JPH11296504A - Electromagnetic field analyzing method by combination of finite-element method and boundary element method - Google Patents

Electromagnetic field analyzing method by combination of finite-element method and boundary element method

Info

Publication number
JPH11296504A
JPH11296504A JP10092949A JP9294998A JPH11296504A JP H11296504 A JPH11296504 A JP H11296504A JP 10092949 A JP10092949 A JP 10092949A JP 9294998 A JP9294998 A JP 9294998A JP H11296504 A JPH11296504 A JP H11296504A
Authority
JP
Japan
Prior art keywords
element method
matrix
finite element
boundary
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10092949A
Other languages
Japanese (ja)
Inventor
Makoto Koizumi
眞 小泉
Yasumoto Hirose
靖元 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10092949A priority Critical patent/JPH11296504A/en
Publication of JPH11296504A publication Critical patent/JPH11296504A/en
Pending legal-status Critical Current

Links

Landscapes

  • Complex Calculations (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a partial differential equation analysis of satisfactory calculating precision by partially solving concerning a boundary element method are by a leaving a joining face with a finite element method, adding the matrix of this part to the matrix of a finite element method area, then solving the part of the finite element method, returning this solution to the boundary element method area to obtain the whole resolution of the differential equation so as to save a memory to increase the number of dividing. SOLUTION: In the process (c) of matrix preparation, a matrix is prepared individually concerning the boundary element method area and the finite element method area and the matrix is partially solved by leaving the joining part with the finite element method area concerning the boundary element method area to prepare a coefficient matrix so as to collect known numbers to the joining part. In a process (d) solving simultaneous equations, this coefficient matrix is added to the matrix of the finite element method area. Then, the size of the matrix is reduced by the portion of not being added with a part excepting for the joining face of the boundary element method area as compared with what is obtained by simultaneously superposing the matrixes of the boundary element method area and the finite element method area.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は製品設計の際、製品
の性能を予測する手段として用いる偏微分方程式の数値
解析手法にかかり、特に複雑な構造物が複数個空間に存
在している場合について、入力データ作成が容易でかつ
解析の精度良い有限要素法と境界要素法を結合して偏微
分方程式を解く手法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for numerically analyzing a partial differential equation used as a means for predicting the performance of a product at the time of product design, and particularly to a case where a plurality of complicated structures exist in a space. The present invention relates to a method for solving a partial differential equation by combining a finite element method and a boundary element method, which can easily create input data and have high analysis accuracy.

【0002】[0002]

【従来の技術】従来の有限要素法と境界要素法の結合解
法としては、それぞれ個別にできたマトリックスを単純
に重ね合わせて解く方法が知られている(C.A.Brebia
著,田中正隆訳,境界要素法の応用1,昭58年,企画
センタ)。しかし、この方法では、マトリックスのサイ
ズが大きくなり、特に、有限要素法に関わる成分はゼロ
となるマトリックス要素が多く、計算機のメモリー使用
効率が悪く、計算時間もかかる欠点があった。
2. Description of the Related Art As a conventional joint solution of the finite element method and the boundary element method, there is known a method of simply superposing and solving individual matrices (CABrebia).
Author, Masataka Tanaka translation, Application of boundary element method 1, 1983, Planning Center). However, this method has the drawback that the size of the matrix becomes large, and in particular, there are many matrix elements in which components related to the finite element method become zero, so that the memory use efficiency of the computer is low and the calculation time is long.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、従来
の有限要素法・境界要素法の結合解法が有していた上記
欠点を解消し、計算機のメモリーを節約しかつ分割数を
大きくして計算精度の良い偏微分方程式解析手法を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned disadvantages of the conventional combined solution of the finite element method and the boundary element method, to save computer memory and increase the number of divisions. To provide a PDE analysis method with high calculation accuracy.

