JPH11295225A - Method and device for sensitively and quickly analyzing phosphor and boron in silicon material - Google Patents

Method and device for sensitively and quickly analyzing phosphor and boron in silicon material

Info

Publication number
JPH11295225A
JPH11295225A JP10247098A JP10247098A JPH11295225A JP H11295225 A JPH11295225 A JP H11295225A JP 10247098 A JP10247098 A JP 10247098A JP 10247098 A JP10247098 A JP 10247098A JP H11295225 A JPH11295225 A JP H11295225A
Authority
JP
Japan
Prior art keywords
emission intensity
boron
silicon
phosphorus
background
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10247098A
Other languages
Japanese (ja)
Inventor
Kyoko Fujimoto
京子 藤本
Makoto Shimura
眞 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10247098A priority Critical patent/JPH11295225A/en
Publication of JPH11295225A publication Critical patent/JPH11295225A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and device that sensitively and quickly analyze phosphor and boron in a silicon material. SOLUTION: A silicon material is directly inserted into high-temperature plasma for excitation light emission, each light emission intensity of phosphor, the background of the phosphor, boron, the background of the boron, and silicon is measured, light emission intensity ratio is obtained, where the light emission intensity is shown by the expressions of light emission intensity ratio = (the light emission intensity of the phosphor - the light emission intensity of the background of the phosphor)/(the light intensity of the silicon) (I) and light emission intensity ratio = (the light emission intensity of the boron - the light emission intensity of the background of the boron)/(the light intensity of the silicon) (II), and phosphor concentration and boron concentration are obtained according to the calibration curve of the light emission intensity ratio, the light emission intensity ratio being obtained in the same manner by the silicon material where the phosphor concentration and the boron concentration are known, the phosphor concentration, and the boron concentration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池や半導
体、電子材料などに用いられる高純度シリコン材料など
シリコン材料中のリン、ホウ素の分析方法に関し、特
に、シリコン材料中の微量リン、微量ホウ素を高精度か
つ迅速に定量することが可能なシリコン材料中のリン、
ホウ素の高感度迅速分析方法および分析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing phosphorus and boron in a silicon material such as a high-purity silicon material used for solar cells, semiconductors and electronic materials, and more particularly to a method for analyzing a trace amount of phosphorus and a trace amount of boron in a silicon material. Phosphorus in silicon material, which can accurately and quickly determine
The present invention relates to a method and an apparatus for analyzing boron with high sensitivity and high sensitivity.

【0002】[0002]

【従来の技術】リンは励起エネルギーやイオン化エネル
ギーが他の金属元素に比べて大きいため、原子吸光法や
ICP 分析法での分析感度が悪く、直接分析では、ppm レ
ベル以下の微量域には対応できない。シリコン材料中の
リンの分析に関しても同様で、例えば、シリコンウエハ
や太陽電池などで製品特性に大きな影響を与える元素と
してリンの分析要求が高いにも係わらず、提案されてい
る高感度分析手法は数少ない。
2. Description of the Related Art Phosphorus has higher excitation energy and ionization energy than other metal elements.
The analytical sensitivity of the ICP analysis method is poor, and direct analysis cannot be applied to trace levels below the ppm level. The same applies to the analysis of phosphorus in silicon materials.For example, despite the high analysis requirements for phosphorus as an element that has a significant effect on product characteristics in silicon wafers and solar cells, the proposed high-sensitivity analysis method is Few.

【0003】シリコン材料中のリンの分析法としては、
機器分析法として、シリコンウエハーを対象として、赤
外線吸収法[B.O.Kolbesen:Appl.Phys.Letters ,27, 353
(1975)] やフォトルミネッセンス法[ 田島道夫: 応用物
理, 47, 376(1978)]による定量法が検討、確立されてい
るが、前者は試料の光入出射面を平坦で平滑に仕上げる
ための試料調製が煩雑で長時間を要し、一方、後者は、
装置自体が大がかりで、分析にも半日程度の長時間を要
するといった問題があった。
[0003] As a method for analyzing phosphorus in silicon material,
As an instrumental analysis method, an infrared absorption method was applied to silicon wafers [BOKolbesen: Appl. Phys. Letters, 27, 353
(1975)] and a photoluminescence method [Michio Tajima: Applied Physics, 47, 376 (1978)] have been studied and established, but the former is intended to make the light input / output surface of the sample flat and smooth. The sample preparation is complicated and takes a long time, while the latter is
There is a problem in that the apparatus itself is large-scale and analysis requires a long time of about half a day.

【0004】一方、高純度シリコン材料中の微量ホウ素
の分析法としては、一般的には試料を水酸化アルカリで
溶融したりあるいはその溶液で加圧溶解したりして溶液
化し、電解法や抽出法で濃縮した後、湿式分析法や高周
波プラズマ(ICP) 分析法などによる溶液分析法で定量す
る方法が用いられている。しかしながら、これらの湿式
分析法では試料溶液の調製および測定に長時間(数時間
以上) を要するため、例えば生産現場でのオンサイト分
析など迅速な分析要求に対応することはできない。
On the other hand, as a method of analyzing a trace amount of boron in a high-purity silicon material, a sample is generally melted with alkali hydroxide or dissolved under pressure with a solution thereof to form a solution, which is then subjected to electrolysis or extraction. After being concentrated by the method, a method of quantification by a solution analysis method such as a wet analysis method or an radio frequency plasma (ICP) analysis method is used. However, these wet analysis methods require a long time (several hours or more) for preparation and measurement of a sample solution, and thus cannot respond to rapid analysis requirements such as on-site analysis at a production site.

【0005】また、通常溶液分析法であるICP 発光分析
法のプラズマ中に黒鉛カップに入れた試料を直接挿入し
てその中の不純物元素を迅速に分析しようとする方法が
検討・報告されている[E.D.Salin,G.Horlick:Anal.Che
m.,51,2284(1979) ] 。上記した試料直接挿入法の固体
試料への適用例としては、生体・環境試料[M.Abuduah,
T.Hasegawa,H.Haraguchi:Spectrochim.Acta,39B,1129(1
984) ] をはじめ、Ni基合金などの金属試料[C.W.Mcleo
d,P.A.Clarke,D.J.Mowthorpe:Spectrochim.Acta ,41B,6
3(1986)]が挙げられるが、ppm 以下の微量域およびシリ
コン材料分析への適用は検討されていない。
In addition, a method has been studied and reported in which a sample placed in a graphite cup is directly inserted into plasma in ICP emission spectrometry, which is a normal solution analysis method, to quickly analyze impurity elements therein. [EDSalin, G. Horlick: Anal.Che
m., 51, 2284 (1979)]. Examples of the application of the direct sample insertion method described above to solid samples include biological and environmental samples [M. Abuduah,
T.Hasegawa, H.Haraguchi: Spectrochim.Acta, 39B, 1129 (1
984)] and metal samples such as Ni-based alloys [CWMcleo
d, PAClarke, DJMowthorpe: Spectrochim.Acta, 41B, 6
3 (1986)], but its application to the trace region below ppm and silicon material analysis has not been studied.

【0006】またホウ素は沸点が高く(3927 ℃) 、試料
カップ素材である黒鉛とも難揮発性の炭化物を形成し易
いことから、単にプラズマ中で加熱するだけではホウ素
を高感度に検出することはできない。ホウ素のような難
揮発性の元素の原子化促進のために、これらの元素を低
沸点のハロゲン化物に変換することを目的として、塩化
銀(AgCl)やポリフルオロエチレン(PTFE)を添加した報告
[G.Zaray,J.A.C.Broekaert,F.Leis:Spectrochim.Acta,4
3B,241(1988)] がある。
Since boron has a high boiling point (3927 ° C.) and easily forms non-volatile carbides with graphite as a sample cup material, it is difficult to detect boron with high sensitivity simply by heating in plasma. Can not. Silver chloride (AgCl) and polyfluoroethylene (PTFE) were added to convert these elements into low-boiling halides in order to promote the atomization of refractory elements such as boron.
[G.Zaray, JACBroekaert, F.Leis: Spectrochim.Acta, 4
3B, 241 (1988)].

