および半同軸共振器ろ波器は、
例えば、複数の金属のうちの一つの金属の外周の一部に
他の金属がねじ止めされ、他の金属は外導体にねじ止め
されている構成である。
A semi-coaxial resonator and a semi-coaxial resonator filter according to the present invention have an inner conductor made of a plurality of metals having different linear expansion coefficients. In addition, the semi-coaxial resonator and the semi-coaxial resonator filter include an adjustment mechanism that changes the length of each of the plurality of metal outer conductors. The semi-coaxial resonator and the semi-coaxial resonator filter are:
For example, another metal is screwed to a part of the outer periphery of one of a plurality of metals, and the other metal is screwed to an outer conductor.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。図1は、本発明による半同軸共振
器を用いて形成された半同軸共振器ろ波器を示す断面図
である。図に示すように、金属筐体1は、各半同軸共振
器の外導体をなし、各半同軸共振器を結合させるための
結合窓7を有している。各半同軸共振器の内部には、一
端が金属筐体1にねじ止めされ他端が開放している共振
棒2が取り付けられている。共振棒2は半同軸共振器の
内導体をなす。各共振棒2の他端に対向している金属筐
体1には周波数調整ねじ3が設けられている。また、各
半同軸共振器の間には、共振器間の結合を変化させて帯
域幅を調整するための結合調整ねじ5が設けられてい
る。半同軸共振器ろ波器と外部伝送路とは、入出力結合
プローブ6で電界結合される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing a semi-coaxial resonator filter formed using the semi-coaxial resonator according to the present invention. As shown in the figure, the metal housing 1 forms an outer conductor of each semi-coaxial resonator, and has a coupling window 7 for coupling each semi-coaxial resonator. A resonance rod 2 having one end screwed to the metal housing 1 and the other end open is mounted inside each semi-coaxial resonator. The resonance rod 2 forms an inner conductor of the semi-coaxial resonator. A frequency adjusting screw 3 is provided on the metal housing 1 facing the other end of each resonance rod 2. A coupling adjusting screw 5 is provided between the semi-coaxial resonators to change the coupling between the resonators to adjust the bandwidth. The semi-coaxial resonator filter and the external transmission line are electric-field-coupled by an input / output coupling probe 6.

【0013】図2は、図1に示された半同軸共振器の詳
細構成を示す部分断面図である。図に示すように、共振
棒2は、2種の部品2a,2bで構成されている。部品
2a,2bは、線膨張係数が異なるように選定される。
金属筐体1として、切削加工および銀めっき処理が容易
なことから黄銅が使用されることが多い。周波数調整ね
じ3も、同様の理由で銀めっきされた黄銅が使用され
る。そこで、部品2a,2bのうちの一方の材質も黄銅
とする。部品2a,2bのうちの他方の材質は、線膨張
係数が小さく、かつ、黄銅の線膨張係数から大きくかけ
離れた線膨張係数を持つ例えばインバーが好ましい。両
者の材質がかけ離れていると、内導体全体の線膨張係数
を広い範囲で調整できるからである。なお、黄銅の線膨
張係数は約20ppm/°Cであり、インバーの線膨張
係数は約2ppm/°Cである。また、部品2aを黄銅
とし部品2bをインバーとしてもよいが、その逆でもよ
い。
FIG. 2 is a partial sectional view showing a detailed configuration of the semi-coaxial resonator shown in FIG. As shown in the figure, the resonance rod 2 is composed of two types of components 2a and 2b. The components 2a and 2b are selected so that the linear expansion coefficients are different.
Brass is often used for the metal casing 1 because of its ease of cutting and silver plating. The frequency adjusting screw 3 is also made of silver-plated brass for the same reason. Therefore, one of the components 2a and 2b is also made of brass. The other material of the components 2a and 2b is preferably, for example, Invar, which has a small coefficient of linear expansion and a coefficient of linear expansion which is largely different from the coefficient of linear expansion of brass. If the two materials are far apart, the linear expansion coefficient of the entire inner conductor can be adjusted in a wide range. The linear expansion coefficient of brass is about 20 ppm / ° C, and the linear expansion coefficient of Invar is about 2 ppm / ° C. Further, the component 2a may be made of brass and the component 2b may be made of invar, or vice versa.