【0004】[0004]

【課題を解決するための手段】電磁場のような物理場を
表す偏微分方程式を計算機を利用して数値的に解析する
手段として、有限要素法と境界要素法を結合して解く方
法において、境界要素法領域と有限要素法領域について
個別にマトリックスを作り、まず初めに境界要素法領域
について、有限要素法領域との接合部を残して部分的に
マトリックスを解き接合部に未知数を集約する様に係数
マトリックスを作る。このマトリックスを有限要素法領
域のマトリックスに足し込む。こうすることにより、マ
トリックスサイズは境界要素法領域と有限要素法領域の
マトリックスを同時に重ね合わせたものよりも境界要素
法領域の接合面以外が加わらない分だけ小さくなる。そ
の分計算機の必要とするメモリーも減少する。
As a means for numerically analyzing a partial differential equation representing a physical field such as an electromagnetic field by using a computer, a method for solving the problem by combining a finite element method and a boundary element method is described. Create separate matrices for the element method area and the finite element method area.First, for the boundary element method area, leave the junction with the finite element method area and partially solve the matrix and aggregate the unknowns at the junction. Create a coefficient matrix. This matrix is added to the matrix in the finite element method domain. By doing so, the matrix size is smaller than that obtained by superimposing the matrices of the boundary element method area and the finite element method area at the same time, except that the joint surface of the boundary element method area is not added. The memory required by the computer is reduced accordingly.

【0005】[0005]

【発明の実施の形態】図1に電界解析へ本発明を適用し
た実施例を示す。図1の説明の前に本発明の基本原理を
示す。
FIG. 1 shows an embodiment in which the present invention is applied to electric field analysis. Before explaining FIG. 1, the basic principle of the present invention will be described.

【0006】材料異方性非線型性を考慮すると電界の支
配方程式は次のようになる。
Considering the material anisotropy nonlinearity, the governing equation of the electric field is as follows.

【0007】[0007]

【数1】 (εαβφ)=0 …(数1) 上式の添え字はアインシュタインの規約に従う。コンマ
は微分を意味し、繰り返し表れる添え字はx,y,z方
向への和をとる。εαβは誘電率または導電率テンソル
を表す。
[Equation 1] ( εαβφ , β ) , α = 0 (Equation 1) The subscripts in the above equation follow Einstein's rules. The comma means differentiation, and the suffix that appears repeatedly takes the sum in the x, y, and z directions. εαβ represents a dielectric constant or a conductivity tensor.

【0008】境界要素領域では材料の異方性,非線型性
は考慮しないと、(数1)式は次のように簡単になる。
In the boundary element region, if the anisotropy and non-linearity of the material are not taken into consideration, the expression (1) is simplified as follows.

【0009】[0009]

【数2】 εφ,αα=0 …(数2) 上式を境界要素法により離散化する。Εφ , αα = 0 (Equation 2) The above equation is discretized by the boundary element method.

【0010】グリーン関数をφ* として(数2)式を境
界積分方程式に変換すると次式を得る。
When the equation (2) is converted to a boundary integral equation using the Green function as φ *, the following equation is obtained.

【0011】[0011]

【数3】 (Equation 3)

【0012】ここで、Ci は解析領域を見込む立体角に
依存した定数で、観測点が滑らかな境界上にある場合は
1/2となる。またdΓは境界積分を示す。qはフラッ
クスで境界の外向き法線ベクトルの成分をnαとすると
ポテンシャルの微分値を用いて次のように書ける。
Here, C i is a constant depending on the solid angle in anticipation of the analysis area, and is 1 / when the observation point is on a smooth boundary. D Γ indicates a boundary integral. q can be written as follows using a differential value of the potential when the components of the outward normal vectors of the boundary flux and n alpha.

【0013】[0013]

【数4】 q=εφα …(数4) q* も同様に書ける。Equation 4 q = εφ , α n α (Equation 4) q * can be written in the same manner.

【0014】[0014]

【数5】 q* =φ* α …(数5) 有限要素法では(数1)式を離散化すると次のようにな
る。
Q * = φ * , α n α (Equation 5) In the finite element method, when Expression (1) is discretized, the following is obtained.

【0015】[0015]

【数6】 (Equation 6)

【0016】上式において、dΩは領域積分を示す。ま
た、Ni は要素内の物理量を近似する形状関数を示す。
次に境界要素法と有限要素法の結合解法についてマトリ
ックス表示で記述する。
In the above equation, dΩ indicates a domain integral. Further, N i denotes the shape function that approximates the physical quantity of the element.
Next, the combined solution of the boundary element method and the finite element method is described in a matrix display.