【0007】しかしこの方法は、操作が煩雑な上、ハロ
ゲン化試薬自体に起因するバックグラウンドや不純物の
影響も無視できない。さらに、ハロゲン化試薬の沸点が
低いため、本発明が対象とする金属シリコンなどのシリ
コン材料に適用する際には、シリコンが溶解あるいは気
化する前に試薬のみが蒸発してしまい、ハロゲン化の効
果が得られない。
However, this method is complicated in operation, and the influence of background and impurities caused by the halogenating reagent itself cannot be ignored. Furthermore, since the halogenating reagent has a low boiling point, when the present invention is applied to a silicon material such as metallic silicon, only the reagent evaporates before the silicon is dissolved or vaporized, and the halogenation effect is reduced. Can not be obtained.

【0008】一方プラズマ形成ガス( キャリアガス) の
一部に0.1 %程度のフレオンを混入させて炭化物の生成
を抑制した旨の報告[G.K.Kirkbriht,Z.Li-Xing:Analys
t,107617(1982)]もあるが、長時間に渡たる分析ではフ
ッ素の連続注入による石英製の試料導入部および石英製
のプラズマトーチの損傷やトーチ先端部への炭素の付着
などが生じ、分析精度を低下させるため、実用的でな
い。
On the other hand, it has been reported that about 0.1% of freon was mixed in a part of the plasma forming gas (carrier gas) to suppress the formation of carbides [GKKirkbriht, Z. Li-Xing: Analys
t, 107617 (1982)], but analysis over a long period of time caused damage to the quartz sample introduction part and quartz plasma torch due to the continuous injection of fluorine, and adhesion of carbon to the tip of the torch, etc. It is not practical because it lowers the analysis accuracy.

【0009】そのため、本発明者らは、ホウ素分析にお
いて試料をプラズマ中に挿入する際に水素化物あるいは
ハロゲン化物とし気化効率を増大させることにより、高
感度化を図った(特願平9−302767号)。上記した方法
によって、ホウ素の感度を高めシリコン材料中の微量ホ
ウ素を精度に優れた方法で分析することが可能となった
が、サブppm 以下への定量下限向上は困難で、サブppm
以下のホウ素を含有する試料についてさらに精度に優れ
た微量ホウ素の分析方法を検討する必要があった。
[0009] Therefore, the present inventors have attempted to increase the sensitivity by increasing the vaporization efficiency by converting the sample into hydride or halide when inserting the sample into the plasma in the boron analysis (Japanese Patent Application No. 9-302767). issue). By the above-mentioned method, it became possible to increase the sensitivity of boron and analyze a trace amount of boron in the silicon material by a method with excellent accuracy, but it was difficult to improve the lower limit of quantification to sub-ppm or less.
It was necessary to study a more accurate method for analyzing trace amounts of boron for the following samples containing boron.

【0010】[0010]

【発明が解決しようとする課題】本発明は、前記した従
来技術の問題点を解決し、太陽電池や半導体、電子材料
などに用いられる高純度シリコン材料などシリコン材料
中の微量リン、微量ホウ素を、高精度で迅速に分析する
ことが可能なシリコン材料中のリン、ホウ素の高感度迅
速分析方法および分析装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and removes trace amounts of phosphorus and boron from silicon materials such as high-purity silicon materials used for solar cells, semiconductors, and electronic materials. It is an object of the present invention to provide a highly sensitive and rapid method and apparatus for analyzing phosphorus and boron in a silicon material, which can be analyzed quickly with high accuracy.

【0011】[0011]

【課題を解決するための手段】第1の発明は、シリコン
材料を、直接、高温のプラズマ中に挿入して励起発光さ
せ、リンの発光強度、リンのバックグラウンドの発光強
度およびケイ素の発光強度の三者を同時に測定し、下記
式(1) で示される発光強度比を求めると共に、リン濃度
既知のシリコン試料を用いて上記三者の発光強度を同時
に測定し下記式(1) に基づいて得られた発光強度比とリ
ン濃度との相関式である検量線を求め、該検量線と前記
したシリコン材料についての発光強度比とからシリコン
材料中のリン濃度を求めることを特徴とするシリコン材
料中のリンの高感度迅速分析方法である。
According to a first aspect of the present invention, a silicon material is directly inserted into a high-temperature plasma to excite and emit light. The emission intensity of phosphorus, the emission intensity of phosphorus background and the emission intensity of silicon are obtained. Simultaneously measure the three, the emission intensity ratio shown by the following formula (1) is determined, and the emission intensity of the above three is simultaneously measured using a silicon sample with a known phosphorus concentration, based on the following formula (1) Determining a calibration curve that is a correlation equation between the obtained emission intensity ratio and the phosphorus concentration, and determining a phosphorus concentration in the silicon material from the calibration curve and the emission intensity ratio of the silicon material described above. It is a sensitive and rapid method for the analysis of phosphorus in foods.

【0012】 発光強度比=(リンの発光強度−リンのバックグラウンドの発光強度)/(ケ イ素の発光強度)…………(1) 第2の発明は、シリコン材料を、直接、高温のプラズマ
中に挿入して励起発光させ、ホウ素の発光強度、ホウ素
のバックグラウンドの発光強度およびケイ素の発光強度
の三者を同時に測定し、下記式(2) で示される発光強度
比を求めると共に、ホウ素濃度既知のシリコン試料を用
いて上記三者の発光強度を同時に測定し下記式(2) に基
づいて得られた発光強度比とホウ素濃度との相関式であ
る検量線を求め、該検量線と前記したシリコン材料につ
いての発光強度比とからシリコン材料中のホウ素濃度を
求めることを特徴とするシリコン材料中のホウ素の高感
度迅速分析方法である。
Light emission intensity ratio = (phosphorus light emission intensity−phosphorus background light emission intensity) / (silicon light emission intensity) (1) In the second invention, a silicon material is directly heated at a high temperature. The excitation light emission is inserted into the plasma of the above, the emission intensity of boron, the emission intensity of boron background and the emission intensity of silicon are simultaneously measured, and the emission intensity ratio shown by the following formula (2) is obtained. Using a silicon sample with a known boron concentration, the luminescence intensities of the above three were simultaneously measured, and a calibration curve which was a correlation equation between the luminescence intensity ratio obtained based on the following equation (2) and the boron concentration was obtained. A high-sensitivity rapid analysis method for boron in a silicon material, wherein a boron concentration in the silicon material is obtained from a line and an emission intensity ratio of the silicon material.

【0013】 発光強度比=(ホウ素の発光強度−ホウ素のバックグラウンドの発光強度)/ (ケイ素の発光強度)……(2) 前記した第2の発明においては、プラズマ形成ガス中
に、水素、ハロゲンガス、ガス状ハロゲン化物および水
蒸気から選ばれる1種または2種以上を添加することが
より好ましい。
Emission intensity ratio = (Emission intensity of boron−Emission intensity of boron background) / (Emission intensity of silicon) (2) In the second aspect of the present invention, hydrogen, hydrogen, It is more preferable to add one or more selected from halogen gas, gaseous halide and steam.

