JPH11297527A - Apparatus for lifting magnet at normal temperature - Google Patents

Apparatus for lifting magnet at normal temperature

Info

Publication number
JPH11297527A
JPH11297527A JP13587798A JP13587798A JPH11297527A JP H11297527 A JPH11297527 A JP H11297527A JP 13587798 A JP13587798 A JP 13587798A JP 13587798 A JP13587798 A JP 13587798A JP H11297527 A JPH11297527 A JP H11297527A
Authority
JP
Japan
Prior art keywords
magnet
rotors
conductor
repulsive
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13587798A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamabe
弘史 山部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP13587798A priority Critical patent/JPH11297527A/en
Publication of JPH11297527A publication Critical patent/JPH11297527A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably lift a magnet in the air by generating repulsive force between the magnet and a conductor by using an eddy current which is generated in the conductor by moving the magnet and the conductor relatively to each other. SOLUTION: When a magnet 3 is made to approach conductive rotors 1 and 2 which are rotating at a high speed, an eddy current is produced in the rotors 1 and 2 by electromagnetic induction, thus generating force in a direction repulsive to the magnet 3, placed at the center between the rotors 1 and 2 from the rotational direction. Arranging the rotational axes of the rotors 1 and 2 in parallel to the axis of the magnetic pole of the magnet 3 at this time generates repulsive forces F1 and F2 between the magnet 3 and the rotating rotors 1 and 2, which repel each other. If the two rotors 1 and 2 are rotating at the same speed, the repulsive forces F1 and F2 become equal to each other. Those forces act on the magnet 3 in directions perpendicular to each other, so that when the gravitational force G is balanced with the repulsive forces F1 and F2, the magnet 3 stably stays in the air. The repulsive forces F1 and F2 increase in proportion to the strength of the magnetic force of the magnet 3. A rare earth magnet is used for such a magnet 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明による技術分野は磁
石の電磁誘導を用いた分野に属する。
The technical field according to the present invention belongs to the field using electromagnetic induction of magnets.

【0002】[0002]

【従来の技術】 従来、磁石を空中に浮上させようと考
えると、磁石の反発を利用した閉空間内では可能であっ
た。例えば図1に示すように板の上にN極を上にして円
盤状の磁石を固定し、そこにその磁石の直径よりも僅か
に大きなプラスチックの中空の長い円筒を立てる。そし
て上からN極を下にして先ほどの磁石と同じ直径の円筒
の磁石を円筒の中に落とす。すると円筒の磁石は磁力の
反発で空中に浮上して止まる。しかしこれは磁石の反発
を利用しているに過ぎない。
2. Description of the Related Art Conventionally, it was possible to float a magnet in the air in a closed space using repulsion of the magnet. For example, as shown in FIG. 1, a disk-shaped magnet is fixed on a plate with the N-pole facing up, and a long plastic hollow cylinder slightly larger than the diameter of the magnet is erected there. Then, a cylindrical magnet having the same diameter as the previous magnet is dropped into the cylinder with the N pole facing downward from above. Then, the cylindrical magnet floats in the air due to the repulsion of the magnetic force and stops. However, this only utilizes the repulsion of the magnet.

【0003】 また超伝導磁石を利用すればこの磁石の
浮上現象は簡単に実現出来る。それは超伝導磁石が大変
強い磁界を作るのが原因である。しかし超伝導磁石を利
用しようと思えば、その磁石を絶対ゼロ度付近まで冷却
しなくてはならず大変大掛かりな冷却装置が必要とな
る。
If a superconducting magnet is used, the floating phenomenon of the magnet can be easily realized. It is because superconducting magnets create very strong magnetic fields. However, if a superconducting magnet is to be used, the magnet must be cooled to near zero degrees, and a very large cooling device is required.

【0004】[0004]

【発明が解決しようとする課題】 従来の技術では磁石
を安定して空中に浮上させる事は例えば磁石の反発を利
用した物もあるが、それは磁石の反発のバランスを取る
ことが大変困難であった。
In the prior art, there is a method of stably floating a magnet in the air using, for example, the repulsion of a magnet, but it is very difficult to balance the repulsion of the magnet. Was.