【0017】(数3)式を基に境界要素領域の離散化式
をマトリックスで表すと次のようになる。
When the discretization formula of the boundary element region is represented by a matrix based on the formula (3), it is as follows.

【0018】[0018]

【数7】 (Equation 7)

【0019】ここで、添え字Γ1 ,Γ2 ,Γinは第一
種、第二種境界条件及び接合境界を示す。
Here, the suffixes Γ 1 , Γ 2 , 示 すin indicate the first and second type boundary conditions and the joining boundary.

【0020】有限要素法のマトリックスを次のように書
く。
The matrix of the finite element method is written as follows.

【0021】[0021]

【数8】 (Equation 8)

【0022】ここで上つき添え字bは境界要素法、fは
有限要素領域の値を示す。
Here, the superscript b indicates the boundary element method, and f indicates the value of the finite element area.

【0023】接合条件はThe joining conditions are

【0024】[0024]

【数9】 (Equation 9)

【0025】[0025]

【数10】 (Equation 10)

【0026】である。## EQU1 ##

【0027】(数7)式を既知項と未知項に分けて変形
すると次のようになる。
Equation (7) is transformed into a known term and an unknown term and transformed as follows.

【0028】[0028]

【数11】 [Equation 11]

【0029】(数11)式を形式的に解くと次のように
なる。
Equation (11) is solved formally as follows.

【0030】[0030]

【数12】 (Equation 12)

【0031】これを次のように書き換える。This is rewritten as follows.

【0032】[0032]

【数13】 (Equation 13)

【0033】上式をさらに接合部とその他の部分に分け
る。
The above equation is further divided into a joint and other parts.

【0034】[0034]

【数14】 [Equation 14]

【0035】[0035]

【数15】 (Equation 15)

【0036】(数15)式において、接合部節点の数を
mとすると[A2 ]はm×mのマトリックスとなってい
る。(数15)式と(数8),(数9),(数10)式を連
立させて解く。(数15)式を(数9),(数10)式を
考慮して(数8)式に代入すると、
In equation (15), if the number of joint nodes is m, [A 2 ] is an m × m matrix. The equation (15) and the equations (8), (9), and (10) are solved simultaneously. Substituting equation (15) into equation (8) taking into account equations (9) and (10),

【0037】[0037]

【数16】 (Equation 16)

【0038】上式において、最初の2項は有限要素法に
よるマトリックスそのものであるので、有限要素法のマ
トリックス作成アルゴリズムそのものを用いれば良い。
このアイデアを実現するアルゴリズムを図1に示す。
In the above equation, since the first two terms are the matrix itself by the finite element method, the matrix creation algorithm itself of the finite element method may be used.
FIG. 1 shows an algorithm for realizing this idea.

【0039】プロセスaにおいて要素データ及び節点デ
ータ等の入力後、データからインデックス作成プロセス
bで、有限要素領域に属するデータと境界要素領域に属
するデータを分ける。さらに、境界要素領域では、物性
値の異なる領域同志の接続関係を探索し(プロセスb
2)、有限要素法領域によって分断されているかどうか
をプロセスb3で判定する。分断された各領域毎に要素
・節点の番号を付け直し(プロセスb4,b5)、この
とき有限要素法との接続境界に含まれる要素・節点を登
録しておく(プロセスb6)。次にマトリックス作成の
プロセスcに入る。
After inputting the element data and the node data in the process a, the data belonging to the finite element region and the data belonging to the boundary element region are separated from the data by the index creation process b. Further, in the boundary element region, a connection relationship between regions having different physical property values is searched (process b).
2) In process b3, it is determined whether the area is divided by the finite element method area. Element / node numbers are renumbered for each of the divided areas (processes b4 and b5), and at this time, elements / nodes included in the connection boundary with the finite element method are registered (process b6). Next, a process c for matrix creation is started.