【0014】第3の発明は、高温プラズマによって発光
する発光部1を有するプラズマ・トーチ3と、前記発光
部1に試料を直接挿入するための試料挿入装置2と、前
記発光部1からの発光を分光する分光部8と、該分光部
8で分光された(a) リンの発光強度、(b) リンのバック
グラウンドの発光強度および(c) ケイ素の発光強度の三
者を同時に測定するための検出器9a,9b,9cと、前記分光
部8で分光された(d)ホウ素の発光強度、(e) ホウ素の
バックグラウンドの発光強度および(c) ケイ素の発光強
度の三者を同時に測定するための検出器9d,9e,9cと、前
記検出器9a,9b,9c,9d,9eで得られた前記5者の発光強度
(a),(b),(c),(d),(e) に基づき下記式(1) 、(2) で示さ
れる発光強度比を演算する機能を備えたデータ処理部5
を有することを特徴とするシリコン材料中のリン、ホウ
素の高感度迅速分析装置である。
According to a third aspect of the present invention, there is provided a plasma torch 3 having a light emitting portion 1 which emits light by high-temperature plasma, a sample insertion device 2 for directly inserting a sample into the light emitting portion 1, and light emission from the light emitting portion 1. For simultaneously measuring the three components of (a) the emission intensity of phosphorus, (b) the emission intensity of the background of phosphorus, and (c) the emission intensity of silicon, which are spectrally separated by the spectral unit 8. And the detectors 9a, 9b, and 9c of (a) and (b), the emission intensity of boron, the emission intensity of the background of boron, and the emission intensity of (c) silicon, which were spectrally separated by the spectral unit 8, were simultaneously measured. Detectors 9d, 9e, 9c for performing the measurement, and the emission intensities of the five persons obtained by the detectors 9a, 9b, 9c, 9d, 9e
(a), (b), (c), (d), (e) based on the data processing unit 5 having a function of calculating the emission intensity ratio represented by the following formulas (1) and (2)
A highly sensitive and rapid analyzer for phosphorus and boron in a silicon material, characterized by having:

【0015】 発光強度比=(リンの発光強度−リンのバックグラウンドの発光強度)/(ケ イ素の発光強度)……………(1) 発光強度比=(ホウ素の発光強度−ホウ素のバックグラウンドの発光強度)/ (ケイ素の発光強度)………(2) 前記した第3の発明においては、プラズマ・トーチ3の
プラズマ形成ガス中に、水素、ハロゲンガス、ガス状ハ
ロゲン化物および水蒸気から選ばれる1種または2種以
上を添加するためのガス導入装置を付設することが好ま
しい。
Emission intensity ratio = (Emission intensity of phosphorus−Emission intensity of background of phosphorus) / (Emission intensity of silicon) (1) Emission intensity ratio = (Emission intensity of boron−Emission intensity of boron) (Emission intensity of background) / (Emission intensity of silicon) (2) In the third aspect of the present invention, hydrogen, halogen gas, gaseous halide and water vapor are contained in the plasma forming gas of the plasma torch 3. It is preferable to provide a gas introduction device for adding one or more kinds selected from the group consisting of:

【0016】なお、上記した第1の発明〜第3の発明に
おけるプラズマとしては、ラジオ波あるいはマイクロ波
放電によって生成するAr、HeあるいはN2の高周波プラズ
マを用いることが好ましい。
[0016] Note that the plasma in the first aspect of the present invention to third invention described above, Ar generated by radio wave or microwave discharge, it is preferable to use a high-frequency plasma of He or N 2.

【0017】[0017]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。前記した第1の発明においては、黒鉛カップなど
の試料カップに収納したシリコン材料を、直接、高温の
プラズマ中に挿入して励起、発光させ、リンの発光強
度、リンのバックグラウンドの発光強度およびケイ素の
発光強度の三者を同時に測定する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. In the first aspect, the silicon material contained in the sample cup such as the graphite cup is directly inserted into the high-temperature plasma to excite and emit light, and the phosphor emission intensity, the phosphor background emission intensity and The emission intensity of silicon is measured simultaneously.

【0018】また、前記した第2の発明においては、黒
鉛カップなどの試料カップに収納したシリコン材料を、
直接、高温のプラズマ中に挿入して励起、発光させ、ホ
ウ素の発光強度、ホウ素のバックグラウンドの発光強度
およびケイ素の発光強度の三者を同時に測定する。この
場合、好ましくは、高温のプラズマを形成せしめるため
のArなどのプラズマ形成ガス中に、ホウ素の気化を促進
するために、水素、Cl2、Br2 、F2などのハロゲンガス、
塩化水素、臭化水素、フッ化水素などのハロゲン化物の
ガスおよび水蒸気から選ばれる1種または2種以上を添
加することによってホウ素の発光強度は増大し、一層の
高感度化が可能になる。
In the second invention, the silicon material housed in a sample cup such as a graphite cup is
It is directly inserted into a high-temperature plasma to excite and emit light, and simultaneously measures the emission intensity of boron, the emission intensity of background boron, and the emission intensity of silicon. In this case, preferably, in a plasma forming gas such as Ar for forming a high-temperature plasma, a hydrogen gas such as hydrogen, Cl 2, Br 2 , or F 2 to promote the vaporization of boron;
By adding one or more selected from a gaseous halide such as hydrogen chloride, hydrogen bromide and hydrogen fluoride and water vapor, the emission intensity of boron is increased, and higher sensitivity can be achieved.

【0019】リン、ホウ素、ケイ素の発光分析線(:測
定波長)としては、分析が必要とするレベルの濃度に対
応した発光強度が得られるような感度を有する発光分析
線であれば任意に選定することが可能であるが、シリコ
ンなどの共存元素の干渉の少ない発光分析線として、リ
ンであればPI 178.29nm あるいはPI 177.44nm 、ホウ素
であればBI 182.64nm あるいはBI 249.7nmなどの波長が
望ましい。
As the luminescence analysis line of phosphorus, boron, and silicon (: measurement wavelength), any luminescence analysis line having sensitivity enough to obtain luminescence intensity corresponding to the concentration required for analysis is arbitrarily selected. However, as an emission analysis line with less interference of coexisting elements such as silicon, a wavelength such as PI 178.29 nm or PI 177.44 nm for phosphorus and a BI 182.64 nm or BI 249.7 nm for boron is preferable. .

【0020】また、ケイ素は含有量が高いため、任意の
波長を用いることができるが、プラズマ中でリン、ホウ
素と類似の挙動を示す例えばSiI 251.6nm の原子線を用
いる方が、蒸発量補正(:ケイ素の発光強度比補正)時
に装置変動の影響を受けず、より高精度な分析が可能に
なる。バックラウンドの波長としては、ケイ素および他
の予想される共存成分の干渉のなるべく少ない波長を選
択する必要があり、リンとホウ素に対して別々に設定し
てもよく、また、リンとホウ素の測定波長が比較的近傍
のリンとホウ素の測定波長を選択した場合には一つのバ
ックグラウンド波長で測定した強度をバックグラウンド
強度として用いることもできる。
Since silicon has a high content, an arbitrary wavelength can be used. However, it is better to use an atomic beam of, for example, SiI 251.6 nm, which exhibits a behavior similar to that of phosphorus or boron in plasma. (: Emission intensity ratio correction of silicon) at the time of being unaffected by the fluctuation of the apparatus, it is possible to perform more accurate analysis. It is necessary to select the wavelength of the backround as small as possible with the interference of silicon and other anticipated coexisting components, which may be set separately for phosphorus and boron, and for the measurement of phosphorus and boron. When the measurement wavelengths of phosphorus and boron having relatively close wavelengths are selected, the intensity measured at one background wavelength can be used as the background intensity.

【0021】例えば、PI 178.29nm とBI 182.64nm を測
定波長として用いる場合には180nm近傍でバックグラウ
ンドの発光強度の測定を行うことができる。このため、
前記した第3の発明におけるリンのバックグラウンドの
発光強度の検出器9bと、ホウ素のバックグラウンドの発
光強度の検出器9eを1台として兼用することも可能であ
る。
For example, when PI 178.29 nm and BI 182.64 nm are used as measurement wavelengths, the background emission intensity can be measured at around 180 nm. For this reason,
It is also possible to use the detector 9b for the background emission intensity of phosphorus and the detector 9e for the background emission intensity of boron in the third aspect of the invention as a single unit.