【0014】共振棒2を構成する2種の部品2a,2b
は、一部ねじ形状とされ、内導体の長さL2およびその
割合(L2a/L2b)を容易に調整できるようにして
ある。図2に示すように、L2aは部品2aの長さであ
り、L2bは部品2bの長さである。図2において、丸
印が、ねじによる嵌合部分を示す。そして、止め金具
(ナット)2eを緩めて一部ねじ形状の部品2bを回せ
ば、部品2aと部品2bは結合されているので、内導体
の長さL2を変更することができる。また、止め金具
(ナット)2dを緩めて一部ねじ形状の部品2aを回せ
ば、L2aの長さを変えることができる。なお、図2に
おいて、L1は外導体の長さ、L3は周波数調整ねじ挿
入長、L4は間隙長を示す。
Two types of parts 2a and 2b constituting the resonance rod 2
Is partially threaded so that the length L2 of the inner conductor and its ratio (L2a / L2b) can be easily adjusted. As shown in FIG. 2, L2a is the length of the component 2a, and L2b is the length of the component 2b. In FIG. 2, circles indicate the fitting parts by screws. Then, if the fastener (nut) 2e is loosened and the partially screw-shaped part 2b is turned, the length L2 of the inner conductor can be changed since the part 2a and the part 2b are connected. Further, if the fastener (nut) 2d is loosened and the partially screw-shaped part 2a is turned, the length of L2a can be changed. In FIG. 2, L1 indicates the length of the outer conductor, L3 indicates the insertion length of the frequency adjustment screw, and L4 indicates the gap length.

【0015】以下、温度変化に起因する共振周波数の変
化について説明する。温度変化に起因する共振周波数の
変化は、内導体の長さL2の変化ΔL2によるものと、
共振棒2と対向面との間の間隙長L4の変化ΔL4によ
るものとに分けられる。
Hereinafter, a change in the resonance frequency due to a temperature change will be described. The change in the resonance frequency due to the temperature change is caused by the change ΔL2 in the length L2 of the inner conductor,
The change is based on the change ΔL4 in the gap length L4 between the resonance rod 2 and the facing surface.

【0016】半同軸共振器は内導体の長さL2が約1/
4波長で共振するが、内導体開放端と外導体との間に形
成される容量によっても変化する。図3は、内導体の長
さL2(mm)と共振周波数F(MHz)との関係を示
す説明図である。図3から、1/4波長の約0.75倍
の長さで共振することがわかる。また、内導体の長さL
2が大きくなると、共振周波数が低くなることがわか
る。なお、共振周波数測定時の半同軸共振器の外導体径
は27mm、内導体径は7mm、外導体の長さL1は2
3mmである。また、図3における3つの曲線のうち、
上側の曲線は0.8×(1/4波長)の理論値を示し、
下側の曲線は0.7×(1/4波長)の理論値を示す。
In the semi-coaxial resonator, the length L2 of the inner conductor is about 1 /
It resonates at four wavelengths, but also changes depending on the capacitance formed between the open end of the inner conductor and the outer conductor. FIG. 3 is an explanatory diagram showing the relationship between the length L2 (mm) of the inner conductor and the resonance frequency F (MHz). FIG. 3 shows that resonance occurs at a length of about 0.75 times the quarter wavelength. The length L of the inner conductor
It can be seen that as 2 increases, the resonance frequency decreases. Note that the outer conductor diameter of the semi-coaxial resonator when measuring the resonance frequency is 27 mm, the inner conductor diameter is 7 mm, and the length L1 of the outer conductor is 2
3 mm. Also, of the three curves in FIG.
The upper curve shows the theoretical value of 0.8 × (1/4 wavelength),
The lower curve shows a theoretical value of 0.7 × (1/4 wavelength).