【0040】このプロセスでは、(数3)式の積分を実
行し、境界要素法領域について各領域毎に(数7)式の
係数マトリックスを作り(プロセスc2)、接続境界部
分の係数マトリックスを重ね合わせる(プロセスc
3)。このとき、有限要素法領域との接合部に関わるマ
トリックスも同時に作成する(プロセスc4,(数7)
式のHin,Gin)。次に、(数13)式に従って、有限
要素法との接続境界について形式的に解を求め(プロセ
スc5)、(数14),(数15)式の係数マトリックス
を作り、記憶しておく。以上で境界要素法に関するマト
リックス操作は終わり、有限要素法との接続境界がない
場合はここで求まった解がそのまま全体の解となる。
In this process, the integration of the equation (3) is executed, a coefficient matrix of the equation (7) is created for each area of the boundary element method area (process c2), and the coefficient matrix of the connection boundary portion is superimposed. Match (process c
3). At this time, a matrix relating to the joint with the finite element method region is also created (process c4, (Equation 7)).
H in , G in in the formula). Next, a solution is formally obtained for the connection boundary with the finite element method according to the equation (13) (process c5), and coefficient matrices of the equations (14) and (15) are created and stored. The above is the end of the matrix operation for the boundary element method. If there is no connection boundary with the finite element method, the solution obtained here becomes the entire solution as it is.

【0041】有限要素法の領域がある場合、(数6)式
の積分を実行し、(数8)式の係数マトリックスを作成
する(プロセスc6)。次に(数15)式の境界要素法
部分のマトリックスを(数16)式に従って有限要素法
のマトリックスに足し込み(プロセスc9)、さらに境
界条件を付加する(プロセスc8)。こうして得られた
連立方程式をプロセスd1で解くと各節点上の電位が計
算できる。この値を(数14)式の右辺に代入すると残
りの境界要素法上の節点での電位・電界が求まる(プロ
セスd2)。
If there is an area of the finite element method, the integration of the equation (6) is executed to create a coefficient matrix of the equation (8) (process c6). Next, the matrix of the boundary element method part of the equation (15) is added to the matrix of the finite element method according to the equation (16) (process c9), and further a boundary condition is added (process c8). By solving the simultaneous equations thus obtained in the process d1, the potential on each node can be calculated. By substituting this value into the right side of equation (14), the potential and electric field at the remaining nodes on the boundary element method are obtained (process d2).

【0042】本発明のデータの流れを図2の計算機の構
成を用いて示す。プロセスaで入力されたデータは中央
演算処理装置を経て記憶装置に記憶される。このデータ
を基にプロセスbにより計算に必要な各種インデックス
を作成し記憶装置に記憶する。プロセスcではこのイン
デックスを基に各種マトリックスを作成し、記憶装置に
転送する。この値を用いて中央演算処理装置ではマトリ
ックスを解き結果を記憶する(プロセスd)。以上のス
テップを、図3に示すGISスペーサ部に適用した場合
についてマトリックスの生成と各領域の関係を図4に示
す。
The data flow of the present invention is shown using the configuration of the computer shown in FIG. The data input in the process a is stored in the storage device via the central processing unit. Based on this data, various indexes required for the calculation are created by the process b and stored in the storage device. In the process c, various matrices are created based on the index and transferred to the storage device. Using this value, the central processing unit solves the matrix and stores the result (process d). FIG. 4 shows the matrix generation and the relationship between the respective regions when the above steps are applied to the GIS spacer portion shown in FIG.