【0022】次に、リンの分析の場合は、同時に測光し
たリンの発光強度、リンのバックグラウンドの発光強度
およびケイ素の発光強度の三者から、下記式(1) で示さ
れる発光強度比(以下発光強度比(P−αP /Si)とも
記す)を求める。 発光強度比(P−αP /Si)=(リンの発光強度−リンのバックグラウンドの 発光強度)/(ケイ素の発光強度)……………(1) また、ホウ素の分析の場合は、同時に測光したホウ素の
発光強度、ホウ素のバックグラウンドの発光強度および
ケイ素の発光強度の三者から、下記式(2) で示される発
光強度比(以下発光強度比(B−βB /Si)とも記す)
を求める。
Next, in the case of phosphorus analysis, the luminescence intensity ratio expressed by the following equation (1) is obtained from the luminescence intensity of phosphorus, background luminescence intensity of phosphor and luminescence intensity of silicon measured simultaneously. Hereinafter, the emission intensity ratio (also referred to as P-α P / Si) is determined. Light emission intensity ratio (P-α P / Si) = - The (phosphorus emission intensity emission intensity of the background phosphorus) / (emission intensity of silicon) ............... (1), if the analysis of boron, From the light emission intensity of boron, the light emission intensity of boron background and the light emission intensity of silicon measured at the same time, the light emission intensity ratio represented by the following formula (2) (hereinafter also referred to as light emission intensity ratio (B-β B / Si) Write)
Ask for.

【0023】 発光強度比(B−βB /Si)=(ホウ素の発光強度−ホウ素のバックグラウン ドの発光強度)/(ケイ素の発光強度)………(2) ケイ素は含有量が高く、正味の発光強度に対するバック
グラウンドの発光強度の影響はかなり小さいため、特に
はケイ素のバックグラウンド補正を行う必要はないが、
測定装置の条件が許すならば、ケイ素の発光分析線(:
測定波長)近傍に干渉のないバックグラウンド波長を設
定し、そこでの測定強度を用いてケイ素の発光強度のバ
ックグラウンド補正を行えば、より一層の分析精度の向
上が可能である。
Emission intensity ratio (B-β B / Si) = (Emission intensity of boron−Emission intensity of boron background) / (Emission intensity of silicon) (2) Silicon has a high content, The influence of the background emission intensity on the net emission intensity is quite small, so there is no need to perform silicon background correction in particular,
If the conditions of the measuring device allow, the emission analysis line of silicon (:
If a background wavelength that does not cause interference is set near (measurement wavelength) and the background intensity of the emission intensity of silicon is corrected using the measured intensity, the analysis accuracy can be further improved.

【0024】リン、ホウ素の濃度が既知の試料を用いて
上記と同様の方法により作成したリンとケイ素に関する
発光強度比(P−αP /Si)とリン濃度との相関式であ
る検量線またはホウ素とケイ素に関する発光強度比(B
−βB /Si)とホウ素濃度との相関式である検量線を用
いて試料中のリン濃度(=リン含有率)、ホウ素濃度
(=ホウ素含有率)に換算する。
A calibration curve or a correlation curve, which is a correlation equation between the emission intensity ratio (P-α P / Si) for phosphorus and silicon and the phosphorus concentration, prepared by a method similar to the above using a sample having known concentrations of phosphorus and boron. Emission intensity ratio for boron and silicon (B
−β B / Si) and the boron concentration are converted into a phosphorus concentration (= phosphorus content) and a boron concentration (= boron content) in the sample using a calibration curve which is a correlation formula between the boron concentration and the boron concentration.

【0025】次に、図3に、本発明のシリコン材料中の
リン、ホウ素の高感度迅速分析装置の一例を、断面図に
よって示す。図3において、1は高温プラズマによって
発光する発光部、2は発光部1に試料を直接挿入するた
めの試料挿入装置、3はプラズマ・トーチ、4は分光、
検出器、5はデータ処理部、6はArなどのプラズマ形成
ガス、7は集光レンズ、8は回折格子を用いた分光部、
9a,9b,9c,9d,9eは光電子増倍管を用いた検出器、12は試
料カップ、13はキャリアガス漏出防止用蓋、14は試料カ
ップの軸部、15は試料カップ駆動装置、16は水素、ハロ
ゲンガス、ガス状のハロゲン化物、水蒸気導入用のガス
導入装置、20はICP (高周波誘導結合プラズマ)を示
す。
Next, FIG. 3 is a sectional view showing an example of a high-sensitivity and rapid analyzer for phosphorus and boron in a silicon material according to the present invention. In FIG. 3, reference numeral 1 denotes a light emitting unit that emits light by high-temperature plasma, 2 denotes a sample insertion device for directly inserting a sample into the light emitting unit 1, 3 denotes a plasma torch, 4 denotes a spectrometer,
A detector 5, a data processing unit 5, a plasma forming gas 6 such as Ar, 7 a condenser lens, 8 a spectroscopic unit using a diffraction grating,
9a, 9b, 9c, 9d, 9e are detectors using a photomultiplier tube, 12 is a sample cup, 13 is a lid for preventing carrier gas leakage, 14 is a shaft of the sample cup, 15 is a sample cup driving device, 16 Denotes a gas introduction device for introducing hydrogen, halogen gas, gaseous halide and water vapor, and 20 denotes an ICP (high frequency inductively coupled plasma).

【0026】なお、本発明においては、分光部8として
は、上記した回折格子に代えてプリズムを用いることも
可能であり、分光の方式は特に制限されるものではな
い。また、本発明においては、検出器9a,9b,9c,9d,9eと
しては、上記した光電子増倍管に代えてCCD(:charge co
upled device) 検出器を用いることも可能であり、検出
器の方式は特に制限されるものではない。
In the present invention, a prism can be used as the light splitting unit 8 instead of the above-described diffraction grating, and the method of splitting light is not particularly limited. Further, in the present invention, as the detectors 9a, 9b, 9c, 9d, 9e, a CCD (: charge co
Upled device) It is also possible to use a detector, and the type of the detector is not particularly limited.

【0027】本発明においては、前記した分析方法を実
現するために、下記の構成からなる分析装置を用いるこ
とが好ましい。 (1):高温プラズマによって発光する発光部1を有する
プラズマ・トーチ2;なお、本装置は、図3に示すよう
に、ホウ素の高感度化のために、ホウ素のハロゲン化用
のハロゲンガス、ガス状ハロゲン化物、ホウ素の水素化
用の水素、ホウ素の酸化物生成のための水蒸気から選ば
れる1種以上のガスをプラズマ・トーチ3のプラズマ形
成ガス中に添加するためのガス導入装置16を付設するこ
とが好ましい。
In the present invention, in order to realize the above-described analysis method, it is preferable to use an analyzer having the following configuration. (1): a plasma torch 2 having a light-emitting portion 1 that emits light by high-temperature plasma; as shown in FIG. 3, this device uses a halogen gas for halogenating boron to increase the sensitivity of boron. A gas introduction device 16 for adding at least one gas selected from gaseous halides, hydrogen for hydrogenating boron, and water vapor for generating oxides of boron to the plasma forming gas of the plasma torch 3 is provided. It is preferable to attach it.

【0028】(2):発光部1に試料を直接挿入するため
の試料挿入装置3; (3):分光、検出器4;発光部1からの発光を分光し、
リン、ホウ素およびケイ素の三者それぞれの発光強度と
リンのバックグラウンドの発光強度およびホウ素のバッ
クグラウンドの発光強度を測定する分光、検出器。
(2): a sample insertion device 3 for directly inserting a sample into the light emitting section 1; (3): a spectroscopic detector 4;
A spectrometer and a detector for measuring the luminescence intensity of each of phosphorus, boron and silicon, the luminescence intensity of the background of phosphorus and the luminescence intensity of the background of boron.