【0017】共振周波数は内導体の長さL2にほぼ反比
例しているので、周波数変化率(ΔF/F)=−ΔL2
/(L2+ΔL2)となる。ΔL2は内導体の長さL2
に比べて非常に小さいので、 ΔF/F≒−ΔL2/L2(内導体長変化率) ・・・(1) と考えてよい。
Since the resonance frequency is substantially inversely proportional to the length L2 of the inner conductor, the frequency change rate (ΔF / F) = − ΔL2
/ (L2 + ΔL2). ΔL2 is the length L2 of the inner conductor
ΔF / F ≒ −ΔL2 / L2 (inner conductor length change rate) (1)

【0018】部品2aの線膨張係数をαa 、部品2bの
線膨張係数をαb とすると、内導体の線膨張係数αは、 α=(L2a×αa +L2b×αb )/L2 ・・・(2) である。従って、部品2a,2bの長さの比率(L2a
/L2b)を変えることによって、それぞれの線膨張率
の範囲内で線膨張係数αを自由に変えることができる。
また、線膨張係数αを変えることにより、それに応じ
て、内導体長変化率ΔL2/L2を変えることができ
る。
Assuming that the linear expansion coefficient of the component 2a is αa and the linear expansion coefficient of the component 2b is αb, the linear expansion coefficient α of the inner conductor is α = (L2a × αa + L2b × αb) / L2 (2) It is. Therefore, the ratio of the lengths of the components 2a and 2b (L2a
/ L2b), the coefficient of linear expansion α can be freely changed within the range of each coefficient of linear expansion.
Further, by changing the linear expansion coefficient α, the inner conductor length change rate ΔL2 / L2 can be changed accordingly.

【0019】一方、図7からわかるように、周波数調整
ねじ3を挿入していくと、初めは周波数変化量ΔFが少
しずつ変化し、周波数調整ねじ挿入長L3が大きくなる
と、すなわち、間隙長L4が小さくなると、周波数変化
量ΔFは大きくなる。また、間隙長L4が大きくなると
共振周波数が高くなる。
On the other hand, as can be seen from FIG. 7, when the frequency adjusting screw 3 is inserted, the frequency change ΔF changes little by little at first, and when the frequency adjusting screw insertion length L3 increases, that is, the gap length L4 Becomes smaller, the frequency change amount ΔF becomes larger. Also, as the gap length L4 increases, the resonance frequency increases.

【0020】温度が高くなると、共振棒2と対向面との
間の間隙長L4が大きくなる。内導体の長さL2<外導
体の長さ、内導体の線膨張係数α<金属筐体1の線膨張
係数、だからである。間隙長L4が大きくなると共振周
波数が高くなるので、ΔL4の影響は、温度が高くなる
と共振周波数を上げる方向に働く。一方、ΔL2の影響
は、温度が高くなると内導体の長さL2が大きくなるの
で共振周波数を下げる方向に働く。
When the temperature increases, the gap length L4 between the resonance rod 2 and the facing surface increases. This is because the length L2 of the inner conductor <the length of the outer conductor, the linear expansion coefficient α of the inner conductor <the linear expansion coefficient of the metal housing 1. Since the resonance frequency increases as the gap length L4 increases, the effect of ΔL4 acts to increase the resonance frequency as the temperature increases. On the other hand, the influence of ΔL2 acts to lower the resonance frequency because the length L2 of the inner conductor increases as the temperature increases.