【0043】例えば、2のスペーサの部分を4の有限要
素法領域2、GIS空間部を3及び5の境界要素領域1
及び3とする。それぞれの領域について生成されたマト
リックスを示すと、図4の様になる。境界要素法の領域
はフルマトリックス8及び10(プロセスc2及びc
3)となり有限要素法の領域はスパースマトリックス9
(プロセスc6)となる。境界要素法の接合部について
(数14),(数15)式のマトリックスを示すと、図の
接合境界1又は2に宿約したマトリックス11及び12
となる(プロセスc4,c5)。これを有限要素法の領
域のマトリックスに足し込むと最終的に合成したマトリ
ックス13となる(プロセスc9)。このマトリックス
を解いて、(数14)式を用いて有限要素法領域の解
(プロセスd1)を境界要素法領域に反映すると(プロ
セスd2)、図5に示す様な全体の解が得られる。
For example, the part of the spacer 2 is the finite element method area 2 of 4 and the GIS space is the boundary element area 1 of 3 and 5
And 3. FIG. 4 shows a matrix generated for each region. The areas of the boundary element method are full matrices 8 and 10 (processes c2 and c2).
3) The domain of the finite element method is sparse matrix 9
(Process c6). The matrices of the equations (14) and (15) for the joints of the boundary element method are shown.
(Processes c4 and c5). When this is added to the matrix in the area of the finite element method, the matrix 13 is finally synthesized (process c9). When this matrix is solved and the solution of the finite element method area (process d1) is reflected on the boundary element method area using equation (14) (process d2), the entire solution as shown in FIG. 5 is obtained.

【0044】本実施例によればマトリックスが有限要素
法領域、及び境界要素法領域に個別に作るため、マトリ
ックスサイズは上記二つの領域を同時に合成して作った
場合よりも小さくなる効果がある。
According to the present embodiment, since the matrix is formed separately in the finite element method area and the boundary element method area, the matrix size has the effect of being smaller than when the above two areas are simultaneously synthesized.

【0045】図6は非線型の電界解析に本発明を適用し
た第2の実施例である。プロシジャーの構成は第1の実
施例とほぼ同じであるが、マトリックス作成の一部と連
立方程式を解く段階で次の点が異なる。
FIG. 6 shows a second embodiment in which the present invention is applied to a nonlinear electric field analysis. The structure of the procedure is almost the same as that of the first embodiment, but the following points are different in a part of the matrix creation and the stage of solving the simultaneous equations.

【0046】マトリックス作成段階では要素マトリック
スのみ作成し、有限要素領域全体のマトリックスは次の
連立方程式を解く段階で組み立てる。図1のプロセスc
7〜c9は図6では、新たにd4〜d6のプロセスが加
わり、d3〜d8となる。即ち、連立方程式を解く段階
では、収束計算の過程があり(プロセスd3)、その中
で導電率(又は誘電率)が電界に依存する場合有限要素
内の電界計算を行い(プロセスd4)導電率を計算する
(プロセスd5)。この導電率を基に有限要素領域のマ
トリックスを組み立てる(プロセスd6)。次に境界要
素法との接合マトリックスを足し込み(プロセスd
8)、境界条件を付与する(プロセスd7)。マトリック
スを解いた後は実施例1と同一である。
In the matrix creation stage, only the element matrix is created, and the matrix of the entire finite element region is assembled in the stage of solving the following simultaneous equations. Process c of FIG.
In FIG. 6, processes 7 to c9 are newly added to processes d4 to d6 and become processes d3 to d8. That is, in the step of solving the simultaneous equations, there is a process of convergence calculation (process d3), and when the conductivity (or permittivity) depends on the electric field, an electric field calculation in a finite element is performed (process d4). Is calculated (process d5). A matrix in a finite element region is assembled based on the electric conductivity (process d6). Next, the joining matrix with the boundary element method is added (process d
8) A boundary condition is given (process d7). After solving the matrix, it is the same as in the first embodiment.

【0047】本実施例によれば、小さいマトリックスサ
イズで非線型計算が可能となる効果に加えて、繰り返し
計算1回当りの演算回数が減少するため、計算時間も短
縮できる効果がある。
According to the present embodiment, in addition to the effect that nonlinear calculation can be performed with a small matrix size, the number of operations per one repetition calculation is reduced, so that the calculation time can be shortened.