【0029】(4):データ処理部5;分光、検出器4で
得られたリンの発光強度およびホウ素の発光強度それぞ
れに対するリンのバックグラウンドの発光強度の補正お
よびホウ素のバックグラウンドの発光強度の補正を行う
と共に、ケイ素の発光強度に基づき試料蒸発量補正(:
ケイ素の発光強度比補正)を行うデータ処理部。
(4): Data processing unit 5; correction of the background light emission intensity of phosphorus and the background light emission intensity of boron with respect to the emission intensity of phosphorus and the emission intensity of boron obtained by spectroscopy and detector 4, respectively. In addition to performing the correction, the sample evaporation amount correction based on the emission intensity of silicon (:
Data processing unit that performs silicon light emission intensity ratio correction).

【0030】試料蒸発量補正は、ケイ素の発光強度に基
づき、前記した式(1) 、(2) によって行う。リン、ホウ
素の測定波長として200nm 以下の真空紫外域の波長を用
いる場合には、分光器として真空型あるいは不活性ガス
置換型の分光器を用い、集光レンズなど光が透過する部
分にMgF など真空紫外域波長の透過率の高い素材のもの
を用いることによって、より高感度な測定が可能にな
る。
The amount of evaporation of the sample is corrected based on the emission intensity of silicon by the above-described equations (1) and (2). When using a wavelength in the vacuum ultraviolet region of 200 nm or less as the measurement wavelength for phosphorus and boron, use a vacuum type or inert gas replacement type spectroscope as the spectroscope, and use MgF or the like in the light-transmitting parts such as the condenser lens. By using a material having a high transmittance at a wavelength in the vacuum ultraviolet region, measurement with higher sensitivity is possible.

【0031】以上述べた本発明によれば、マトリックス
であるケイ素の分光干渉、さらには試料カップをプラズ
マ中に挿入することによって生ずるホワイトノイズと呼
ばれるバックグラウンド増大の影響を受けずに、サブpp
m 以下へ定量下限を広げ、高精度の分析を行うことが可
能となった。また、ホウ素分析において、試料をプラズ
マ中に挿入する際に、プラズマ形成ガス中に、ハロゲン
ガス、ガス状ハロゲン化物、水素および水蒸気から選ば
れる1種または2種以上を添加することによって、ホウ
素の気化効率が増大し、極めて簡易な方法で、ホウ素の
発光強度が増大し、ホウ素の一層の高感度分析が可能と
なる。
According to the present invention described above, without being affected by the spectral interference of the silicon as the matrix and the background increase called white noise caused by inserting the sample cup into the plasma, the sub-pp
The lower limit of quantification has been extended to m or less, enabling high-precision analysis. In addition, in the boron analysis, when a sample is inserted into plasma, one or two or more kinds selected from a halogen gas, a gaseous halide, hydrogen, and water vapor are added to a plasma forming gas, so that boron is removed. The vaporization efficiency is increased, the luminescence intensity of boron is increased by a very simple method, and a more sensitive analysis of boron becomes possible.

【0032】[0032]

【実施例】以下、本発明を実施例に基づいて具体的に説
明する。 (実施例)前記した図3に示す本発明の分析装置を用い
てシリコン材料中のリン、ホウ素の分析を行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments. (Example) Phosphorus and boron in a silicon material were analyzed using the analyzer of the present invention shown in FIG.

【0033】プラズマ形成ガスとしてはArを用いた。分
光、検出器4は真空型を用い、光電子増倍管9a〜9eはPI
178.29nm 、BI 182.64nm 、バックラウンドとして180.
00nm、SiI 261.6nm の波長に設定した。集光レンズ7は
MgF 製のものを用いた。また、水素、ハロゲンガス、ガ
ス状ハロゲン化物、水蒸気導入用のガス導入装置16にお
けるガス状ハロゲン化物導入装置としては、温度調整機
能の付いたバブリング装置に塩酸(1+1)を入れ、5 ℃恒
温としてキャリアガスを0.8l/minで通過させ、プラズマ
中に導入する装置構成とした。
Ar was used as a plasma forming gas. The spectroscopy and detector 4 use a vacuum type, and the photomultiplier tubes 9a to 9e are PI
178.29nm, BI 182.64nm, 180 as backround.
The wavelength was set to 00 nm and the SiI to 261.6 nm. The condenser lens 7
The one made of MgF was used. In addition, as a gaseous halide introduction device in the gas introduction device 16 for introducing hydrogen, halogen gas, gaseous halide, and steam, hydrochloric acid (1 + 1) is put into a bubbling device having a temperature control function, and the temperature is kept at 5 ° C. The carrier gas was passed at 0.8 l / min and introduced into the plasma.

【0034】試料カップ12は容量50μl の中空黒鉛製を
用い、断面直径1mm の黒鉛製の軸部に接続した。試料量
は20mgを用い、下部を開放にしたプラズマトーチ3の下
方から、プラズマを点灯した状態で直接プラズマ中へ挿
入した。この時生ずる発光強度を、光電子増倍管9a〜9e
で測定し、データ処理部5に転送する。
The sample cup 12 was made of hollow graphite having a volume of 50 μl, and was connected to a graphite shaft having a cross-sectional diameter of 1 mm. The sample was used in an amount of 20 mg, and was directly inserted into the plasma from below the plasma torch 3 with the lower part opened, with the plasma turned on. The emission intensity generated at this time is determined by the photomultiplier tubes 9a to 9e.
And transfers it to the data processing unit 5.

【0035】データ処理部5においては各発光シグナル
の積分強度を算出し、リンの発光強度、ホウ素の発光強
度、リンのバックグラウンドの発光強度、ホウ素のバッ
クグラウンドの発光強度、ケイ素の発光強度から下記式
(1) 、(2) に基づいて、発光強度比(P−αP /Si)、
発光強度比(B−βB /Si)を算出する。 発光強度比(P−αP /Si)=(リンの発光強度−リンのバックグラウンドの 発光強度)/(ケイ素の発光強度)……………(1) 発光強度比(B−βB /Si)=(ホウ素の発光強度−ホウ素のバックグラウン ドの発光強度)/(ケイ素の発光強度)………(2) 次に、上記したそれぞれの発光強度比と、予め湿式分析
法によってリン濃度およびホウ素濃度が既知のシリコン
試料を用いて上記と同様の方法により作成しておいた
リンに関する発光強度比(P−αP /Si)とリン濃度と
の相関式である検量線およびホウ素に関する発光強度
比(B−βB /Si)とホウ素濃度との相関式である検量
線とからシリコン材料中のリン濃度(:P含有率)、ホ
ウ素濃度(:B含有率)に換算する。
The data processing unit 5 calculates the integrated intensity of each luminescent signal, and calculates the integrated intensity of the luminescent signal of phosphorus, the luminescent intensity of boron, the luminescent intensity of the background of phosphorus, the luminescent intensity of the background of boron, and the luminescent intensity of silicon. The following formula
Based on (1) and (2), the emission intensity ratio (P-α P / Si),
The emission intensity ratio (B-β B / Si) is calculated. Emission intensity ratio (P-α P / Si) = (Emission intensity of phosphorus−Emission intensity of background of phosphorus) / (Emission intensity of silicon)... (1) Emission intensity ratio (B−β B / Si) = (Emission intensity of boron−Emission intensity of boron background) / (Emission intensity of silicon) (2) Next, the respective emission intensity ratios described above and the phosphorus concentration were determined in advance by wet analysis. And a calibration curve which is a correlation equation between the luminescence intensity ratio (P-α P / Si) and the phosphorus concentration of phosphorus prepared by a method similar to the above using a silicon sample having a known boron concentration and the luminescence of boron. The phosphorus concentration (: P content) and the boron concentration (: B content) in the silicon material are converted from a calibration curve which is a correlation equation between the intensity ratio (B-β B / Si) and the boron concentration.