【0005】 また磁石の浮上現象は、冷却装置を必要
とする超伝導磁石のような大掛かりな装置を必要とし
た。
[0005] Further, the magnet floating phenomenon required a large-scale device such as a superconducting magnet requiring a cooling device.

【課題を解決するための手段】[Means for Solving the Problems]

【0006】 本発明による装置では磁石を安定して浮
上させるために、強力な磁石と伝導体を用いた。その相
対速度を大きくすることにより、磁束の変化を大きくし
た。
In the apparatus according to the present invention, a strong magnet and a conductor are used to stably float the magnet. The change in magnetic flux was increased by increasing the relative speed.

【0007】 その結果伝導体内に誘導される渦電流に
よって発生する磁石との間の大きな斥力と磁石に働く重
力をバランスさせる事で磁石を安定して空中に浮上させ
る事が出来る。
As a result, the magnet can be stably levitated in the air by balancing the large repulsive force between the magnet and the magnet generated by the eddy current induced in the conductor and the gravity acting on the magnet.

【0008】 本発明による浮上装置では磁石の反発
も、超伝導磁石も使用していないため、簡単にオープン
な空間に磁石を浮上させる事が出来る。
The levitation device according to the present invention does not use repulsion of magnets or superconducting magnets, so that the magnets can be easily levitated in an open space.

【0009】 本発明による装置概略図を図2に示す。
図2は本装置を三角法で見た図を示している。
FIG. 2 shows a schematic diagram of an apparatus according to the present invention.
FIG. 2 shows a view of the apparatus viewed triangularly.

【0010】 図2の示すように高速回転(10,00
0rpm程度)している伝導体で出来た円盤に磁石を近
づけると電磁誘導により、伝導体である円盤に渦電流が
生じ、その回転方向から2つの円盤の中点に置かれた磁
石3とは反発する方向に力が発生する。
As shown in FIG. 2, high-speed rotation (10,00
When a magnet is brought close to a disk made of a conductor that is rotating (about 0 rpm), an eddy current is generated in the disk, which is a conductor, by electromagnetic induction, and the magnet 3 placed at the midpoint of the two disks from its rotation direction A force is generated in the direction of repulsion.

【0011】 すなわち、磁石と回転する伝導体1、2
の間には斥力F1、F2が発生し、反発する。
That is, the magnets and the rotating conductors 1 and 2
Between them, repulsive forces F1 and F2 are generated and repelled.

【0012】 この2つの回転体(伝導体で出来た円
盤)が同速度で回転している場合には上記の斥力F1、
F2が等しくなる。そして互いに直角方向に磁石3に働
き、磁石に働く重力Gと斥力F1、F2とがバランス取
れたところで安定して空中に静止する。
When the two rotating bodies (discs made of a conductor) are rotating at the same speed, the repulsive force F1,
F2 becomes equal. Then, they act on the magnet 3 at right angles to each other, and when the gravity G acting on the magnet and the repulsive forces F1 and F2 are balanced, the magnet 3 stably stops in the air.

【0013】 斥力F1、F2は磁石から誘導された力
であるので、磁石3の磁力の強さに比例して大きくな
る。
Since the repulsive forces F 1 and F 2 are forces induced from the magnet, they increase in proportion to the strength of the magnetic force of the magnet 3.

【0014】 つまり通常のバリウムフェライト磁石や
アルニコ磁石のように比較的磁力の弱いものでは得られ
る渦電流も小さな物であり、それに対応する力(ここで
は磁石との斥力)は弱く、磁石を浮上させる事は出来な
い。
That is, an eddy current obtained by a relatively weak magnetic force, such as a normal barium ferrite magnet or an alnico magnet, is also small, and the corresponding force (here, repulsive force with the magnet) is weak, and the magnet floats. I cannot do that.