【0021】以上に説明したことから、そのときの間隙
長L4に対する周波数感度ΔF/F(図6参照)に対し
て、(1)式で示された周波数感度が同等(ただし符号
は逆)になるように内導体長変化率ΔL2/L2を設定
すれば、温度が変化しても共振周波数は変化しないこと
になる。すなわち、内導体長変化率ΔL2/L2を適切
に設定すれば、ΔL4の影響をΔL2の影響で打ち消し
て共振周波数が変化しないようにすることができる。上
述したように、内導体長変化率ΔL2/L2は線膨張係
数αに応じたものであるから、線膨張係数αを適切に設
定すれば、温度が変化しても共振周波数は変化しない。
そして、線膨張係数αは、部品2a,2bの長さの比率
(L2a/L2b)に応じて設定できるのであるから、
図2に示された調整機構によって線膨張係数αを適切に
設定できることになる。
From the above description, the frequency sensitivity ΔF / F (see FIG. 6) with respect to the gap length L4 at that time is equal to the frequency sensitivity shown by the equation (1) (the sign is reversed). If the inner conductor length change rate ΔL2 / L2 is set so as to satisfy the above condition, the resonance frequency does not change even if the temperature changes. That is, if the inner conductor length change rate ΔL2 / L2 is appropriately set, the effect of ΔL4 can be canceled by the effect of ΔL2 so that the resonance frequency does not change. As described above, the inner conductor length change rate ΔL2 / L2 is in accordance with the linear expansion coefficient α. Therefore, if the linear expansion coefficient α is appropriately set, the resonance frequency does not change even if the temperature changes.
Since the linear expansion coefficient α can be set according to the length ratio (L2a / L2b) of the components 2a and 2b,
The linear expansion coefficient α can be appropriately set by the adjustment mechanism shown in FIG.

【0022】なお、図2に示された実施の形態では、部
品2aの外周に部品2bが一部露出するように接合さ
れ、調整機構として、部品2a,2bに部分的にねじ部
(図2における丸印部分)を設け、ナット2d,2eを
緩めて各部品2a,2bの長さを変えるようにした。ね
じ部が部分的に設けられているので、部品2aと部品2
bとの間の変化が小さくて済み、かつ、組み付けが容易
になるが、部品2aの外周全体にねじ部が設けられてい
る構成であってもよい。
In the embodiment shown in FIG. 2, the part 2b is joined so that a part of the part 2b is exposed on the outer periphery of the part 2a, and as an adjusting mechanism, the parts 2a and 2b are partially screwed to the parts 2a and 2b (FIG. 2). , And the nuts 2d and 2e are loosened to change the lengths of the parts 2a and 2b. Since the screw portion is partially provided, the parts 2a and 2
The change between b and b is small and the assembling is easy, but a configuration in which a thread portion is provided on the entire outer periphery of the component 2a may be used.

【0023】以上のように、本発明によれば、線膨張係
数が異なる2種の金属の部品2a,2bで共振棒2を構
成し、金属筐体1の内部の部品2a,2bの長さの比率
(L2a/L2b)を可変にする調整機構が備えられて
いるので、温度が変化しても、半同軸共振器における共
振周波数が変化しないようにすることができる。なお、
複数個の半同軸共振器を用いた帯域通過ろ波器について
も、上記の議論を当てはめることができるので、温度が
変化しても、中心周波数が変化しないようにすることが
できる。また、帯域阻止ろ波器等を形成した場合にも、
阻止周波数等を変化しないようにすることができる。
As described above, according to the present invention, the resonance rod 2 is constituted by two kinds of metal parts 2a and 2b having different linear expansion coefficients, and the lengths of the parts 2a and 2b inside the metal housing 1 are set. Is provided with an adjusting mechanism for changing the ratio (L2a / L2b), so that the resonance frequency of the semi-coaxial resonator does not change even when the temperature changes. In addition,
Since the above discussion can be applied to a band-pass filter using a plurality of semi-coaxial resonators, the center frequency can be prevented from changing even when the temperature changes. Also, when a band rejection filter or the like is formed,
The stop frequency and the like can be kept unchanged.