【0036】図1に、本発明の方法、装置によって得ら
れたリンの検量線を示し、図2に、本発明の方法、装置
によって得られたホウ素の検量線を示す。なお、本検量
線作成に際しては、図3に示すガス導入装置から前記し
た装置によって塩化水素と水分を含有するArをプラズマ
・トーチ3に導入した。リンは、試料をプラズマ中に挿
入後5秒後から15秒間、ホウ素は、5秒後から25秒間
の発光シグナルを積分した。
FIG. 1 shows a calibration curve of phosphorus obtained by the method and apparatus of the present invention, and FIG. 2 shows a calibration curve of boron obtained by the method and apparatus of the present invention. In preparing the calibration curve, Ar containing hydrogen chloride and moisture was introduced into the plasma torch 3 from the gas introduction apparatus shown in FIG. Phosphorus integrated the luminescent signal from 5 seconds to 15 seconds after inserting the sample into the plasma, and boron integrated the luminescent signal from 5 seconds to 25 seconds.

【0037】なお、試料内の偏析の影響を低減するた
め、各試料を3回ずつ分析してその平均値を用いた。バ
ックグラウンド補正によって、シグナル/バックグラウ
ンド比は大きく向上し、リン含有率およびホウ素含有率
が0.1 〜0.2wt-ppm 以下の微量域でも検量線の直線性は
良好で、本方法が高純度シリコン材料中のリンおよびホ
ウ素の迅速高感度分析手法として有用であることが分か
る。
In order to reduce the influence of segregation in the sample, each sample was analyzed three times and the average value was used. By the background correction, the signal / background ratio is greatly improved, and the linearity of the calibration curve is good even in a trace area where the phosphorus content and the boron content are 0.1 to 0.2 wt-ppm or less. It is found to be useful as a rapid and sensitive analytical method for phosphorus and boron in the solution.

【0038】次に、図1、図2に示す検量線を用いて本
発明の方法、装置および検量線作成時と同様の分析方法
によって実際試料中のリンおよびホウ素を定量した結果
を、表1および表2に示す。表1に示されるように、本
発明によって、リン含有率:0.07wt-ppmレベルの試料が
標準偏差σ=0.005wt-ppm で定量することが可能となっ
た。
Next, the results of quantifying phosphorus and boron in actual samples using the calibration curves shown in FIGS. 1 and 2 by the method, apparatus and analysis method of the present invention in the same manner as when the calibration curves were prepared are shown in Table 1. And Table 2. As shown in Table 1, the present invention makes it possible to quantify a sample having a phosphorus content of 0.07 wt-ppm with a standard deviation σ = 0.005 wt-ppm.

【0039】また、表2に示されるように、ホウ素含有
率:0.17wt-ppmレベルの試料が標準偏差σ=0.021wt-pp
m で定量することが可能となった。さらに、上記した本
発明の分析方法、分析装置によれば、試料調製が、分析
対象の試料を試料カップに収納するために切り出すか、
粉砕するのみでよく、簡易かつ短時間で行うことができ
る。
As shown in Table 2, a sample having a boron content: 0.17 wt-ppm level had a standard deviation σ = 0.021 wt-pp.
m. Furthermore, according to the analysis method of the present invention described above, according to the analyzer, the sample preparation is cut out to accommodate the sample to be analyzed in the sample cup,
It only needs to be crushed, and can be performed easily and in a short time.

【0040】また、試料の高温プラズマ中への挿入から
発光強度比の算出迄の所要時間が1試料当たり1〜3分
であり、極めて迅速に分析することが可能となった。
In addition, the time required from the insertion of the sample into the high-temperature plasma to the calculation of the emission intensity ratio is 1 to 3 minutes per sample, so that analysis can be performed very quickly.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】(比較例)前記した図3に示す本発明の分
析装置を用い、リン濃度およびホウ素濃度が既知のシリ
コン試料を用いてリンに関する発光強度とリン濃度と
の相関式である検量線およびホウ素に関する発光強度
とホウ素濃度との相関式である検量線を作成した。
(Comparative Example) Using the analytical apparatus of the present invention shown in FIG. 3 described above, using a silicon sample having a known phosphorus concentration and boron concentration, a calibration curve and a correlation equation representing the correlation between the emission intensity and the phosphorus concentration of phosphorus. A calibration curve, which is a correlation equation between the emission intensity of boron and the boron concentration, was created.

【0044】得られた検量線を、図4、図5に示す。な
お、図4、図5の縦軸の発光強度の単位a.u.は任意単位
を示す。図4、図5と図1、図2との対比で明らかなよ
うに、発光強度とリン濃度、ホウ素濃度との検量線(図
4、図5)は、P含有率、B含有率が0.4wt-ppm 以下に
おいてバラツキが大きく、これらの検量線を用いて図
1、図2、表1、表2に示したような微量のリン、ホウ
素の精度の良い定量は不可能である。
The obtained calibration curves are shown in FIGS. The unit au of the light emission intensity on the vertical axis in FIGS. 4 and 5 is an arbitrary unit. As is clear from comparison of FIGS. 4 and 5 with FIGS. 1 and 2, the calibration curves (FIGS. 4 and 5) of the emission intensity, the phosphorus concentration and the boron concentration show that the P content ratio and the B content ratio are 0.4. The dispersion is large below wt-ppm, and it is not possible to accurately quantify trace amounts of phosphorus and boron as shown in FIGS. 1 and 2 and Tables 1 and 2 using these calibration curves.

【0045】表3、表4に、リン、ホウ素の含有率の高
いシリコン材料について下記方法で定量分析を行った結
果を示す。 〔リン含有率:〕 (a) 直接法;リン濃度が既知のシリコン試料についての
リンの発光強度とリン濃度との相関式である検量線と、
シリコン材料のリンの発光強度とからリン含有率を求め
た。
Tables 3 and 4 show the results of quantitative analysis of a silicon material having a high phosphorus and boron content by the following method. [Phosphorus content:] (a) Direct method; Calibration curve which is a correlation equation between phosphorous emission intensity and phosphorous concentration for a silicon sample having a known phosphorous concentration,
The phosphorus content was determined from the emission intensity of phosphorus in the silicon material.

【0046】すなわち、本直接法においては、リンのバ
ックグラウンド補正、ケイ素の発光強度比補正は行って
いない。 (b) ケイ素の発光強度比法;リン濃度が既知のシリコン
試料について、下記式(3) で示される発光強度比(P/
Si)とリン濃度との相関式である検量線を求め、得られ
た検量線とシリコン材料の下記式(3) で示される発光強
度比(P/Si)とからリン含有率を求めた。
That is, in the present direct method, the background correction of phosphorus and the emission intensity ratio correction of silicon are not performed. (b) Silicon emission intensity ratio method: For a silicon sample with a known phosphorus concentration, the emission intensity ratio (P /
A calibration curve, which is a correlation equation between Si) and the phosphorus concentration, was determined, and the phosphorus content was determined from the obtained calibration curve and the emission intensity ratio (P / Si) of the silicon material represented by the following equation (3).

【0047】 発光強度比(P/Si)=(リンの発光強度)/(ケイ素の発光強度)……(3) すなわち、上記した発光強度比(P/Si)法において
は、リンのバックグラウンド補正は行っていない。 〔ホウ素含有率:〕 ケイ素の発光強度比法;ホウ素濃度が既知のシリコン試
料について、下記式(4) で示される発光強度比(B/S
i)とホウ素濃度との相関式である検量線を求め、得ら
れた検量線とシリコン材料の下記式(4) で示される発光
強度比(B/Si)とからホウ素含有率を求めた。
Emission intensity ratio (P / Si) = (Emission intensity of phosphorus) / (Emission intensity of silicon) (3) That is, in the above emission intensity ratio (P / Si) method, the background of phosphorus No correction was made. [Boron content:] Emission intensity ratio method of silicon: For a silicon sample having a known boron concentration, an emission intensity ratio (B / S
A calibration curve, which is a correlation equation between i) and the boron concentration, was determined, and the boron content was determined from the obtained calibration curve and the emission intensity ratio (B / Si) of the silicon material represented by the following equation (4).