【0015】 磁石を浮上させるほど大きな力を生じさ
せるには希土類磁石を用いる。例えばネオジウム磁石な
どを用いればよい。
A rare earth magnet is used to generate a force large enough to make the magnet levitate. For example, a neodymium magnet or the like may be used.

【0016】 磁石を安定して浮上させるためには図2
に示すように回転体1、2の回転軸と磁石の磁極の軸が
平行になるように配置しなくては磁石の浮上現象は現れ
ない。
In order to stably float the magnet, FIG.
As shown in (2), unless the rotating shafts of the rotating bodies 1 and 2 are arranged in parallel with the axis of the magnetic pole of the magnet, the floating phenomenon of the magnet does not appear.

【0017】 何故ならば、回転体1、2と磁石3との
相互作用は回転体を回転させている回転軸にそれぞれ磁
極の中心軸が平行になるように働くからである。
This is because the interaction between the rotating bodies 1 and 2 and the magnet 3 works so that the central axes of the magnetic poles are parallel to the rotating axes rotating the rotating bodies.

【0018】 つまりは磁石3の両端から発散する磁場
の均一性がこの浮上現象の安定化に寄与している。
That is, the uniformity of the magnetic field diverging from both ends of the magnet 3 contributes to the stabilization of the floating phenomenon.

【0019】 次に上記の磁石の浮上現象を利用した一
種のリニアモーターカーについて記載する。
Next, a description will be given of a kind of linear motor car that utilizes the above-described magnet floating phenomenon.

【0020】 図3に概略図を示す。アルミなどの伝導
体で出来た案内板100に対して磁石110(これがリ
ニアモーターカーに相当する)を速度Vで図に示す方向
に移動させる。このことにより、磁石110と案内板1
00との間に相対的な動きが生じる。
FIG. 3 shows a schematic diagram. A magnet 110 (which corresponds to a linear motor car) is moved at a speed V in a direction shown in the drawing with respect to a guide plate 100 made of a conductor such as aluminum. As a result, the magnet 110 and the guide plate 1
00 and a relative movement occurs.

【0021】 既に述べたように磁石110の磁極軸は
案内板100の平面に平行で、磁石と伝導体との相対的
な移動方向に対して垂直である。
As already mentioned, the pole axis of the magnet 110 is parallel to the plane of the guide plate 100 and perpendicular to the direction of relative movement of the magnet and the conductor.

【0022】 磁石の速度Vが一旦、しきい値を超える
と電磁誘導により生じた渦電流による斥力と磁石に働く
重力とが釣り合い、磁石110は案内板100の上に浮
上する。電磁誘導はまた、磁石110の両端(極)に対
して安定させる力を作り出すため、磁石110が案内板
100の上を移動する時、磁石100は釣り合っている
状態で、安定して浮上する。
Once the speed V of the magnet exceeds the threshold value, the repulsive force due to the eddy current generated by the electromagnetic induction balances the gravity acting on the magnet, and the magnet 110 floats above the guide plate 100. The electromagnetic induction also creates a stabilizing force on both ends (poles) of the magnet 110 so that when the magnet 110 moves over the guide plate 100, the magnet 100 stably floats in a balanced state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の磁石の浮上例図FIG. 1 is a diagram showing an example of a conventional magnet floating.

【図2】本発明の装置概略図 (A)正面図 (B)側面図 (C)上面図FIG. 2 is a schematic view of the apparatus of the present invention (A) Front view (B) Side view (C) Top view

【図3】本発明の原理を利用したリニアモーターカーの
概略図
FIG. 3 is a schematic diagram of a linear motor car using the principle of the present invention.