【0024】さらに、半同軸共振器を用いた帯域通過ろ
波器において、周波数調整ねじ3を調整して中心周波数
を大きく変更した場合に、中心周波数を容易に維持する
ことができる。周波数調整ねじ3を調整することによっ
て間隙長L4が変化するので、ΔL4の影響は、調整前
とは異なってくる。しかし、部品2a,2bの長さの比
率(L2a/L2b)を再度適切に設定することによっ
て、中心周波数変更後の間隙長L4による周波数感度Δ
F/Fに対して、(1)式で示された周波数感度が同等
になるようにできる。すなわち、周波数調整ねじ3を調
整して中心周波数を大きく変更しても、変更後の中心周
波数を温度変化の影響を受けないものとすることができ
る。
Further, in the band-pass filter using the semi-coaxial resonator, when the center frequency is largely changed by adjusting the frequency adjusting screw 3, the center frequency can be easily maintained. Since the gap length L4 changes by adjusting the frequency adjusting screw 3, the effect of ΔL4 differs from that before adjustment. However, by appropriately setting the length ratio (L2a / L2b) of the components 2a and 2b again, the frequency sensitivity Δ due to the gap length L4 after the center frequency is changed.
The frequency sensitivity expressed by the equation (1) can be made equal to F / F. That is, even if the center frequency is largely changed by adjusting the frequency adjusting screw 3, the center frequency after the change can be made not to be affected by the temperature change.

【0025】また、マイクロ波装置に組み込まれる他の
ろ波器等の素子の温度特性に合わせて温度特性を設定
し、装置全体の温度特性を改善することもできる。例え
ば、他の素子が温度上昇に伴って中心周波数が上がる特
性を有する場合に、その素子からの信号を入力する半同
軸共振器を用いた帯域通過ろ波器に、温度上昇に伴って
中心周波数が下がる特性を持たせれば、全体として温度
変化の影響をなくすことができる。温度上昇に伴って中
心周波数が下がるようにするには、周波数低下の方向に
働くΔL2の影響が、周波率上昇の方向に働くΔL4の
影響に比べて大きくなるように、部品2a,2bの長さ
の比率(L2a/L2b)を設定すればよい。
Further, the temperature characteristics can be set in accordance with the temperature characteristics of other elements such as a filter incorporated in the microwave device, so that the temperature characteristics of the entire device can be improved. For example, if another element has a characteristic that the center frequency rises as the temperature rises, a band-pass filter using a semi-coaxial resonator that inputs a signal from that element is added to the center frequency as the temperature rises. Is given, the effect of temperature change can be eliminated as a whole. In order for the center frequency to decrease as the temperature rises, the lengths of the components 2a and 2b are set such that the effect of ΔL2 acting in the direction of frequency decrease becomes greater than the effect of ΔL4 acting in the direction of frequency increase. What is necessary is just to set the ratio (L2a / L2b).

【0026】また、部品2a,2bの長さの比率(L2
a/L2b)を、ΔL2の影響がΔL4の影響に比べて
小さくなるように設定すれば、温度上昇に伴って中心周
波数が上がるようにすることもできる。すなわち、本発
明によれば、温度変化に対する周波数変化の特性を自由
に設定することができるので、状況に応じてマイクロ波
装置全体の特性を改善するために使用するといった適用
の仕方もできる。
Further, the length ratio of the parts 2a and 2b (L2
If a / L2b) is set such that the effect of ΔL2 is smaller than the effect of ΔL4, the center frequency can also be increased with an increase in temperature. That is, according to the present invention, since the characteristics of the frequency change with respect to the temperature change can be freely set, it is possible to use the method for improving the characteristics of the entire microwave device according to the situation.

【0027】なお、上記の実施の形態では共振棒2は2
種類の線膨張係数の異なる金属で構成されていたが、3
種類以上の線膨張係数の異なる部品で構成することもで
きる。
In the above embodiment, the resonance rod 2 is 2
It was composed of metals with different linear expansion coefficients.
It is also possible to use components having different types of linear expansion coefficients.

【0028】[0028]

【発明の効果】以上のように、本発明によれば、半同軸
共振器および半同軸共振器ろ波器を、内導体が線膨張係
数の異なる複数の金属で形成されているものとしたの
で、温度変化による周波数変化を極めて小さくできる効
果がある。また、半同軸共振器ろ波器を帯域通過ろ波器
として用いた場合に、中心周波数を大きく変化させて
も、温度変化による周波数変化を小さくできる。さら
に、温度特性を自由に設定でき、半同軸共振器や半同軸
共振器ろ波器が組み込まれる装置において、装置全体の
温度特性を改善できる。
As described above, according to the present invention, the semi-coaxial resonator and the semi-coaxial resonator filter have the inner conductor formed of a plurality of metals having different linear expansion coefficients. In addition, there is an effect that a frequency change due to a temperature change can be extremely reduced. Further, when the semi-coaxial resonator filter is used as a band-pass filter, even if the center frequency is largely changed, the frequency change due to the temperature change can be reduced. Further, the temperature characteristics can be freely set, and the temperature characteristics of the entire device can be improved in a device incorporating a semi-coaxial resonator or a semi-coaxial resonator filter.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による半同軸共振器ろ波器を示す断面
図である。
FIG. 1 is a sectional view showing a semi-coaxial resonator filter according to the present invention.