【0048】 発光強度比(B/Si)=(ホウ素の発光強度)/(ケイ素の発光強度)…(4) すなわち、上記した発光強度比(B/Si)法において
は、ホウ素のバックグラウンド補正は行っていない。な
お、ホウ素の場合、上記した式(4) で示されるケイ素の
発光強度比補正を行わない場合、分析値のバラツキが大
きく、ホウ素の精度の良い定量は不可能であった。
Emission intensity ratio (B / Si) = (Emission intensity of boron) / (Emission intensity of silicon) (4) That is, in the above emission intensity ratio (B / Si) method, the background correction of boron is performed. Has not gone. In the case of boron, when the emission intensity ratio correction of silicon represented by the above formula (4) was not performed, the analysis values had large variations, and accurate quantification of boron was impossible.

【0049】表1と表3との対比、および表2と表4と
の対比から明らかなように、リンの発光強度、ホウ素の
発光強度に加えて、リン、ホウ素のバックグラウンドの
発光強度、ケイ素の発光強度の両者を用いる本発明の分
析方法、分析装置によれば、高純度シリコン中のサブpp
m 以下への定量下限向上を達成でき、サブppm 以下の微
量リン、微量ホウ素を精度に優れた方法で分析すること
が可能であることが分かる。
As is clear from the comparison between Tables 1 and 3 and the comparison between Tables 2 and 4, in addition to the luminescence intensity of phosphorus and luminescence of boron, the luminescence intensity of the background of phosphorus and boron, According to the analysis method and the analyzer of the present invention using both the emission intensity of silicon, the sub-pp
It can be seen that the lower limit of quantification can be improved to m or less, and that trace amounts of phosphorus and boron in sub-ppm or less can be analyzed by a method with excellent accuracy.

【0050】[0050]

【表3】 [Table 3]

【0051】[0051]

【表4】 [Table 4]

【0052】[0052]

【発明の効果】以上述べたように、本発明によれば、高
純度シリコン中のサブppm レベル以下の微量リン、微量
ホウ素を、簡便な方法で高精度かつ極めて迅速に分析す
ることが可能となった。すなわち、これまで微量分析が
困難で、しかも長時間を要していた高純度シリコン中の
微量リン、微量ホウ素の定量分析が、このように簡便か
つ極めて迅速に実施できるようになったことにより、半
導体材料や太陽電池などに使用されるシリコン製造プロ
セスの解析や反応制御が正確に、また迅速に行えるよう
になり、製品の品質向上や安定生産の面で著しい効果が
期待される。
As described above, according to the present invention, it is possible to analyze a trace amount of phosphorus and a trace amount of boron at a sub-ppm level or less in high-purity silicon by a simple method with high accuracy and extremely quickness. became. In other words, trace analysis of trace amounts of phosphorus and boron in high-purity silicon, which has been difficult and traceable until now, can now be performed easily and extremely quickly. Analysis and reaction control of the silicon manufacturing process used for semiconductor materials and solar cells can be performed accurately and quickly, and significant effects are expected in terms of improving product quality and stable production.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わるリンの検量線の一例を示すグラ
フである。
FIG. 1 is a graph showing an example of a calibration curve of phosphorus according to the present invention.

【図2】本発明に係わるホウ素の検量線の一例を示すグ
ラフである。
FIG. 2 is a graph showing an example of a calibration curve of boron according to the present invention.

【図3】本発明のシリコン材料中のリン、ホウ素の高感
度迅速分析装置の一例を示す断面図である。
FIG. 3 is a cross-sectional view showing an example of a high-sensitivity rapid analysis apparatus for phosphorus and boron in a silicon material according to the present invention.

【図4】リンの検量線を示すグラフである。FIG. 4 is a graph showing a calibration curve of phosphorus.

【図5】ホウ素の検量線を示すグラフである。FIG. 5 is a graph showing a calibration curve of boron.

【符号の説明】[Explanation of symbols]

1 発光部 2 発光部に試料を直接挿入するための試料挿入装置 3 プラズマ・トーチ 4 分光、検出器 5 データ処理部 6 プラズマ形成ガス 7 集光レンズ 8 分光部 9a,9b,9c,9d,9e 検出器 12 試料カップ 13 キャリアガス漏出防止用蓋 14 試料カップの軸部 15 試料カップ駆動装置 16 ガス導入装置 20 ICP (高周波誘導結合プラズマ) DESCRIPTION OF SYMBOLS 1 Light-emitting part 2 Sample insertion apparatus for directly inserting a sample into a light-emitting part 3 Plasma torch 4 Spectroscopy and detector 5 Data processing part 6 Plasma forming gas 7 Condensing lens 8 Spectroscopic parts 9a, 9b, 9c, 9d, 9e Detector 12 Sample cup 13 Carrier gas leakage prevention lid 14 Sample cup shaft 15 Sample cup drive 16 Gas introduction device 20 ICP (High frequency inductively coupled plasma)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シリコン材料を、直接、高温のプラズマ
中に挿入して励起発光させ、リンの発光強度、リンのバ
ックグラウンドの発光強度およびケイ素の発光強度の三
者を同時に測定し、下記式(1) で示される発光強度比を
求めると共に、リン濃度既知のシリコン試料を用いて上
記三者の発光強度を同時に測定し下記式(1) に基づいて
得られた発光強度比とリン濃度との相関式である検量線
を求め、該検量線と前記したシリコン材料についての発
光強度比とからシリコン材料中のリン濃度を求めること
を特徴とするシリコン材料中のリンの高感度迅速分析方
法。 記 発光強度比=(リンの発光強度−リンのバックグラウンドの発光強度)/(ケ イ素の発光強度)……………(1)
1. A silicon material is directly inserted into a high-temperature plasma to excite and emit light, and phosphor emission intensity, phosphor background emission intensity and silicon emission intensity are simultaneously measured, and the following equation is obtained. The emission intensity ratio shown in (1) is determined, and the emission intensity ratio and the phosphorus concentration obtained based on the following formula (1) by simultaneously measuring the emission intensity of the above three members using a silicon sample with a known phosphorus concentration. A high-sensitivity rapid analysis method for phosphorus in a silicon material, comprising: obtaining a calibration curve which is a correlation formula of the following, and obtaining a phosphorus concentration in the silicon material from the calibration curve and the emission intensity ratio of the silicon material. Note: Emission intensity ratio = (phosphorus emission intensity-phosphor background emission intensity) / (silicon emission intensity) (1)
【請求項2】 シリコン材料を、直接、高温のプラズマ
中に挿入して励起発光させ、ホウ素の発光強度、ホウ素
のバックグラウンドの発光強度およびケイ素の発光強度
の三者を同時に測定し、下記式(2) で示される発光強度
比を求めると共に、ホウ素濃度既知のシリコン試料を用
いて上記三者の発光強度を同時に測定し下記式(2) に基
づいて得られた発光強度比とホウ素濃度との相関式であ
る検量線を求め、該検量線と前記したシリコン材料につ
いての発光強度比とからシリコン材料中のホウ素濃度を
求めることを特徴とするシリコン材料中のホウ素の高感
度迅速分析方法。 記 発光強度比=(ホウ素の発光強度−ホウ素のバックグラウンドの発光強度)/ (ケイ素の発光強度)………(2)
2. A method in which a silicon material is directly inserted into a high-temperature plasma to emit excited light, and the three values of luminescence intensity of boron, luminescence intensity of boron background and luminescence intensity of silicon are measured at the same time. While obtaining the emission intensity ratio shown in (2), the emission intensity ratio and the boron concentration obtained based on the following equation (2) by simultaneously measuring the emission intensity of the above three using a silicon sample with a known boron concentration and A high-sensitivity rapid analysis method for boron in a silicon material, comprising: obtaining a calibration curve which is a correlation formula of the following, and obtaining a boron concentration in the silicon material from the calibration curve and the emission intensity ratio of the silicon material. Note: Emission intensity ratio = (Emission intensity of boron-Emission intensity of background of boron) / (Emission intensity of silicon) ... (2)
【請求項3】 高温プラズマによって発光する発光部
(1) を有するプラズマ・トーチ(3) と、前記発光部(1)
に試料を直接挿入するための試料挿入装置(2)と、前記
発光部(1) からの発光を分光する分光部(8) と、該分光
部(8) で分光された(a) リンの発光強度、(b) リンのバ
ックグラウンドの発光強度および(c) ケイ素の発光強度
の三者を同時に測定するための検出器(9a,9b,9c)と、前
記分光部(8) で分光された(d) ホウ素の発光強度、(e)
ホウ素のバックグラウンドの発光強度および(c) ケイ素
の発光強度の三者を同時に測定するための検出器(9d,9
e,9c)と、前記検出器(9a,9b,9c,9d,9e)で得られた前記
5者の発光強度(a),(b),(c),(d),(e) に基づき下記式
(1) 、(2) で示される発光強度比を演算する機能を備え
たデータ処理部(5) を有することを特徴とするシリコン
材料中のリン、ホウ素の高感度迅速分析装置。 記 発光強度比=(リンの発光強度−リンのバックグラウンドの発光強度)/(ケ イ素の発光強度)……………(1) 発光強度比=(ホウ素の発光強度−ホウ素のバックグラウンドの発光強度)/ (ケイ素の発光強度)………(2)
3. A light emitting section that emits light by high-temperature plasma.
(1) a plasma torch (3), and the light emitting section (1)
A sample insertion device (2) for directly inserting a sample into the sample, a spectroscopy unit (8) for separating the light emitted from the light emitting unit (1), and (a) phosphorous separated by the spectroscopy unit (8). The detectors (9a, 9b, 9c) for simultaneously measuring the three components of the emission intensity, (b) the background emission intensity of phosphorus, and (c) the emission intensity of silicon, are separated by the spectral unit (8). (D) emission intensity of boron, (e)
A detector (9d, 9) for simultaneously measuring the background emission intensity of boron and the emission intensity of (c) silicon.
e, 9c) and the emission intensity (a), (b), (c), (d), (e) of the five persons obtained by the detector (9a, 9b, 9c, 9d, 9e). Based on the following formula
A highly sensitive and rapid analyzer for phosphorus and boron in a silicon material, comprising a data processing section (5) having a function of calculating the emission intensity ratio shown in (1) and (2). Note: Emission intensity ratio = (Emission intensity of phosphorus-Emission intensity of background of phosphorus) / (Emission intensity of silicon) ............ (1) Emission intensity ratio = (Emission intensity of boron-Background of boron) Emission intensity) / (silicon emission intensity) ............ (2)
JP10247098A 1998-04-14 1998-04-14 Method and device for sensitively and quickly analyzing phosphor and boron in silicon material Pending JPH11295225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10247098A JPH11295225A (en) 1998-04-14 1998-04-14 Method and device for sensitively and quickly analyzing phosphor and boron in silicon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10247098A JPH11295225A (en) 1998-04-14 1998-04-14 Method and device for sensitively and quickly analyzing phosphor and boron in silicon material