【符合の説明】[Description of sign]

【図2】1、伝導体(回転体) 2、伝導体(回転体) 3、磁石 F1、伝導体1の磁石3に働く斥力 F2、伝導体2の磁石3に働く斥力 G、磁石3に働く重力FIG. 2 shows: 1, a conductor (rotating body) 2, a conductor (rotating body) 3, a magnet F1, a repulsive force F2 acting on the magnet 3 of the conductor 1, a repulsive force G acting on the magnet 3 of the conductor 2, and a magnet 3. Working gravity

【図3】100、案内板(レール) 110、磁石(リニアモーターカー) V、磁石110の案内板100に対する速度FIG. 3 shows a guide plate (rail) 110, a magnet (linear motor car) V, and a speed of the magnet 110 with respect to the guide plate 100.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 常温にて磁石の反発を利用せずに磁石を
空中に浮上させることの出来る装置。
1. An apparatus capable of floating a magnet in the air at room temperature without using repulsion of the magnet.
【請求項2】 磁石と伝導体とを相対的に移動させる事
により、磁石の変化が引き起こす伝導体に発生する渦電
流を用いて、磁石と伝導体との間に斥力を発生させる装
置。
2. An apparatus for generating a repulsive force between a magnet and a conductor by using an eddy current generated in the conductor caused by a change in the magnet by relatively moving the magnet and the conductor.
JP13587798A 1998-04-08 1998-04-08 Apparatus for lifting magnet at normal temperature Pending JPH11297527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13587798A JPH11297527A (en) 1998-04-08 1998-04-08 Apparatus for lifting magnet at normal temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13587798A JPH11297527A (en) 1998-04-08 1998-04-08 Apparatus for lifting magnet at normal temperature

Publications (1)

Publication Number Publication Date
JPH11297527A true JPH11297527A (en) 1999-10-29

Family

ID=15161868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13587798A Pending JPH11297527A (en) 1998-04-08 1998-04-08 Apparatus for lifting magnet at normal temperature

Country Status (1)

Country Link
JP (1) JPH11297527A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006024206A1 (en) * 2004-08-31 2006-03-09 Hunan University A device for rotating a magnet by non-magnetic moving conductor and the method thereof
CN102957259A (en) * 2011-10-24 2013-03-06 前之园末治 Drive device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006024206A1 (en) * 2004-08-31 2006-03-09 Hunan University A device for rotating a magnet by non-magnetic moving conductor and the method thereof
CN102957259A (en) * 2011-10-24 2013-03-06 前之园末治 Drive device
EP2587647A3 (en) * 2011-10-24 2014-02-19 Sueharu Maenosono Driving device

Similar Documents

Publication Publication Date Title
US3663075A (en) Self-centering permanent magnet bearing
US6111332A (en) Combined passive bearing element/generator motor
Jayawant Electromagnetic suspension and levitation
US20030155829A1 (en) Method and apparatus for providing three axis magnetic bearing having permanent magnets mounted on radial pole stack
IE850634L (en) Magnetic bearing
Lembke Design and analysis of a novel low loss homopolar electrodynamic bearing
EP0563106B1 (en) Levitation device
CN114198403A (en) Five-degree-of-freedom hybrid magnetic bearing
CN111425523A (en) Hybrid radial permanent magnet biased magnetic bearing
CN105387310B (en) A kind of maglev type precisely locating platform
CN105978200B (en) A kind of multifrequency complex vibration simulator and its method for realizing multifrequency complex vibration
WO2011096888A1 (en) Permanent magnet motors without magnet back iron
CN100494707C (en) Three magnetic pole permanent magnetism bias radial magnetic bearing
Ohji et al. Permanent magnet bearings for horizontal-and vertical-shaft machines: A comparative study
Hermansen et al. Magnetic levitation by rotation
Musolino et al. A new passive maglev system based on eddy current stabilization
JPH11297527A (en) Apparatus for lifting magnet at normal temperature
CN113997797B (en) Permanent magnet electric suspension guiding driving integrated device
CN216951299U (en) Two-half-degree-of-freedom hybrid magnetic bearing
CN113422493B (en) High-performance limited rotation actuator
WO2010011187A1 (en) Apparatus and method of lifting objects
Fremerey Radial shear force permanent magnet bearing system with zero-power axial control and passive radial damping
CN205265567U (en) Magnetic suspension engine based on permanent magnetism vortex technique
JP4984242B2 (en) Stationary earthquake source using electromagnetic coil
JPH06200941A (en) Magnetic supporter