【図2】 本発明による半同軸共振器の詳細構成を示す
部分断面図である。
FIG. 2 is a partial sectional view showing a detailed configuration of a semi-coaxial resonator according to the present invention.

【図3】 内導体の長さと共振周波数との関係を示す説
明図である。
FIG. 3 is an explanatory diagram showing a relationship between a length of an inner conductor and a resonance frequency.

【図4】 従来の半同軸共振器ろ波器を示す断面図であ
る。
FIG. 4 is a cross-sectional view showing a conventional semi-coaxial resonator filter.

【図5】 従来の半同軸共振器を示す断面図である。FIG. 5 is a sectional view showing a conventional semi-coaxial resonator.

【図6】 半同軸共振器における間隙長と周波数感度と
の関係を示す説明図である。
FIG. 6 is an explanatory diagram showing a relationship between a gap length and a frequency sensitivity in a semi-coaxial resonator.

【図7】 周波数調整ねじ挿入長および間隙長と共振周
波数の変化量との関係を示す説明図である。
FIG. 7 is an explanatory diagram showing the relationship between the insertion length and gap length of the frequency adjustment screw and the amount of change in the resonance frequency.

【符号の説明】[Explanation of symbols]

1 金属筐体 2 共振棒 3 周波数調整ねじ 4 間隙 5 結合調整ねじ 6 入出力結合プローブ 7 結合窓 REFERENCE SIGNS LIST 1 metal housing 2 resonance rod 3 frequency adjustment screw 4 gap 5 coupling adjustment screw 6 input / output coupling probe 7 coupling window

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年4月2日[Submission date] April 2, 1999

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 内導体の一端と外導体との間に間隙が形
成され前記間隙の長さを変えることによって共振周波数
を変える半同軸共振器において、 前記内導体は線膨張係数が異なる複数の金属で形成され
ていることを特徴とする半同軸共振器。
1. A semi-coaxial resonator in which a gap is formed between one end of an inner conductor and an outer conductor and a resonance frequency is changed by changing a length of the gap, wherein the inner conductor has a plurality of linear expansion coefficients different from each other. A semi-coaxial resonator formed of a metal.
【請求項2】 複数の金属の外導体の内部での長さをそ
れぞれ変える調整機構を備えた請求項1記載の半同軸共
振器。
2. The semi-coaxial resonator according to claim 1, further comprising an adjusting mechanism for changing a length inside each of the plurality of metal outer conductors.
【請求項3】 複数の金属のうちの一つの金属の外周の
一部に他の金属がねじ止めされ、 前記他の金属は、外導体にねじ止めされている請求項2
記載の半同軸共振器。
3. The method according to claim 2, wherein another metal is screwed to a part of an outer periphery of one of the plurality of metals, and the other metal is screwed to an outer conductor.
The described semi-coaxial resonator.
【請求項4】 内導体の一端と外導体との間に間隙が形
成され間隙の長さを変えることによって共振周波数を変
える半同軸共振器が結合手段を介して複数結合された半
同軸共振器ろ波器において、 前記内導体は線膨張係数が異なる複数の金属で形成され
ていることを特徴とする半同軸共振器ろ波器。
4. A semi-coaxial resonator in which a gap is formed between one end of the inner conductor and the outer conductor, and a plurality of semi-coaxial resonators that change the resonance frequency by changing the length of the gap are coupled via coupling means. In the filter, the inner conductor is formed of a plurality of metals having different linear expansion coefficients.
【請求項5】 複数の金属の外導体の内部での長さをそ
れぞれ変える調整機構を備えた請求項4記載の半同軸共
振器ろ波器。
5. The semi-coaxial resonator filter according to claim 4, further comprising an adjusting mechanism for changing a length inside each of the plurality of metal outer conductors.
【請求項6】 複数の金属のうちの一つの金属の外周の
一部に他の金属がねじ止めされ、 前記他の金属は、外導体にねじ止めされている請求項5
記載の半同軸共振器ろ波器。
6. The other metal is screwed to a part of the outer periphery of one of the plurality of metals, and the other metal is screwed to an outer conductor.
A semi-coaxial resonator filter as described.
JP10114278A 1998-04-09 1998-04-09 Semi-coaxial resonator and semi-coaxial resonator filter Expired - Fee Related JP3014044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10114278A JP3014044B2 (en) 1998-04-09 1998-04-09 Semi-coaxial resonator and semi-coaxial resonator filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10114278A JP3014044B2 (en) 1998-04-09 1998-04-09 Semi-coaxial resonator and semi-coaxial resonator filter