Publications (1)

Publication Number Publication Date
JPH11295225A true JPH11295225A (en) 1999-10-29

Family

ID=14328347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10247098A Pending JPH11295225A (en) 1998-04-14 1998-04-14 Method and device for sensitively and quickly analyzing phosphor and boron in silicon material

Country Status (1)

Country Link
JP (1) JPH11295225A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002003054A1 (en) * 2000-06-30 2002-01-10 Iatron Laboratories, Inc. Hydrogen flame luminosity analyzer for thin-layer chromatograph, and hydrogen flame luminosity analyzing method
WO2014091936A1 (en) * 2012-12-10 2014-06-19 昭和電工株式会社 Method for producing silicon-containing aluminum alloy ingot

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002003054A1 (en) * 2000-06-30 2002-01-10 Iatron Laboratories, Inc. Hydrogen flame luminosity analyzer for thin-layer chromatograph, and hydrogen flame luminosity analyzing method
JP2002014046A (en) * 2000-06-30 2002-01-18 Iatron Lab Inc Luminous intensity analyzer and analyzing method of hydrogen frame for thin layer chromatograph
WO2014091936A1 (en) * 2012-12-10 2014-06-19 昭和電工株式会社 Method for producing silicon-containing aluminum alloy ingot
CN104838023A (en) * 2012-12-10 2015-08-12 昭和电工株式会社 MAethod for producing silicon-containing aluminum alloy ingot
JP5833256B2 (en) * 2012-12-10 2015-12-16 昭和電工株式会社 Method for producing silicon-containing aluminum alloy ingot

Similar Documents

Publication Publication Date Title
Gough Direct analysis of metals and alloys by atomic absorption spectrometry
Paul et al. Mineral assay in atomic absorption spectroscopy
WO2018121146A1 (en) Method for improving carbon detection sensitivity of laser probe
Shekhar et al. Determination of thallium at trace levels by electrolyte cathode discharge atomic emission spectrometry with improved sensitivity
Rust et al. Advances with tungsten coil atomizers: continuum source atomic absorption and emission spectrometry
Huang et al. High-resolution continuum source electrothermal absorption spectrometry of AlBr and CaBr for the determination of bromine
Harville et al. Line selection and evaluation of radio frequency glow discharge atomic emission spectrometry for the analysis of copper and aluminum alloys
Manjusha et al. Direct determination of impurities in high purity chemicals by electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES)
Farah et al. Developments and applications of multielement graphite furnace atomic absorption spectrometry
Goforth et al. Laser-excited atomic fluorescence of atoms produced in a graphite furnace
Kobayashi et al. Non-dispersive atomic-fluorescence spectrometry of trace amounts of bismuth by introduction of its gaseous hydride into a premixed argon (entrained air)—hydrogen flame
Ferrara et al. Improved instrument for mercury determination by atomic fluorescence spectrometry with a high-frequency electrodeless discharge lamp
Epstein et al. Determination of several trace metals in simulated fresh water by graphite furnace atomic emission spectrometry
Huang et al. High-resolution continuum source molecular absorption spectrometry of nitrogen monoxide and its application for the determination of nitrate
JPH11295225A (en) Method and device for sensitively and quickly analyzing phosphor and boron in silicon material
Anfone et al. Radio frequency glow discharge optical emission spectrometry (rf-GD-OES) analysis of solid glass samples
Asfaw et al. A new demountable hydrofluoric acid resistant triple mode sample introduction system for ICP-AES and ICP-MS
Hutton et al. Determination of barium in calcium carbonate rocks by carbon furnace atomic-emission spectrometry
Kadenkin et al. Studies with a miniaturized microwave induced plasma for element specific detection in gas chromatographic separations of halogenated hydrocarbons
Van Dalen et al. The selective determination of halogens and sulphur in solution by atmospheric-pressure helium microwave-induced plasma emission spectrometry coupled to an electrothermal introduction system
Guo et al. Use of a flow injection hydride generation technique in non-dispersive atomic fluorescence spectrometry
Galbács et al. Determination of cadmium in certified reference materials using solid sampling electrothermal vaporization inductively coupled plasma mass spectrometry supplemented with thermogravimetric studies
Melzer et al. Determination of trace amounts of lead in water by metastable transfer emission spectrometry
Zhang et al. Evaluation of microwave-induced air-plasma as an excitation source
Gong et al. Determination of arsenic and antimony by microwave plasma atomic emission spectrometry coupled with hydride generation and a PTFE membrane separator