【0048】図7は線形磁界解析に本発明を適用した第
3の実施例である。基本構成は第1の実施例と変わらな
いが、コイルによる磁界発生のプロシジャ−が付加され
ている点が異なる。具体的には、インデックス作成部分
にコイル用のインデックス作成部分(b10及び、b1
1),マトリックス作成部分では、コイルによる磁気ポ
テンシャルを境界条件に加える部分(c10)である。
解を得る段階では、各領域での磁界の計算部分(d9)
である。本実施例によれば、磁界計算においても小さい
マトリックスサイズで計算が可能となる効果がある。
FIG. 7 shows a third embodiment in which the present invention is applied to linear magnetic field analysis. The basic configuration is the same as that of the first embodiment, except that a procedure for generating a magnetic field by a coil is added. Specifically, the index creation part (b10 and b1) for the coil is added to the index creation part.
1) In the matrix creation part, this is a part (c10) in which the magnetic potential due to the coil is added to the boundary condition.
In the stage of obtaining the solution, the calculation part of the magnetic field in each region (d9)
It is. According to the present embodiment, there is an effect that the calculation can be performed with a small matrix size even in the magnetic field calculation.

【0049】図8は非線型磁界解析に本発明を適用した
第4の実施例である。基本構成は第2の実施例と変わら
ないが、コイルによる磁界発生のプロシジャ−が付加さ
れている点が異なる。具体的には、インデックス作成部
分にコイル用のインデックス作成部分(b10及びb1
1),マトリックス作成部分では、コイルによる磁気ポ
テンシャルを境界条件に加える部分(c10)である。
さらに、繰り返し計算過程において、導電率(又は誘電
率)の変わりに磁界から透磁率の計算が加わる(d
5)。本実施例によれば、第3の実施例の効果に加え
て、磁界計算においても、繰り返し計算1回当りの演算
回数が減少するため、計算時間も短縮できる効果があ
る。
FIG. 8 shows a fourth embodiment in which the present invention is applied to a nonlinear magnetic field analysis. The basic configuration is the same as that of the second embodiment, except that a procedure for generating a magnetic field by a coil is added. Specifically, the index creation part (b10 and b1) for the coil is added to the index creation part.
1) In the matrix creation part, this is a part (c10) in which the magnetic potential due to the coil is added to the boundary condition.
Further, in the iterative calculation process, the calculation of the magnetic permeability is added from the magnetic field instead of the conductivity (or the dielectric constant) (d
5). According to the present embodiment, in addition to the effects of the third embodiment, the number of operations per one repetition calculation is reduced in the magnetic field calculation, so that the calculation time can be shortened.

【0050】図9は応力解析に本発明を適用した第5の
実施例である。構成は第1の実施例とほぼ同じである
が、未知変数はポテンシャルではなく変位ベクトルとな
る点が異なる。このため未知数は電界の場合3倍に増加
する。したってマトリックスサイズはさらに大きくな
り、本発明によるマトリックスサイズの縮小の効果はさ
らに大きくなる。
FIG. 9 shows a fifth embodiment in which the present invention is applied to stress analysis. The configuration is almost the same as that of the first embodiment, except that the unknown variable is not a potential but a displacement vector. For this reason, the unknown increases three times in the case of an electric field. Thus, the matrix size is further increased, and the effect of reducing the matrix size according to the present invention is further increased.

【0051】[0051]

【発明の効果】請求項1によれば、マトリックスを有限
要素法領域、及び境界要素法領域とに個別に作るため、
マトリックスサイズは上記二つの領域を同時に合成して
作った場合よりも小さくなり計算機のメモリー容量を減
らせる効果がある。
According to the first aspect, in order to form a matrix separately into a finite element method area and a boundary element method area,
The matrix size is smaller than the case where the above two regions are simultaneously synthesized, thereby reducing the memory capacity of the computer.

【0052】請求項2によれば、非線型領域が部分的に
ある場合でも計算機のメモリー容量を減らせる効果があ
る。
According to the second aspect, there is an effect that the memory capacity of the computer can be reduced even when the non-linear area is partially present.

【0053】請求項3によれば、未知数がベクトルの場
合でも計算機のメモリー容量を減らせる効果がある。
According to the third aspect, there is an effect that the memory capacity of the computer can be reduced even when the unknown is a vector.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例である線形電界解析のフローチ
ャート。
FIG. 1 is a flowchart of a linear electric field analysis according to an embodiment of the present invention.

【図2】本発明の実行するための計算機の構成を示すブ
ロック図。
FIG. 2 is a block diagram showing a configuration of a computer for executing the present invention.

【図3】本発明を用いたGISスペーサに適用したプロ
グラムを示す図。
FIG. 3 is a diagram showing a program applied to a GIS spacer using the present invention.

【図4】本発明の各プロシジャーに置けるマトリックス
の生成過程を示す図。
FIG. 4 is a view showing a process of generating a matrix in each procedure of the present invention.

【図5】本発明を用いたGISスペーサに適用したプロ
グラムの解析結果を示す図。
FIG. 5 is a diagram showing an analysis result of a program applied to a GIS spacer using the present invention.

【図6】本発明の第2の実施例である非線型電界解析の
フローチャート。
FIG. 6 is a flowchart of a nonlinear electric field analysis according to a second embodiment of the present invention.

【図7】本発明の第3の実施例である非線型電界解析の
フローチャート。
FIG. 7 is a flowchart of a non-linear electric field analysis according to a third embodiment of the present invention.

【図8】本発明の第4の実施例である非線型電界解析の
フローチャート。
FIG. 8 is a flowchart of a non-linear electric field analysis according to a fourth embodiment of the present invention.

【図9】本発明の第5の実施例である非線型電界解析の
フローチャート。
FIG. 9 is a flowchart of a non-linear electric field analysis according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…タンク壁、2…スペーサ、3…境界要素領域1、4
…有限要素領域2、5…境界要素領域3、6…接合境界
1、7…接合境界2、8…境界要素領域1のマトリック
ス、9…有限要素領域2のマトリックス、10…境界要
素領域3のマトリックス、11…接合境界1のマトリッ
クス、12…接合境界2のマトリックス、13…最終的
に合成したマトリックス、14…導体。
DESCRIPTION OF SYMBOLS 1 ... Tank wall, 2 ... Spacer, 3 ... Boundary element area 1, 4
... finite element area 2, 5 ... boundary element area 3, 6 ... joining boundary 1, 7 ... joining boundary 2, 8 ... matrix of boundary element area 1, 9 ... matrix of finite element area 2, 10 ... boundary element area 3 Matrix, 11: Matrix of joining boundary 1, 12: Matrix of joining boundary 2, 13: Matrix finally synthesized, 14: Conductor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電磁場のような物理場を表す偏微分方程式
を計算機を利用して数値的に解析する方法として、有限
要素法と境界要素法を結合して解く方法において、先に
境界要素法の領域について有限要素法との接合面を残し
て部分的に解き、この部分のマトリックスを有限要素法
領域のマトリックスに足し込んだ後、有限要素法部分を
解き、この解を境界要素法領域に戻して全体を解くこと
を特徴とする有限要素法と境界要素法との結合による電
磁界解析法。
As a method of numerically analyzing a partial differential equation representing a physical field such as an electromagnetic field by using a computer, a method of solving by combining a finite element method and a boundary element method is described. After partially solving the area of 接合, leaving the interface with the finite element method, adding the matrix of this part to the matrix of the finite element method area, solving the finite element method part, and converting this solution to the boundary element method area An electromagnetic field analysis method combining the finite element method and the boundary element method, characterized by returning and solving the whole.
【請求項2】請求項1の結合解法において、有限要素法
の領域に非線型性を示す領域とする有限要素法と境界要
素法との結合による電磁界解析法。
2. The electromagnetic field analysis method according to claim 1, wherein the boundary element method and the finite element method are combined with a region showing nonlinearity in a region of the finite element method.
【請求項3】請求項1の結合解法において、未知数とし
てベクトル量を用いる有限要素法と境界要素法との結合
による電磁界解析法。
3. The electromagnetic field analysis method according to claim 1, wherein a finite element method using a vector quantity as an unknown and a boundary element method are combined.
JP10092949A 1998-04-06 1998-04-06 Electromagnetic field analyzing method by combination of finite-element method and boundary element method Pending JPH11296504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10092949A JPH11296504A (en) 1998-04-06 1998-04-06 Electromagnetic field analyzing method by combination of finite-element method and boundary element method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10092949A JPH11296504A (en) 1998-04-06 1998-04-06 Electromagnetic field analyzing method by combination of finite-element method and boundary element method

Publications (1)

Publication Number Publication Date
JPH11296504A true JPH11296504A (en) 1999-10-29

Family

ID=14068726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10092949A Pending JPH11296504A (en) 1998-04-06 1998-04-06 Electromagnetic field analyzing method by combination of finite-element method and boundary element method

Country Status (1)

Country Link
JP (1) JPH11296504A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006276472A (en) * 2005-03-29 2006-10-12 Canon Inc Information processor and control method thereof
WO2006112411A1 (en) 2005-04-15 2006-10-26 Matsushita Electric Industrial Co., Ltd. Circuit wiring interference analysis device, interference analysis program, database used in interference analysis device, and asymmetrically connected line model
US7236899B1 (en) 2006-02-10 2007-06-26 Fujitsu Limited Micro-magnetization analysis program, method, and apparatus
US11048846B2 (en) 2018-06-12 2021-06-29 International Business Machines Corporation Surface participation analysis of superconducting qubits with the boundary element method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006276472A (en) * 2005-03-29 2006-10-12 Canon Inc Information processor and control method thereof
WO2006112411A1 (en) 2005-04-15 2006-10-26 Matsushita Electric Industrial Co., Ltd. Circuit wiring interference analysis device, interference analysis program, database used in interference analysis device, and asymmetrically connected line model
US7814445B2 (en) 2005-04-15 2010-10-12 Panasonic Corporation Circuit wiring interference analysis device, interference analysis program, database used in interference analysis device, and asymmetrically connected line model
US7236899B1 (en) 2006-02-10 2007-06-26 Fujitsu Limited Micro-magnetization analysis program, method, and apparatus
US11048846B2 (en) 2018-06-12 2021-06-29 International Business Machines Corporation Surface participation analysis of superconducting qubits with the boundary element method

Similar Documents

Publication Publication Date Title
Song et al. A review of the scaled boundary finite element method for two-dimensional linear elastic fracture mechanics
Liu et al. A local radial point interpolation method (LRPIM) for free vibration analyses of 2-D solids
Nguyen-Thanh et al. Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids
Leonetti et al. An isogeometric formulation of the Koiter’s theory for buckling and initial post-buckling analysis of composite shells
Liu et al. Weighted T-splines with application in reparameterizing trimmed NURBS surfaces
Khoei et al. A polygonal finite element method for modeling crack propagation with minimum remeshing
KR102541743B1 (en) Learning Unit, Inference Unit, and Trained Model
Kim Interface element method (IEM) for a partitioned system with non-matching interfaces
Xu et al. A partition-of-unity based ‘FE-Meshfree’QUAD4 element with radial-polynomial basis functions for static analyses
Safdari et al. A NURBS‐based interface‐enriched generalized finite element method for problems with complex discontinuous gradient fields
WO2013072993A1 (en) Analytical calculation method, analytical calculation program and recording medium
Nguyen et al. A novel hr-adaptive mesh refinement scheme for stress-constrained shape and topology optimization using level-set-based trimmed meshes
Tang et al. An efficient adaptive analysis procedure using the edge-based smoothed point interpolation method (ES-PIM) for 2D and 3D problems
Bybordiani et al. An XFEM multilayered heaviside enrichment for fracture propagation with reduced enhanced degrees of freedom
Li et al. A generative design method for structural topology optimization via transformable triangular mesh (TTM) algorithm
Li et al. Estimating defeaturing-induced engineering analysis errors for arbitrary 3D features
JPH11296504A (en) Electromagnetic field analyzing method by combination of finite-element method and boundary element method
Florentin et al. Evaluation of the local quality of stresses in 3D finite element analysis
Dumont et al. The best of two worlds: The expedite boundary element method
Song et al. Virtual gap element approach for the treatment of non-matching interface using three-dimensional solid elements
Kohno et al. A new method for the level set equation using a hierarchical-gradient truncation and remapping technique
Kim Interface element method: Treatment of non-matching nodes at the ends of interfaces between partitioned domains
Chen et al. A 3D triangular prism spline element using B-net method
Areias et al. An objective and path-independent 3D finite-strain beam with least-squares assumed-strain formulation
Tse et al. Tin meets CAD-extending the TIN concept in GIS