Publications (2)

Publication Number Publication Date
JPH11298213A true JPH11298213A (en) 1999-10-29
JP3014044B2 JP3014044B2 (en) 2000-02-28

Family

ID=14633837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10114278A Expired - Fee Related JP3014044B2 (en) 1998-04-09 1998-04-09 Semi-coaxial resonator and semi-coaxial resonator filter

Country Status (1)

Country Link
JP (1) JP3014044B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100992089B1 (en) 2009-03-16 2010-11-05 주식회사 케이엠더블유 Band rejection filter
WO2010107215A3 (en) * 2009-03-16 2010-11-18 주식회사 케이엠더블유 Bandstop filter
CN116014404A (en) * 2023-03-28 2023-04-25 京信射频技术(广州)有限公司 Resonator and filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100992089B1 (en) 2009-03-16 2010-11-05 주식회사 케이엠더블유 Band rejection filter
WO2010107215A3 (en) * 2009-03-16 2010-11-18 주식회사 케이엠더블유 Bandstop filter
US9203131B2 (en) 2009-03-16 2015-12-01 Kmw Inc. Band stop filter
CN116014404A (en) * 2023-03-28 2023-04-25 京信射频技术(广州)有限公司 Resonator and filter

Also Published As

Publication number Publication date
JP3014044B2 (en) 2000-02-28

Similar Documents

Publication Publication Date Title
US4307352A (en) Micro-strip oscillator with dielectric resonator
US6734766B2 (en) Microwave filter having a temperature compensating element
EP0492304A1 (en) System for tuning high-frequency dielectric resonators and resonators obtained in this manner
EP1760824A1 (en) Temperature compensation of combline resonators using composite inner conductor
US5311160A (en) Mechanism for adjusting resonance frequency of dielectric resonator
JP3014044B2 (en) Semi-coaxial resonator and semi-coaxial resonator filter
JPS6325523B2 (en)
JPH0436481B2 (en)
JP3531570B2 (en) Resonator, filter, duplexer, communication equipment
US8035465B2 (en) Cavity resonator, use of a cavity resonator and oscillator circuit
US3202944A (en) Cavity resonator apparatus
CN106063026B (en) Microwave filter with fine temperature drift mechanical tuning device
US4766398A (en) Broadband temperature compensated microwave cavity oscillator
JPS6218963Y2 (en)
JP2639874B2 (en) Variable frequency filter
RU2258983C1 (en) Waveguide band-elimination filter
JPH05259719A (en) Adjustment screw for filter
US6359533B1 (en) Combline filter and method of use thereof
JPS6326008A (en) Microwave oscillator
RU2260882C1 (en) Waveguide bend-elimination filter
JP2942764B1 (en) Dielectric resonator
US20060135092A1 (en) Radio frequency filter
SU338955A1 (en) SETTING CAPACITY SCREW
KR880003255Y1 (en) Microwave genretor using dielectric material resonator
JPS6218964Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees